Minimal star-varieties of polynomial growth and bounded colength

Daniela La Mattina ${ }^{1, \diamond}$, Thais Silva do Nascimento ${ }^{2,3}$ and Ana Cristina Vieira ${ }^{3, *, \natural}$
${ }^{1}$ Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi, 34, 90123, Palermo, Italy.
${ }^{2}$ Departamento de Matemática, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Cuiabá, Brazil.
${ }^{3}$ Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.

Abstract

Let \mathcal{V} be a variety of associative algebras with involution $*$ over a field F of characteristic zero. Giambruno and Mishchenko proved in [6] that the $*$-codimension sequence of \mathcal{V} is polynomially bounded if and only if \mathcal{V} does not contain the commutative algebra $D=F \oplus F$, endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular matrices, endowed with the reflection involution. As a consequence the algebras D and M generate the only varieties of almost polynomial growth. In $[\mathbf{2 0}]$ the authors completely classify all subvarieties and all minimal subvarieties of the varieties var* (D) and $\operatorname{var}^{*}(M)$. In this paper we exhibit the decompositions of the $*$-cocharacters of all minimal subvarieties of $\operatorname{var}^{*}(D)$ and $\operatorname{var}^{*}(M)$ and compute their $*$-colengths. Finally we relate the polynomial growth of a variety to the $*$-colengths and classify the varieties such that their sequence of *-colengths is bounded by three.

1. Introduction

Let A be an associative algebra with involution ($*$-algebra) over a field F of characteristic zero and let $c_{n}^{*}(A), n=1,2, \ldots$, be its sequence of $*$-codimensions. In case A satisfies a nontrivial identity, it was proved in [8] that $c_{n}^{*}(A)$ is exponentially bounded. In order to capture the exponential rate of growth of the sequence of $*$-codimensions, recently, in $[7]$ the authors proved that for any associative $*$-algebra A, satisfying an ordinary identity,

$$
\exp ^{*}(A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{*}(A)}
$$

exists and is an integer called the $*$-exponent of A.
Given a variety of $*$-algebras \mathcal{V}, the growth of \mathcal{V} is the growth of the sequence of $*$-codimensions of any algebra A generating \mathcal{V}, i.e., $\mathcal{V}=\operatorname{var}^{*}(A)$. In this paper we are interested in varieties of polynomial growth, i.e., varieties of $*$-algebras such that $c_{n}^{*}(\mathcal{V})=c_{n}^{*}(A)$ is polynomially bounded.

In such a case, if A is an algebra with 1 , in [19] it was proved that $c_{n}^{*}(A)=q n^{k}+O\left(n^{k-1}\right)$ is a polynomial with rational coefficients whose leading term satisfies the inequalities $\frac{1}{k!} \leq q \leq \sum_{i=0}^{k} 2^{k-i} \frac{(-1)^{i}}{i!}$.

In case of polynomial growth Giambruno and Mishchenko proved in $[6]$ that a variety \mathcal{V} has polynomial growth if and only if \mathcal{V} does not contain the commutative algebra $D=F \oplus F$, endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular matrices, endowed with the reflection involution. As a consequence the $*$-algebras D and M generate the only varieties of almost polynomial growth, i.e, they grow exponentially but any proper subvariety is polynomially bounded.

In $[\mathbf{2 0}]$ the authors completely classify all subvarieties of the varieties $\operatorname{var}^{*}(D)$ and $\operatorname{var}^{*}(M)$. They also classify all their minimal subvarieties of polynomial growth. We recall that \mathcal{V} is a minimal variety of polynomial growth n^{k} if asymptotically $c_{n}^{*}(\mathcal{V}) \approx a n^{k}$, for some $a \neq 0$, and $c_{n}^{*}(\mathcal{U}) \approx b n^{t}$, with $t<k$, for any proper subvariety \mathcal{U} of \mathcal{V}.

[^0]The relevance of the minimal varieties of polynomial growth relies in the fact that these were the building blocks that allowed the authors to give a complete classification of the subvarieties of the varieties of almost polynomial growth (see also $[\mathbf{5}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 4}, \mathbf{1 6}, \mathbf{1 7}]$).

An equivalent formulation of Giambruno-Mishchenko's result can be given as follows. Let P_{n}^{*} be the vector space of multilinear polynomials of degree n and $\operatorname{Id}^{*}(A)$ the ideal of identities satisfied by a $*$-algebra A. The space $\frac{P_{n}^{*}}{P_{n}^{*} \cap \operatorname{Id}^{*}(A)}$ has a structure of $\mathbb{Z}_{2} 2 S_{n}$-module and its character $\chi_{n}^{*}(A)$, by complete reducibility, decomposes as

$$
\chi_{n}^{*}(A)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \chi_{\lambda, \mu},
$$

where $\chi_{\lambda, \mu}$ is the irreducible $\mathbb{Z}_{2} \backslash S_{n}$-character associated to the pair of partitions (λ, μ) and $m_{\lambda, \mu} \geq 0$ is the corresponding multiplicity. Then

$$
l_{n}^{*}(A)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu}
$$

is called the nth $*$-colength of A. If A satisfies a non-trivial identity then $l_{n}^{*}(A), n=1,2, \ldots$, is polynomially bounded [1].

In this paper we state the Giambruno-Mishchenko's result as follows: if A is any $*$-algebra, $c_{n}^{*}(A)$ is polynomially bounded if and only if the sequence of $*$-colengths is bounded by a constant, i.e., $l_{n}^{*}(A) \leq k$, for some $k \geq 0$ and for all $n \geq 1$. Such result was proved for finite dimensional $*$-algebras in $[\mathbf{2 4}]$.

Moreover we exhibit the decompositions of the $*$-cocharacters of all minimal subvarieties of $\operatorname{var}^{*}(D)$ and $\operatorname{var}^{*}(M)$, compute their $*$-colengths and complete their $*$-codimensions. Finally we classify the varieties such that their sequence of $*$-colengths is bounded by three, for n large enough. Furthermore we show that if $l_{n}^{*}(A) \leq 3$, then for n large enough, $l_{n}^{*}(A)$ is always constant.

2. Generalities and basic tools

Throughout this paper we shall denote by F a field of characteristic zero and by A an associative algebra, not necessarily with 1 , endowed with an involution $*$ over F. Let us write $A=A^{+} \oplus A^{-}$, where $A^{+}=\left\{a \in A \mid a^{*}=a\right\}$ and $A^{-}=\left\{a \in A \mid a^{*}=-a\right\}$ denote the sets of symmetric and skew elements of A, respectively.

Let $F\langle X, *\rangle$ be the free associative algebra with involution on a countable set $X=\left\{x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\}$ of noncommutative variables over F (see [10]). It is useful to consider $F\langle X, *\rangle$ as generated by symmetric and skew variables: if we let $y_{i}=x_{i}+x_{i}^{*}$ and $z_{i}=x_{i}-x_{i}^{*}$ for $i=1,2, \ldots$, then $F\langle X, *\rangle=F\left\langle y_{1}, z_{1}, y_{2}, z_{2}, \ldots\right\rangle$. We say that a polynomial $f\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m}\right) \in F\langle X, *\rangle$ is a $*$-identity of A, and we write $f \equiv 0$, if $f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)=0$ for all $a_{1}, \ldots, a_{n} \in A^{+}$and $b_{1}, \ldots, b_{m} \in A^{-}$.

The set $\operatorname{Id}^{*}(A)$ of all $*$-identities of A is a T^{*}-ideal of $F\langle X, *\rangle$, i.e., an ideal invariant under all endomorphisms of the free algebra commuting with the involution and is completely determined by its multilinear polynomials. We denote by P_{n}^{*} the space of all multilinear polynomials of degree n in the variables $y_{1}, z_{1}, \ldots, y_{n}, z_{n}$, i.e,

$$
P_{n}^{*}=\operatorname{span}_{F}\left\{w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_{n}, w_{i}=y_{i} \text { or } w_{i}=z_{i}, i=1, \ldots, n\right\} .
$$

The dimension of the space $P_{n}^{*}(A)=\frac{P_{n}^{*}}{P_{n}^{*} \cap \operatorname{Id}^{*}(A)}$ is called the n-th $*$-codimension of A and is denoted by $c_{n}^{*}(A)$.

For $0 \leq r \leq n$, let $P_{r, n-r}^{*}$ denote the space of multilinear polynomials in the variables $y_{1}, \ldots, y_{r}, z_{r+1}, \ldots$, z_{n}. In order to study the space $P_{n}^{*} \cap \operatorname{Id}^{*}(A)$ it is enough to study $P_{r, n-r}^{*} \cap \operatorname{Id}^{*}(A)$, for all $r \geq 0$.

Setting $P_{r, n-r}^{*}(A)=\frac{P_{r, n-r}^{*}}{P_{r, n-r}^{*} \cap \operatorname{Id}^{*}(A)}$ and $c_{r, n-r}^{*}(A)=\operatorname{dim} P_{r, n-r}^{*}(A)$ we have that

$$
\begin{equation*}
c_{n}^{*}(A)=\sum_{r=0}^{n}\binom{n}{r} c_{r, n-r}^{*}(A) . \tag{2.1}
\end{equation*}
$$

REMARK 2.1. If A and B are $*$-algebras, it is well known that $A \oplus B$ is a *-algebra and $\operatorname{Id}^{*}(A \oplus B)=\operatorname{Id}^{*}(A) \cap \operatorname{Id}^{*}(B)$. Furthermore, $c_{n}^{*}(A \oplus B) \leq c_{n}^{*}(A)+c_{n}^{*}(B)$ and the equality holds if and only if

$$
\operatorname{dim} \frac{P_{n}^{*}}{P_{n}^{*} \cap \operatorname{Id}^{*}(A) \cap \mathrm{Id}^{*}(B)}=\operatorname{dim} \frac{P_{n}^{*}}{P_{n}^{*} \cap \mathrm{Id}^{*}(A)}+\operatorname{dim} \frac{P_{n}^{*}}{P_{n}^{*} \cap \mathrm{Id}^{*}(B)}
$$

This is equivalent to saying that $\operatorname{dim} P_{n}^{*}=\operatorname{dim}\left(P_{n}^{*} \cap \operatorname{Id}^{*}(A)+P_{n}^{*} \cap \operatorname{Id}^{*}(B)\right)$, and, so, any polynomial in P_{n}^{*} can be written as a sum of multilinear polynomials in $\operatorname{Id}^{*}(A)$ and in $\operatorname{Id}^{*}(B)$.

Similarly $c_{r, n-r}^{*}(A \oplus B)=c_{r, n-r}^{*}(A)+c_{r, n-r}^{*}(B)$ if and only if any polynomial in $P_{r, n-r}^{*}$ can be written as a sum of multilinear polynomials in $\operatorname{Id}^{*}(A)$ and in $\operatorname{Id}^{*}(B)$ with r symmetric and $n-r$ skew variables.

Let H_{n} be the hyperoctahedral group of degree n, i.e., $H_{n}=\mathbb{Z}_{2}$ l S_{n}, the wreath product of the multiplicative group of order two with S_{n}. The space P_{n}^{*} has a natural left H_{n}-module structure induced by defining for $h=\left(a_{1}, \ldots, a_{n} ; \sigma\right) \in H_{n}, h y_{i}=y_{\sigma(i)}, h z_{i}=z_{\sigma(i)}^{a_{\sigma(i)}}= \pm z_{\sigma(i)}$.

Since $P_{n}^{*} \cap \operatorname{Id}^{*}(A)$ is invariant under this H_{n}-action, the space $P_{n}^{*} /\left(P_{n}^{*} \cap \operatorname{Id}^{*}(A)\right)$ has the structure of a left H_{n}-module and its character $\chi_{n}^{*}(A)$, called the nth $*$-cocharacter of A, decomposes as

$$
\begin{equation*}
\chi_{n}^{*}(A)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \chi_{\lambda, \mu}, \tag{2.2}
\end{equation*}
$$

where $\lambda \vdash r, \mu \vdash n-r, r=0,1, \ldots, n$ and $m_{\lambda, \mu} \geq 0$ is the multiplicity of the irreducible H_{n}-character $\chi_{\lambda, \mu}$ associated to the pair (λ, μ).

Also

$$
l_{n}^{*}(A)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu}
$$

is called the nth $*$-colength of A.
Let $F_{m}\langle X, *\rangle=\left\langle y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right\rangle$ denote the free associative algebra with involution in m symmetric and skew variables and let $U=\operatorname{span}_{F}\left\{y_{1}, \ldots, y_{m}\right\}, V=\operatorname{span}_{F}\left\{z_{1}, \ldots, z_{m}\right\}$. There is a natural left action of the group $G L(U) \times G L(V) \cong G L_{m} \times G L_{m}$ on the space $U \oplus V$ and we can extend this action diagonally to get an action on $F_{m}\langle X, *\rangle$. Note that for any algebra A with involution, the space $F_{m}\langle X, *\rangle \cap \operatorname{Id}^{*}(A)$ is invariant under this action.

So by considering $F_{m}^{n}\langle X, *\rangle$, the space of all homogeneous polynomials of degree n in the variables $y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}$, we have that

$$
F_{m}^{n}(A):=F_{m}^{n}\langle X, *\rangle /\left(F_{m}^{n}\langle X, *\rangle \cap \operatorname{Id}^{*}(A)\right)
$$

is a $G L_{m} \times G L_{m}$-module and we denote its character by $\psi_{n}^{*}(A)$. It is well known (see [2, Theorem 12.4.4]) that there is a one-to-one correspondence between irreducible $G L_{m} \times G L_{m}$-characters and pairs of partitions (λ, μ), with $\lambda \vdash n-r$ and $\mu \vdash r, r=0, \ldots, n$ where λ and μ are partitions with at most m parts.

If $\psi_{\lambda, \mu}$ denotes the irreducible $G L_{m} \times G L_{m}$-character corresponding to (λ, μ) then we can write

$$
\begin{equation*}
\psi_{n}^{*}(A)=\sum_{\substack{|\lambda|+|\mu|=n \\ h(\lambda), h(\mu) \leq m}} \tilde{m}_{\lambda, \mu} \psi_{\lambda, \mu} \tag{2.3}
\end{equation*}
$$

where $\tilde{m}_{\lambda, \mu}$ are the corresponding multiplicities and $h(\lambda)$ (respectively $h(\mu)$) denotes the height of the Young diagram corresponding to λ (respectively μ).

In order to calculate the multiplicity $m_{\lambda, \mu}$ of an irreducible character $\chi_{\lambda, \mu}$ in the decomposition (2.2), we use the following relationship proved by Giambruno in [3, Theorem 3]

$$
\begin{equation*}
m_{\lambda, \mu}=\tilde{m}_{\lambda, \mu}, \text { for all } \lambda \vdash n-r \text { and } \mu \vdash r \text { with } h(\lambda), h(\mu) \leq m \tag{2.4}
\end{equation*}
$$

It is well known that an irreducible submodule of $F_{m}^{n *}(A)$ corresponding to the pair (λ, μ) is generated by a non-zero polynomial $f_{\lambda, \mu}$, called highest weight vector, of the form (see for instance [2, Theorem 12.4.12])

$$
\begin{align*}
& f_{\lambda, \mu}\left(y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{q}\right) \\
& \quad=\prod_{i=1}^{\lambda_{1}} S t_{h_{i}(\lambda)}\left(y_{1}, \ldots, y_{h_{i}(\lambda)}\right) \prod_{i=1}^{\mu_{1}} S t_{h_{i}(\mu)}\left(z_{1}, \ldots, z_{h_{i}(\mu)}\right) \sum_{\sigma \in S_{n}} \alpha_{\sigma} \sigma, \tag{2.5}
\end{align*}
$$

where $\alpha_{\sigma} \in F, S t_{k}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\sigma \in S_{k}}(\operatorname{sign} \sigma) x_{\sigma(1)} \cdots x_{\sigma(k)}$ is the standard polynomial of degree k and S_{n} acts from right by permuting places in which the variables occur.

Let T_{λ} and T_{μ} be two Young tableaux. We denote by $f_{T_{\lambda}, T_{\mu}}$ the highest weight vector obtained from (2.5) by considering the only permutation $\sigma \in S_{n}$ such that the integers $\sigma(1), \ldots, \sigma\left(h_{1}(\lambda)\right)$, in this order, fill in from top to bottom the first column of $T_{\lambda}, \sigma\left(h_{1}(\lambda)+1\right), \ldots, \sigma\left(h_{1}(\lambda)+h_{2}(\lambda)\right)$ the second column of T_{λ}, $\ldots, \sigma\left(h_{1}(\lambda)+\cdots+h_{\lambda_{1}-1}(\lambda)+1\right), \ldots, \sigma(r)$ the last column of T_{λ}; also $\sigma(r+1), \ldots, \sigma\left(r+h_{1}(\mu)\right)$ fill in the first column of $T_{\mu}, \ldots, \sigma\left(r+h_{1}(\mu)+\cdots+h_{\mu_{1}-1}(\mu)+1\right), \ldots, \sigma(n)$ the last column of T_{μ}.

REMARK 2.2. (see [2]) In the decomposition (2.3) we have $\tilde{m}_{\lambda, \mu} \neq 0$ if and only if there exists a pair of tableaux $\left(T_{\lambda}, T_{\mu}\right)$ such that the corresponding highest weight vector $f_{T_{\lambda}, T_{\mu}}$ is not a *-identity of A. Moreover $\tilde{m}_{\lambda, \mu}$ is the maximal number of linearly independent highest weight vectors $f_{T_{\lambda}, T_{\mu}}$ in $F_{m}^{n}(A)$.

3. Varieties of almost polynomial growth and their subvarieties

The purpose of this section is to study the sequences of $*$-cocharacters, $*$-codimensions and $*$-colengths of the minimal subvarieties of polynomial growth of the varieties of almost polynomial growth, which are classified in [20].

We denote by $U T_{s}=U T_{s}(F)$ the algebra of the $s \times s$ upper triangular matrices over F and by I_{s} the $s \times s$ identity matrix. Recall that the varieties of almost polynomial growth are generated by the following two algebras (see [6])

1) $F \oplus F$, the two-dimensional commutative algebra with the exchange involution $(a, b)^{*}=(b, a)$;
2) $M=\left\{\left.\left(\begin{array}{llll}u & r & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & v \\ 0 & 0 & 0 & u\end{array}\right) \right\rvert\, u, r, s, v \in F\right\}$, the subalgebra of $U T_{4}$ with the reflection involution, i.e., the involution obtained by reflecting a matrix along its secondary diagonal: if $a=\alpha\left(e_{11}+e_{44}\right)+$ $\beta\left(e_{22}+e_{33}\right)+\gamma e_{12}+\delta e_{34}$ then $a^{*}=\alpha\left(e_{11}+e_{44}\right)+\beta\left(e_{22}+e_{33}\right)+\delta e_{12}+\gamma e_{34}$, where the $e_{i j}$ s denote the usual matrix units.
The above algebras characterize the varieties of $*$-algebras of polynomial growth.
Theorem 3.1. [6, Theorem 4.7] Let A be a *-algebra. Then the sequence $c_{n}^{*}(A), n=1,2, \ldots$, is polynomially bounded if and only if $M, D \notin \operatorname{var}^{*}(A)$.

We start by presenting $*$-algebras belonging to the variety generated by D and generating minimal varieties of polynomial growth (see [20]).

For $k \geq 2$, let

$$
C_{k}=\left\{\alpha I_{k}+\sum_{1 \leq i<k} \alpha_{i} E_{1}^{i} \mid \alpha, \alpha_{i} \in F\right\}
$$

be the commutative subalgebra of $U T_{k}$ with involution given by

$$
\left(\alpha I_{k}+\sum_{1 \leq i<k} \alpha_{i} E_{1}^{i}\right)^{*}=\alpha I_{k}+\sum_{1 \leq i<k}(-1)^{i} \alpha_{i} E_{1}^{i}
$$

Here $E_{1}=\sum_{i=1}^{k-1} e_{i, i+1}$.
Since D is commutative, any antiautomorphism of D is an automorphism and, so, D can be viewed as a superalgebra with grading $\left(D^{(0)}, D^{(1)}\right)$, where $D^{(0)}=D^{+}$and $D^{(1)}=D^{-}$. Hence, the classification of the *-algebras, up to T^{*}-equivalence, inside $\operatorname{var}^{*}(D)$ and the classification of the superalgebras inside $\operatorname{var}^{g r}(D)$ are equivalent. In the light of these considerations we have the following.

Theorem 3.2. [20, Lemma 9],[23, Theorem 8.3] Let $k \geq 2$. Then
(1) $\mathrm{Id}^{*}\left(C_{k}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z],\left[z_{1}, z_{2}\right], z_{1} \cdots z_{k}\right\rangle_{T^{*}}$.
(2) $c_{n}^{*}\left(C_{k}\right)=\sum_{j=0}^{k-1}\binom{n}{j} \approx \frac{1}{(k-1)!} n^{k-1}, n \rightarrow \infty$.
(3) $\chi_{n}^{*}\left(C_{k}\right)=\sum_{j=0}^{k-1} \chi_{(n-j),(j)} \quad$ and $\quad l_{n}^{*}\left(C_{k}\right)=k$.

Given two $*$-algebras A and B, we say that A is T^{*}-equivalent to B, and we write $A \sim_{T^{*}} B$, in case $\operatorname{Id}^{*}(A)=\operatorname{Id}^{*}(B)$.

The following theorem classifies the subvarieties and the minimal varieties of $\operatorname{var}^{*}(D)$.
Theorem 3.3. [20, Theorem 7 and Corollary 3] Let A be $a *$-algebra such that $\operatorname{var}^{*}(A) \subsetneq \operatorname{var}^{*}(D)$. Then
(1) either $A \sim_{T^{*}} N$ or $A \sim_{T^{*}} C \oplus N$ or $A \sim_{T^{*}} C_{k} \oplus N$, for some $k \geq 2$, where N is a nilpotent *-algebra and C is a non-nilpotent commutative $*$-algebra with trivial involution.
(2) The algebra A generates a minimal variety of polynomial growth if and only if $A \sim_{T^{*}} C_{k}$, for some $k \geq 2$.
Next we exhibit the decomposition of the $*$-cocharacter of all minimal subvarieties of var* (M).
We start by recalling $*$-algebras inside $\operatorname{var}^{*}(M)$ generating minimal varieties of polynomial growth.
For any $k \geq 2$, consider the following subalgebras of $U T_{2 k}$ endowed with the reflection involution:

$$
\begin{gathered}
N_{k}=\operatorname{span}_{F}\left\{I_{2 k}, E, \ldots, E^{k-2} ; e_{12}-e_{2 k-1,2 k}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-2,2 k}\right\} \\
U_{k}=\operatorname{span}_{F}\left\{I_{2 k}, E, \ldots, E^{k-2} ; e_{12}+e_{2 k-1,2 k}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-2,2 k}\right\} \\
A_{k}=\operatorname{span}_{F}\left\{e_{11}+e_{2 k, 2 k}, E, \ldots, E^{k-2} ; e_{12}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-1,2 k}\right\}
\end{gathered}
$$

where $E=\sum_{i=2}^{k-1} e_{i, i+1}+e_{2 k-i, 2 k-i+1}$.
Notice that in case $k=2$, we have that U_{2} is T^{*}-equivalent to the commutative algebra with trivial involution, so $\operatorname{Id}^{*}\left(U_{2}\right)=\left\langle\left[y_{1}, y_{2}\right], z_{1}\right\rangle_{T^{*}}$ and $c_{n}^{*}\left(U_{2}\right)=1$.

The following results describe the T^{*}-ideals of the above algebras and explicit the $*$-codimensions of N_{k} and U_{k}.

Lemma 3.4. [20, Lemma 2] Let $k \geq 2$. Then
(1) $\operatorname{Id}^{*}\left(N_{k}\right)=\left\langle\left[y_{1}, \ldots, y_{k-1}\right], z_{1} z_{2}\right\rangle_{T^{*}}$, in case $k \geq 3$ and $\operatorname{Id}^{*}\left(N_{k}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z], z_{1} z_{2}\right\rangle_{T^{*}}$, in case $k=2$.
(2) $c_{n}^{*}\left(N_{k}\right)=1+\sum_{j=1}^{k-2}\binom{n}{j}(2 j-1)+\binom{n}{k-1}(k-1) \approx q n^{k-1}$, for some $q>0$.

Lemma 3.5. [20, Lemma 3] Let $k \geq 3$. Then
(1) $\operatorname{Id}^{*}\left(U_{k}\right)=\left\langle\left[z, y_{1}, \ldots, y_{k-2}\right], z_{1} z_{2}\right\rangle_{T^{*}}$.
(2) $c_{n}^{*}\left(U_{k}\right)=1+\sum_{j=1}^{k-2}\binom{n}{j}(2 j-1)+\binom{n}{k-1}(k-2) \approx q n^{k-1}$, for some $q>0$.

Lemma 3.6. [20, Lemma 3] Let $k \geq 2$. Then

$$
\operatorname{Id}^{*}\left(A_{k}\right)=\left\langle y_{1} \cdots y_{k-2} S t_{3}\left(y_{k-1}, y_{k}, y_{k+1}\right) y_{k+2} \cdots y_{2 k-1}, y_{1} \cdots y_{k-1} z y_{k} \cdots y_{2 k-2}, z_{1} z_{2}\right\rangle_{T^{*}}
$$

The relevance of the above $*$-algebras is shown in the following.
Theorem 3.7. [20, Theorem 6 and Corollary 1] Let A be $a *$-algebra such that $\operatorname{var}^{*}(A) \subsetneq \operatorname{var}^{*}(M)$. Then
(1) A is T^{*}-equivalent to one of the following *-algebras: $N, N_{k} \oplus N, U_{k} \oplus N, N_{k} \oplus U_{k} \oplus N, A_{t} \oplus$ $N, N_{k} \oplus A_{t} \oplus N, U_{k} \oplus A_{t} \oplus N, N_{k} \oplus U_{k} \oplus A_{t} \oplus N$, for some $k, t \geq 2$, where N is a nilpotent *-algebra.
(2) A generates a minimal variety if and only if either $A \sim_{T^{*}} U_{r}$ or $A \sim_{T^{*}} N_{k}$ or $A \sim_{T^{*}} A_{k}$, for some $k \geq 2, r>2$.

Next we determine the $*$-codimensions of the algebra A_{k}, for any $k \geq 2$. We start by considering the case $k=2$.

Lemma 3.8. $c_{n}^{*}\left(A_{2}\right)=4 n-1$, for $n \geq 3$.

Proof. We have $\operatorname{Id}^{*}\left(A_{2}\right)=\left\langle S t_{3}\left(y_{1}, y_{2}, y_{3}\right), y_{1} z y_{2}, z_{1} z_{2}\right\rangle_{T^{*}}$. Since $z_{1} z_{2} \in \operatorname{Id}^{*}\left(A_{2}\right)$, by [21, Remark 8], we have $z_{1} w z_{2} \in \operatorname{Id}^{*}\left(A_{2}\right)$ for any monomial w of $F\langle X, *\rangle$, and, so $c_{n-r, r}^{*}\left(A_{k}\right)=0$ for all $r \geq 2$. Thus by (2.1)

$$
\begin{equation*}
c_{n}^{*}\left(A_{2}\right)=c_{n, 0}^{*}\left(A_{2}\right)+n c_{n-1,1}^{*}\left(A_{2}\right) \tag{3.1}
\end{equation*}
$$

We start by considering $P_{n, 0}^{*}\left(A_{2}\right)$. By the Poincaré-Birkhoff-Witt theorem (see [2]), every monomial in y_{1}, \ldots, y_{n} can be written as a linear combination of products of the type

$$
\begin{equation*}
y_{i_{1}} \cdots y_{i_{s}} w_{1} \cdots w_{m} \tag{3.2}
\end{equation*}
$$

where w_{1}, \ldots, w_{m} are left normed Lie commutators in y_{i} 's and $i_{1}<\cdots<i_{s}$. Since $\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \in \operatorname{Id}^{*}\left(A_{2}\right)$, we get that, modulo $\left\langle\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right]\right\rangle_{T^{*}}$, at most one commutator can appear in (3.2) and the elements in (3.2) are polynomials of type

$$
y_{1} \cdots y_{n} \text { or } y_{i_{1}} \cdots y_{i_{s}}\left[y_{r}, y_{j_{1}}, \ldots, y_{j_{t}}\right] \text { with } r>j_{i}<\cdots<j_{t} .
$$

Moreover, modulo $\left\langle y_{1}\left[y_{2}, y_{3}\right] y_{4}\right\rangle_{T^{*}}$, we have that

$$
\left[y_{r}, y_{j_{1}} \ldots, y_{j_{t}}\right]=\left[y_{r}, y_{j_{1}}\right] y_{j_{2}} \cdots y_{j_{t}} \pm y_{j_{t}} \cdots y_{j_{2}}\left[y_{r}, y_{j_{1}}\right]
$$

Then modulo $\mathrm{Id}^{*}\left(A_{2}\right)$, every polynomial in $P_{n, 0}^{*}$ can be written as a linear combination of elements of the type

$$
\begin{equation*}
\left[y_{r}, y_{1}\right] y_{2} \cdots \widehat{y}_{r} \cdots y_{n}, \quad y_{i_{1}} \cdots y_{i_{n-2}}\left[y_{i}, y_{j}\right] \text { and } y_{1} \cdots y_{n} \tag{3.3}
\end{equation*}
$$

$2 \leq r \leq n, 1 \leq i \leq j \leq n$, where the symbol \widehat{y}_{r} means that the variable y_{r} is omitted. Notice that elements of the first type only appear in case $s=0$ in (3.2). Because of $\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right] \in \operatorname{Id}^{*}\left(A_{2}\right)$ the variables out of the commutator in the polynomials of the second type in (3.3) can be ordered. Moreover, since $S t_{3}\left(y_{1}, y_{2}, y_{3}\right) \in \operatorname{Id}^{*}\left(A_{2}\right), y_{1}\left[y_{2}, y_{3}\right] \equiv y_{2}\left[y_{1}, y_{3}\right]+y_{3}\left[y_{2}, y_{1}\right]$ can be applied and we obtain that the polynomials

$$
\begin{equation*}
\left[y_{r}, y_{1}\right] y_{2} \cdots \widehat{y}_{r} \cdots y_{n}, \quad y_{2} \cdots \widehat{y}_{r} \cdots y_{n}\left[y_{r}, y_{1}\right] \quad \text { and } \quad y_{1} \cdots y_{n}, \quad 2 \leq r \leq n \tag{3.4}
\end{equation*}
$$

generate $P_{n, 0}^{*}$ modulo $P_{n, 0}^{*} \cap \operatorname{Id}^{*}\left(A_{2}\right)$.
We claim that these polynomials form a basis of $P_{n, 0}^{*}\left(A_{2}\right)$. Suppose that $f \in P_{n, 0}^{*} \cap \operatorname{Id}^{*}\left(A_{2}\right)$ is a linear combination of the polynomials in (3.4) and write

$$
f=\alpha y_{1} \cdots y_{n}+\sum_{j=2}^{n} \alpha_{j}\left[y_{j}, y_{1}\right] y_{2} \cdots \widehat{y}_{j} \cdots y_{n}+\sum_{j=2}^{n} \beta_{j} y_{2} \cdots \widehat{y}_{j} \cdots y_{n}\left[y_{j}, y_{1}\right]
$$

By making the evaluation $y_{i}=e_{11}+e_{44}$, for all $i=1, \ldots, n$, we get $\alpha\left(e_{11}+e_{44}\right)=0$, and, so, $\alpha=0$. Now for a fixed j, the evaluation $y_{j}=e_{12}+e_{34}$ and $y_{i}=e_{11}+e_{44}$, for all $i \neq j$ gives $\alpha_{j} e_{34}-\beta_{j} e_{12}=0$, and so, $\alpha_{j}=\beta_{j}=0$ and the claim is proved. Thus $c_{n, 0}^{*}\left(A_{2}\right)=1+2(n-1)=2 n-1$.

We now consider $P_{n-1,1}^{*}\left(A_{2}\right)$. Since $y_{1} z y_{2} \in \operatorname{Id}^{*}\left(A_{2}\right)$, then, modulo $P_{n-1,1}^{*} \cap \operatorname{Id}^{*}\left(A_{2}\right), P_{n-1,1}^{*}$ can be generated by the monomials

$$
\begin{equation*}
z_{n} y_{1} \cdots y_{n-1} \text { and } y_{1} \cdots y_{n-1} z_{n} \tag{3.5}
\end{equation*}
$$

We claim that these polynomials form a basis of $P_{n-1,1}^{*}$ modulo $P_{n-1,1}^{*} \cap \operatorname{Id}^{*}\left(A_{2}\right)$. Let $f=\alpha z_{n} y_{1} \cdots y_{n-1}+$ $\beta y_{1} \cdots y_{n-1} z_{n} \in P_{n-1,1}^{*} \cap \operatorname{Id}^{*}\left(A_{2}\right)$. By making the evaluation $z_{n}=e_{12}-e_{34}$ and $y_{i}=e_{11}+e_{44}$, for all $i \neq n$, we get $-\alpha e_{34}+\beta e_{12}=0$ and so $\alpha=\beta=0$. Thus $c_{n-1,1}^{*}\left(A_{2}\right)=2$.

Hence, from (3.1) it follows that $c_{n}^{*}\left(A_{2}\right)=2 n-1+2 n=4 n-1$.
Remark 3.9. For $k \geq 3$, let

$$
I_{1}=\left\langle\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right],\left[y_{1}, y_{2}\right] y_{3} \cdots y_{k+1}\right\rangle_{T^{*}} \text { and } I_{2}=\left\langle\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right], y_{3} \cdots y_{k+1}\left[y_{1}, y_{2}\right]\right\rangle_{T^{*}} .
$$

By [13, Lemma 3.1],

$$
c_{n, 0}^{*}\left(I_{1}\right)=c_{n, 0}^{*}\left(I_{2}\right)=1+\sum_{j=0}^{k-2}\binom{n}{j}(n-j-1) .
$$

Moreover, if I is the T^{*}-ideal $I_{1} \cap I_{2}$ then, by [13, Lemma 3.4],

$$
I=\left\langle\left[y_{1}, y_{2}\right]\left[y_{3}, y_{4}\right], y_{1} \cdots y_{k-1}\left[y_{k}, y_{k+1}\right] y_{k+2} \cdots y_{2 k}\right\rangle_{T^{*}}
$$

From Remark 2.1, we have the strict inequality $c_{n, 0}^{*}(I)<c_{n, 0}^{*}\left(I_{1}\right)+c_{n, 0}^{*}\left(I_{2}\right)$ since $y_{1} \cdots y_{n}$ is a polynomial in $P_{n, 0}^{*}$ which is not in $\left(P_{n, 0}^{*} \cap I_{1}\right)+\left(P_{n, 0}^{*} \cap I_{2}\right)$. Moreover, since $I \cap P_{n, 0}^{*} \subset \operatorname{Id}^{*}\left(A_{k}\right) \cap P_{n, 0}^{*}$, we have

$$
\begin{equation*}
c_{n, 0}^{*}\left(A_{k}\right) \leq c_{n, 0}^{*}(I)<c_{n, 0}^{*}\left(I_{1}\right)+c_{n, 0}^{*}\left(I_{2}\right)=2+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1) \tag{3.6}
\end{equation*}
$$

Lemma 3.10. Let $k \geq 2$. Then

$$
c_{n}^{*}\left(A_{k}\right)=1+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j)+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1) \approx q n^{k-1}, \text { for some } q>0
$$

Proof. The result has already been proved for $k=2$ in Lemma 3.8 so we consider $k \geq 3$. Since $z_{1} z_{2} \in \operatorname{Id}^{*}\left(A_{k}\right)$, by $\left[\mathbf{2 1}\right.$, Remark 8] we have that $z_{1} w z_{2} \in \operatorname{Id}^{*}\left(A_{k}\right)$, for any monomial w of $F\langle X, *\rangle$, and, so $P_{n-r, r}^{*}\left(A_{k}\right)=\{0\}$ for all $r \geq 2$ and

$$
\begin{equation*}
c_{n}^{*}\left(A_{k}\right)=c_{n, 0}^{*}\left(A_{k}\right)+n c_{n-1,1}^{*}\left(A_{k}\right) \tag{3.7}
\end{equation*}
$$

Let us study the dimensions of $P_{n, 0}^{*}\left(A_{k}\right)$ and $P_{n-1,1}^{*}\left(A_{k}\right)$. We start by considering $P_{n, 0}^{*}\left(A_{k}\right)$. We claim that the following polynomials in $P_{n, 0}^{*}$

$$
\begin{equation*}
y_{1} \cdots y_{n}, y_{i_{1}} \cdots y_{i_{t}}\left[y_{r}, y_{m}\right] y_{j_{1}} \cdots y_{j_{s}}, y_{p_{1}} \cdots y_{p_{u}}\left[y_{a}, y_{b}\right] y_{q_{1}} \cdots y_{q_{v}} \tag{3.8}
\end{equation*}
$$

where $t<k-1, i_{1}<\cdots<i_{t}, r>m<j_{1}<\cdots<j_{s}$ and $v<k-1, a>b<p_{1}<\cdots<p_{u}, q_{1}<\cdots<q_{v}$ are linearly independent modulo $\operatorname{Id}^{*}\left(A_{k}\right)$. Suppose that $f \in P_{n, 0}^{*} \cap \operatorname{Id}^{*}\left(A_{k}\right)$ is a linear combination of the above polynomials and write

$$
f=\alpha y_{1} \cdots y_{n}+\sum_{\substack{t<k-1 \\ \text { or } \\ s<k-1}} \sum_{r, I, J} \alpha_{r, I, J} y_{i_{1}} \cdots y_{i_{t}}\left[y_{r}, y_{m}\right] y_{j_{1}} \cdots y_{j_{s}}
$$

where $t+s=n-2$ and for any fixed t and $s, I=\left\{i_{1}, \ldots, i_{t}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$. If $t<k-1$ then $i_{1}<\cdots<i_{t}$ and $r>m<j_{1}<\cdots<j_{s}$ and if $s<k-1$ then $r>m<i_{1}<\cdots<i_{t}$ and $j_{1}<\cdots<j_{s}$.

First suppose that $\alpha \neq 0$. Then by making the evaluation $y_{1}=\cdots=y_{n}=e_{11}+e_{2 k, 2 k}$ we get $\alpha\left(e_{11}+e_{2 k, 2 k}\right)=0$ and so $\alpha=0$, a contradiction.

Now suppose that $\alpha_{r, I, J} \neq 0$, for some $t<k-1, r, I$ and J. Then by making the evaluation $y_{i_{1}}=\cdots=$ $y_{i_{t}}=E, y_{r}=e_{12}+e_{2 k-1,2 k}$ and $y_{m}=y_{j_{1}}=\cdots=y_{j_{s}}=e_{11}+e_{2 k, 2 k}$ we get $\alpha_{r, I, J} e_{2 k-t-1,2 k}-\alpha_{r, J, I} e_{1,2+t}=0$, and, so, $\alpha_{r, I, J}=\alpha_{r, J, I}=0$, a contradiction. Similarly, if $\alpha_{r, J, I} \neq 0$, for some $s<k-1, r, I$ and J, by making the evaluation $y_{m}=y_{i_{1}}=\cdots=y_{i_{t}}=e_{11}+e_{2 k, 2 k}, y_{r}=e_{12}+e_{2 k-1,2 k}$ and $y_{j_{1}}=\cdots=y_{j_{s}}=E$ we get $\alpha_{r, I, J}=\alpha_{r, J, I}=0$, a contradiction as before.

In (3.8) we have $1+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1)$ polynomials which are linearly independent modulo $P_{n, 0}^{*} \cap \operatorname{Id}^{*}\left(A_{k}\right)$ so we have

$$
1+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1) \leq c_{n, 0}^{*}\left(A_{k}\right)
$$

On the other hand, by (3.6) we get

$$
c_{n, 0}^{*}\left(A_{k}\right)<2+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1) .
$$

Thus we conclude that $c_{n, 0}^{*}\left(A_{k}\right)=1+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1)$.
Now we consider $P_{n-1,1}^{*}\left(A_{k}\right)$. Since $y_{1} \cdots y_{k-1} z y_{k} \cdots y_{2 k-2} \in \operatorname{Id}^{*}\left(A_{k}\right)$, then $P_{n-1,1}^{*}$ can be generated modulo $\mathrm{Id}^{*}\left(A_{k}\right)$ by the monomials

$$
\begin{equation*}
y_{i_{1}} \cdots y_{i_{t}} z_{n} y_{j_{1}} \cdots y_{j_{s}} \tag{3.9}
\end{equation*}
$$

where $i_{1}<\cdots<i_{t}, j_{1}<\cdots<j_{s}$ and we have $t<k-1$ or $s<k-1$.

We next show that these polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{k}\right)$. Suppose that $f \in$ $P_{n-1,1}^{*} \cap \operatorname{Id}^{*}(A)$ is a linear combination of the polynomials above and write

$$
f=\sum_{\substack{t<k-1 \\ \text { or } \\ s<k-1}} \sum_{I, J} \alpha_{I, J} y_{i_{1}} \cdots y_{i_{t}} z_{n} y_{j_{1}} \cdots y_{j_{s}}
$$

where $t+s=n-1$ and for any fixed t and $s, i_{1}<\cdots<i_{t}, j_{1}<\cdots<j_{s}, I=\left\{i_{1}, \ldots, i_{t}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$.
Suppose $\alpha_{I, J} \neq 0$, for some $t<k-1, I$ and J. By making the evaluation $z_{n}=e_{12}-e_{2 k-1,2 k}$, $y_{i_{1}}=\cdots=y_{i_{t}}=E$ and $y_{j_{1}}=\cdots=y_{j_{s}}=e_{11}+e_{2 k, 2 k}$ we get $-\alpha_{I, J} e_{2 k-t-1,2 k}+\alpha_{J, I} e_{1,2+t}=0$, thus $\alpha_{I, J}=\alpha_{J, I}=0$, a contradiction.

Suppose now $\alpha_{J, I} \neq 0$, for some $s<k-1, I$ and J. Then the evaluation $z_{n}=e_{12}-e_{2 k-1,2 k}, y_{i_{1}}=\cdots=$ $y_{i_{t}}=e_{11}+e_{2 k, 2 k}$ and $y_{j_{1}}=\cdots=y_{j_{s}}=E$ gives $\alpha_{J, I}=0$, a contradiction. Thus the polynomials in (3.9) form a basis of $P_{n-1,1}^{*}\left(A_{k}\right)$ and by counting we get $c_{n-1,1}^{*}\left(A_{k}\right)=2 \sum_{j=0}^{k-2}\binom{n-1}{j}$. So $n c_{n-1,1}^{*}\left(A_{k}\right)=2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j)$.

Finally, by (3.7), we have

$$
c_{n}^{*}\left(A_{k}\right)=1+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j-1)+2 \sum_{j=0}^{k-2}\binom{n}{j}(n-j) .
$$

Next we explicitly determine the sequences of $*$-cocharacters and $*$-colengths of the minimal varieties $\operatorname{var}^{*}(A) \subseteq \operatorname{var}^{*}(M)$. If $\chi_{n}^{*}(A)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \chi_{\lambda, \mu}$ is the decomposition of the nth $*$-cocharacter of A, we denote by $d_{\lambda, \mu}$ the degree of the H_{n}-character $\chi_{\lambda, \mu}$.

We shall prove all theorems by using induction on k, so for each class of algebras N_{k}, U_{k} and A_{k} we start with a lemma about the sequence of $*$-cocharacters in a particular case. We start with the study of $*$-cocharacters and $*$-colengths of the minimal varieties $\operatorname{var}^{*}\left(A_{k}\right)$.

LEMMA 3.11. $\chi_{n}^{*}\left(A_{2}\right)=\chi_{(n), \emptyset}+2 \chi_{(n-1,1), \emptyset}+2 \chi_{(n-1),(1)}$ and $l_{n}^{*}\left(A_{2}\right)=5$
Proof. Let $\chi_{n}^{*}\left(A_{2}\right)=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \chi_{\lambda, \mu}$ be the decomposition of the nth $*$-cocharacter of A_{2}. Notice that

$$
d_{(n), \emptyset}+2 d_{(n-1),(1)}+2 d_{(n-1,1), \emptyset}=1+2 n+2(n-1)=c_{n}^{*}\left(A_{2}\right) .
$$

Then, since that $m_{(n), \emptyset}=1$, if we find two linearly independent highest weight vectors for each pair of partitions $((n-1),(1))$ and $((n-1,1), \emptyset)$ which are not $*$-identities of A_{2} we may conclude that $\chi_{n}^{*}\left(A_{2}\right)$ has the desired decomposition.

In fact, let

$$
f_{1}=y^{n-1} z \quad \text { and } \quad f_{2}=z y^{n-1}
$$

be highest weight vectors associated to the pair of partitions $((n-1),(1))$ and corresponding to the pairs of tableaux:

$$
\left(\begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & n-1 \tag{3.10}\\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline n
\end{array}\right) \text { and }\left(\begin{array}{|l|l|l|l|}
\hline 2 & 3 & \cdots & n \\
\hline
\end{array}\right),
$$

respectively. It is clear that by making the evaluation $y=e_{11}+e_{44}$ and $z=e_{12}-e_{34}$, we get that $f_{1}=e_{12} \neq 0$ and $f_{2}=-e_{34} \neq 0$. This says that f_{1} and f_{2} are not $*$-identities of A_{2}. Moreover by making the same evaluation we have that $\alpha f_{1}+\beta f_{2}=0$ implies $\alpha=\beta=0$, so these polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{2}\right)$.

On the other hand,

$$
g_{1}=\left[y_{1}, y_{2}\right] y_{1}^{n-2} \quad \text { and } \quad g_{2}=y_{1}^{n-2}\left[y_{1}, y_{2}\right]
$$

are the highest weight vector associated to the pair of partitions $((n-1,1), \emptyset)$ and corresponding to the pairs of tableaux:

respectively.

By making the evaluation $y_{1}=e_{11}+e_{44}$ and $y_{2}=e_{12}+e_{34}$, we get that $g_{1}=-e_{34} \neq 0$ and $g_{2}=e_{12} \neq 0$. It shows that g_{1} and g_{2} are not $*$-identities of A_{2} and by making the same evaluation we have that $\alpha g_{1}+\beta g_{2}=0$ implies $\alpha=\beta=0$, so these polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{2}\right)$.

Thus $\chi_{n}^{*}\left(A_{2}\right)=\chi_{(n), \emptyset}+2 \chi_{(n-1),(1)}+2 \chi_{(n-1,1), \emptyset}$ and $l_{n}^{*}\left(A_{2}\right)=5$.
Before giving the decomposition of the $\chi_{n}^{*}\left(A_{k}\right)$, for any $k \geq 2$, we prove the following.
Remark 3.12. Let $k \geq 2$. Then

$$
\begin{aligned}
c_{n}^{*}\left(A_{k}\right)= & d_{(n), \emptyset}+\sum_{j=1}^{k-1} 2(k-j) d_{(n-j, j), \emptyset}+\sum_{j=1}^{k-2} 2(k-j-1) d_{(n-j-1, j, 1), \emptyset} \\
& +\sum_{j=0}^{k-2} 2(k-j-1) d_{(n-j-1, j),(1)} .
\end{aligned}
$$

Proof. We use induction on k. By Lemma 3.11, we have that $\chi_{n}^{*}\left(A_{2}\right)=\chi_{(n), \emptyset}+2 \chi_{(n-1,1), \emptyset}+2 \chi_{(n-1),(1)}$. This says that $c_{n}^{*}\left(A_{2}\right)=d_{(n), \emptyset}+2 d_{(n-1,1), \emptyset}+2 d_{(n-1),(1)}$ and, so the result is true for $k=2$.

Now we suppose the result is true for some $k \geq 2$. By Lemma 3.10, we have that

$$
c_{n}^{*}\left(A_{k+1}\right)=c_{n}^{*}\left(A_{k}\right)+2\binom{n}{k-1}(n-k)+2\binom{n}{k-1}(n-k+1) .
$$

Hence, by using that

$$
\sum_{j=1}^{k} d_{(n-j, j), \emptyset}+\sum_{j=1}^{k-1} d_{(n-j, j-1,1), \emptyset}=\binom{n}{k-1}(n-k) \text { and } \sum_{j=0}^{k-1} d_{(n-j, j-1),(1)}=\binom{n}{k-1}(n-k+1)
$$

we have

$$
\begin{aligned}
c_{n}^{*}\left(A_{k+1}\right)= & c_{n}^{*}\left(A_{k}\right)+2\binom{n}{k-1}(n-k)+2{\left.\underset{c}{n} \begin{array}{c}
n \\
k-1
\end{array}\right)(n-k+1)}_{=} c_{n}^{*}\left(A_{k}\right)+2 \sum_{j=1}^{k} d_{(n-j, j), \emptyset}+2 \sum_{j=1}^{k-1} d_{(n-j-1, j, 1), \emptyset}+2 \sum_{j=0}^{k-1} d_{(n-j-1, j),(1)} \\
= & d_{(n), \emptyset}+\sum_{j=1}^{k} 2(k+1-j) d_{(n-j, j), \emptyset}+\sum_{j=1}^{k-1} 2(k-j) d_{(n-j-1, j, 1), \emptyset} \\
& +\sum_{j=0}^{k-1} 2(k-j) d_{(n-j-1, j),(1)} .
\end{aligned}
$$

Thus the result is true for any $k \geq 2$.
In the next lemmas, we shall adopt the convention that the symbols ${ }^{-},{ }^{=}$and ${ }^{\sim}$ indicate alternation on a given set of variables. Thus, for instance, the notation $\overline{\overline{y_{1}}} \overline{y_{1}} \tilde{y}_{1} y_{4} \overline{y_{2}} \overline{y_{2}} \tilde{y_{2}} \overline{y_{3}}$ indicates the polynomial

$$
\sum_{\substack{\sigma \in S_{3} \\ \rho, \tau \in S_{2}}}(\operatorname{sign} \rho)(\operatorname{sign} \sigma)(\operatorname{sign} \tau) y_{\rho(1)} y_{\sigma(1)} y_{\tau(1)} y_{4} y_{\sigma(2)} y_{\rho(2)} y_{\tau(2)} y_{\sigma(3)}
$$

Now we are in position to compute the $*$-cocharacter and the $*$-colength of A_{k}, for any $k \geq 2$.
Theorem 3.13. For $k \geq 2$, we have
(1) $\chi_{n}^{*}\left(A_{k}\right)=\chi_{(n), \emptyset}+\sum_{j=1}^{k-1} 2(k-j) \chi_{(n-j, j), \emptyset}+\sum_{j=1}^{k-2} 2(k-j-1) \chi_{(n-j-1, j, 1), \emptyset}$

$$
+\sum_{j=0}^{k-2} 2(k-j-1) \chi_{(n-j-1, j),(1)} .
$$

(2) $l_{n}^{*}\left(A_{k}\right)=3 k^{2}-5 k+3$.

Proof. By the previous remark, we have that, for any $k \geq 2$,

$$
\begin{aligned}
c_{n}^{*}\left(A_{k}\right)= & d_{(n), \emptyset}+\sum_{j=1}^{k-1} 2(k-j) d_{(n-j, j), \emptyset}+\sum_{j=1}^{k-2} 2(k-j-1) d_{(n-j-1, j, 1), \emptyset} \\
& +\sum_{j=0}^{k-2} 2(k-j-1) d_{(n-j-1, j),(1)} .
\end{aligned}
$$

It is clear that $m_{(n), \emptyset}=1$. In order to prove the desired decomposition of $\chi_{n}^{*}\left(A_{k}\right)$, we shall prove that the irreducible characters $\chi_{(n-j, j), \emptyset}, \chi_{(n-l-1, l, 1), \emptyset}$ and $\chi_{(n-t-1,1)(1)}$, for $1 \leq j \leq k-1,1 \leq l \leq k-2$ and $0 \leq t \leq k-2$, appear in the decomposition of the $*$-cocharacter $\chi_{n}^{*}\left(A_{k}\right)$ with multiplicity $m_{(n-j, j), \emptyset}=2(k-j)$, $m_{(n-l-1, l, 1), \emptyset}=2(k-l-1)$ and $m_{(n-t-1,1)(1)}=2(k-t-1)$, respectively.
(i) For the pair of partitions $((n-1,1), \emptyset)$, for any $0 \leq p \leq k-2$ we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

$$
f_{p}=y_{1}^{p}\left[y_{1}, y_{2}\right] y_{1}^{n-p-2} \text { and } g_{p}=y_{1}^{n-p-2}\left[y_{1}, y_{2}\right] y_{1}^{p}
$$

By making the evaluation $y_{1}=e_{11}+e_{2 k, 2 k}+E$ and $y_{2}=e_{12}+e_{2 k-1,2 k}$, we get that

$$
f_{p}\left(y_{1}, y_{2}\right)=e_{2 k-p-2,2 k}-e_{2 k-p-1,2 k} \text { and } g_{p}\left(y_{1}, y_{2}\right)=e_{1, p+2}-e_{1, p+3} .
$$

Then f_{p} and g_{p} are not $*$-identities of A_{k}, for any $0 \leq p \leq k-2$, and these $2(k-1)$ polynomials are linearly independent modulo $\mathrm{Id}^{*}\left(A_{k}\right)$. Hence $m_{(n-1,1), \emptyset} \geq 2(k-1)$.
(ii) For fixed $2 \leq j \leq k-1$, for the pair of partitions $((n-j, j), \emptyset)$ and for $0 \leq p \leq k-j-1$ and $w=n-p$, we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

$$
f_{p}=y_{1}^{p} \underbrace{\overline{y_{1}} \cdots \tilde{y_{1}}}_{j} \underbrace{\overline{y_{2}} \cdots \tilde{y_{2}}}_{j} y_{1}^{n-2 j-p} \quad \text { and } \quad g_{p}=y_{1}^{n-2 j-p} \underbrace{\overline{y_{1}} \cdots \tilde{y_{1}}}_{j} \underbrace{\overline{y_{2}} \cdots \tilde{y_{2}}}_{j} y_{1}^{p} .
$$

We have, by making the evaluation $y_{1}=e_{11}+e_{2 k, 2 k}+E$ and $y_{2}=e_{11}+e_{2 k, 2 k}+e_{12}+e_{2 k-1,2 k}$, that $f_{p}\left(y_{1}, y_{2}\right)=\alpha e_{2 k-p-j, 2 k}$ and $g_{p}\left(y_{1}, y_{2}\right)=\beta e_{1, j+p+1}$, with $\alpha \neq 0$ and $\beta \neq 0$. Then, for any $0 \leq p \leq k-j-1$, f_{p} and g_{p} are not $*$-identities of A_{k}. Moreover, the same evaluation shows that these $2(k-j)$ polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{k}\right)$. Thus $m_{(n-j, j), \emptyset} \geq 2(k-j)$, for any $2 \leq j \leq k-1$.
(iii) Now, for fixed $1 \leq l \leq k-2$, for the pair of partitions $((n-l-1, l, 1), \emptyset)$ and for $0 \leq p \leq k-j-2$ and $w=n-p$, we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

$$
f_{p}=y_{1}^{p} \underbrace{\overline{y_{1}} \cdots \overline{\overline{y_{1}}}}_{l-1} \tilde{y_{1}} \tilde{y_{2}} \tilde{y}_{3} \underbrace{\overline{y_{2}} \cdots \overline{\overline{y_{2}}}}_{l-1} y_{1}^{n-p-2 l-1} \text { and } g_{p}=y_{1}^{n-p-2 l-1} \underbrace{\overline{y_{1}} \cdots \overline{y_{1}}}_{l-1} \tilde{y_{1}} \tilde{y_{2}} \tilde{y_{3}} \underbrace{\overline{y_{2}} \cdots \overline{y_{2}}}_{l-1} y_{1}^{p} .
$$

Evaluating $y_{1}=e_{11}+e_{2 k, 2 k}+E, y_{2}=E$ and $y_{3}=e_{12}+e_{2 k-1,2 k}$, we get that $f_{p}\left(y_{1}, y_{2}, y_{3}\right)=\alpha e_{2 k-l-p-1,2 k}$ and $g_{p}\left(y_{1}, y_{2}, y_{3}\right)=\beta e_{1, l+p+2}$, with $\alpha \neq 0$ and $\beta \neq 0$. Thus f_{p} and g_{p}, for any $0 \leq p \leq k-j-2$, are not *-identities of A_{k} and these $2(k-l-1)$ polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{k}\right)$. Hence we have that $m_{(n-l-1, l, 1)} \geq 2(k-l-1)$, for any $1 \leq l \leq k-2$.
(iv) Finally, for fixed $0 \leq t \leq k-2$, for the pair of partitions $((n-t-1, t),(1))$ and for $0 \leq p \leq k-j-2$ and $w=n-p$, we consider the following pairs of tableaux:
$\left(\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline p+1 & \cdots & p+t & 1 & \cdots & p & p+2 t+2 & \cdots & n \\ \hline p+t+2 & \cdots & p+2 t+1 & & & & & p+t+1 \\ \hline\end{array}\right)$

and their corresponding highest weight vectors, respectively,

$$
f_{p}=y_{1}^{p} \underbrace{\overline{y_{1} \cdots \overline{y_{1}}}}_{t} z \underbrace{\overline{y_{2} \cdots \overline{y_{2}}}}_{t} y_{1}^{n-p-2 t-1} \text { and } g_{p}=y_{1}^{n-p-2 t-1} \underbrace{\overline{y_{1} \cdots \overline{y_{1}}}}_{t} z \underbrace{\overline{y_{2} \cdots \overline{y_{2}}}}_{t} y_{1}^{p} .
$$

By making the evaluation $y=e_{11}+e_{2 k, 2 k}+E$ and $z=e_{12}-e_{2 k-1,2 k}$, in case $t=0$, and $y_{1}=$ $e_{11}+e_{2 k, 2 k}+E, y_{2}=E$ and $z=e_{12}-e_{2 k-1,2 k}$ otherwise, we get that $f_{p}\left(y_{1}, y_{2}, z\right)=\alpha e_{2 k-t-p-1,2 k}$ and $g_{p}\left(y_{1}, y_{2}, z\right)=\beta e_{1, t+p+1}$, with $\alpha \neq 0$ and $\beta \neq 0$. Thus $m_{(n-t-1, t),(1)} \geq 2(k-t-1)$, for any $0 \leq t \leq k-2$, since f_{p} and g_{p} are not $*$-identities of A_{k}, for all $0 \leq p \leq k-t-2$, and these $2(k-t-1)$ polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{k}\right)$.

Thus we have that

$$
\begin{aligned}
c_{n}^{*}\left(A_{k}\right) \geq & d_{(n), \emptyset}+\sum_{j=1}^{k-1} 2(k-j) d_{(n-j, j), \emptyset}+\sum_{j=1}^{k-2} 2(k-j-1) d_{(n-j-1, j, 1), \emptyset} \\
& +\sum_{j=0}^{k-2} 2(k-j-1) d_{(n-j-1, j),(1)}=c_{n}^{*}\left(A_{k}\right) .
\end{aligned}
$$

Hence $\chi_{n}^{*}\left(A_{k}\right)$ has the desired decomposition. It is easy to show that $l_{n}^{*}\left(A_{k}\right)=3 k^{2}-5 k+3, \forall k \geq 2$, and the result is proved.

Now we study the $*$-cocharacters and the $*$-colengths of the minimal variety $\operatorname{var}^{*}\left(N_{k}\right)$, for all $k \geq 2$.
Lemma 3.14. $\chi_{n}^{*}\left(N_{2}\right)=\chi_{(n), \emptyset}+\chi_{(n-1),(1)}$ and $l_{n}^{*}\left(N_{2}\right)=2$.
Proof. Notice that we have

$$
d_{(n), \emptyset}+d_{(n-1),(1)}=1+n=c_{n}^{*}\left(N_{2}\right)
$$

Then, since $m_{(n), \emptyset}=1$, if we find a highest weight vector for the pair of partitions $((n-1),(1))$ which is not a *-identity of N_{2} we may conclude that $\chi_{n}^{*}\left(N_{2}\right)$ has the desired decomposition.

In fact, let $f_{1}=y^{n-1} z$ be the highest weight vector associated to the pair of partitions $((n-1),(1))$ and corresponding to the pair of tableaux:
($\left.\begin{array}{|l|l|l|l|}\hline 1 & 2 & \cdots & n-1 \\ \hline\end{array}, \begin{array}{|l|}\hline n \\ \hline\end{array}\right)$.
By making the evaluation $y=I$ and $z=e_{12}-e_{34}$, we get that $f=e_{12}-e_{34} \neq 0$. This says that f is not a *-identity of N_{2}. Hence we have $\chi_{n}^{*}\left(N_{2}\right)=\chi_{(n), \emptyset}+\chi_{(n-1),(1)}$ and $l_{n}^{*}\left(N_{2}\right)=2$.

Remark 3.15. Let $k \geq 2$. Then

$$
c_{n}^{*}\left(N_{k}\right)=d_{(n), \emptyset}+\sum_{j=1}^{k-3}(k-j-2)\left[d_{(n-j, j), \emptyset}+d_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-2}(k-j-1) d_{(n-j-1, j),(1)} .
$$

Proof. We shall use induction on k. From Lemma 3.14 it follows that the result is true for $k=2$.
Now we suppose the result is true for some $k \geq 2$. By Lemma 3.4, we have that

$$
c_{n}^{*}\left(N_{k+1}\right)=c_{n}^{*}\left(N_{k}\right)+\binom{n}{k-1}(k-2)+\binom{n}{k} k .
$$

Hence, by using that, for all $r \geq 1$,

$$
\sum_{j=0}^{r} d_{(n-j, j-1),(1)}=\binom{n}{r}(n-r)=\binom{n}{r+1}(r+1) \quad \text { and } \quad \sum_{j=1}^{r}\left[d_{(n-j, j), \emptyset}+d_{(n-j-1, j, 1), \emptyset}\right]=\binom{n}{r+1} r,
$$

we get the following:

$$
\begin{aligned}
c_{n}^{*}\left(N_{k+1}\right) & =c_{n}^{*}\left(N_{k}\right)+\binom{n}{k-1}(k-2)+\binom{n}{k} k \\
& =c_{n}^{*}\left(A_{k}\right)+\sum_{j=1}^{k-2}\left[d_{(n-j, j), \emptyset}+d_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-1} d_{(n-j-1, j),(1)} \\
& =d_{(n), \emptyset}+\sum_{j=1}^{k-2}(k-j-1)\left[d_{(n-j, j), \emptyset}+d_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-1}(k-j) d_{(n-j-1, j),(1)}
\end{aligned}
$$

Thus the result is true for any $k \geq 2$.
Theorem 3.16. For $k \geq 3$, we have
(1) $\chi_{n}^{*}\left(N_{k}\right)=\chi_{(n), \emptyset}+\sum_{j=1}^{k-3}(k-j-2)\left[\chi_{(n-j, j), \emptyset}+\chi_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-2}(k-j-1) \chi_{(n-j-1, j),(1)}$.
(2) $l_{n}^{*}\left(N_{k}\right)=\frac{3 k^{2}-11 k+14}{2}$.

Proof. The proof is similar to the proof of Lemma 3.13. By the previous remark, we have that, for any $k \geq 3$,

$$
c_{n}^{*}\left(N_{k}\right)=d_{(n), \emptyset}+\sum_{j=1}^{k-3}(k-j-2)\left[d_{(n-j, j), \emptyset}+d_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-2}(k-j-1) d_{(n-j-1, j),(1)} .
$$

It is clear that $m_{(n), \emptyset}=1$. In order to prove the desired decomposition of $\chi_{n}^{*}\left(N_{k}\right)$, we shall prove that the characters $\chi_{(n-j, j), \emptyset}, \chi_{(n-l-1, l, 1), \emptyset}$ and $\chi_{(n-t-1,1),(1)}$, for $1 \leq j, l \leq k-3$ and $0 \leq t \leq k-2$, appear in the decomposition of the $*$-cocharacter $\chi_{n}^{*}\left(N_{k}\right)$ with multiplicity $m_{(n-j, j), \emptyset}=k-j-2, m_{(n-l-1, l, 1), \emptyset}=k-l-2$ and $m_{(n-t-1,1)(1)}=k-t-1$, respectively.
(i) For fixed $1 \leq j \leq k-3$, for the pair of partitions $((n-j, j), \emptyset)$ and for $0 \leq p \leq k-j-3$, we consider the pair of tableaux (3.12) given in Lemma 3.13 whose corresponding highest weight vector is

$$
f_{p}=y_{1}^{n-2 j-p} \underbrace{\overline{y_{1}} \cdots \tilde{y_{1}}}_{j} \underbrace{\overline{y_{2}} \cdots \tilde{y_{2}}}_{j} y_{1}^{p} .
$$

By making the evaluation $y_{1}=I+E$ and $y_{2}=I+e_{13}+e_{2 k-2,2 k}$ we get

$$
f_{p}\left(y_{1}, y_{2}\right)=\alpha \sum_{i=0}^{k-2}\binom{n-2 j-p}{i} e_{2 k-j-i-2,2 k}+\beta \sum_{i=0}^{p}\binom{p}{i} e_{1,3+j+i}
$$

with α and β non-zero values. Then, for any $0 \leq p \leq k-j-3, f_{p}$ is not a $*$-identity of N_{k}. Moreover, the same evaluation shows that these $(k-j-2)$ polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(N_{k}\right)$. Thus $m_{(n-j, j), \emptyset} \geq k-j-2$, for any $1 \leq j \leq k-3$.
(ii) Now, for fixed $1 \leq l \leq k-3$, for the pair of partitions $((n-l-1, l, 1), \emptyset)$ and $0 \leq p \leq k-j-3$, we consider the pair of tableaux (3.13) with the following corresponding highest weight vector:

$$
g_{p}=y_{1}^{n-p-2 l-1} \underbrace{\overline{y_{1}} \cdots \overline{\overline{y_{1}}}}_{l-1} \tilde{y_{1}} \tilde{y_{2}} \tilde{y_{3}} \underbrace{\overline{y_{2}} \cdots \overline{y_{2}}}_{l-1} y_{1}^{p} .
$$

Evaluating $y_{1}=I+E, y_{2}=E$ and $y_{3}=e_{13}+e_{2 k-2,2 k}$, we also get that

$$
g_{p}\left(y_{1}, y_{2}, y_{3}\right)=\alpha \sum_{i=0}^{k-2}\binom{n-2 j-p}{i} e_{2 k-j-i-2,2 k}+\beta \sum_{i=0}^{p}\binom{p}{i} e_{1,3+j+i},
$$

with α and β non-zero values. Thus g_{p}, for any $0 \leq p \leq k-j-3$, is not a $*$-identity of N_{k} and these $(k-l-2)$ polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(N_{k}\right)$. Hence we have that $m_{(n-l-1, l, 1)} \geq(k-l-2)$, for any $1 \leq l \leq k-3$.
(iii) Finally, for fixed $0 \leq t \leq k-2$, for the pair of partitions $((n-t-1, t),(1))$ and for $0 \leq p \leq k-j-2$, we consider the pair of tableaux (3.14) and its corresponding highest weight vector

$$
h_{p}=y_{1}^{n-p-2 t-1} \underbrace{\overline{y_{1}} \cdots \overline{\overline{y_{1}}}}_{t} z \underbrace{\overline{y_{2}} \cdots \overline{y_{2}}}_{t} y_{1}^{p} .
$$

By making the evaluation $y_{1}=I+E$ and $z=e_{12}-e_{2 k-1,2 k}$, in case $t=0$, and $y_{1}=I+E, y_{2}=E$ and $z=e_{12}-e_{2 k-1,2 k}$ otherwise, we get that

$$
h_{p}\left(y_{1}, y_{2}, z\right)=\alpha \sum_{i=0}^{k-2}\binom{n-2 j-p}{i} e_{2 k-j-i-1,2 k}+\beta \sum_{i=0}^{p}\binom{p}{i} e_{1,2+j+i}
$$

with α and β non-zero values. Thus $m_{(n-t-1, t),(1)} \geq(k-t-1)$, for any $0 \leq t \leq k-2$, since that h_{p} is not a *-identity of N_{k}, for all $0 \leq p \leq k-t-2$, and these $(k-t-1)$ polynomials are linearly independent modulo $\mathrm{Id}^{*}\left(N_{k}\right)$.

Thus we have that

$$
c_{n}^{*}\left(N_{k}\right) \geq d_{(n), \emptyset}+\sum_{j=1}^{k-3}(k-j-2)\left[d_{(n-j, j), \emptyset}+d_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-2}(k-j-1) d_{(n-j-1, j),(1)} .
$$

Hence, by the previous remark, $\chi_{n}^{*}\left(N_{k}\right)$ has the desired decomposition and $l_{n}^{*}\left(N_{k}\right)=\frac{3 k^{2}-11 k+14}{2}$.
We finish this section by calculating the $*$-cocharacters and $*$-colengths of $\operatorname{var}^{*}\left(U_{k}\right)$, for all $k \geq 3$.
Lemma 3.17. $\chi_{n}^{*}\left(U_{3}\right)=\chi_{(n), \emptyset}+\chi_{(n-1,1), \emptyset}+\chi_{(n-2,1,1), \emptyset}+\chi_{(n-1),(1)}$ and $l_{n}^{*}\left(U_{3}\right)=4$.
Proof. Notice that

$$
d_{(n), \emptyset}+d_{(n-1),(1)}+d_{(n-1,1), \emptyset}+d_{\left(n-1,1^{2}\right), \emptyset}=1+n+(n-1)+\frac{(n-1)(n-2)}{2}=c_{n}^{*}\left(U_{3}\right) .
$$

Then, since $m_{(n), \emptyset}=1$, if we find a highest weight vector for each pair of partitions $((n-1),(1)),((n-1,1), \emptyset)$ and $\left(\left(n-1,1^{2}\right), \emptyset\right)$ which is not a $*$-identity of U_{3} we may conclude that $\chi_{n}^{*}\left(U_{3}\right)$ has the desired decomposition.

In fact, let $f=y^{n-1} z$ be the highest weight vector associated to the pair of partitions $((n-1),(1))$ and corresponding to the pair of tableaux:

By making the evaluation $y=I$ and $z=e_{13}-e_{46}$, we get that $f=e_{13}-e_{46} \neq 0$ and, so, f is not a $*$-identity of U_{3}.

Now we consider $g=\left[y_{1}, y_{2}\right] y_{1}^{n-2}$ the highest weight vector associated to the pair of partitions $((n-1,1), \emptyset)$ and corresponding to the pair of tableaux:

By making the evaluation $y_{1}=I+e_{12}+e_{56}$ and $y_{2}=e_{23}+e_{45}$, we get that $g=e_{13}-e_{46} \neq 0$. It shows that g is not a *-identity of U_{3}.

Finally we consider $h=S t_{3}\left(y_{1}, y_{2}, y_{3}\right) y_{1}^{n-3}$ the highest weight vector associated to the pair of partitions $\left(\left(n-1,1^{2}\right), \emptyset\right)$ and corresponding to the pair of tableaux:

$$
\left(\begin{array}{|l|l|l|l|}
\hline 1 & 4 & \cdots & n \tag{3.18}\\
\hline 2 & & & \\
\cline { 1 - 1 } 3 & & & \\
\cline { 1 - 2 } & & & \\
\hline
\end{array}\right)
$$

By making the evaluation $y_{1}=I, y_{2}=e_{23}+e_{45}$ and $y_{3}=e_{12}+e_{56}$, we get that $h=-e_{13}+e_{46} \neq 0$ and this says that h is not a $*$-identity of U_{3}. Hence we have that $\chi_{n}^{*}\left(U_{3}\right)=\chi_{(n), \emptyset}+\chi_{(n-1,1), \emptyset}+\chi_{(n-2,1,1), \emptyset}+\chi_{(n-1),(1)}$ and $l_{n}^{*}\left(U_{3}\right)=4$.

The proof of the next result is similar to the proof of Lemma 3.16.
Theorem 3.18. For $k \geq 3$, we have
(1) $\chi_{n}^{*}\left(U_{k}\right)=\chi_{(n), \emptyset}+\sum_{j=1}^{k-2}(k-j-1)\left[\chi_{(n-j, j), \emptyset}+\chi_{(n-j-1, j, 1), \emptyset}\right]+\sum_{j=0}^{k-3}(k-j-2) \chi_{(n-j-1, j),(1)}$.
(2) $l_{n}^{*}\left(U_{k}\right)=\frac{3 k^{2}-9 k+8}{2}$.

4. Characterizing varieties of small $*$-colength

In this section we shall classify the varieties such that their sequence of $*$-colengths is bounded by three, for n large enough. We start by considering the algebra G_{2}^{*}, the Grassmann algebra with 1 generated by the elements e_{1}, e_{2} over F subject to the condition $e_{1} e_{2}+e_{2} e_{1}=e_{1}^{2}=e_{2}^{2}=0$, and endowed with the involution * such that $e_{i}^{*}=-e_{i}$, for $i=1,2$. We have the following.

Lemma 4.1. For the algebra G_{2}^{*} we have
(1) $\operatorname{Id}^{*}\left(G_{2}^{*}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z], z_{1} z_{2}+z_{2} z_{1}, z_{1} z_{2} z_{3}\right\rangle_{T^{*}}$.
(2) $c_{n}^{*}\left(G_{2}^{*}\right)=1+n+\frac{n(n-1)}{2}$.
(3) $\chi_{n}^{*}\left(G_{2}^{*}\right)=\chi_{(n), \emptyset}+\chi_{(n-1),(1)}+\chi_{(n-2),\left(1^{2}\right)}$ and $l_{n}^{*}\left(G_{2}^{*}\right)=3$.

Proof. In [21, Lemma 16] the authors determined the T^{*}-ideal and computed the nth $*$-codimension of the algebra G_{2}^{*}. Here we shall prove that $\chi_{n}^{*}\left(G_{2}^{*}\right)=\chi_{(n), \emptyset}+\chi_{(n-1),(1)}+\chi_{(n-2),\left(1^{2}\right)}$. We start by noticing that $\left(G_{2}^{*}\right)^{+}=\operatorname{span}_{F}\{1\}$ and $\left(G_{2}^{*}\right)^{-}=\operatorname{span}_{F}\left\{e_{1}, e_{2}, e_{1} e_{2}\right\}$. Moreover, we have

$$
d_{(n), \emptyset}+d_{(n-1),(1)}+d_{(n-2),\left(1^{2}\right)}=1+n+\frac{n(n-1)}{2}=c_{n}^{*}\left(G_{2}^{*}\right)
$$

Then, since $m_{(n), \emptyset}=1$, we just need to find a highest weight vector for each pair of partitions $((n-1),(1))$ and $\left((n-2),\left(1^{2}\right)\right)$ which is not a $*$-identity of G_{2}^{*} to conclude that $\chi_{n}^{*}\left(G_{2}^{*}\right)$ has the desired decomposition.

In fact, let $f=y^{n-1} z_{1}$ and $g=y^{n-2}\left[z_{1}, z_{2}\right]$ be the highest weight vectors associated to the pairs of partitions $((n-1),(1))$ and $\left((n-2),\left(1^{2}\right)\right)$ and corresponding to the pairs of tableaux, respectively:

By making the evaluation $y=1, z_{1}=e_{1}$ and $z_{2}=e_{2}$, we get that $f=e_{1} \neq 0$ and $g=2 e_{1} e_{2} \neq 0$; then f and g are not $*$-identities of G_{2}^{*} and the proof is complete.

Next we consider the algebra $G_{2}^{*} \oplus C_{3}$ and the algebra G_{3}^{*}, the Grassmann algebra with 1 generated by the elements e_{1}, e_{2}, e_{3} over F subject to the condition $e_{i} e_{j}+e_{j} e_{i}=e_{i}^{2}=0$, for all $i, j=1,2,3$, and endowed with the involution $*$ such that $e_{i}^{*}=-e_{i}$, for $i=1,2,3$. The next lemma can be proved as the previous one.

Lemma 4.2. For the algebras G_{3}^{*} and $G_{2}^{*} \oplus C_{3}$ we have
(1) $\operatorname{Id}^{*}\left(G_{3}^{*}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z], z_{1} z_{2}+z_{2} z_{1}, z_{1} z_{2} z_{3} z_{4}\right\rangle_{T^{*}}$.
(2) $c_{n}^{*}\left(G_{3}^{*}\right)=1+n+\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)}{6}$.
(3) $\chi_{n}^{*}\left(G_{3}^{*}\right)=\chi_{(n), \emptyset}+\chi_{(n-1),(1)}+\chi_{(n-2),\left(1^{2}\right)}+\chi_{(n-3),\left(1^{3}\right)}$.
(4) $\operatorname{Id}^{*}\left(G_{2}^{*} \oplus C_{3}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z], z_{1} z_{2} z_{3}\right\rangle_{T^{*}}$.
(5) $c_{n}^{*}\left(G_{2}^{*} \oplus C_{3}\right)=n^{2}+1$.
(6) $\chi_{n}^{*}\left(G_{2}^{*} \oplus C_{3}\right)=\chi_{(n), \emptyset}+\chi_{(n-1),(1)}+\chi_{(n-2),\left(1^{2}\right)}+\chi_{(n-2),(2)}$.
(7) $l_{n}^{*}\left(G_{3}^{*}\right)=l_{n}^{*}\left(G_{2}^{*} \oplus C_{3}\right)=4$.

Recall that if $A=F+J$ is a finite dimensional algebra over F where $J=J(A)$ is its Jacobson radical, then J can be decomposed into the direct sum of B-bimodules

$$
\begin{equation*}
J=J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11} \tag{4.2}
\end{equation*}
$$

where for $i \in\{0,1\}, J_{i k}$ is a left faithful module or a 0 -left module according as $i=1$ or $i=0$, respectively. In a similar way, $J_{i k}$ is a right faithful module or a 0 -right module according as $k=1$ or $k=0$, respectively. Moreover, for $i, k, r, s \in\{0,1\}, J_{i r} J_{r s} \subseteq J_{i s}, J_{i k} J_{r s}=0$ for $k \neq r$ and $J_{11}=B N$ for some nilpotent subalgebra N of A commuting with $B[\mathbf{9}]$.

Notice that if the algebra A has an involution $*$, then J_{00} and J_{11} are stable under the involution whereas $J_{01}^{*}=J_{10}$.

In what follows we use the following result.

Proposition 4.3. [20, Theorem 2] Let A be an algebra with involution over a field F of characteristic zero and suppose that $c_{n}^{*}(A), n=1,2, \ldots$, is polynomially bounded. Then $A \sim_{T^{*}} B_{1} \oplus \cdots \oplus B_{m}$ where, for each $i \in\{1, \cdots, m\}, B_{i}$ is a finite-dimensional algebra with involution over F and $\operatorname{dim} B_{i} / J\left(B_{i}\right) \leq 1$, for all $i=1, \ldots, m$.

Now, by applying [24, Corollary 5.5] we get the following.
Theorem 4.4. Let A be an algebra with involution over a field F of characteristic zero. Then $c_{n}^{*}(A)$, $n=1,2, \ldots$, is polynomially bounded if and only if $l_{n}^{*}(A) \leq k$, for some constant k and for all $n \geq 1$.

Proof. If $c_{n}^{*}(A), n=1,2, \ldots$, is polynomially bounded then by Proposition $4.3, A$ satisfies the same *identities as a finite dimensional algebra and the result follows by applying Corollary 5.5 in [24]. Conversely, suppose that $l_{n}^{*}(A) \leq k$, for some constant k and for all $n \geq 1$. Then by [22] and $[\mathbf{6}], M$ and D do not belong to the variety generated by A since their $*$-colengths are not bounded by any constants. Then, by Theorem $3.1, c_{n}^{*}(A), n=1,2, \ldots$, is polynomially bounded.

Much effort has been put into the study of algebras with colengths bounded by a constant (see [4, 15, $\mathbf{1 2}, \mathbf{1 8}]$ for the ordinary and graded cases). Here we deal with the case of algebras with involution.

Lemma 4.5. [21, Lemma 14] If $A=F+J$ is a finite-dimensional algebra with involution where $J=$ $J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$ and $A_{2} \notin \operatorname{var}^{*}(B)$ then $J_{10}=J_{01}=0$.

Next we study $*$-algebras of the type $F+J_{11}$.
Lemma 4.6. Let $B=F+J_{11}$. If $C_{i} \notin \operatorname{var}^{*}(B)$, for $i \geq 2$, then $z^{i-1} \equiv 0$ on B.
Proof. We give a proof of the result by following closely the proof of [21, Lemma 27]. Suppose that there exists $a \in J_{11}^{-}$such that $a^{i-1} \neq 0$ and consider the $*$-subalgebra R of B generated by 1 and a over F. Then if I is the $*$-ideal generated by a^{i}, we have that the algebra $\bar{R}=R / I$ has induced involution and $\bar{R}=\operatorname{span}\left\{\overline{1}, \bar{a}, \bar{a}^{2}, \ldots, \bar{a}^{i-1}\right\}$. It is easily seen that $\bar{R} \cong C_{i}$ through the isomorphism φ such that $\varphi(\overline{1})=e_{11}+\cdots+e_{i i}, \varphi(\bar{a})=e_{12}+\cdots+e_{i-1}{ }_{i}$. Hence $C_{i} \in \operatorname{var}^{*}(B)$ and we have reached a contradiction.

Lemma 4.7. Let $B=F+J_{11}$.
(1) If $U_{3} \notin \operatorname{var}^{*}(B)$ then $\left[y_{1}, y_{2}\right] \equiv 0$ on B.
(2) If $N_{3} \notin \operatorname{var}^{*}(B)$ then $[y, z] \equiv 0$ on B.

Proof. Suppose, for a contradiction, that $\left[y_{1}, y_{2}\right] \not \equiv 0$. Let $a, b \in J_{11}^{+}$be such that $[a, b] \neq 0$ and consider the $*$-subalgebra R generated by $1, a, b$ over F and let I be the $*$-ideal generated by $a^{2}, b^{2}, a b+b a$. So the *-algebra $\bar{R}=R / I$ is linearly generated by $\{\overline{1}, \bar{a}, \bar{b}, \bar{a} \bar{b}\}$ and we claim that $\operatorname{Id}^{*}(\bar{R})=\operatorname{Id}^{*}\left(U_{3}\right)$. Clearly $z_{1} z_{2} \equiv 0$ and $[z, y] \equiv 0$ are $*$-identities of \bar{R}, and so, $\operatorname{Id}^{*}\left(U_{3}\right) \subseteq \operatorname{Id}^{*}(\bar{R})$.

Let $f \in P_{n}^{*} \cap \mathrm{Id}^{*}(\bar{R})$ a multilinear polynomial of degree n. By [21, Lemma 19] we can write f (mod $\left.\operatorname{Id}^{*}\left(U_{3}\right)\right)$ as:

$$
f=\alpha y_{1} \cdots y_{n}+\sum_{1 \leq i<j \leq n} \alpha_{i j} y_{i_{1}} \cdots y_{i_{n-2}}\left[y_{i}, y_{j}\right]+\sum_{i=1}^{n} \alpha_{i} y_{j_{1}} \cdots y_{j_{n-1}} z_{i}
$$

where $i_{1}<i_{2}<\cdots<i_{n-2}$ and $j_{1}<j<2 \cdots<j_{n-1}$. By making the evaluations $y_{1}=\cdots=y_{n}=\overline{1}$ and $z_{i}=0$ for $i=1, \ldots, n$, we get $\alpha=0$. Also, for a fixed $i<j$ the evaluation $y_{i}=\bar{a}, y_{j}=\bar{b}, y_{k}=\overline{1}$ for $k \notin\{i, j\}$ and $z_{l}=0$ for $l=1, \ldots, n$, gives $\alpha_{i j}=0$. Finally the evaluation $z_{i}=[\bar{a}, \bar{b}], y_{j}=\overline{1}$ for $j \neq i$ gives $\alpha_{i}=0$. Hence $f \in \mathrm{Id}^{*}\left(U_{3}\right)$ and, so, $\mathrm{Id}^{*}(\bar{R}) \subseteq \operatorname{Id}^{*}\left(U_{3}.\right)$ Thus $U_{3} \in \operatorname{var}^{*}(B)$ and the proof of the first part is complete.

The second part of the lemma is proved similarly.
Lemma 4.8. Suppose that $B=F+J_{11}$ satisfies $z_{1} z_{2}+z_{2} z_{1} \equiv 0$. If $z_{1} z_{2} z_{3} \not \equiv 0$ then $G_{3}^{*} \in \operatorname{var}^{*}(B)$.
Proof. Consider $a, b, c \in J_{11}^{-}$such that $a b c \neq 0$. Let R be the subalgebra of B generated by $1, a, b, c$. Since $z_{1} z_{2}+z_{2} z_{1} \equiv 0$ in R we have $a^{2}=b^{2}=c^{2}=0$ and so $R=\operatorname{span}\{1, a, b, c, a b, a c, b c, a b c\}$. As a consequence, the correspondence

$$
1 \mapsto 1, a \mapsto e_{1}, b \mapsto e_{2}, c \mapsto e_{3}
$$

defines an isomorphism between R and G_{3}^{*}.

Lemma 4.9. If $B=F+J_{11}$ is such that $\left[z_{1}, z_{2}\right] \not \equiv 0$ then $G_{2}^{*} \in \operatorname{var}^{*}(B)$.
Proof. Consider $a, b \in J_{11}^{-}$such that $[a, b] \neq 0$. Let R be the subalgebra of B generated by $1, a, b$ and let I be the $*$-ideal generated by $a^{2}, b^{2}, a b+b a$. So the $*$-algebra $\bar{R}=R / I$ is linearly generated by $\{\overline{1}, \bar{a}, \bar{b}, \bar{a} \bar{b}\}$. We have \bar{R} is isomorphic to G_{2}^{*} and so $G_{2}^{*} \in \operatorname{var}^{*}(B)$.

Now we are in position to prove the main result of this section which allows us to classify the varieties with $*$-colengths bounded by 3 , for n large enough.

Theorem 4.10. Let A be an algebra with involution over a field F of characteristic zero. The following conditions are equivalent.
(1) $l_{n}^{*}(A) \leq 3$, for n large enough.
(2) $A_{2}, N_{3}, U_{3}, C_{4}, G_{3}^{*}, G_{2}^{*} \oplus C_{3} \notin \operatorname{var}^{*}(A)$.
(3) A is T^{*}-equivalent to N or $C \oplus N$ or $C_{2} \oplus N$ or $C_{3} \oplus N, G_{2}^{*} \oplus N$, where N is a nilpotent $*$-algebra and C is a commutative non-nilpotent algebra with trivial involution.

Proof. First, notice that the condition (1) implies the condition (2) since by Lemmas 3.11, 3.17, 3.16, 4.2 and Theorem 3.2 we have that $l_{n}^{*}\left(A_{2}\right)=5, l_{n}^{*}\left(N_{3}\right)=l_{n}^{*}\left(U_{3}\right)=l_{n}^{*}\left(G_{2}^{*} \oplus C_{3}\right)=l_{n}^{*}\left(G_{3}^{*}\right)=l_{n}^{*}\left(C_{4}\right)=4$. Also, the condition (3) implies the condition (1), by Lemmas 3.14, 3.2 and 4.1.

Suppose now that $A_{2}, N_{3}, U_{3}, C_{4}, G_{3}^{*}, G_{2}^{*} \oplus C_{3} \notin \operatorname{var}^{*}(A)$. Since $C_{4} \in \operatorname{var}^{*}(D)$ and $A_{2} \in \operatorname{var}^{*}(M)$, it follows that $D, M \notin \operatorname{var}^{*}(A)$. Hence, by Theorem 3.1, the $*$-codimensions of A are polynomially bounded and by Proposition 4.3, we may assume that

$$
A=B_{1} \oplus \cdots \oplus B_{m}
$$

is a direct sum of finite-dimensional $*$-algebras where either B_{i} is nilpotent or $B_{i}=F+J\left(B_{i}\right)$.
If B_{i} is nilpotent for all i, then A is a nilpotent $*$-algebra and we are done in this case.
Therefore we may assume that there exists $i=1, \ldots, m$ such that $B_{i}=F+J\left(B_{i}\right)$ and $J\left(B_{i}\right)=$ $J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$.

Since $A_{2} \notin \operatorname{var}^{*}\left(B_{i}\right)$, by Lemma 4.5, we have that $J_{01}=J_{10}=0$ and, so, $B_{i}=\left(F+J_{11}\right) \oplus J_{00}$ is a direct sum of $*$-algebras and we study $B=F+J_{11}$.

Since $N_{3}, U_{3} \notin \operatorname{var}^{*}(B)$, by Lemma 4.7, it follows that $\left[y_{1}, y_{2}\right] \equiv 0$ and $[y, z] \equiv 0$ are $*$-identities of B.
Now we have to consider two different cases:
(1) $\left[z_{1}, z_{2}\right] \equiv 0$ on B
(2) $\left[z_{1}, z_{2}\right] \not \equiv 0$ on B.

In case (1), we have that $B \in \operatorname{var}^{*}(D)$. Since $C_{4} \notin \operatorname{var}^{*}(B)$, by Theorem 3.3 we must have that B is T^{*}-equivalent to either C or C_{2} or C_{3}.

Now assume that $\left[z_{1}, z_{2}\right] \not \equiv 0$ on B. So, by Lemma 4.9, $G_{2}^{*} \in \operatorname{var}^{*}(B)$. On the other hand, since $G_{2}^{*} \oplus C_{3} \notin \operatorname{var}^{*}(A)$ we must have that $C_{3} \notin \operatorname{var}^{*}(A)$. Hence, by Lemma $4.6, z^{2} \equiv 0$ on B and after linearizing we get that $z_{1} z_{2}+z_{2} z_{1} \equiv 0$ on B. Finally, since $G_{3}^{*} \notin \operatorname{var}^{*}(B)$, by Lemma 4.8, we have that $z_{1} z_{2} z_{3} \equiv 0$. Hence $\operatorname{Id}^{*}\left(G_{2}^{*}\right) \subseteq \operatorname{Id}^{*}(B)$ and it follows that B is T^{*}-equivalent to G_{2}^{*}.

Recalling that $A=B_{1} \oplus \cdots \oplus B_{m}$ and putting together all pieces, we get the desired conclusion.
Actually, notice that if $l_{n}^{*}(A) \leq 3$, then for n large enough, $l_{n}^{*}(A)$ is always constant.
In conclusion we have the following classification: for any $*$-algebra A and n large enough,

1. $l_{n}(A)=0$ if and only if $A \sim_{T^{*}} N$.
2. $l_{n}(A)=1$ if and only if $A \sim_{T^{*}} C \oplus N$.
3. $l_{n}(A)=2$ if and only if $A \sim_{T^{*}} C_{2} \oplus N$.
4. $l_{n}(A)=3$ if and only if either $A \sim_{T^{*}} C_{3} \oplus N$ or $A \sim_{T^{*}} G_{2}^{*} \oplus N$,
where N is a nilpotent $*$-algebra and C is a commutative non-nilpotent algebra with trivial involution.

Acknowledgment

The authors would like to thank the referee for useful suggestions.

References

[1] A. Berele - Cocharacter sequences for algebras with Hopf algebra actions. J. Algebra 185 (1996) 869-885.
[2] V. Drensky - Free algebras and PI-algebras. Graduate course in algebra. Springer-Verlag Singapore, Singapore, 2000.
[3] A. Giambruno - $G L_{m} \times G L_{m}$-representations and $*$-polynomial identities. Comm. Algebra 14 (1986) 787-796.
[4] A. Giambruno \& D. La Mattina - PI-algebras with slow codimension growth. J. Algebra 284 (2005) 371-391.
[5] A. Giambruno, D. La Mattina \& M. Zaicev - Classifying the minimal varieties of polynomial growth. Canad. J. Math. 66 (2014), no. 3, 625-640.
[6] A. Giambruno \& S. Mishchenko - On star-varieties with almost polynomial growth. Algebra Colloq. 8 (2001) 33-42.
[7] A. Giambruno, C. Polcino Milies \& A. Valenti - Star-polynomial identities: Computing the exponential growth of the codimensions. J. Algebra doi.org/10.1016/j.jalgebra.2016.07.037.
[8] A. Giambruno \& A. Regev - Wreath products and P.I. algebras. J. Pure Appl. Algebra 35 (1985) 133-149.
[9] A. Giambruno \& M. Zaicev - Asymptotics for the standard and the Capelli identities. Israel J. Math. 135 (2003) 125-145.
[10] A. Giambruno \& M. Zaicev - A characterization of algebras with polynomial growth of the codimensions, Proc. Amer. Math. Soc. 129 (2000), 59-67.
[11] A. Ioppolo \& D. La Mattina - Polynomial codimension growth of algebras with involutions and superinvolutions. J. Algebra, in print.
[12] P. Koshlukov \& D. La Mattina — Graded algebras with polynomial growth of their codimensions. J. Algebra 434 (2015), 115-137.
[13] D. La Mattina - Varieties of almost polynomial growth: classifying their subvarieties. Manuscripta Math. 123 (2007) 185-203.
[14] D. La Mattina - Varieties of algebras of polynomial growth. Boll. Unione Mat. Ital. (9) 1 (2008), no. 3, 525-538.
[15] D. La Mattina - Characterizing varieties of colength ≤ 4. Comm. Algebra 37 (2009) 1793-1807.
[16] D. La Mattina - Varieties of superalgebras of almost polynomial growth. J. Algebra 336 (2011) 209-226.
[17] D. La Mattina - Almost polynomial growth: classifying varieties of graded algebras. Israel J. Math. 207 (2015), no. 1, 53-75.
[18] D. La Mattina - On algebras of polynomial codimension growth. São Paulo J. Math. Sci DOI: 10.1007/s40863-016-0051-7
[19] D. La Mattina, S. Mauceri \& P. Misso - Polynomial growth and identities of superalgebras and star-algebras. J. Pure Appl. Algebra 213 (2009), 2087-2094.
[20] D. La Mattina \& F. Martino - Polynomial growth and star-varieties. J. Pure Appl. Algebra 220 (2016) 246-262.
[21] D. La Mattina \& P. Misso - Algebras with involution with linear codimension growth. J. Algebra 305 (2006) $270-291$.
[22] S. Mishchenko \& A. Valenti - A Star-Variety With Almost Polynomial Growth. J. Algebra 223 (2000) 66-84.
[23] T.S. Nascimento, R.B. dos Santos \& A. C. Vieira - Graded cocharacters of minimal subvarieties of supervarieties of almost polynomial growth. J. Pure Appl. Algebra 219 (2015) 913-929.
[24] A. Vieira - Finitely generated algebras with involution and multiplicities bounded by a constant. J. Algebra 422 (2015) 487-503.

[^0]: 2010 Mathematics Subject Classification. Primary 16R50, Secondary 20C30, 16W10.
 Key words and phrases. *-colength, *-codimension, *-cocharacter.
 ${ }^{\diamond}$ Partially supported by GNSAGA of INDAM.
 ${ }^{\text {a }}$ Partially support by FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais, APQ-02435-14.

 * Corresponding author.

 E-mail addresses: daniela.lamattina@unipa.it (La Mattina), thais2909@ufmg.br (Nascimento), anacris@ufmg.br (Vieira).

