Minimal star-varieties of polynomial growth and bounded colength

Daniela La Mattina^{1,◊}, Thais Silva do Nascimento^{2,3} and Ana Cristina Vieira^{3,*,‡}

¹ Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi, 34, 90123, Palermo, Italy.

² Departamento de Matemática, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Cuiabá, Brazil.

³ Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.

ABSTRACT. Let \mathcal{V} be a variety of associative algebras with involution * over a field F of characteristic zero. Giambruno and Mishchenko proved in [6] that the *-codimension sequence of \mathcal{V} is polynomially bounded if and only if \mathcal{V} does not contain the commutative algebra $D = F \oplus F$, endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular matrices, endowed with the reflection involution. As a consequence the algebras D and M generate the only varieties of almost polynomial growth. In [20] the authors completely classify all subvarieties and all minimal subvarieties of the varieties $\operatorname{var}^*(D)$ and $\operatorname{var}^*(M)$. In this paper we exhibit the decompositions of the *-cocharacters of all minimal subvarieties of $var^*(D)$ and $var^*(M)$ and compute their *-colengths. Finally we relate the polynomial growth of a variety to the *-colengths and classify the varieties such that their sequence of *-colengths is bounded by three.

1. Introduction

Let A be an associative algebra with involution (*-algebra) over a field F of characteristic zero and let $c_n^*(A), n = 1, 2, \ldots$, be its sequence of *-codimensions. In case A satisfies a nontrivial identity, it was proved in [8] that $c_n^*(A)$ is exponentially bounded. In order to capture the exponential rate of growth of the sequence of \ast -codimensions, recently, in [7] the authors proved that for any associative \ast -algebra A, satisfying an ordinary identity,

$$\exp^*(A) = \lim_{n \to \infty} \sqrt[n]{c_n^*(A)}$$

exists and is an integer called the *-exponent of A.

Given a variety of *-algebras \mathcal{V} , the growth of \mathcal{V} is the growth of the sequence of *-codimensions of any algebra A generating \mathcal{V} , i.e., $\mathcal{V} = \operatorname{var}^*(A)$. In this paper we are interested in varieties of polynomial growth, i.e., varieties of *-algebras such that $c_n^*(\mathcal{V}) = c_n^*(A)$ is polynomially bounded.

In such a case, if A is an algebra with 1, in [19] it was proved that $c_n^*(A) = qn^k + O(n^{k-1})$ is a polynomial with rational coefficients whose leading term satisfies the inequalities $\frac{1}{k!} \leq q \leq \sum_{i=0}^k 2^{k-i} \frac{(-1)^i}{i!}$. In case of polynomial growth Giambruno and Mishchenko proved in [6] that a variety \mathcal{V} has polynomial

growth if and only if \mathcal{V} does not contain the commutative algebra $D = F \oplus F$, endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular matrices, endowed with the reflection involution. As a consequence the *-algebras D and M generate the only varieties of almost polynomial growth, i.e, they grow exponentially but any proper subvariety is polynomially bounded.

In [20] the authors completely classify all subvarieties of the varieties $var^*(D)$ and $var^*(M)$. They also classify all their minimal subvarieties of polynomial growth. We recall that \mathcal{V} is a minimal variety of polynomial growth n^k if asymptotically $c_n^*(\mathcal{V}) \approx an^k$, for some $a \neq 0$, and $c_n^*(\mathcal{U}) \approx bn^t$, with t < k, for any proper subvariety \mathcal{U} of \mathcal{V} .

²⁰¹⁰ Mathematics Subject Classification. Primary 16R50, Secondary 20C30, 16W10.

Key words and phrases. *-colength, *-codimension, *-cocharacter.

[♦] Partially supported by GNSAGA of INDAM.

⁴Partially support by FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais, APQ-02435-14.

^{*}Corresponding author.

E-mail addresses: daniela.lamattina@unipa.it (La Mattina), thais2909@ufmg.br (Nascimento), anacris@ufmg.br (Vieira).

The relevance of the minimal varieties of polynomial growth relies in the fact that these were the building blocks that allowed the authors to give a complete classification of the subvarieties of the varieties of almost polynomial growth (see also [5, 11, 13, 14, 16, 17]).

An equivalent formulation of Giambruno-Mishchenko's result can be given as follows. Let P_n^* be the vector space of multilinear polynomials of degree n and $\mathrm{Id}^*(A)$ the ideal of identities satisfied by a *-algebra A. The space $\frac{P_n^*}{P_n^* \cap \mathrm{Id}^*(A)}$ has a structure of $\mathbb{Z}_2 \wr S_n$ -module and its character $\chi_n^*(A)$, by complete reducibility, decomposes as

$$\chi_n^*(A) = \sum_{|\lambda| + |\mu| = n} m_{\lambda,\mu} \chi_{\lambda,\mu},$$

where $\chi_{\lambda,\mu}$ is the irreducible $\mathbb{Z}_2 \wr S_n$ -character associated to the pair of partitions (λ,μ) and $m_{\lambda,\mu} \ge 0$ is the corresponding multiplicity. Then

$$l_n^*(A) = \sum_{|\lambda| + |\mu| = n} m_{\lambda,\mu},$$

is called the nth *-colength of A. If A satisfies a non-trivial identity then $l_n^*(A)$, n = 1, 2, ..., is polynomially bounded [1].

In this paper we state the Giambruno-Mishchenko's result as follows: if A is any *-algebra, $c_n^*(A)$ is polynomially bounded if and only if the sequence of *-colengths is bounded by a constant, i.e., $l_n^*(A) \leq k$, for some $k \geq 0$ and for all $n \geq 1$. Such result was proved for finite dimensional *-algebras in [24].

Moreover we exhibit the decompositions of the *-cocharacters of all minimal subvarieties of var^{*}(D) and var^{*}(M), compute their *-colengths and complete their *-codimensions. Finally we classify the varieties such that their sequence of *-colengths is bounded by three, for n large enough. Furthermore we show that if $l_n^*(A) \leq 3$, then for n large enough, $l_n^*(A)$ is always constant.

2. Generalities and basic tools

Throughout this paper we shall denote by F a field of characteristic zero and by A an associative algebra, not necessarily with 1, endowed with an involution * over F. Let us write $A = A^+ \oplus A^-$, where $A^+ = \{a \in A \mid a^* = a\}$ and $A^- = \{a \in A \mid a^* = -a\}$ denote the sets of symmetric and skew elements of A, respectively.

Let $F\langle X, * \rangle$ be the free associative algebra with involution on a countable set $X = \{x_1, x_1^*, x_2, x_2^*, \ldots\}$ of noncommutative variables over F (see [10]). It is useful to consider $F\langle X, * \rangle$ as generated by symmetric and skew variables: if we let $y_i = x_i + x_i^*$ and $z_i = x_i - x_i^*$ for $i = 1, 2, \ldots$, then $F\langle X, * \rangle = F\langle y_1, z_1, y_2, z_2, \ldots \rangle$. We say that a polynomial $f(y_1, \ldots, y_n, z_1, \ldots, z_m) \in F\langle X, * \rangle$ is a *-identity of A, and we write $f \equiv 0$, if $f(a_1, \ldots, a_n, b_1, \ldots, b_m) = 0$ for all $a_1, \ldots, a_n \in A^+$ and $b_1, \ldots, b_m \in A^-$.

The set $\mathrm{Id}^*(A)$ of all *-identities of A is a T^* -ideal of $F\langle X, * \rangle$, i.e., an ideal invariant under all endomorphisms of the free algebra commuting with the involution and is completely determined by its multilinear polynomials. We denote by P_n^* the space of all multilinear polynomials of degree n in the variables $y_1, z_1, \ldots, y_n, z_n$, i.e,

$$P_n^* = \operatorname{span}_F \{ w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_n, \ w_i = y_i \text{ or } w_i = z_i, i = 1, \dots, n \}$$

The dimension of the space $P_n^*(A) = \frac{P_n^*}{P_n^* \cap \mathrm{Id}^*(A)}$ is called the *n*-th *-codimension of A and is denoted by $c_n^*(A)$.

For $0 \le r \le n$, let $P_{r,n-r}^*$ denote the space of multilinear polynomials in the variables $y_1, \ldots, y_r, z_{r+1}, \ldots, z_n$. In order to study the space $P_n^* \cap \mathrm{Id}^*(A)$ it is enough to study $P_{r,n-r}^* \cap \mathrm{Id}^*(A)$, for all $r \ge 0$.

Setting
$$P_{r,n-r}^*(A) = \frac{P_{r,n-r}^*}{P_{r,n-r}^* \cap \mathrm{Id}^*(A)}$$
 and $c_{r,n-r}^*(A) = \dim P_{r,n-r}^*(A)$ we have that

(2.1)
$$c_n^*(A) = \sum_{r=0}^n \binom{n}{r} c_{r,n-r}^*(A).$$

REMARK 2.1. If A and B are *-algebras, it is well known that $A \oplus B$ is a *-algebra and $\mathrm{Id}^*(A \oplus B) = \mathrm{Id}^*(A) \cap \mathrm{Id}^*(B)$. Furthermore, $c_n^*(A \oplus B) \leq c_n^*(A) + c_n^*(B)$ and the equality holds if and only if

$$\dim \frac{P_n^*}{P_n^* \cap \operatorname{Id}^*(A) \cap \operatorname{Id}^*(B)} = \dim \frac{P_n^*}{P_n^* \cap \operatorname{Id}^*(A)} + \dim \frac{P_n^*}{P_n^* \cap \operatorname{Id}^*(B)}$$

This is equivalent to saying that $\dim P_n^* = \dim(P_n^* \cap \operatorname{Id}^*(A) + P_n^* \cap \operatorname{Id}^*(B))$, and, so, any polynomial in P_n^* can be written as a sum of multilinear polynomials in $\operatorname{Id}^*(A)$ and in $\operatorname{Id}^*(B)$.

Similarly $c_{r,n-r}^*(A \oplus B) = c_{r,n-r}^*(A) + c_{r,n-r}^*(B)$ if and only if any polynomial in $P_{r,n-r}^*$ can be written as a sum of multilinear polynomials in $\mathrm{Id}^*(A)$ and in $\mathrm{Id}^*(B)$ with r symmetric and n-r skew variables.

Let H_n be the hyperoctahedral group of degree n, i.e., $H_n = \mathbb{Z}_2 \wr S_n$, the wreath product of the multiplicative group of order two with S_n . The space P_n^* has a natural left H_n -module structure induced by defining for $h = (a_1, \ldots, a_n; \sigma) \in H_n$, $hy_i = y_{\sigma(i)}$, $hz_i = z_{\sigma(i)}^{a_{\sigma(i)}} = \pm z_{\sigma(i)}$.

Since $P_n^* \cap \mathrm{Id}^*(A)$ is invariant under this H_n -action, the space $P_n^*/(P_n^* \cap \mathrm{Id}^*(A))$ has the structure of a left H_n -module and its character $\chi_n^*(A)$, called the *n*th *-cocharacter of A, decomposes as

(2.2)
$$\chi_n^*(A) = \sum_{|\lambda| + |\mu| = n} m_{\lambda,\mu} \chi_{\lambda,\mu},$$

where $\lambda \vdash r$, $\mu \vdash n - r$, r = 0, 1, ..., n and $m_{\lambda,\mu} \ge 0$ is the multiplicity of the irreducible H_n -character $\chi_{\lambda,\mu}$ associated to the pair (λ,μ) .

Also

$$l_n^*(A) = \sum_{|\lambda| + |\mu| = n} m_{\lambda,\mu}$$

is called the nth *-colength of A.

Let $F_m \langle X, * \rangle = \langle y_1, \ldots, y_m, z_1, \ldots, z_m \rangle$ denote the free associative algebra with involution in m symmetric and skew variables and let $U = \operatorname{span}_F \{y_1, \ldots, y_m\}, V = \operatorname{span}_F \{z_1, \ldots, z_m\}$. There is a natural left action of the group $GL(U) \times GL(V) \cong GL_m \times GL_m$ on the space $U \oplus V$ and we can extend this action diagonally to get an action on $F_m \langle X, * \rangle$. Note that for any algebra A with involution, the space $F_m \langle X, * \rangle \cap \operatorname{Id}^*(A)$ is invariant under this action.

So by considering $F_m^n \langle X, * \rangle$, the space of all homogeneous polynomials of degree n in the variables $y_1, \ldots, y_m, z_1, \ldots, z_m$, we have that

$$F_m^n(A) := F_m^n \langle X, * \rangle / (F_m^n \langle X, * \rangle \cap \mathrm{Id}^*(A))$$

is a $GL_m \times GL_m$ -module and we denote its character by $\psi_n^*(A)$. It is well known (see [2, Theorem 12.4.4]) that there is a one-to-one correspondence between irreducible $GL_m \times GL_m$ -characters and pairs of partitions (λ, μ) , with $\lambda \vdash n - r$ and $\mu \vdash r$, $r = 0, \ldots, n$ where λ and μ are partitions with at most m parts.

If $\psi_{\lambda,\mu}$ denotes the irreducible $GL_m \times GL_m$ -character corresponding to (λ,μ) then we can write

(2.3)
$$\psi_n^*(A) = \sum_{\substack{|\lambda| + |\mu| = n \\ h(\lambda), h(\mu) \le m}} \tilde{m}_{\lambda,\mu} \psi_{\lambda,\mu}$$

where $\tilde{m}_{\lambda,\mu}$ are the corresponding multiplicities and $h(\lambda)$ (respectively $h(\mu)$) denotes the height of the Young diagram corresponding to λ (respectively μ).

In order to calculate the multiplicity $m_{\lambda,\mu}$ of an irreducible character $\chi_{\lambda,\mu}$ in the decomposition (2.2), we use the following relationship proved by Giambruno in [3, Theorem 3]

(2.4)
$$m_{\lambda,\mu} = \tilde{m}_{\lambda,\mu}, \text{ for all } \lambda \vdash n - r \text{ and } \mu \vdash r \text{ with } h(\lambda), h(\mu) \leq m.$$

It is well known that an irreducible submodule of $F_m^{n*}(A)$ corresponding to the pair (λ, μ) is generated by a non-zero polynomial $f_{\lambda,\mu}$, called *highest weight vector*, of the form (see for instance [2, Theorem 12.4.12])

(2.5)
$$f_{\lambda,\mu}(y_1,\ldots,y_p,z_1,\ldots,z_q) = \prod_{i=1}^{\lambda_1} St_{h_i(\lambda)}(y_1,\ldots,y_{h_i(\lambda)}) \prod_{i=1}^{\mu_1} St_{h_i(\mu)}(z_1,\ldots,z_{h_i(\mu)}) \sum_{\sigma \in S_n} \alpha_{\sigma}\sigma,$$

where $\alpha_{\sigma} \in F$, $St_k(x_1, \ldots, x_k) = \sum_{\sigma \in S_k} (\text{sign } \sigma) x_{\sigma(1)} \cdots x_{\sigma(k)}$ is the standard polynomial of degree k and S_n acts from right by permuting places in which the variables occur.

Let T_{λ} and T_{μ} be two Young tableaux. We denote by $f_{T_{\lambda},T_{\mu}}$ the highest weight vector obtained from (2.5) by considering the only permutation $\sigma \in S_n$ such that the integers $\sigma(1), \ldots, \sigma(h_1(\lambda))$, in this order, fill in from top to bottom the first column of T_{λ} , $\sigma(h_1(\lambda) + 1), \ldots, \sigma(h_1(\lambda) + h_2(\lambda))$ the second column of T_{λ} , $\ldots, \sigma(h_1(\lambda) + \cdots + h_{\lambda_1-1}(\lambda) + 1), \ldots, \sigma(r)$ the last column of T_{λ} ; also $\sigma(r+1), \ldots, \sigma(r+h_1(\mu))$ fill in the first column of $T_{\mu}, \ldots, \sigma(r+h_1(\mu)+\cdots+h_{\mu_1-1}(\mu)+1), \ldots, \sigma(n)$ the last column of T_{μ} .

REMARK 2.2. (see [2]) In the decomposition (2.3) we have $\tilde{m}_{\lambda,\mu} \neq 0$ if and only if there exists a pair of tableaux (T_{λ}, T_{μ}) such that the corresponding highest weight vector $f_{T_{\lambda}, T_{\mu}}$ is not a *-identity of A. Moreover $\tilde{m}_{\lambda,\mu}$ is the maximal number of linearly independent highest weight vectors $f_{T_{\lambda},T_{\mu}}$ in $F_{m}^{n}(A)$.

3. Varieties of almost polynomial growth and their subvarieties

The purpose of this section is to study the sequences of *-cocharacters, *-codimensions and *-colengths of the minimal subvarieties of polynomial growth of the varieties of almost polynomial growth, which are classified in [20].

We denote by $UT_s = UT_s(F)$ the algebra of the $s \times s$ upper triangular matrices over F and by I_s the $s \times s$ identity matrix. Recall that the varieties of almost polynomial growth are generated by the following two algebras (see [6])

1)
$$F \oplus F$$
, the two-dimensional commutative algebra with the exchange involution $(a, b)^* = (b, a)$;

2)
$$M = \left\{ \begin{pmatrix} 0 & s & 0 & 0 \\ 0 & 0 & s & v \\ 0 & 0 & 0 & u \end{pmatrix} \mid u, r, s, v \in F \right\}, \text{ the subalgebra of } UT_4 \text{ with the reflection involution, i.e.,}$$

the involution obtained by reflecting a matrix along its secondary diagonal: if $a = \alpha(e_{11} + e_{44}) + \alpha(e_{11} + e_{11}) + \alpha(e_{11$ $\beta(e_{22}+e_{33})+\gamma e_{12}+\delta e_{34}$ then $a^*=\alpha(e_{11}+e_{44})+\beta(e_{22}+e_{33})+\delta e_{12}+\gamma e_{34}$, where the e_{ij} s denote the usual matrix units.

The above algebras characterize the varieties of *-algebras of polynomial growth.

THEOREM 3.1. [6, Theorem 4.7] Let A be a *-algebra. Then the sequence $c_n^*(A)$, $n = 1, 2, \ldots$, is polynomially bounded if and only if $M, D \notin \operatorname{var}^*(A)$.

We start by presenting *-algebras belonging to the variety generated by D and generating minimal varieties of polynomial growth (see [20]).

For $k \geq 2$, let

$$C_k = \{ \alpha I_k + \sum_{1 \le i < k} \alpha_i E_1^i \mid \alpha, \alpha_i \in F \}$$

be the commutative subalgebra of UT_k with involution given by

$$(\alpha I_k + \sum_{1 \le i < k} \alpha_i E_1^i)^* = \alpha I_k + \sum_{1 \le i < k} (-1)^i \alpha_i E_1^i.$$

Here $E_1 = \sum_{i=1}^{k-1} e_{i,i+1}$. Since *D* is commutative, any antiautomorphism of *D* is an automorphism and, so, *D* can be viewed as a superalgebra with grading $(D^{(0)}, D^{(1)})$, where $D^{(0)} = D^+$ and $D^{(1)} = D^-$. Hence, the classification of the *-algebras, up to T*-equivalence, inside var^{*}(D) and the classification of the superalgebras inside var^{gr}(D) are equivalent. In the light of these considerations we have the following.

THEOREM 3.2. [20, Lemma 9], [23, Theorem 8.3] Let $k \ge 2$. Then

(1)
$$\operatorname{Id}^{*}(C_{k}) = \langle [y_{1}, y_{2}], [y, z], [z_{1}, z_{2}], z_{1} \cdots z_{k} \rangle_{T^{*}}.$$

(2) $c_{n}^{*}(C_{k}) = \sum_{j=0}^{k-1} {n \choose j} \approx \frac{1}{(k-1)!} n^{k-1}, n \to \infty.$
(3) $\chi_{n}^{*}(C_{k}) = \sum_{j=0}^{k-1} \chi_{(n-j),(j)}$ and $l_{n}^{*}(C_{k}) = k.$

Given two *-algebras A and B, we say that A is T^* -equivalent to B, and we write $A \sim_{T^*} B$, in case $\mathrm{Id}^*(A) = \mathrm{Id}^*(B)$.

The following theorem classifies the subvarieties and the minimal varieties of $var^*(D)$.

THEOREM 3.3. [20, Theorem 7 and Corollary 3] Let A be a *-algebra such that $\operatorname{var}^*(A) \subsetneq \operatorname{var}^*(D)$. Then

- (1) either $A \sim_{T^*} N$ or $A \sim_{T^*} C \oplus N$ or $A \sim_{T^*} C_k \oplus N$, for some $k \ge 2$, where N is a nilpotent *-algebra and C is a non-nilpotent commutative *-algebra with trivial involution.
- (2) The algebra A generates a minimal variety of polynomial growth if and only if $A \sim_{T^*} C_k$, for some $k \ge 2$.

Next we exhibit the decomposition of the *-cocharacter of all minimal subvarieties of var^{*}(M). We start by recalling *-algebras inside var^{*}(M) generating minimal varieties of polynomial growth. For any $k \ge 2$, consider the following subalgebras of UT_{2k} endowed with the reflection involution:

$$N_{k} = \operatorname{span}_{F} \{ I_{2k}, E, \dots, E^{k-2}; e_{12} - e_{2k-1,2k}, e_{13}, \dots, e_{1k}, e_{k+1,2k}, e_{k+2,2k}, \dots, e_{2k-2,2k} \}$$
$$U_{k} = \operatorname{span}_{F} \{ I_{2k}, E, \dots, E^{k-2}; e_{12} + e_{2k-1,2k}, e_{13}, \dots, e_{1k}, e_{k+1,2k}, e_{k+2,2k}, \dots, e_{2k-2,2k} \},$$
$$A_{k} = \operatorname{span}_{F} \{ e_{11} + e_{2k,2k}, E, \dots, E^{k-2}; e_{12}, e_{13}, \dots, e_{1k}, e_{k+1,2k}, e_{k+2,2k}, \dots, e_{2k-1,2k} \},$$
$$k-1$$

where $E = \sum_{i=2}^{n} e_{i,i+1} + e_{2k-i,2k-i+1}$.

Notice that in case k = 2, we have that U_2 is T^* -equivalent to the commutative algebra with trivial involution, so $\mathrm{Id}^*(U_2) = \langle [y_1, y_2], z_1 \rangle_{T^*}$ and $c_n^*(U_2) = 1$.

The following results describe the T^* -ideals of the above algebras and explicit the *-codimensions of N_k and U_k .

LEMMA 3.4. [20, Lemma 2] Let $k \ge 2$. Then

(1) $\operatorname{Id}^*(N_k) = \langle [y_1, \dots, y_{k-1}], z_1 z_2 \rangle_{T^*}$, in case $k \ge 3$ and $\operatorname{Id}^*(N_k) = \langle [y_1, y_2], [y, z], z_1 z_2 \rangle_{T^*}$, in case k = 2. (2) $c_n^*(N_k) = 1 + \sum_{i=1}^{k-2} {n \choose i} (2j-1) + {n \choose k-1} (k-1) \approx qn^{k-1}$, for some q > 0.

LEMMA 3.5. [20, Lemma 3] Let $k \geq 3$. Then

(1) $\operatorname{Id}^{*}(U_{k}) = \langle [z, y_{1}, \dots, y_{k-2}], z_{1}z_{2} \rangle_{T^{*}}.$ (2) $c_{n}^{*}(U_{k}) = 1 + \sum_{j=1}^{k-2} {n \choose j} (2j-1) + {n \choose k-1} (k-2) \approx qn^{k-1}, \text{ for some } q > 0.$

LEMMA 3.6. [20, Lemma 3] Let $k \ge 2$. Then

$$\mathrm{Id}^*(A_k) = \langle y_1 \cdots y_{k-2} St_3(y_{k-1}, y_k, y_{k+1}) y_{k+2} \cdots y_{2k-1}, y_1 \cdots y_{k-1} z y_k \cdots y_{2k-2}, z_1 z_2 \rangle_{T^*}.$$

The relevance of the above *-algebras is shown in the following.

THEOREM 3.7. [20, Theorem 6 and Corollary 1] Let A be a *-algebra such that $\operatorname{var}^*(A) \subsetneq \operatorname{var}^*(M)$. Then

- (1) A is T^* -equivalent to one of the following *-algebras: N, $N_k \oplus N$, $U_k \oplus N$, $N_k \oplus U_k \oplus N$, $A_t \oplus N$, $N_k \oplus A_t \oplus N$, $U_k \oplus A_t \oplus N$, $N_k \oplus U_k \oplus A_t \oplus N$, for some $k, t \ge 2$, where N is a nilpotent *-algebra.
- (2) A generates a minimal variety if and only if either $A \sim_{T^*} U_r$ or $A \sim_{T^*} N_k$ or $A \sim_{T^*} A_k$, for some $k \ge 2, r > 2$.

Next we determine the *-codimensions of the algebra A_k , for any $k \ge 2$. We start by considering the case k = 2.

LEMMA 3.8. $c_n^*(A_2) = 4n - 1$, for $n \ge 3$.

PROOF. We have $\mathrm{Id}^*(A_2) = \langle St_3(y_1, y_2, y_3), y_1 z y_2, z_1 z_2 \rangle_{T^*}$. Since $z_1 z_2 \in \mathrm{Id}^*(A_2)$, by [21, Remark 8], we have $z_1wz_2 \in \mathrm{Id}^*(A_2)$ for any monomial w of $F\langle X, * \rangle$, and, so $c_{n-r,r}^*(A_k) = 0$ for all $r \geq 2$. Thus by (2.1)

(3.1)
$$c_n^*(A_2) = c_{n,0}^*(A_2) + nc_{n-1,1}^*(A_2).$$

We start by considering $P_{n,0}^*(A_2)$. By the Poincaré-Birkhoff-Witt theorem (see [2]), every monomial in y_1, \ldots, y_n can be written as a linear combination of products of the type

$$(3.2) y_{i_1} \cdots y_{i_s} w_1 \cdots w_m$$

where w_1, \ldots, w_m are left normed Lie commutators in y_i 's and $i_1 < \cdots < i_s$. Since $[y_1, y_2][y_3, y_4] \in \mathrm{Id}^*(A_2)$, we get that, modulo $\langle [y_1, y_2] [y_3, y_4] \rangle_{T^*}$, at most one commutator can appear in (3.2) and the elements in (3.2) are polynomials of type

$$y_1 \cdots y_n$$
 or $y_{i_1} \cdots y_{i_s} [y_r, y_{j_1}, \dots, y_{j_t}]$ with $r > j_i < \dots < j_t$.

Moreover, modulo $\langle y_1 | y_2, y_3 | y_4 \rangle_{T^*}$, we have that

$$[y_r, y_{j_1} \dots, y_{j_t}] = [y_r, y_{j_1}]y_{j_2} \cdots y_{j_t} \pm y_{j_t} \cdots y_{j_2}[y_r, y_{j_1}].$$

Then modulo $\mathrm{Id}^*(A_2)$, every polynomial in $P_{n,0}^*$ can be written as a linear combination of elements of the type

$$(3.3) [y_r, y_1]y_2\cdots \widehat{y}_r\cdots y_n, \quad y_{i_1}\cdots y_{i_{n-2}}[y_i, y_j] \text{ and } y_1\cdots y_n,$$

 $2 \leq r \leq n, 1 \leq i \leq j \leq n$, where the symbol \hat{y}_r means that the variable y_r is omitted. Notice that elements of the first type only appear in case s = 0 in (3.2). Because of $[y_1, y_2][y_3, y_4] \in \mathrm{Id}^*(A_2)$ the variables out of the commutator in the polynomials of the second type in (3.3) can be ordered. Moreover, since $St_3(y_1, y_2, y_3) \in Id^*(A_2), y_1(y_2, y_3) \equiv y_2(y_1, y_3) + y_3(y_2, y_1)$ can be applied and we obtain that the polynomials

(3.4)
$$[y_r, y_1]y_2 \cdots \widehat{y}_r \cdots y_n, \quad y_2 \cdots \widehat{y}_r \cdots y_n[y_r, y_1] \quad \text{and} \quad y_1 \cdots y_n, \quad 2 \le r \le n$$

generate $P_{n,0}^*$ modulo $P_{n,0}^* \cap \mathrm{Id}^*(A_2)$.

We claim that these polynomials form a basis of $P_{n,0}^*(A_2)$. Suppose that $f \in P_{n,0}^* \cap \mathrm{Id}^*(A_2)$ is a linear combination of the polynomials in (3.4) and write

$$f = \alpha y_1 \cdots y_n + \sum_{j=2}^n \alpha_j [y_j, y_1] y_2 \cdots \widehat{y}_j \cdots y_n + \sum_{j=2}^n \beta_j y_2 \cdots \widehat{y}_j \cdots y_n [y_j, y_1].$$

By making the evaluation $y_i = e_{11} + e_{44}$, for all $i = 1, \ldots, n$, we get $\alpha(e_{11} + e_{44}) = 0$, and, so, $\alpha = 0$. Now for a fixed j, the evaluation $y_j = e_{12} + e_{34}$ and $y_i = e_{11} + e_{44}$, for all $i \neq j$ gives $\alpha_j e_{34} - \beta_j e_{12} = 0$, and so, $\alpha_j = \beta_j = 0$ and the claim is proved. Thus $c_{n,0}^*(A_2) = 1 + 2(n-1) = 2n - 1$.

We now consider $P_{n-1,1}^*(A_2)$. Since $y_1 z y_2 \in \mathrm{Id}^*(A_2)$, then, modulo $P_{n-1,1}^* \cap \mathrm{Id}^*(A_2)$, $P_{n-1,1}^*$ can be generated by the monomials

$$(3.5) z_n y_1 \cdots y_{n-1} \text{ and } y_1 \cdots y_{n-1} z_n.$$

We claim that these polynomials form a basis of $P_{n-1,1}^*$ modulo $P_{n-1,1}^* \cap \mathrm{Id}^*(A_2)$. Let $f = \alpha z_n y_1 \cdots y_{n-1} + \beta z_n y_1 \cdots y_{n-1}$ $\beta y_1 \cdots y_{n-1} z_n \in P_{n-1,1}^* \cap \mathrm{Id}^*(A_2)$. By making the evaluation $z_n = e_{12} - e_{34}$ and $y_i = e_{11} + e_{44}$, for all $i \neq n$, we get $-\alpha e_{34} + \beta e_{12} = 0$ and so $\alpha = \beta = 0$. Thus $c_{n-1,1}^*(A_2) = 2$.

Hence, from (3.1) it follows that $c_n^*(A_2) = 2n - 1 + 2n = 4n - 1$.

REMARK 3.9. For $k \geq 3$, let

$$I_1 = \langle [y_1, y_2] [y_3, y_4], [y_1, y_2] y_3 \cdots y_{k+1} \rangle_{T^*} \text{ and } I_2 = \langle [y_1, y_2] [y_3, y_4], y_3 \cdots y_{k+1} [y_1, y_2] \rangle_{T^*}$$
By [13, Lemma 3.1],

$$c_{n,0}^*(I_1) = c_{n,0}^*(I_2) = 1 + \sum_{j=0}^{k-2} \binom{n}{j}(n-j-1).$$

Moreover, if I is the T^* -ideal $I_1 \cap I_2$ then, by [13, Lemma 3.4],

$$I = \langle [y_1, y_2] [y_3, y_4], y_1 \cdots y_{k-1} [y_k, y_{k+1}] y_{k+2} \cdots y_{2k} \rangle_{T^*}.$$

From Remark 2.1, we have the strict inequality $c_{n,0}^*(I) < c_{n,0}^*(I_1) + c_{n,0}^*(I_2)$ since $y_1 \cdots y_n$ is a polynomial in $P_{n,0}^*$ which is not in $(P_{n,0}^* \cap I_1) + (P_{n,0}^* \cap I_2)$. Moreover, since $I \cap P_{n,0}^* \subset \text{Id}^*(A_k) \cap P_{n,0}^*$, we have

(3.6)
$$c_{n,0}^*(A_k) \le c_{n,0}^*(I) < c_{n,0}^*(I_1) + c_{n,0}^*(I_2) = 2 + 2\sum_{j=0}^{k-2} \binom{n}{j} (n-j-1).$$

LEMMA 3.10. Let $k \geq 2$. Then

$$c_n^*(A_k) = 1 + 2\sum_{j=0}^{k-2} \binom{n}{j} (n-j) + 2\sum_{j=0}^{k-2} \binom{n}{j} (n-j-1) \approx qn^{k-1}, \text{ for some } q > 0.$$

PROOF. The result has already been proved for k = 2 in Lemma 3.8 so we consider $k \ge 3$. Since $z_1z_2 \in \mathrm{Id}^*(A_k)$, by [21, Remark 8] we have that $z_1wz_2 \in \mathrm{Id}^*(A_k)$, for any monomial w of $F\langle X, * \rangle$, and, so $P_{n-r,r}^*(A_k) = \{0\}$ for all $r \ge 2$ and

(3.7)
$$c_n^*(A_k) = c_{n,0}^*(A_k) + nc_{n-1,1}^*(A_k).$$

Let us study the dimensions of $P_{n,0}^*(A_k)$ and $P_{n-1,1}^*(A_k)$. We start by considering $P_{n,0}^*(A_k)$. We claim that the following polynomials in $P_{n,0}^*$

$$(3.8) y_1 \cdots y_n, \ y_{i_1} \cdots y_{i_t} [y_r, y_m] y_{j_1} \cdots y_{j_s}, \ y_{p_1} \cdots y_{p_u} [y_a, y_b] y_{q_1} \cdots y_{q_v}$$

where t < k-1, $i_1 < \cdots < i_t$, $r > m < j_1 < \cdots < j_s$ and v < k-1, $a > b < p_1 < \cdots < p_u$, $q_1 < \cdots < q_v$ are linearly independent modulo $\mathrm{Id}^*(A_k)$. Suppose that $f \in P_{n,0}^* \cap \mathrm{Id}^*(A_k)$ is a linear combination of the above polynomials and write

$$f = \alpha y_1 \cdots y_n + \sum_{\substack{t < k-1 \\ \text{or} \\ s < k-1}} \sum_{r,I,J} \alpha_{r,I,J} y_{i_1} \cdots y_{i_t} [y_r, y_m] y_{j_1} \cdots y_{j_s}$$

where t + s = n - 2 and for any fixed t and s, $I = \{i_1, ..., i_t\}$ and $J = \{j_1, ..., j_s\}$. If t < k - 1 then $i_1 < \cdots < i_t$ and $r > m < j_1 < \cdots < j_s$ and if s < k - 1 then $r > m < i_1 < \cdots < i_t$ and $j_1 < \cdots < j_s$.

First suppose that $\alpha \neq 0$. Then by making the evaluation $y_1 = \cdots = y_n = e_{11} + e_{2k,2k}$ we get $\alpha(e_{11} + e_{2k,2k}) = 0$ and so $\alpha = 0$, a contradiction.

Now suppose that $\alpha_{r,I,J} \neq 0$, for some t < k-1, r, I and J. Then by making the evaluation $y_{i_1} = \cdots = y_{i_t} = E$, $y_r = e_{12} + e_{2k-1,2k}$ and $y_m = y_{j_1} = \cdots = y_{j_s} = e_{11} + e_{2k,2k}$ we get $\alpha_{r,I,J}e_{2k-t-1,2k} - \alpha_{r,J,I}e_{1,2+t} = 0$, and, so, $\alpha_{r,I,J} = \alpha_{r,J,I} = 0$, a contradiction. Similarly, if $\alpha_{r,J,I} \neq 0$, for some s < k-1, r, I and J, by making the evaluation $y_m = y_{i_1} = \cdots = y_{i_t} = e_{11} + e_{2k,2k}$, $y_r = e_{12} + e_{2k-1,2k}$ and $y_{j_1} = \cdots = y_{j_s} = E$ we get $\alpha_{r,I,J} = \alpha_{r,J,I} = 0$, a contradiction as before.

In (3.8) we have $1+2\sum_{j=0}^{k-2} {n \choose j} (n-j-1)$ polynomials which are linearly independent modulo $P_{n,0}^* \cap \mathrm{Id}^*(A_k)$ so we have

$$1 + 2\sum_{j=0}^{k-2} \binom{n}{j} (n-j-1) \le c_{n,0}^*(A_k).$$

On the other hand, by (3.6) we get

$$c_{n,0}^*(A_k) < 2 + 2\sum_{j=0}^{k-2} \binom{n}{j}(n-j-1).$$

Thus we conclude that $c_{n,0}^*(A_k) = 1 + 2 \sum_{j=0}^{k-2} {n \choose j} (n-j-1).$

Now we consider $P_{n-1,1}^*(A_k)$. Since $y_1 \cdots y_{k-1} z y_k \cdots y_{2k-2} \in \mathrm{Id}^*(A_k)$, then $P_{n-1,1}^*$ can be generated modulo $\mathrm{Id}^*(A_k)$ by the monomials

$$(3.9) y_{i_1} \cdots y_{i_t} z_n y_{j_1} \cdots y_{j_s}$$

where $i_1 < \cdots < i_t$, $j_1 < \cdots < j_s$ and we have t < k - 1 or s < k - 1.

We next show that these polynomials are linearly independent modulo $\mathrm{Id}^*(A_k)$. Suppose that $f \in P_{n-1,1}^* \cap \mathrm{Id}^*(A)$ is a linear combination of the polynomials above and write

$$f = \sum_{\substack{t < k-1 \\ \text{or} \\ s < k-1}} \sum_{I,J} \alpha_{I,J} y_{i_1} \cdots y_{i_t} z_n y_{j_1} \cdots y_{j_s}$$

where t+s = n-1 and for any fixed t and s, $i_1 < \cdots < i_t$, $j_1 < \cdots < j_s$, $I = \{i_1, \ldots, i_t\}$ and $J = \{j_1, \ldots, j_s\}$. Suppose $\alpha_{I,J} \neq 0$, for some t < k-1, I and J. By making the evaluation $z_n = e_{12} - e_{2k-1,2k}$,

Suppose $\alpha_{I,J} \neq 0$, for some t < k-1, I and J. By making the evaluation $z_n = e_{12} - e_{2k-1,2k}$, $y_{i_1} = \cdots = y_{i_t} = E$ and $y_{j_1} = \cdots = y_{j_s} = e_{11} + e_{2k,2k}$ we get $-\alpha_{I,J}e_{2k-t-1,2k} + \alpha_{J,I}e_{1,2+t} = 0$, thus $\alpha_{I,J} = \alpha_{J,I} = 0$, a contradiction.

Suppose now $\alpha_{J,I} \neq 0$, for some s < k-1, I and J. Then the evaluation $z_n = e_{12} - e_{2k-1,2k}$, $y_{i_1} = \cdots = y_{i_t} = e_{11} + e_{2k,2k}$ and $y_{j_1} = \cdots = y_{j_s} = E$ gives $\alpha_{J,I} = 0$, a contradiction. Thus the polynomials in (3.9) form a basis of $P_{n-1,1}^*(A_k)$ and by counting we get $c_{n-1,1}^*(A_k) = 2\sum_{j=0}^{k-2} {n-1 \choose j}$. So $nc_{n-1,1}^*(A_k) = 2\sum_{j=0}^{k-2} {n \choose j}(n-j)$.

Finally, by (3.7), we have

$$c_n^*(A_k) = 1 + 2\sum_{j=0}^{k-2} \binom{n}{j} (n-j-1) + 2\sum_{j=0}^{k-2} \binom{n}{j} (n-j).$$

Next we explicitly determine the sequences of *-cocharacters and *-colengths of the minimal varieties $\operatorname{var}^*(A) \subseteq \operatorname{var}^*(M)$. If $\chi_n^*(A) = \sum_{|\lambda| + |\mu| = n} m_{\lambda,\mu} \chi_{\lambda,\mu}$ is the decomposition of the nth *-cocharacter of A, we denote by $d_{\lambda,\mu}$ the degree of the H_n -character $\chi_{\lambda,\mu}$.

We shall prove all theorems by using induction on k, so for each class of algebras N_k, U_k and A_k we start with a lemma about the sequence of *-cocharacters in a particular case. We start with the study of *-cocharacters and *-colengths of the minimal varieties var^{*}(A_k).

LEMMA 3.11.
$$\chi_n^*(A_2) = \chi_{(n),\emptyset} + 2\chi_{(n-1,1),\emptyset} + 2\chi_{(n-1),(1)}$$
 and $l_n^*(A_2) = 5$

PROOF. Let $\chi_n^*(A_2) = \sum_{|\lambda| + |\mu| = n} m_{\lambda,\mu} \chi_{\lambda,\mu}$ be the decomposition of the nth *-cocharacter of A_2 . Notice that

$$d_{(n),\emptyset} + 2d_{(n-1),(1)} + 2d_{(n-1,1),\emptyset} = 1 + 2n + 2(n-1) = c_n^*(A_2).$$

Then, since that $m_{(n),\emptyset} = 1$, if we find two linearly independent highest weight vectors for each pair of partitions ((n-1), (1)) and $((n-1, 1), \emptyset)$ which are not *-identities of A_2 we may conclude that $\chi_n^*(A_2)$ has the desired decomposition.

In fact, let

$$f_1 = y^{n-1}z$$
 and $f_2 = zy^{n-1}z$

be highest weight vectors associated to the pair of partitions ((n-1), (1)) and corresponding to the pairs of tableaux:

$$(3.10) \qquad (\boxed{1} 2 \cdots n - 1, \boxed{n}) \text{ and } (\boxed{2} 3 \cdots n, \boxed{1}),$$

respectively. It is clear that by making the evaluation $y = e_{11} + e_{44}$ and $z = e_{12} - e_{34}$, we get that $f_1 = e_{12} \neq 0$ and $f_2 = -e_{34} \neq 0$. This says that f_1 and f_2 are not *-identities of A_2 . Moreover by making the same evaluation we have that $\alpha f_1 + \beta f_2 = 0$ implies $\alpha = \beta = 0$, so these polynomials are linearly independent modulo Id^{*}(A_2).

On the other hand,

$$g_1 = [y_1, y_2]y_1^{n-2}$$
 and $g_2 = y_1^{n-2}[y_1, y_2]$

are the highest weight vector associated to the pair of partitions $((n-1,1), \emptyset)$ and corresponding to the pairs of tableaux:

respectively.

By making the evaluation $y_1 = e_{11} + e_{44}$ and $y_2 = e_{12} + e_{34}$, we get that $g_1 = -e_{34} \neq 0$ and $g_2 = e_{12} \neq 0$. It shows that g_1 and g_2 are not *-identities of A_2 and by making the same evaluation we have that $\alpha g_1 + \beta g_2 = 0$ implies $\alpha = \beta = 0$, so these polynomials are linearly independent modulo $\mathrm{Id}^*(A_2)$.

Thus $\chi_n^*(A_2) = \chi_{(n),\emptyset} + 2\chi_{(n-1),(1)} + 2\chi_{(n-1,1),\emptyset}$ and $l_n^*(A_2) = 5$.

Before giving the decomposition of the $\chi_n^*(A_k)$, for any $k \ge 2$, we prove the following.

Remark 3.12. Let $k \geq 2$. Then

$$c_n^*(A_k) = d_{(n),\emptyset} + \sum_{j=1}^{k-1} 2(k-j)d_{(n-j,j),\emptyset} + \sum_{j=1}^{k-2} 2(k-j-1)d_{(n-j-1,j,1),\emptyset} + \sum_{j=0}^{k-2} 2(k-j-1)d_{(n-j-1,j),(1)}.$$

PROOF. We use induction on k. By Lemma 3.11, we have that $\chi_n^*(A_2) = \chi_{(n),\emptyset} + 2\chi_{(n-1,1),\emptyset} + 2\chi_{(n-1),(1)}$. This says that $c_n^*(A_2) = d_{(n),\emptyset} + 2d_{(n-1,1),\emptyset} + 2d_{(n-1),(1)}$ and, so the result is true for k = 2. Now we suppose the result is true for some $k \ge 2$. By Lemma 3.10, we have that

$$c_n^*(A_{k+1}) = c_n^*(A_k) + 2\binom{n}{k-1}(n-k) + 2\binom{n}{k-1}(n-k+1).$$

Hence, by using that

$$\sum_{j=1}^{k} d_{(n-j,j),\emptyset} + \sum_{j=1}^{k-1} d_{(n-j,j-1,1),\emptyset} = \binom{n}{k-1} (n-k) \text{ and } \sum_{j=0}^{k-1} d_{(n-j,j-1),(1)} = \binom{n}{k-1} (n-k+1),$$

we have

$$c_n^*(A_{k+1}) = c_n^*(A_k) + 2\binom{n}{k-1}(n-k) + 2\binom{n}{k-1}(n-k+1)$$

= $c_n^*(A_k) + 2\sum_{j=1}^k d_{(n-j,j),\emptyset} + 2\sum_{j=1}^{k-1} d_{(n-j-1,j,1),\emptyset} + 2\sum_{j=0}^{k-1} d_{(n-j-1,j),(1)}$
= $d_{(n),\emptyset} + \sum_{j=1}^k 2(k+1-j)d_{(n-j,j),\emptyset} + \sum_{j=1}^{k-1} 2(k-j)d_{(n-j-1,j,1),\emptyset}$
+ $\sum_{j=0}^{k-1} 2(k-j)d_{(n-j-1,j),(1)}.$

Thus the result is true for any $k \geq 2$.

In the next lemmas, we shall adopt the convention that the symbols $\bar{}$, $\bar{}$ and $\bar{}$ indicate alternation on a given set of variables. Thus, for instance, the notation $\bar{y_1}\bar{y_1}\bar{y_1}y_4\bar{y_2}\bar{y_2}y_2\bar{y_3}$ indicates the polynomial

$$\sum_{\substack{\sigma \in S_3\\\rho,\tau \in S_2}} (\operatorname{sign}\rho)(\operatorname{sign}\sigma)(\operatorname{sign}\tau)y_{\rho(1)}y_{\sigma(1)}y_{\tau(1)}y_4y_{\sigma(2)}y_{\rho(2)}y_{\tau(2)}y_{\sigma(3)}$$

Now we are in position to compute the *-cocharacter and the *-colength of A_k , for any $k \ge 2$.

THEOREM 3.13. For $k \ge 2$, we have

(1)
$$\chi_n^*(A_k) = \chi_{(n),\emptyset} + \sum_{j=1}^{k-1} 2(k-j)\chi_{(n-j,j),\emptyset} + \sum_{j=1}^{k-2} 2(k-j-1)\chi_{(n-j-1,j,1),\emptyset} + \sum_{j=0}^{k-2} 2(k-j-1)\chi_{(n-j-1,j),(1)}.$$

(2) $l_n^*(A_k) = 3k^2 - 5k + 3.$

PROOF. By the previous remark, we have that, for any $k \geq 2$,

$$c_n^*(A_k) = d_{(n),\emptyset} + \sum_{j=1}^{k-1} 2(k-j)d_{(n-j,j),\emptyset} + \sum_{j=1}^{k-2} 2(k-j-1)d_{(n-j-1,j,1),\emptyset} + \sum_{j=0}^{k-2} 2(k-j-1)d_{(n-j-1,j),(1)}.$$

It is clear that $m_{(n),\emptyset} = 1$. In order to prove the desired decomposition of $\chi_n^*(A_k)$, we shall prove that the irreducible characters $\chi_{(n-j,j),\emptyset}$, $\chi_{(n-l-1,l,1),\emptyset}$ and $\chi_{(n-t-1,1)(1)}$, for $1 \leq j \leq k-1$, $1 \leq l \leq k-2$ and $0 \leq t \leq k-2$, appear in the decomposition of the *-cocharacter $\chi_n^*(A_k)$ with multiplicity $m_{(n-j,j),\emptyset} = 2(k-j)$, $m_{(n-l-1,l,1),\emptyset} = 2(k-l-1)$ and $m_{(n-t-1,1)(1)} = 2(k-t-1)$, respectively.

(i) For the pair of partitions $((n-1,1), \emptyset)$, for any $0 \le p \le k-2$ we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

 $f_p = y_1^p[y_1, y_2]y_1^{n-p-2}$ and $g_p = y_1^{n-p-2}[y_1, y_2]y_1^p$. By making the evaluation $y_1 = e_{11} + e_{2k,2k} + E$ and $y_2 = e_{12} + e_{2k-1,2k}$, we get that

$$f_p(y_1, y_2) = e_{2k-p-2, 2k} - e_{2k-p-1, 2k}$$
 and $g_p(y_1, y_2) = e_{1, p+2} - e_{1, p+3}$.

Then f_p and g_p are not *-identities of A_k , for any $0 \le p \le k-2$, and these 2(k-1) polynomials are linearly independent modulo $\mathrm{Id}^*(A_k)$. Hence $m_{(n-1,1),\emptyset} \ge 2(k-1)$.

(*ii*) For fixed $2 \le j \le k-1$, for the pair of partitions $((n-j,j), \emptyset)$ and for $0 \le p \le k-j-1$ and w = n-p, we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

$$f_p = y_1^p \underbrace{\overline{y_1} \cdots \overline{y_1}}_{j} \underbrace{\overline{y_2} \cdots \overline{y_2}}_{j} y_1^{n-2j-p} \quad \text{and} \quad g_p = y_1^{n-2j-p} \underbrace{\overline{y_1} \cdots \overline{y_1}}_{j} \underbrace{\overline{y_2} \cdots \overline{y_2}}_{j} y_1^p.$$

We have, by making the evaluation $y_1 = e_{11} + e_{2k,2k} + E$ and $y_2 = e_{11} + e_{2k,2k} + e_{12} + e_{2k-1,2k}$, that $f_p(y_1, y_2) = \alpha e_{2k-p-j,2k}$ and $g_p(y_1, y_2) = \beta e_{1,j+p+1}$, with $\alpha \neq 0$ and $\beta \neq 0$. Then, for any $0 \leq p \leq k-j-1$, f_p and g_p are not *-identities of A_k . Moreover, the same evaluation shows that these 2(k-j) polynomials are linearly independent modulo $\mathrm{Id}^*(A_k)$. Thus $m_{(n-j,j),\emptyset} \geq 2(k-j)$, for any $2 \leq j \leq k-1$.

(*iii*) Now, for fixed $1 \le l \le k-2$, for the pair of partitions $((n-l-1,l,1), \emptyset)$ and for $0 \le p \le k-j-2$ and w = n-p, we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

$$f_p = y_1^p \underbrace{\bar{y_1} \cdots \bar{y_1}}_{l-1} \tilde{y_1} \tilde{y_2} \tilde{y_3} \underbrace{\bar{y_2} \cdots \bar{y_2}}_{l-1} y_1^{n-p-2l-1} \text{ and } g_p = y_1^{n-p-2l-1} \underbrace{\bar{y_1} \cdots \bar{y_1}}_{l-1} \underbrace{\bar{y_1} \tilde{y_2} \tilde{y_3}}_{l-1} \underbrace{\bar{y_2} \cdots \bar{y_2}}_{l-1} y_1^p.$$

Evaluating $y_1 = e_{11} + e_{2k,2k} + E$, $y_2 = E$ and $y_3 = e_{12} + e_{2k-1,2k}$, we get that $f_p(y_1, y_2, y_3) = \alpha e_{2k-l-p-1,2k}$ and $g_p(y_1, y_2, y_3) = \beta e_{1,l+p+2}$, with $\alpha \neq 0$ and $\beta \neq 0$. Thus f_p and g_p , for any $0 \leq p \leq k - j - 2$, are not *-identities of A_k and these 2(k - l - 1) polynomials are linearly independent modulo $\mathrm{Id}^*(A_k)$. Hence we have that $m_{(n-l-1,l,1)} \geq 2(k - l - 1)$, for any $1 \leq l \leq k - 2$. (*iv*) Finally, for fixed $0 \le t \le k-2$, for the pair of partitions ((n-t-1,t),(1)) and for $0 \le p \le k-j-2$ and w = n-p, we consider the following pairs of tableaux:

and their corresponding highest weight vectors, respectively,

$$f_p = y_1^p \underbrace{\bar{y_1} \cdots \bar{y_1}}_t z \underbrace{\bar{y_2} \cdots \bar{y_2}}_t y_1^{n-p-2t-1} \text{ and } g_p = y_1^{n-p-2t-1} \underbrace{\bar{y_1} \cdots \bar{y_1}}_t z \underbrace{\bar{y_2} \cdots \bar{y_2}}_t y_1^p$$

By making the evaluation $y = e_{11} + e_{2k,2k} + E$ and $z = e_{12} - e_{2k-1,2k}$, in case t = 0, and $y_1 = e_{11} + e_{2k,2k} + E$, $y_2 = E$ and $z = e_{12} - e_{2k-1,2k}$ otherwise, we get that $f_p(y_1, y_2, z) = \alpha e_{2k-t-p-1,2k}$ and $g_p(y_1, y_2, z) = \beta e_{1,t+p+1}$, with $\alpha \neq 0$ and $\beta \neq 0$. Thus $m_{(n-t-1,t),(1)} \geq 2(k-t-1)$, for any $0 \leq t \leq k-2$, since f_p and g_p are not *-identities of A_k , for all $0 \leq p \leq k-t-2$, and these 2(k-t-1) polynomials are linearly independent modulo Id^{*}(A_k).

Thus we have that

$$c_n^*(A_k) \geq d_{(n),\emptyset} + \sum_{j=1}^{k-1} 2(k-j)d_{(n-j,j),\emptyset} + \sum_{j=1}^{k-2} 2(k-j-1)d_{(n-j-1,j,1),\emptyset} + \sum_{j=0}^{k-2} 2(k-j-1)d_{(n-j-1,j),(1)} = c_n^*(A_k).$$

Hence $\chi_n^*(A_k)$ has the desired decomposition. It is easy to show that $l_n^*(A_k) = 3k^2 - 5k + 3, \forall k \ge 2$, and the result is proved.

Now we study the *-cocharacters and the *-colengths of the minimal variety var^{*}(N_k), for all $k \geq 2$.

LEMMA 3.14. $\chi_n^*(N_2) = \chi_{(n),\emptyset} + \chi_{(n-1),(1)}$ and $l_n^*(N_2) = 2$.

PROOF. Notice that we have

$$d_{(n),\emptyset} + d_{(n-1),(1)} = 1 + n = c_n^*(N_2).$$

Then, since $m_{(n),\emptyset} = 1$, if we find a highest weight vector for the pair of partitions ((n-1), (1)) which is not a *-identity of N_2 we may conclude that $\chi_n^*(N_2)$ has the desired decomposition.

In fact, let $f_1 = y^{n-1}z$ be the highest weight vector associated to the pair of partitions ((n-1), (1)) and corresponding to the pair of tableaux:

$$(3.15) \qquad (\boxed{1 \ 2 \ \cdots \ n-1} \ , \ \boxed{n})$$

By making the evaluation y = I and $z = e_{12} - e_{34}$, we get that $f = e_{12} - e_{34} \neq 0$. This says that f is not a *-identity of N_2 . Hence we have $\chi_n^*(N_2) = \chi_{(n),\emptyset} + \chi_{(n-1),(1)}$ and $l_n^*(N_2) = 2$.

Remark 3.15. Let $k \geq 2$. Then

$$c_n^*(N_k) = d_{(n),\emptyset} + \sum_{j=1}^{k-3} (k-j-2) [d_{(n-j,j),\emptyset} + d_{(n-j-1,j,1),\emptyset}] + \sum_{j=0}^{k-2} (k-j-1) d_{(n-j-1,j),(1)}.$$

PROOF. We shall use induction on k. From Lemma 3.14 it follows that the result is true for k = 2. Now we suppose the result is true for some $k \ge 2$. By Lemma 3.4, we have that

$$c_n^*(N_{k+1}) = c_n^*(N_k) + \binom{n}{k-1}(k-2) + \binom{n}{k}k$$

Hence, by using that, for all $r \ge 1$,

$$\sum_{j=0}^{r} d_{(n-j,j-1),(1)} = \binom{n}{r} (n-r) = \binom{n}{r+1} (r+1) \text{ and } \sum_{j=1}^{r} \left[d_{(n-j,j),\emptyset} + d_{(n-j-1,j,1),\emptyset} \right] = \binom{n}{r+1} r,$$

we get the following:

$$c_n^*(N_{k+1}) = c_n^*(N_k) + {\binom{n}{k-1}}(k-2) + {\binom{n}{k}}k$$

= $c_n^*(A_k) + \sum_{j=1}^{k-2} [d_{(n-j,j),\emptyset} + d_{(n-j-1,j,1),\emptyset}] + \sum_{j=0}^{k-1} d_{(n-j-1,j),(1)}$
= $d_{(n),\emptyset} + \sum_{j=1}^{k-2} (k-j-1)[d_{(n-j,j),\emptyset} + d_{(n-j-1,j,1),\emptyset}] + \sum_{j=0}^{k-1} (k-j)d_{(n-j-1,j),(1)}$

Thus the result is true for any $k \geq 2$.

THEOREM 3.16. For $k \geq 3$, we have

(1)
$$\chi_n^*(N_k) = \chi_{(n),\emptyset} + \sum_{j=1}^{k-3} (k-j-2) \left[\chi_{(n-j,j),\emptyset} + \chi_{(n-j-1,j,1),\emptyset} \right] + \sum_{j=0}^{k-2} (k-j-1)\chi_{(n-j-1,j),(1)}$$

(2) $l_n^*(N_k) = \frac{3k^2 - 11k + 14}{2}$.

PROOF. The proof is similar to the proof of Lemma 3.13. By the previous remark, we have that, for any $k \geq 3$,

$$c_n^*(N_k) = d_{(n),\emptyset} + \sum_{j=1}^{k-3} (k-j-2) [d_{(n-j,j),\emptyset} + d_{(n-j-1,j,1),\emptyset}] + \sum_{j=0}^{k-2} (k-j-1) d_{(n-j-1,j),(1)}.$$

It is clear that $m_{(n),\emptyset} = 1$. In order to prove the desired decomposition of $\chi_n^*(N_k)$, we shall prove that the characters $\chi_{(n-j,j),\emptyset}$, $\chi_{(n-l-1,l,1),\emptyset}$ and $\chi_{(n-t-1,1),(1)}$, for $1 \leq j,l \leq k-3$ and $0 \leq t \leq k-2$, appear in the decomposition of the *-cocharacter $\chi_n^*(N_k)$ with multiplicity $m_{(n-j,j),\emptyset} = k-j-2$, $m_{(n-l-1,l,1),\emptyset} = k-l-2$ and $m_{(n-t-1,1)(1)} = k-t-1$, respectively.

(i) For fixed $1 \le j \le k-3$, for the pair of partitions $((n-j,j), \emptyset)$ and for $0 \le p \le k-j-3$, we consider the pair of tableaux (3.12) given in Lemma 3.13 whose corresponding highest weight vector is

$$f_p = y_1^{n-2j-p} \underbrace{\overline{y_1} \cdots \overline{y_1}}_{j} \underbrace{\overline{y_2} \cdots \overline{y_2}}_{j} y_1^p$$

By making the evaluation $y_1 = I + E$ and $y_2 = I + e_{13} + e_{2k-2,2k}$ we get

$$f_p(y_1, y_2) = \alpha \sum_{i=0}^{k-2} \binom{n-2j-p}{i} e_{2k-j-i-2,2k} + \beta \sum_{i=0}^p \binom{p}{i} e_{1,3+j+i},$$

with α and β non-zero values. Then, for any $0 \le p \le k - j - 3$, f_p is not a *-identity of N_k . Moreover, the same evaluation shows that these (k - j - 2) polynomials are linearly independent modulo $\mathrm{Id}^*(N_k)$. Thus $m_{(n-j,j),\emptyset} \ge k - j - 2$, for any $1 \le j \le k - 3$.

(*ii*) Now, for fixed $1 \le l \le k-3$, for the pair of partitions $((n-l-1,l,1), \emptyset)$ and $0 \le p \le k-j-3$, we consider the pair of tableaux (3.13) with the following corresponding highest weight vector:

$$g_p = y_1^{n-p-2l-1} \underbrace{\bar{y_1}\cdots\bar{\bar{y_1}}}_{l-1} \tilde{y_1}\tilde{y_2}\tilde{y_3} \underbrace{\bar{y_2}\cdots\bar{\bar{y_2}}}_{l-1} y_1^p.$$

Evaluating $y_1 = I + E$, $y_2 = E$ and $y_3 = e_{13} + e_{2k-2,2k}$, we also get that

$$g_p(y_1, y_2, y_3) = \alpha \sum_{i=0}^{k-2} \binom{n-2j-p}{i} e_{2k-j-i-2,2k} + \beta \sum_{i=0}^{p} \binom{p}{i} e_{1,3+j+i},$$

with α and β non-zero values. Thus g_p , for any $0 \le p \le k-j-3$, is not a *-identity of N_k and these (k-l-2) polynomials are linearly independent modulo $\mathrm{Id}^*(N_k)$. Hence we have that $m_{(n-l-1,l,1)} \ge (k-l-2)$, for any $1 \le l \le k-3$.

(*iii*) Finally, for fixed $0 \le t \le k-2$, for the pair of partitions ((n-t-1,t),(1)) and for $0 \le p \le k-j-2$, we consider the pair of tableaux (3.14) and its corresponding highest weight vector

$$h_p = y_1^{n-p-2t-1} \underbrace{\bar{y_1}\cdots\bar{y_1}}_{t} z \underbrace{\bar{y_2}\cdots\bar{y_2}}_{t} y_1^p.$$

By making the evaluation $y_1 = I + E$ and $z = e_{12} - e_{2k-1,2k}$, in case t = 0, and $y_1 = I + E$, $y_2 = E$ and $z = e_{12} - e_{2k-1,2k}$ otherwise, we get that

$$h_p(y_1, y_2, z) = \alpha \sum_{i=0}^{k-2} \binom{n-2j-p}{i} e_{2k-j-i-1, 2k} + \beta \sum_{i=0}^p \binom{p}{i} e_{1, 2+j+i},$$

with α and β non-zero values. Thus $m_{(n-t-1,t),(1)} \ge (k-t-1)$, for any $0 \le t \le k-2$, since that h_p is not a *-identity of N_k , for all $0 \le p \le k-t-2$, and these (k-t-1) polynomials are linearly independent modulo $\mathrm{Id}^*(N_k)$.

Thus we have that

$$c_n^*(N_k) \ge d_{(n),\emptyset} + \sum_{j=1}^{k-3} (k-j-2) [d_{(n-j,j),\emptyset} + d_{(n-j-1,j,1),\emptyset}] + \sum_{j=0}^{k-2} (k-j-1) d_{(n-j-1,j),(1)}.$$

Hence, by the previous remark, $\chi_n^*(N_k)$ has the desired decomposition and $l_n^*(N_k) = \frac{3k^2 - 11k + 14}{2}$. \Box

We finish this section by calculating the *-cocharacters and *-colengths of $\operatorname{var}^*(U_k)$, for all $k \geq 3$.

LEMMA 3.17. $\chi_n^*(U_3) = \chi_{(n),\emptyset} + \chi_{(n-1,1),\emptyset} + \chi_{(n-2,1,1),\emptyset} + \chi_{(n-1),(1)}$ and $l_n^*(U_3) = 4$.

PROOF. Notice that

$$d_{(n),\emptyset} + d_{(n-1),(1)} + d_{(n-1,1),\emptyset} + d_{(n-1,1^2),\emptyset} = 1 + n + (n-1) + \frac{(n-1)(n-2)}{2} = c_n^*(U_3).$$

Then, since $m_{(n),\emptyset} = 1$, if we find a highest weight vector for each pair of partitions ((n-1), (1)), $((n-1, 1), \emptyset)$ and $((n-1, 1^2), \emptyset)$ which is not a *-identity of U_3 we may conclude that $\chi_n^*(U_3)$ has the desired decomposition.

In fact, let $f = y^{n-1}z$ be the highest weight vector associated to the pair of partitions ((n-1), (1)) and corresponding to the pair of tableaux:

$$(3.16) \qquad (\boxed{1 \ 2 \ \cdots \ n-1} \ , \ \boxed{n}).$$

By making the evaluation y = I and $z = e_{13} - e_{46}$, we get that $f = e_{13} - e_{46} \neq 0$ and, so, f is not a *-identity of U_3 .

Now we consider $g = [y_1, y_2]y_1^{n-2}$ the highest weight vector associated to the pair of partitions $((n-1, 1), \emptyset)$ and corresponding to the pair of tableaux:

$$(3.17) \qquad \left(\begin{array}{c|c} 1 & 3 & \cdots & n \\ \hline 2 & & \end{array}, & \emptyset \right).$$

By making the evaluation $y_1 = I + e_{12} + e_{56}$ and $y_2 = e_{23} + e_{45}$, we get that $g = e_{13} - e_{46} \neq 0$. It shows that g is not a *-identity of U_3 .

Finally we consider $h = St_3(y_1, y_2, y_3)y_1^{n-3}$ the highest weight vector associated to the pair of partitions $((n-1, 1^2), \emptyset)$ and corresponding to the pair of tableaux:

$$(3.18) \qquad \left(\begin{array}{c|c} 1 & 4 & \cdots & n \\ \hline 2 \\ \hline 3 \\ \hline \end{array}, \\ \emptyset \end{array}\right)$$

By making the evaluation $y_1 = I$, $y_2 = e_{23} + e_{45}$ and $y_3 = e_{12} + e_{56}$, we get that $h = -e_{13} + e_{46} \neq 0$ and this says that h is not a *-identity of U_3 . Hence we have that $\chi_n^*(U_3) = \chi_{(n),\emptyset} + \chi_{(n-1,1),\emptyset} + \chi_{(n-2,1,1),\emptyset} + \chi_{(n-1),(1)}$ and $l_n^*(U_3) = 4$.

The proof of the next result is similar to the proof of Lemma 3.16.

THEOREM 3.18. For $k \geq 3$, we have

(1)
$$\chi_n^*(U_k) = \chi_{(n),\emptyset} + \sum_{j=1}^{k-2} (k-j-1) \left[\chi_{(n-j,j),\emptyset} + \chi_{(n-j-1,j,1),\emptyset} \right] + \sum_{j=0}^{k-3} (k-j-2) \chi_{(n-j-1,j),(1)}$$

(2) $l_n^*(U_k) = \frac{3k^2 - 9k + 8}{2}$.

4. Characterizing varieties of small *-colength

In this section we shall classify the varieties such that their sequence of *-colengths is bounded by three, for n large enough. We start by considering the algebra G_2^* , the Grassmann algebra with 1 generated by the elements e_1, e_2 over F subject to the condition $e_1e_2 + e_2e_1 = e_1^2 = e_2^2 = 0$, and endowed with the involution * such that $e_i^* = -e_i$, for i = 1, 2. We have the following.

LEMMA 4.1. For the algebra G_2^* we have

- (1) $\operatorname{Id}^*(G_2^*) = \langle [y_1, y_2], [y, z], z_1 z_2 + z_2 z_1, z_1 z_2 z_3 \rangle_{T^*}.$ (2) $c_n^*(G_2^*) = 1 + n + \frac{n(n-1)}{2}.$
- (3) $\chi_n^*(G_2^*) = \chi_{(n),\emptyset} + \chi_{(n-1),(1)} + \chi_{(n-2),(1^2)}$ and $l_n^*(G_2^*) = 3$.

PROOF. In [21, Lemma 16] the authors determined the T^* -ideal and computed the nth *-codimension of the algebra G_2^* . Here we shall prove that $\chi_n^*(G_2^*) = \chi_{(n),\emptyset} + \chi_{(n-1),(1)} + \chi_{(n-2),(1^2)}$. We start by noticing that $(G_2^*)^+ = \operatorname{span}_F \{1\}$ and $(G_2^*)^- = \operatorname{span}_F \{e_1, e_2, e_1 e_2\}$. Moreover, we have

$$d_{(n),\emptyset} + d_{(n-1),(1)} + d_{(n-2),(1^2)} = 1 + n + \frac{n(n-1)}{2} = c_n^*(G_2^*).$$

Then, since $m_{(n),\emptyset} = 1$, we just need to find a highest weight vector for each pair of partitions ((n-1), (1))

and $((n-2), (1^2))$ which is not a *-identity of G_2^* to conclude that $\chi_n^*(G_2^*)$ has the desired decomposition. In fact, let $f = y^{n-1}z_1$ and $g = y^{n-2}[z_1, z_2]$ be the highest weight vectors associated to the pairs of partitions ((n-1), (1)) and $((n-2), (1^2))$ and corresponding to the pairs of tableaux, respectively:

(4.1)
$$(\boxed{1 \ 2 \ \cdots \ n-1}, \boxed{n})$$
 and $(\boxed{1 \ 2 \ \cdots \ n-2}, \boxed{n-1})$

By making the evaluation $y = 1, z_1 = e_1$ and $z_2 = e_2$, we get that $f = e_1 \neq 0$ and $g = 2e_1e_2 \neq 0$; then f and g are not *-identities of G_2^\ast and the proof is complete. \square

Next we consider the algebra $G_2^* \oplus C_3$ and the algebra G_3^* , the Grassmann algebra with 1 generated by the elements e_1, e_2, e_3 over F subject to the condition $e_i e_j + e_j e_i = e_i^2 = 0$, for all i, j = 1, 2, 3, and endowed with the involution * such that $e_i^* = -e_i$, for i = 1, 2, 3. The next lemma can be proved as the previous one.

LEMMA 4.2. For the algebras G_3^* and $G_2^* \oplus C_3$ we have (1) $\operatorname{Id}^*(G_3^*) = \langle [y_1, y_2], [y, z], z_1 z_2 + z_2 z_1, z_1 z_2 z_3 z_4 \rangle_{T^*}.$ (2) $c_n^*(G_3^*) = 1 + n + \frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6}.$ (3) $\chi_n^*(G_3^*) = \chi_{(n),\emptyset} + \chi_{(n-1),(1)} + \chi_{(n-2),(1^2)} + \chi_{(n-3),(1^3)}.$ (4) $\operatorname{Id}^*(G_2^* \oplus C_3) = \langle [y_1, y_2], [y, z], z_1 z_2 z_3 \rangle_{T^*}.$ (5) $c_n^*(G_2^* \oplus C_3) = n^2 + 1.$ (6) $\chi_n^*(\tilde{G_2^*} \oplus \tilde{C_3}) = \chi_{(n),\emptyset} + \chi_{(n-1),(1)} + \chi_{(n-2),(1^2)} + \chi_{(n-2),(2)}.$ (7) $l_n^*(G_3^*) = l_n^*(G_2^* \oplus C_3) = 4.$

Recall that if A = F + J is a finite dimensional algebra over F where J = J(A) is its Jacobson radical, then J can be decomposed into the direct sum of B-bimodules

(4.2)
$$J = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$$

where for $i \in \{0, 1\}$, J_{ik} is a left faithful module or a 0-left module according as i = 1 or i = 0, respectively. In a similar way, J_{ik} is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively. Moreover, for $i, k, r, s \in \{0, 1\}$, $J_{ir}J_{rs} \subseteq J_{is}$, $J_{ik}J_{rs} = 0$ for $k \neq r$ and $J_{11} = BN$ for some nilpotent subalgebra N of A commuting with B [9].

Notice that if the algebra A has an involution *, then J_{00} and J_{11} are stable under the involution whereas $J_{01}^* = J_{10}.$

In what follows we use the following result.

PROPOSITION 4.3. [20, Theorem 2] Let A be an algebra with involution over a field F of characteristic zero and suppose that $c_n^*(A)$, n = 1, 2, ..., is polynomially bounded. Then $A \sim_{T^*} B_1 \oplus \cdots \oplus B_m$ where, for each $i \in \{1, \dots, m\}$, B_i is a finite-dimensional algebra with involution over F and dim $B_i/J(B_i) \leq 1$, for all i = 1, ..., m.

Now, by applying [24, Corollary 5.5] we get the following.

THEOREM 4.4. Let A be an algebra with involution over a field F of characteristic zero. Then $c_n^*(A)$, n = 1, 2, ..., is polynomially bounded if and only if $l_n^*(A) \leq k$, for some constant k and for all $n \geq 1$.

PROOF. If $c_n^*(A)$, n = 1, 2, ..., is polynomially bounded then by Proposition 4.3, A satisfies the same *identities as a finite dimensional algebra and the result follows by applying Corollary 5.5 in [24]. Conversely, suppose that $l_n^*(A) \leq k$, for some constant k and for all $n \geq 1$. Then by [22] and [6], M and D do not belong to the variety generated by A since their *-colengths are not bounded by any constants. Then, by Theorem $3.1, c_n^*(A), n = 1, 2, ...$, is polynomially bounded.

Much effort has been put into the study of algebras with colengths bounded by a constant (see [4, 15, 12, 18] for the ordinary and graded cases). Here we deal with the case of algebras with involution.

LEMMA 4.5. [21, Lemma 14] If A = F + J is a finite-dimensional algebra with involution where $J = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$ and $A_2 \notin \operatorname{var}^*(B)$ then $J_{10} = J_{01} = 0$.

Next we study *-algebras of the type $F + J_{11}$.

LEMMA 4.6. Let $B = F + J_{11}$. If $C_i \notin \operatorname{var}^*(B)$, for $i \ge 2$, then $z^{i-1} \equiv 0$ on B.

PROOF. We give a proof of the result by following closely the proof of [21, Lemma 27]. Suppose that there exists $a \in J_{11}^-$ such that $a^{i-1} \neq 0$ and consider the *-subalgebra R of B generated by 1 and a over F. Then if I is the *-ideal generated by a^i , we have that the algebra $\overline{R} = R/I$ has induced involution and $\overline{R} = \operatorname{span}\{\overline{1}, \overline{a}, \overline{a}^2, \ldots, \overline{a}^{i-1}\}$. It is easily seen that $\overline{R} \cong C_i$ through the isomorphism φ such that $\varphi(\overline{1}) = e_{11} + \cdots + e_{ii}, \ \varphi(\overline{a}) = e_{12} + \cdots + e_{i-1i}$. Hence $C_i \in \operatorname{var}^*(B)$ and we have reached a contradiction. \Box

LEMMA 4.7. Let $B = F + J_{11}$.

(1) If $U_3 \notin \operatorname{var}^*(B)$ then $[y_1, y_2] \equiv 0$ on B.

(2) If $N_3 \notin \operatorname{var}^*(B)$ then $[y, z] \equiv 0$ on B.

PROOF. Suppose, for a contradiction, that $[y_1, y_2] \neq 0$. Let $a, b \in J_{11}^+$ be such that $[a, b] \neq 0$ and consider the *-subalgebra R generated by 1, a, b over F and let I be the *-ideal generated by $a^2, b^2, ab + ba$. So the *-algebra $\overline{R} = R/I$ is linearly generated by $\{\overline{1}, \overline{a}, \overline{b}, \overline{ab}\}$ and we claim that $\mathrm{Id}^*(\overline{R}) = \mathrm{Id}^*(U_3)$. Clearly $z_1 z_2 \equiv 0$ and $[z, y] \equiv 0$ are *-identities of \overline{R} , and so, $\mathrm{Id}^*(U_3) \subseteq \mathrm{Id}^*(\overline{R})$.

Let $f \in P_n^* \cap \mathrm{Id}^*(\overline{R})$ a multilinear polynomial of degree *n*. By [21, Lemma 19] we can write $f \pmod{\mathrm{Id}^*(U_3)}$ as:

$$f = \alpha y_1 \cdots y_n + \sum_{1 \le i < j \le n} \alpha_{ij} y_{i_1} \cdots y_{i_{n-2}} [y_i, y_j] + \sum_{i=1}^n \alpha_i y_{j_1} \cdots y_{j_{n-1}} z_i,$$

where $i_1 < i_2 < \cdots < i_{n-2}$ and $j_1 < j <_2 \cdots < j_{n-1}$. By making the evaluations $y_1 = \cdots = y_n = \overline{1}$ and $z_i = 0$ for $i = 1, \ldots, n$, we get $\alpha = 0$. Also, for a fixed i < j the evaluation $y_i = \overline{a}, y_j = \overline{b}, y_k = \overline{1}$ for $k \notin \{i, j\}$ and $z_l = 0$ for $l = 1, \ldots, n$, gives $\alpha_{ij} = 0$. Finally the evaluation $z_i = [\overline{a}, \overline{b}], y_j = \overline{1}$ for $j \neq i$ gives $\alpha_i = 0$. Hence $f \in \mathrm{Id}^*(U_3)$ and, so, $\mathrm{Id}^*(\overline{R}) \subseteq \mathrm{Id}^*(U_3)$. Thus $U_3 \in \mathrm{var}^*(B)$ and the proof of the first part is complete.

The second part of the lemma is proved similarly.

LEMMA 4.8. Suppose that $B = F + J_{11}$ satisfies $z_1 z_2 + z_2 z_1 \equiv 0$. If $z_1 z_2 z_3 \not\equiv 0$ then $G_3^* \in \operatorname{var}^*(B)$.

PROOF. Consider $a, b, c \in J_{11}^-$ such that $abc \neq 0$. Let R be the subalgebra of B generated by 1, a, b, c. Since $z_1z_2 + z_2z_1 \equiv 0$ in R we have $a^2 = b^2 = c^2 = 0$ and so $R = \text{span}\{1, a, b, c, ab, ac, bc, abc\}$. As a consequence, the correspondence

$$1 \mapsto 1, \ a \mapsto e_1, \ b \mapsto e_2, \ c \mapsto e_3$$

defines an isomorphism between R and G_3^* .

LEMMA 4.9. If $B = F + J_{11}$ is such that $[z_1, z_2] \not\equiv 0$ then $G_2^* \in \operatorname{var}^*(B)$.

PROOF. Consider $a, b \in J_{11}^-$ such that $[a, b] \neq 0$. Let R be the subalgebra of B generated by 1, a, band let I be the *-ideal generated by $a^2, b^2, ab + ba$. So the *-algebra $\overline{R} = R/I$ is linearly generated by $\{\overline{1}, \overline{a}, \overline{b}, \overline{ab}\}$. We have \overline{R} is isomorphic to G_2^* and so $G_2^* \in \operatorname{var}^*(B)$.

Now we are in position to prove the main result of this section which allows us to classify the varieties with *-colengths bounded by 3, for n large enough.

THEOREM 4.10. Let A be an algebra with involution over a field F of characteristic zero. The following conditions are equivalent.

- (1) $l_n^*(A) \leq 3$, for n large enough.
- (2) $A_2, N_3, U_3, C_4, G_3^*, G_2^* \oplus C_3 \notin \operatorname{var}^*(A).$
- (3) A is T^* -equivalent to N or $C \oplus N$ or $C_2 \oplus N$ or $C_3 \oplus N$, $G_2^* \oplus N$, where N is a nilpotent *-algebra and C is a commutative non-nilpotent algebra with trivial involution.

PROOF. First, notice that the condition (1) implies the condition (2) since by Lemmas 3.11, 3.17, 3.16, 4.2 and Theorem 3.2 we have that $l_n^*(A_2) = 5$, $l_n^*(N_3) = l_n^*(U_3) = l_n^*(G_2^* \oplus C_3) = l_n^*(G_3^*) = l_n^*(C_4) = 4$. Also, the condition (3) implies the condition (1), by Lemmas 3.14, 3.2 and 4.1.

Suppose now that $A_2, N_3, U_3, C_4, G_3^*, G_2^* \oplus C_3 \notin \text{var}^*(A)$. Since $C_4 \in \text{var}^*(D)$ and $A_2 \in \text{var}^*(M)$, it follows that $D, M \notin \text{var}^*(A)$. Hence, by Theorem 3.1, the *-codimensions of A are polynomially bounded and by Proposition 4.3, we may assume that

$$A = B_1 \oplus \cdots \oplus B_m$$

is a direct sum of finite-dimensional *-algebras where either B_i is nilpotent or $B_i = F + J(B_i)$.

If B_i is nilpotent for all *i*, then A is a nilpotent *-algebra and we are done in this case.

Therefore we may assume that there exists i = 1, ..., m such that $B_i = F + J(B_i)$ and $J(B_i) = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$.

Since $A_2 \notin \text{var}^*(B_i)$, by Lemma 4.5, we have that $J_{01} = J_{10} = 0$ and, so, $B_i = (F + J_{11}) \oplus J_{00}$ is a direct sum of *-algebras and we study $B = F + J_{11}$.

Since $N_3, U_3 \notin \text{var}^*(B)$, by Lemma 4.7, it follows that $[y_1, y_2] \equiv 0$ and $[y, z] \equiv 0$ are *-identities of B. Now we have to consider two different cases:

- (1) $[z_1, z_2] \equiv 0$ on *B*
- (2) $[z_1, z_2] \not\equiv 0$ on *B*.

In case (1), we have that $B \in \operatorname{var}^*(D)$. Since $C_4 \notin \operatorname{var}^*(B)$, by Theorem 3.3 we must have that B is T^* -equivalent to either C or C_2 or C_3 .

Now assume that $[z_1, z_2] \neq 0$ on B. So, by Lemma 4.9, $G_2^* \in \operatorname{var}^*(B)$. On the other hand, since $G_2^* \oplus C_3 \notin \operatorname{var}^*(A)$ we must have that $C_3 \notin \operatorname{var}^*(A)$. Hence, by Lemma 4.6, $z^2 \equiv 0$ on B and after linearizing we get that $z_1 z_2 + z_2 z_1 \equiv 0$ on B. Finally, since $G_3^* \notin \operatorname{var}^*(B)$, by Lemma 4.8, we have that $z_1 z_2 z_3 \equiv 0$. Hence $\operatorname{Id}^*(G_2^*) \subseteq \operatorname{Id}^*(B)$ and it follows that B is T^* -equivalent to G_2^* .

Recalling that $A = B_1 \oplus \cdots \oplus B_m$ and putting together all pieces, we get the desired conclusion. \Box

Actually, notice that if $l_n^*(A) \leq 3$, then for *n* large enough, $l_n^*(A)$ is always constant.

In conclusion we have the following classification: for any *-algebra A and n large enough,

- 1. $l_n(A) = 0$ if and only if $A \sim_{T^*} N$.
- 2. $l_n(A) = 1$ if and only if $A \sim_{T^*} C \oplus N$.
- 3. $l_n(A) = 2$ if and only if $A \sim_{T^*} C_2 \oplus N$.
- 4. $l_n(A) = 3$ if and only if either $A \sim_{T^*} C_3 \oplus N$ or $A \sim_{T^*} G_2^* \oplus N$,

where N is a nilpotent \ast -algebra and C is a commutative non-nilpotent algebra with trivial involution.

Acknowledgment

The authors would like to thank the referee for useful suggestions.

References

- [1] A. Berele Cocharacter sequences for algebras with Hopf algebra actions. J. Algebra 185 (1996) 869-885.
- [2] V. Drensky Free algebras and PI-algebras. Graduate course in algebra. Springer-Verlag Singapore, Singapore, 2000.
- [3] A. Giambruno $GL_m \times GL_m$ -representations and *-polynomial identities. Comm. Algebra 14 (1986) 787-796.
- [4] A. Giambruno & D. La Mattina PI-algebras with slow codimension growth. J. Algebra 284 (2005) 371-391.
- [5] A. Giambruno, D. La Mattina & M. Zaicev Classifying the minimal varieties of polynomial growth. Canad. J. Math. 66 (2014), no. 3, 625-640.
- [6] A. Giambruno & S. Mishchenko On star-varieties with almost polynomial growth. Algebra Colloq. 8 (2001) 33-42.
- [7] A. Giambruno, C. Polcino Milies & A. Valenti Star-polynomial identities: Computing the exponential growth of the codimensions. J. Algebra doi.org/10.1016/j.jalgebra.2016.07.037.
- [8] A. Giambruno & A. Regev Wreath products and P.I. algebras. J. Pure Appl. Algebra 35 (1985) 133-149.
- [9] A. Giambruno & M. Zaicev Asymptotics for the standard and the Capelli identities. Israel J. Math. 135 (2003) 125-145.
- [10] A. Giambruno & M. Zaicev A characterization of algebras with polynomial growth of the codimensions, Proc. Amer. Math. Soc. 129 (2000), 59-67.
- [11] A. Ioppolo & D. La Mattina Polynomial codimension growth of algebras with involutions and superinvolutions. J. Algebra, in print.
- [12] P. Koshlukov & D. La Mattina Graded algebras with polynomial growth of their codimensions. J. Algebra 434 (2015), 115-137.
- [13] D. La Mattina Varieties of almost polynomial growth: classifying their subvarieties. Manuscripta Math. 123 (2007) 185-203.
- [14] D. La Mattina Varieties of algebras of polynomial growth. Boll. Unione Mat. Ital. (9) 1 (2008), no. 3, 525-538.
- [15] D. La Mattina Characterizing varieties of colength ≤ 4 . Comm. Algebra **37** (2009) 1793-1807.
- [16] D. La Mattina Varieties of superalgebras of almost polynomial growth. J. Algebra 336 (2011) 209-226.
- [17] D. La Mattina Almost polynomial growth: classifying varieties of graded algebras. Israel J. Math. 207 (2015), no. 1, 53-75.
- [18] D. La Mattina On algebras of polynomial codimension growth. São Paulo J. Math. Sci DOI: 10.1007/s40863-016-0051-7
- [19] D. La Mattina, S. Mauceri & P. Misso Polynomial growth and identities of superalgebras and star-algebras. J. Pure Appl. Algebra 213 (2009), 2087-2094.
- [20] D. La Mattina & F. Martino Polynomial growth and star-varieties. J. Pure Appl. Algebra 220 (2016) 246-262.
- [21] D. La Mattina & P. Misso Algebras with involution with linear codimension growth. J. Algebra **305** (2006) 270-291.
- [22] S. Mishchenko & A. Valenti A Star-Variety With Almost Polynomial Growth. J. Algebra 223 (2000) 66-84.
- [23] T.S. Nascimento, R.B. dos Santos & A. C. Vieira Graded cocharacters of minimal subvarieties of supervarieties of almost polynomial growth. J. Pure Appl. Algebra 219 (2015) 913-929.
- [24] A. Vieira Finitely generated algebras with involution and multiplicities bounded by a constant. J. Algebra **422** (2015) 487-503.