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Abstract. Let V be a variety of associative algebras with involution ∗ over a field F of characteristic zero.
Giambruno and Mishchenko proved in [6] that the ∗-codimension sequence of V is polynomially bounded if

and only if V does not contain the commutative algebra D = F ⊕F , endowed with the exchange involution,

and M , a suitable 4-dimensional subalgebra of the algebra of 4× 4 upper triangular matrices, endowed with
the reflection involution. As a consequence the algebras D and M generate the only varieties of almost

polynomial growth. In [20] the authors completely classify all subvarieties and all minimal subvarieties

of the varieties var∗(D) and var∗(M). In this paper we exhibit the decompositions of the ∗-cocharacters
of all minimal subvarieties of var∗(D) and var∗(M) and compute their ∗-colengths. Finally we relate the

polynomial growth of a variety to the ∗-colengths and classify the varieties such that their sequence of

∗-colengths is bounded by three.

1. Introduction

Let A be an associative algebra with involution (∗-algebra) over a field F of characteristic zero and
let c∗n(A), n = 1, 2, . . . , be its sequence of ∗-codimensions. In case A satisfies a nontrivial identity, it was
proved in [8] that c∗n(A) is exponentially bounded. In order to capture the exponential rate of growth of
the sequence of ∗-codimensions, recently, in [7] the authors proved that for any associative ∗-algebra A,
satisfying an ordinary identity,

exp∗(A) = lim
n→∞

n
√
c∗n(A)

exists and is an integer called the ∗-exponent of A.
Given a variety of ∗-algebras V, the growth of V is the growth of the sequence of ∗-codimensions of any

algebra A generating V, i.e., V = var∗(A). In this paper we are interested in varieties of polynomial growth,
i.e., varieties of ∗-algebras such that c∗n(V) = c∗n(A) is polynomially bounded.

In such a case, if A is an algebra with 1, in [19] it was proved that c∗n(A) = qnk+O(nk−1) is a polynomial

with rational coefficients whose leading term satisfies the inequalities 1
k! ≤ q ≤

∑k
i=0 2k−i (−1)

i

i! .
In case of polynomial growth Giambruno and Mishchenko proved in [6] that a variety V has polynomial

growth if and only if V does not contain the commutative algebra D = F ⊕ F , endowed with the exchange
involution, and M , a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices,
endowed with the reflection involution. As a consequence the ∗-algebras D and M generate the only varieties
of almost polynomial growth, i.e, they grow exponentially but any proper subvariety is polynomially bounded.

In [20] the authors completely classify all subvarieties of the varieties var∗(D) and var∗(M). They
also classify all their minimal subvarieties of polynomial growth. We recall that V is a minimal variety of
polynomial growth nk if asymptotically c∗n(V) ≈ ank, for some a 6= 0, and c∗n(U) ≈ bnt, with t < k, for any
proper subvariety U of V.

2010 Mathematics Subject Classification. Primary 16R50, Secondary 20C30, 16W10.

Key words and phrases. ∗-colength, ∗-codimension, ∗-cocharacter.
♦Partially supported by GNSAGA of INDAM.
\Partially support by FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais, APQ-02435-14.
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The relevance of the minimal varieties of polynomial growth relies in the fact that these were the building
blocks that allowed the authors to give a complete classification of the subvarieties of the varieties of almost
polynomial growth (see also [5, 11, 13, 14, 16, 17]).

An equivalent formulation of Giambruno-Mishchenko’s result can be given as follows. Let P ∗n be the
vector space of multilinear polynomials of degree n and Id∗(A) the ideal of identities satisfied by a ∗-algebra

A. The space
P ∗n

P ∗n ∩ Id∗(A)
has a structure of Z2 oSn-module and its character χ∗n(A), by complete reducibility,

decomposes as

χ∗n(A) =
∑

|λ| + |µ| = n

mλ,µχλ,µ,

where χλ,µ is the irreducible Z2 o Sn-character associated to the pair of partitions (λ, µ) and mλ,µ ≥ 0 is the
corresponding multiplicity. Then

l∗n(A) =
∑

|λ| + |µ| = n

mλ,µ,

is called the nth ∗-colength of A. If A satisfies a non-trivial identity then l∗n(A), n = 1, 2, . . . , is polynomially
bounded [1].

In this paper we state the Giambruno-Mishchenko’s result as follows: if A is any ∗-algebra, c∗n(A) is
polynomially bounded if and only if the sequence of ∗-colengths is bounded by a constant, i.e., l∗n(A) ≤ k,
for some k ≥ 0 and for all n ≥ 1. Such result was proved for finite dimensional ∗-algebras in [24].

Moreover we exhibit the decompositions of the ∗-cocharacters of all minimal subvarieties of var∗(D) and
var∗(M), compute their ∗-colengths and complete their ∗-codimensions. Finally we classify the varieties such
that their sequence of ∗-colengths is bounded by three, for n large enough. Furthermore we show that if
l∗n(A) ≤ 3, then for n large enough, l∗n(A) is always constant.

2. Generalities and basic tools

Throughout this paper we shall denote by F a field of characteristic zero and by A an associative
algebra, not necessarily with 1, endowed with an involution ∗ over F. Let us write A = A+ ⊕ A−, where
A+ = {a ∈ A | a∗ = a} and A− = {a ∈ A | a∗ = −a} denote the sets of symmetric and skew elements of A,
respectively.

Let F 〈X, ∗〉 be the free associative algebra with involution on a countable set X = {x1, x∗1, x2, x∗2, . . .} of
noncommutative variables over F (see [10]). It is useful to consider F 〈X, ∗〉 as generated by symmetric and
skew variables: if we let yi = xi + x∗i and zi = xi − x∗i for i = 1, 2, . . . , then F 〈X, ∗〉 = F 〈y1, z1, y2, z2, . . .〉.
We say that a polynomial f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈X, ∗〉 is a ∗-identity of A, and we write f ≡ 0, if
f(a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A+ and b1, . . . , bm ∈ A−.

The set Id∗(A) of all ∗-identities of A is a T ∗-ideal of F 〈X, ∗〉, i.e., an ideal invariant under all endo-
morphisms of the free algebra commuting with the involution and is completely determined by its multi-
linear polynomials. We denote by P ∗n the space of all multilinear polynomials of degree n in the variables
y1, z1, . . . , yn, zn, i.e,

P ∗n = spanF {wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = yi or wi = zi, i = 1, . . . , n}.

The dimension of the space P ∗n(A) =
P ∗n

P ∗n ∩ Id∗(A)
is called the n-th ∗-codimension of A and is denoted by

c∗n(A).
For 0 ≤ r ≤ n, let P ∗r,n−r denote the space of multilinear polynomials in the variables y1, . . . , yr, zr+1, . . . ,

zn. In order to study the space P ∗n ∩ Id∗(A) it is enough to study P ∗r,n−r ∩ Id∗(A), for all r ≥ 0.

Setting P ∗r,n−r(A) =
P ∗r,n−r

P ∗r,n−r ∩ Id∗(A)
and c∗r,n−r(A) = dimP ∗r,n−r(A) we have that

(2.1) c∗n(A) =

n∑
r=0

(
n

r

)
c∗r,n−r(A).
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Remark 2.1. If A and B are ∗-algebras, it is well known that A ⊕ B is a ∗-algebra and
Id∗(A⊕B) = Id∗(A)∩ Id∗(B). Furthermore, c∗n(A⊕B) ≤ c∗n(A) + c∗n(B) and the equality holds if and only
if

dim
P ∗n

P ∗n ∩ Id∗(A) ∩ Id∗(B)
= dim

P ∗n
P ∗n ∩ Id∗(A)

+ dim
P ∗n

P ∗n ∩ Id∗(B)
.

This is equivalent to saying that dimP ∗n = dim(P ∗n ∩ Id∗(A) + P ∗n ∩ Id∗(B)), and, so, any polynomial in P ∗n
can be written as a sum of multilinear polynomials in Id∗(A) and in Id∗(B).

Similarly c∗r,n−r(A⊕B) = c∗r,n−r(A) + c∗r,n−r(B) if and only if any polynomial in P ∗r,n−r can be written

as a sum of multilinear polynomials in Id∗(A) and in Id∗(B) with r symmetric and n− r skew variables.

Let Hn be the hyperoctahedral group of degree n, i.e., Hn = Z2 o Sn, the wreath product of the
multiplicative group of order two with Sn. The space P ∗n has a natural left Hn-module structure induced by

defining for h = (a1, . . . , an;σ) ∈ Hn, hyi = yσ(i), hzi = z
aσ(i)
σ(i) = ±zσ(i).

Since P ∗n ∩ Id∗(A) is invariant under this Hn-action, the space P ∗n/(P
∗
n ∩ Id∗(A)) has the structure of a

left Hn-module and its character χ∗n(A), called the nth ∗-cocharacter of A, decomposes as

(2.2) χ∗n(A) =
∑

|λ| + |µ| = n

mλ,µχλ,µ,

where λ ` r, µ ` n− r, r = 0, 1, . . . , n and mλ,µ ≥ 0 is the multiplicity of the irreducible Hn-character χλ,µ
associated to the pair (λ, µ).

Also

l∗n(A) =
∑

|λ| + |µ| = n

mλ,µ

is called the nth ∗-colength of A.
Let Fm 〈X, ∗〉 = 〈y1, . . . , ym, z1, . . . , zm〉 denote the free associative algebra with involution in m symme-

tric and skew variables and let U = spanF {y1, . . . , ym}, V = spanF {z1, . . . , zm}. There is a natural left action
of the group GL(U)×GL(V ) ∼= GLm ×GLm on the space U ⊕ V and we can extend this action diagonally
to get an action on Fm 〈X, ∗〉. Note that for any algebra A with involution, the space Fm 〈X, ∗〉 ∩ Id∗(A) is
invariant under this action.

So by considering Fnm 〈X, ∗〉, the space of all homogeneous polynomials of degree n in the variables
y1, . . . , ym, z1, . . . , zm, we have that

Fnm(A) := Fnm 〈X, ∗〉 /(Fnm 〈X, ∗〉 ∩ Id∗(A))

is a GLm ×GLm-module and we denote its character by ψ∗n(A). It is well known (see [2, Theorem 12.4.4])
that there is a one-to-one correspondence between irreducible GLm×GLm-characters and pairs of partitions
(λ, µ), with λ ` n− r and µ ` r, r = 0, . . . , n where λ and µ are partitions with at most m parts.

If ψλ,µ denotes the irreducible GLm ×GLm-character corresponding to (λ, µ) then we can write

(2.3) ψ∗n(A) =
∑

|λ| + |µ| = n
h(λ), h(µ) ≤ m

m̃λ,µψλ,µ

where m̃λ,µ are the corresponding multiplicities and h(λ) (respectively h(µ)) denotes the height of the Young
diagram corresponding to λ (respectively µ).

In order to calculate the multiplicity mλ,µ of an irreducible character χλ,µ in the decomposition (2.2),
we use the following relationship proved by Giambruno in [3, Theorem 3]

(2.4) mλ,µ = m̃λ,µ, for all λ ` n− r and µ ` r with h(λ), h(µ) ≤ m.

It is well known that an irreducible submodule of Fnm
∗(A) corresponding to the pair (λ, µ) is generated by

a non-zero polynomial fλ,µ, called highest weight vector, of the form (see for instance [2, Theorem 12.4.12])

fλ,µ(y1, . . . , yp, z1, . . . , zq)

=

λ1∏
i=1

Sthi(λ)(y1, . . . , yhi(λ))

µ1∏
i=1

Sthi(µ)(z1, . . . , zhi(µ))
∑
σ∈Sn

ασσ,(2.5)

3



where ασ ∈ F , Stk(x1, . . . , xk) =
∑
σ∈Sk(sign σ)xσ(1) · · ·xσ(k) is the standard polynomial of degree k and

Sn acts from right by permuting places in which the variables occur.
Let Tλ and Tµ be two Young tableaux. We denote by fTλ,Tµ the highest weight vector obtained from

(2.5) by considering the only permutation σ ∈ Sn such that the integers σ(1), . . . , σ(h1(λ)), in this order, fill
in from top to bottom the first column of Tλ, σ(h1(λ) + 1), . . . , σ(h1(λ) + h2(λ)) the second column of Tλ,
. . . , σ(h1(λ) + · · ·+ hλ1−1(λ) + 1), . . . , σ(r) the last column of Tλ; also σ(r + 1), . . . , σ(r + h1(µ)) fill in the
first column of Tµ, . . . , σ(r + h1(µ) + · · ·+ hµ1−1(µ) + 1), . . . , σ(n) the last column of Tµ.

Remark 2.2. (see [2]) In the decomposition (2.3) we have m̃λ,µ 6= 0 if and only if there exists a pair of
tableaux (Tλ, Tµ) such that the corresponding highest weight vector fTλ,Tµ is not a ∗-identity of A. Moreover
m̃λ,µ is the maximal number of linearly independent highest weight vectors fTλ,Tµ in Fnm(A).

3. Varieties of almost polynomial growth and their subvarieties

The purpose of this section is to study the sequences of ∗-cocharacters, ∗-codimensions and ∗-colengths
of the minimal subvarieties of polynomial growth of the varieties of almost polynomial growth, which are
classified in [20].

We denote by UTs = UTs(F ) the algebra of the s × s upper triangular matrices over F and by Is the
s× s identity matrix. Recall that the varieties of almost polynomial growth are generated by the following
two algebras (see [6])

1) F ⊕ F, the two-dimensional commutative algebra with the exchange involution (a, b)∗ = (b, a);

2) M =



u r 0 0
0 s 0 0
0 0 s v
0 0 0 u

 | u, r, s, v ∈ F
 , the subalgebra of UT4 with the reflection involution, i.e.,

the involution obtained by reflecting a matrix along its secondary diagonal: if a = α(e11 + e44) +
β(e22 + e33) +γe12 + δe34 then a∗ = α(e11 + e44) +β(e22 + e33) + δe12 +γe34, where the eijs denote
the usual matrix units.

The above algebras characterize the varieties of ∗-algebras of polynomial growth.

Theorem 3.1. [6, Theorem 4.7] Let A be a ∗-algebra. Then the sequence c∗n(A), n = 1, 2, . . . , is
polynomially bounded if and only if M,D 6∈ var∗(A).

We start by presenting ∗-algebras belonging to the variety generated by D and generating minimal
varieties of polynomial growth (see [20]).

For k ≥ 2, let

Ck = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F}

be the commutative subalgebra of UTk with involution given by

(αIk +
∑

1≤i<k

αiE
i
1)∗ = αIk +

∑
1≤i<k

(−1)iαiE
i
1.

Here E1 =
∑k−1
i=1 ei,i+1.

Since D is commutative, any antiautomorphism of D is an automorphism and, so, D can be viewed as
a superalgebra with grading (D(0), D(1)), where D(0) = D+ and D(1) = D−. Hence, the classification of the
∗-algebras, up to T ∗-equivalence, inside var∗(D) and the classification of the superalgebras inside vargr(D)
are equivalent. In the light of these considerations we have the following.

Theorem 3.2. [20, Lemma 9],[23, Theorem 8.3] Let k ≥ 2. Then

(1) Id∗(Ck) = 〈[y1, y2], [y, z], [z1, z2], z1 · · · zk〉T∗ .

(2) c∗n(Ck) =
k−1∑
j=0

(
n
j

)
≈ 1

(k−1)!n
k−1, n→∞.

(3) χ∗n(Ck) =

k−1∑
j=0

χ(n−j),(j) and l∗n(Ck) = k.
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Given two ∗-algebras A and B, we say that A is T ∗-equivalent to B, and we write A ∼T∗ B, in case
Id∗(A) = Id∗(B).

The following theorem classifies the subvarieties and the minimal varieties of var∗(D).

Theorem 3.3. [20, Theorem 7 and Corollary 3] Let A be a ∗-algebra such that var∗(A) ( var∗(D).
Then

(1) either A ∼T∗ N or A ∼T∗ C ⊕ N or A ∼T∗ Ck ⊕ N , for some k ≥ 2, where N is a nilpotent
∗-algebra and C is a non-nilpotent commutative ∗-algebra with trivial involution.

(2) The algebra A generates a minimal variety of polynomial growth if and only if A ∼T∗ Ck, for some
k ≥ 2.

Next we exhibit the decomposition of the ∗-cocharacter of all minimal subvarieties of var∗(M).
We start by recalling ∗-algebras inside var∗(M) generating minimal varieties of polynomial growth.
For any k ≥ 2, consider the following subalgebras of UT2k endowed with the reflection involution:

Nk = spanF {I2k, E, . . . , Ek−2; e12 − e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k}

Uk = spanF {I2k, E, . . . , Ek−2; e12 + e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k},

Ak = spanF {e11 + e2k,2k, E, . . . , E
k−2; e12, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−1,2k},

where E =
k−1∑
i=2

ei,i+1 + e2k−i,2k−i+1.

Notice that in case k = 2, we have that U2 is T ∗-equivalent to the commutative algebra with trivial
involution, so Id∗(U2) = 〈[y1, y2], z1〉T∗ and c∗n(U2) = 1.

The following results describe the T ∗-ideals of the above algebras and explicit the ∗-codimensions of Nk
and Uk.

Lemma 3.4. [20, Lemma 2] Let k ≥ 2. Then

(1) Id∗(Nk) = 〈[y1, . . . , yk−1] , z1z2〉T∗ , in case k ≥ 3 and Id∗(Nk) = 〈[y1, y2], [y, z], z1z2〉T∗ , in case
k = 2.

(2) c∗n(Nk) = 1 +
k−2∑
j=1

(
n
j

)
(2j − 1) +

(
n
k−1
)
(k − 1) ≈ qnk−1, for some q > 0.

Lemma 3.5. [20, Lemma 3] Let k ≥ 3. Then

(1) Id∗(Uk) = 〈[z, y1, . . . , yk−2] , z1z2〉T∗ .

(2) c∗n(Uk) = 1 +
k−2∑
j=1

(
n
j

)
(2j − 1) +

(
n
k−1
)
(k − 2) ≈ qnk−1, for some q > 0.

Lemma 3.6. [20, Lemma 3] Let k ≥ 2. Then

Id∗(Ak) = 〈y1 · · · yk−2St3(yk−1, yk, yk+1)yk+2 · · · y2k−1, y1 · · · yk−1zyk · · · y2k−2, z1z2〉T∗ .

The relevance of the above ∗-algebras is shown in the following.

Theorem 3.7. [20, Theorem 6 and Corollary 1] Let A be a ∗-algebra such that var∗(A) ( var∗(M).
Then

(1) A is T ∗-equivalent to one of the following ∗-algebras: N, Nk ⊕ N, Uk ⊕ N, Nk ⊕ Uk ⊕ N, At ⊕
N, Nk ⊕ At ⊕ N, Uk ⊕ At ⊕ N, Nk ⊕ Uk ⊕ At ⊕ N, for some k, t ≥ 2, where N is a nilpotent
∗-algebra.

(2) A generates a minimal variety if and only if either A ∼T∗ Ur or A ∼T∗ Nk or A ∼T∗ Ak, for some
k ≥ 2, r > 2.

Next we determine the ∗-codimensions of the algebra Ak, for any k ≥ 2. We start by considering the
case k = 2.

Lemma 3.8. c∗n(A2) = 4n− 1, for n ≥ 3.
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Proof. We have Id∗(A2) = 〈St3(y1, y2, y3), y1zy2, z1z2〉T∗ . Since z1z2 ∈ Id∗(A2), by [21, Remark 8],
we have z1wz2 ∈ Id∗(A2) for any monomial w of F 〈X, ∗〉, and, so c∗n−r,r(Ak) = 0 for all r ≥ 2. Thus by (2.1)

(3.1) c∗n(A2) = c∗n,0(A2) + nc∗n−1,1(A2).

We start by considering P ∗n,0(A2). By the Poincaré-Birkhoff-Witt theorem (see [2]), every monomial in
y1, . . . , yn can be written as a linear combination of products of the type

(3.2) yi1 · · · yisw1 · · ·wm
where w1, . . . , wm are left normed Lie commutators in yi’s and i1 < · · · < is. Since [y1, y2][y3, y4] ∈ Id∗(A2),
we get that, modulo 〈[y1, y2][y3, y4]〉T∗ , at most one commutator can appear in (3.2) and the elements in
(3.2) are polynomials of type

y1 · · · yn or yi1 · · · yis [yr, yj1 , . . . , yjt ] with r > ji < · · · < jt.

Moreover, modulo 〈y1[y2, y3]y4〉T∗ , we have that

[yr, yj1 . . . , yjt ] = [yr, yj1 ]yj2 · · · yjt ± yjt · · · yj2 [yr, yj1 ].

Then modulo Id∗(A2), every polynomial in P ∗n,0 can be written as a linear combination of elements of the
type

(3.3) [yr, y1]y2 · · · ŷr · · · yn, yi1 · · · yin−2
[yi, yj ] and y1 · · · yn,

2 ≤ r ≤ n, 1 ≤ i ≤ j ≤ n, where the symbol ŷr means that the variable yr is omitted. Notice that
elements of the first type only appear in case s = 0 in (3.2). Because of [y1, y2][y3, y4] ∈ Id∗(A2) the
variables out of the commutator in the polynomials of the second type in (3.3) can be ordered. Moreover,
since St3(y1, y2, y3) ∈ Id∗(A2), y1[y2, y3] ≡ y2[y1, y3] + y3[y2, y1] can be applied and we obtain that the
polynomials

(3.4) [yr, y1]y2 · · · ŷr · · · yn, y2 · · · ŷr · · · yn[yr, y1] and y1 · · · yn, 2 ≤ r ≤ n
generate P ∗n,0 modulo P ∗n,0 ∩ Id∗(A2).

We claim that these polynomials form a basis of P ∗n,0(A2). Suppose that f ∈ P ∗n,0 ∩ Id∗(A2) is a linear
combination of the polynomials in (3.4) and write

f = αy1 · · · yn +

n∑
j=2

αj [yj , y1]y2 · · · ŷj · · · yn +

n∑
j=2

βjy2 · · · ŷj · · · yn[yj , y1].

By making the evaluation yi = e11 + e44, for all i = 1, . . . , n, we get α(e11 + e44) = 0, and, so, α = 0. Now
for a fixed j, the evaluation yj = e12 + e34 and yi = e11 + e44, for all i 6= j gives αje34 − βje12 = 0, and so,
αj = βj = 0 and the claim is proved. Thus c∗n,0(A2) = 1 + 2(n− 1) = 2n− 1.

We now consider P ∗n−1,1(A2). Since y1zy2 ∈ Id∗(A2), then, modulo P ∗n−1,1 ∩ Id∗(A2), P ∗n−1,1 can be
generated by the monomials

(3.5) zny1 · · · yn−1 and y1 · · · yn−1zn.
We claim that these polynomials form a basis of P ∗n−1,1 modulo P ∗n−1,1 ∩ Id∗(A2). Let f = αzny1 · · · yn−1 +

βy1 · · · yn−1zn ∈ P ∗n−1,1 ∩ Id∗(A2). By making the evaluation zn = e12− e34 and yi = e11 + e44, for all i 6= n,
we get −αe34 + βe12 = 0 and so α = β = 0. Thus c∗n−1,1(A2) = 2.

Hence, from (3.1) it follows that c∗n(A2) = 2n− 1 + 2n = 4n− 1. �

Remark 3.9. For k ≥ 3, let

I1 = 〈[y1, y2] [y3, y4] , [y1, y2] y3 · · · yk+1〉T∗ and I2 = 〈[y1, y2] [y3, y4] , y3 · · · yk+1 [y1, y2]〉T∗ .
By [13, Lemma 3.1],

c∗n,0(I1) = c∗n,0(I2) = 1 +

k−2∑
j=0

(
n

j

)
(n− j − 1).

Moreover, if I is the T ∗-ideal I1 ∩ I2 then, by [13, Lemma 3.4],

I = 〈[y1, y2] [y3, y4] , y1 · · · yk−1 [yk, yk+1] yk+2 · · · y2k〉T∗ .
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From Remark 2.1, we have the strict inequality c∗n,0(I) < c∗n,0(I1)+c∗n,0(I2) since y1 · · · yn is a polynomial

in P ∗n,0 which is not in (P ∗n,0 ∩ I1) + (P ∗n,0 ∩ I2). Moreover, since I ∩ P ∗n,0 ⊂ Id∗(Ak) ∩ P ∗n,0, we have

(3.6) c∗n,0(Ak) ≤ c∗n,0(I) < c∗n,0(I1) + c∗n,0(I2) = 2 + 2

k−2∑
j=0

(
n

j

)
(n− j − 1).

Lemma 3.10. Let k ≥ 2. Then

c∗n(Ak) = 1 + 2

k−2∑
j=0

(
n

j

)
(n− j) + 2

k−2∑
j=0

(
n

j

)
(n− j − 1) ≈ qnk−1, for some q > 0.

Proof. The result has already been proved for k = 2 in Lemma 3.8 so we consider k ≥ 3. Since
z1z2 ∈ Id∗(Ak), by [21, Remark 8] we have that z1wz2 ∈ Id∗(Ak), for any monomial w of F 〈X, ∗〉, and, so
P ∗n−r,r(Ak) = {0} for all r ≥ 2 and

(3.7) c∗n(Ak) = c∗n,0(Ak) + nc∗n−1,1(Ak).

Let us study the dimensions of P ∗n,0(Ak) and P ∗n−1,1(Ak). We start by considering P ∗n,0(Ak). We claim
that the following polynomials in P ∗n,0

(3.8) y1 · · · yn, yi1 · · · yit [yr, ym]yj1 · · · yjs , yp1 · · · ypu [ya, yb]yq1 · · · yqv
where t < k− 1, i1 < · · · < it, r > m < j1 < · · · < js and v < k− 1, a > b < p1 < · · · < pu, q1 < · · · < qv are
linearly independent modulo Id∗(Ak). Suppose that f ∈ P ∗n,0 ∩ Id∗(Ak) is a linear combination of the above
polynomials and write

f = αy1 · · · yn +
∑

t<k−1
or
s<k−1

∑
r,I,J

αr,I,Jyi1 · · · yit [yr, ym]yj1 · · · yjs ,

where t + s = n − 2 and for any fixed t and s, I = {i1, . . . , it} and J = {j1, . . . , js}. If t < k − 1 then
i1 < · · · < it and r > m < j1 < · · · < js and if s < k − 1 then r > m < i1 < · · · < it and j1 < · · · < js.

First suppose that α 6= 0. Then by making the evaluation y1 = · · · = yn = e11 + e2k,2k we get
α(e11 + e2k,2k) = 0 and so α = 0, a contradiction.

Now suppose that αr,I,J 6= 0, for some t < k− 1, r, I and J . Then by making the evaluation yi1 = · · · =
yit = E, yr = e12+e2k−1,2k and ym = yj1 = · · · = yjs = e11+e2k,2k we get αr,I,Je2k−t−1,2k−αr,J,Ie1,2+t = 0,
and, so, αr,I,J = αr,J,I = 0, a contradiction. Similarly, if αr,J,I 6= 0, for some s < k−1, r, I and J , by making
the evaluation ym = yi1 = · · · = yit = e11 + e2k,2k, yr = e12 + e2k−1,2k and yj1 = · · · = yjs = E we get
αr,I,J = αr,J,I = 0, a contradiction as before.

In (3.8) we have 1+2
k−2∑
j=0

(
n
j

)
(n− j − 1) polynomials which are linearly independent modulo P ∗n,0∩Id∗(Ak)

so we have

1 + 2

k−2∑
j=0

(
n

j

)
(n− j − 1) ≤ c∗n,0(Ak).

On the other hand, by (3.6) we get

c∗n,0(Ak) < 2 + 2

k−2∑
j=0

(
n

j

)
(n− j − 1).

Thus we conclude that c∗n,0(Ak) = 1 + 2
k−2∑
j=0

(
n
j

)
(n− j − 1).

Now we consider P ∗n−1,1(Ak). Since y1 · · · yk−1zyk · · · y2k−2 ∈ Id∗(Ak), then P ∗n−1,1 can be generated

modulo Id∗(Ak) by the monomials

(3.9) yi1 · · · yitznyj1 · · · yjs
where i1 < · · · < it, j1 < · · · < js and we have t < k − 1 or s < k − 1.
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We next show that these polynomials are linearly independent modulo Id∗(Ak). Suppose that f ∈
P ∗n−1,1 ∩ Id∗(A) is a linear combination of the polynomials above and write

f =
∑

t<k−1
or
s<k−1

∑
I,J

αI,Jyi1 · · · yitznyj1 · · · yjs

where t+s = n−1 and for any fixed t and s, i1 < · · · < it, j1 < · · · < js, I = {i1, . . . , it} and J = {j1, . . . , js}.
Suppose αI,J 6= 0, for some t < k − 1, I and J . By making the evaluation zn = e12 − e2k−1,2k,

yi1 = · · · = yit = E and yj1 = · · · = yjs = e11 + e2k,2k we get −αI,Je2k−t−1,2k + αJ,Ie1,2+t = 0, thus
αI,J = αJ,I = 0, a contradiction.

Suppose now αJ,I 6= 0, for some s < k− 1, I and J . Then the evaluation zn = e12− e2k−1,2k, yi1 = · · · =
yit = e11+e2k,2k and yj1 = · · · = yjs = E gives αJ,I = 0, a contradiction. Thus the polynomials in (3.9) form

a basis of P ∗n−1,1(Ak) and by counting we get c∗n−1,1(Ak) = 2
k−2∑
j=0

(
n−1
j

)
. So nc∗n−1,1(Ak) = 2

k−2∑
j=0

(
n
j

)
(n− j).

Finally, by (3.7), we have

c∗n(Ak) = 1 + 2

k−2∑
j=0

(
n

j

)
(n− j − 1) + 2

k−2∑
j=0

(
n

j

)
(n− j).

�

Next we explicitly determine the sequences of ∗-cocharacters and ∗-colengths of the minimal varieties
var∗(A) ⊆ var∗(M). If χ∗n(A) =

∑
|λ| + |µ| = n mλ,µχλ,µ is the decomposition of the nth ∗-cocharacter of A,

we denote by dλ,µ the degree of the Hn-character χλ,µ.
We shall prove all theorems by using induction on k, so for each class of algebras Nk, Uk and Ak we

start with a lemma about the sequence of ∗-cocharacters in a particular case. We start with the study of
∗-cocharacters and ∗-colengths of the minimal varieties var∗(Ak).

Lemma 3.11. χ∗n(A2) = χ(n),∅ + 2χ(n−1,1),∅ + 2χ(n−1),(1) and l∗n(A2) = 5

Proof. Let χ∗n(A2) =
∑

|λ| + |µ| = n mλ,µχλ,µ be the decomposition of the nth ∗-cocharacter of A2.
Notice that

d(n),∅ + 2d(n−1),(1) + 2d(n−1,1),∅ = 1 + 2n+ 2(n− 1) = c∗n(A2).

Then, since that m(n),∅ = 1, if we find two linearly independent highest weight vectors for each pair of
partitions ((n− 1), (1)) and ((n− 1, 1), ∅) which are not ∗-identities of A2 we may conclude that χ∗n(A2) has
the desired decomposition.

In fact, let

f1 = yn−1z and f2 = zyn−1

be highest weight vectors associated to the pair of partitions ((n− 1), (1)) and corresponding to the pairs of
tableaux:

(3.10) ( 1 2 · · · n− 1 , n ) and ( 2 3 · · · n , 1 ) ,

respectively. It is clear that by making the evaluation y = e11+e44 and z = e12−e34, we get that f1 = e12 6= 0
and f2 = −e34 6= 0. This says that f1 and f2 are not ∗-identities of A2. Moreover by making the same
evaluation we have that αf1 + βf2 = 0 implies α = β = 0, so these polynomials are linearly independent
modulo Id∗(A2).

On the other hand,

g1 = [y1, y2]yn−21 and g2 = yn−21 [y1, y2]

are the highest weight vector associated to the pair of partitions ((n−1, 1), ∅) and corresponding to the pairs
of tableaux:

(3.11)
(

1 3 · · · n

2
, ∅
)

and
(

n− 1 1 · · · n− 2

n
, ∅
)
,

respectively.
8



By making the evaluation y1 = e11+e44 and y2 = e12+e34, we get that g1 = −e34 6= 0 and g2 = e12 6= 0. It
shows that g1 and g2 are not ∗-identities of A2 and by making the same evaluation we have that αg1+βg2 = 0
implies α = β = 0, so these polynomials are linearly independent modulo Id∗(A2).

Thus χ∗n(A2) = χ(n),∅ + 2χ(n−1),(1) + 2χ(n−1,1),∅ and l∗n(A2) = 5. �

Before giving the decomposition of the χ∗n(Ak), for any k ≥ 2, we prove the following.

Remark 3.12. Let k ≥ 2. Then

c∗n(Ak) = d(n),∅ +
k−1∑
j=1

2(k − j)d(n−j,j),∅ +
k−2∑
j=1

2(k − j − 1)d(n−j−1,j,1),∅

+
k−2∑
j=0

2(k − j − 1)d(n−j−1,j),(1).

Proof. We use induction on k. By Lemma 3.11, we have that χ∗n(A2) = χ(n),∅+2χ(n−1,1),∅+2χ(n−1),(1).
This says that c∗n(A2) = d(n),∅ + 2d(n−1,1),∅ + 2d(n−1),(1) and, so the result is true for k = 2.

Now we suppose the result is true for some k ≥ 2. By Lemma 3.10, we have that

c∗n(Ak+1) = c∗n(Ak) + 2

(
n

k − 1

)
(n− k) + 2

(
n

k − 1

)
(n− k + 1).

Hence, by using that

k∑
j=1

d(n−j,j),∅ +

k−1∑
j=1

d(n−j,j−1,1),∅ =

(
n

k − 1

)
(n− k) and

k−1∑
j=0

d(n−j,j−1),(1) =

(
n

k − 1

)
(n− k + 1),

we have

c∗n(Ak+1) = c∗n(Ak) + 2
(
n
k−1
)
(n− k) + 2

(
n
k−1
)
(n− k + 1)

= c∗n(Ak) + 2
k∑
j=1

d(n−j,j),∅ + 2
k−1∑
j=1

d(n−j−1,j,1),∅ + 2
k−1∑
j=0

d(n−j−1,j),(1)

= d(n),∅ +
k∑
j=1

2(k + 1− j)d(n−j,j),∅ +
k−1∑
j=1

2(k − j)d(n−j−1,j,1),∅

+
k−1∑
j=0

2(k − j)d(n−j−1,j),(1).

Thus the result is true for any k ≥ 2. �

In the next lemmas, we shall adopt the convention that the symbols ¯, ¯̄ and ˜ indicate alternation on
a given set of variables. Thus, for instance, the notation ¯̄y1ȳ1ỹ1y4ȳ2 ¯̄y2ỹ2ȳ3 indicates the polynomial∑

σ∈S3
ρ,τ∈S2

(signρ)(signσ)(signτ)yρ(1)yσ(1)yτ(1)y4yσ(2)yρ(2)yτ(2)yσ(3).

Now we are in position to compute the ∗-cocharacter and the ∗-colength of Ak, for any k ≥ 2.

Theorem 3.13. For k ≥ 2, we have

(1) χ∗n(Ak) = χ(n),∅ +
k−1∑
j=1

2(k − j)χ(n−j,j),∅ +
k−2∑
j=1

2(k − j − 1)χ(n−j−1,j,1),∅

+
k−2∑
j=0

2(k − j − 1)χ(n−j−1,j),(1).

(2) l∗n(Ak) = 3k2 − 5k + 3.

Proof. By the previous remark, we have that, for any k ≥ 2,

c∗n(Ak) = d(n),∅ +
k−1∑
j=1

2(k − j)d(n−j,j),∅ +
k−2∑
j=1

2(k − j − 1)d(n−j−1,j,1),∅

+
k−2∑
j=0

2(k − j − 1)d(n−j−1,j),(1).
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It is clear that m(n),∅ = 1. In order to prove the desired decomposition of χ∗n(Ak), we shall prove that
the irreducible characters χ(n−j,j),∅, χ(n−l−1,l,1),∅ and χ(n−t−1,1)(1), for 1 ≤ j ≤ k − 1, 1 ≤ l ≤ k − 2 and
0 ≤ t ≤ k−2, appear in the decomposition of the ∗-cocharacter χ∗n(Ak) with multiplicity m(n−j,j),∅ = 2(k−j),
m(n−l−1,l,1),∅ = 2(k − l − 1) and m(n−t−1,1)(1) = 2(k − t− 1), respectively.

(i) For the pair of partitions ((n − 1, 1), ∅), for any 0 ≤ p ≤ k − 2 we consider the following pairs of
tableaux: (

p+ 1 1 · · · p p+ 3 · · · n

p+ 2
, ∅
)

(
n− p− 1 1 · · · n− p− 2 n− p+ 1 · · · n

n− p , ∅
)

and their corresponding highest weight vectors, respectively,

fp = yp1 [y1, y2]yn−p−21 and gp = yn−p−21 [y1, y2]yp1 .

By making the evaluation y1 = e11 + e2k,2k + E and y2 = e12 + e2k−1,2k, we get that

fp(y1, y2) = e2k−p−2,2k − e2k−p−1,2k and gp(y1, y2) = e1,p+2 − e1,p+3.

Then fp and gp are not ∗-identities of Ak, for any 0 ≤ p ≤ k− 2, and these 2(k− 1) polynomials are linearly
independent modulo Id∗(Ak). Hence m(n−1,1),∅ ≥ 2(k − 1).

(ii) For fixed 2 ≤ j ≤ k − 1, for the pair of partitions ((n − j, j), ∅) and for 0 ≤ p ≤ k − j − 1 and
w = n− p, we consider the following pairs of tableaux:(

p+ 1 p+ 2 · · · p+ j 1 · · · p p+ 2j + 1 · · · n

p+ j + 1 p+ j + 2 · · · p+ 2j
, ∅
)

(3.12)
(

w − 2j + 1 w − 2j + 2 · · · w − j 1 · · · w − 2j w + 1 · · · n

w − j + 1 w − j + 2 · · · w
, ∅
)

and their corresponding highest weight vectors, respectively,

fp = yp1 ȳ1 · · · ỹ1︸ ︷︷ ︸
j

ȳ2 · · · ỹ2︸ ︷︷ ︸
j

yn−2j−p1 and gp = yn−2j−p1 ȳ1 · · · ỹ1︸ ︷︷ ︸
j

ȳ2 · · · ỹ2︸ ︷︷ ︸
j

yp1 .

We have, by making the evaluation y1 = e11 + e2k,2k + E and y2 = e11 + e2k,2k + e12 + e2k−1,2k, that
fp(y1, y2) = αe2k−p−j,2k and gp(y1, y2) = βe1,j+p+1, with α 6= 0 and β 6= 0. Then , for any 0 ≤ p ≤ k− j−1,
fp and gp are not ∗-identities of Ak. Moreover, the same evaluation shows that these 2(k − j) polynomials
are linearly independent modulo Id∗(Ak). Thus m(n−j,j),∅ ≥ 2(k − j), for any 2 ≤ j ≤ k − 1.

(iii) Now, for fixed 1 ≤ l ≤ k− 2, for the pair of partitions ((n− l− 1, l, 1), ∅) and for 0 ≤ p ≤ k− j − 2
and w = n− p, we consider the following pairs of tableaux:(

p+ l p+ 1 · · · p+ l− 1 1 · · · p p+ 2l + 2 · · · n

p+ l + 1 p+ l + 3 · · · p+ 2l + 1

p+ l + 2
, ∅

)

(3.13)

(
w − l− 1 w − 2l · · · w − l− 2 1 · · · w − 2l− 1 w + 1 · · · n

w − l w − l + 2 · · · w

w − l + 1
, ∅

)
and their corresponding highest weight vectors, respectively,

fp = yp1 ȳ1 · · · ¯̄y1︸ ︷︷ ︸
l−1

ỹ1ỹ2ỹ3 ȳ2 · · · ¯̄y2︸ ︷︷ ︸
l−1

yn−p−2l−11 and gp = yn−p−2l−11 ȳ1 · · · ¯̄y1︸ ︷︷ ︸
l−1

ỹ1ỹ2ỹ3 ȳ2 · · · ¯̄y2︸ ︷︷ ︸
l−1

yp1 .

Evaluating y1 = e11+e2k,2k+E, y2 = E and y3 = e12+e2k−1,2k, we get that fp(y1, y2, y3) = αe2k−l−p−1,2k
and gp(y1, y2, y3) = βe1,l+p+2, with α 6= 0 and β 6= 0. Thus fp and gp, for any 0 ≤ p ≤ k − j − 2, are not
∗-identities of Ak and these 2(k − l − 1) polynomials are linearly independent modulo Id∗(Ak). Hence we
have that m(n−l−1,l,1) ≥ 2(k − l − 1), for any 1 ≤ l ≤ k − 2.
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(iv) Finally, for fixed 0 ≤ t ≤ k−2, for the pair of partitions ((n− t−1, t), (1)) and for 0 ≤ p ≤ k− j−2
and w = n− p, we consider the following pairs of tableaux:(

p+ 1 · · · p+ t 1 · · · p p+ 2t+ 2 · · · n

p+ t+ 2 · · · p+ 2t+ 1 , p+ t+ 1

)

(3.14)
(

w − 2t · · · w − t− 1 1 · · · w − 2t− 1 w + 1 · · · n

w − t+ 1 · · · w
, w − t

)
and their corresponding highest weight vectors, respectively,

fp = yp1 ȳ1 · · · ¯̄y1︸ ︷︷ ︸
t

z ȳ2 · · · ¯̄y2︸ ︷︷ ︸
t

yn−p−2t−11 and gp = yn−p−2t−11 ȳ1 · · · ¯̄y1︸ ︷︷ ︸
t

z ȳ2 · · · ¯̄y2︸ ︷︷ ︸
t

yp1 .

By making the evaluation y = e11 + e2k,2k + E and z = e12 − e2k−1,2k, in case t = 0, and y1 =
e11 + e2k,2k + E, y2 = E and z = e12 − e2k−1,2k otherwise, we get that fp(y1, y2, z) = αe2k−t−p−1,2k and
gp(y1, y2, z) = βe1,t+p+1, with α 6= 0 and β 6= 0. Thus m(n−t−1,t),(1) ≥ 2(k − t − 1), for any 0 ≤ t ≤ k − 2,
since fp and gp are not ∗-identities of Ak, for all 0 ≤ p ≤ k − t − 2, and these 2(k − t − 1) polynomials are
linearly independent modulo Id∗(Ak).

Thus we have that

c∗n(Ak) ≥ d(n),∅ +
k−1∑
j=1

2(k − j)d(n−j,j),∅ +
k−2∑
j=1

2(k − j − 1)d(n−j−1,j,1),∅

+
k−2∑
j=0

2(k − j − 1)d(n−j−1,j),(1) = c∗n(Ak).

Hence χ∗n(Ak) has the desired decomposition. It is easy to show that l∗n(Ak) = 3k2− 5k+ 3,∀k ≥ 2, and the
result is proved. �

Now we study the ∗-cocharacters and the ∗-colengths of the minimal variety var∗(Nk), for all k ≥ 2.

Lemma 3.14. χ∗n(N2) = χ(n),∅ + χ(n−1),(1) and l∗n(N2) = 2.

Proof. Notice that we have

d(n),∅ + d(n−1),(1) = 1 + n = c∗n(N2).

Then, since m(n),∅ = 1, if we find a highest weight vector for the pair of partitions ((n− 1), (1)) which is not
a ∗-identity of N2 we may conclude that χ∗n(N2) has the desired decomposition.

In fact, let f1 = yn−1z be the highest weight vector associated to the pair of partitions ((n− 1), (1)) and
corresponding to the pair of tableaux:

(3.15) ( 1 2 · · · n− 1 , n ) .

By making the evaluation y = I and z = e12 − e34, we get that f = e12 − e34 6= 0. This says that f is not a
∗-identity of N2. Hence we have χ∗n(N2) = χ(n),∅ + χ(n−1),(1) and l∗n(N2) = 2. �

Remark 3.15. Let k ≥ 2. Then

c∗n(Nk) = d(n),∅ +
k−3∑
j=1

(k − j − 2)[d(n−j,j),∅ + d(n−j−1,j,1),∅] +
k−2∑
j=0

(k − j − 1)d(n−j−1,j),(1).

Proof. We shall use induction on k. From Lemma 3.14 it follows that the result is true for k = 2.
Now we suppose the result is true for some k ≥ 2. By Lemma 3.4, we have that

c∗n(Nk+1) = c∗n(Nk) +

(
n

k − 1

)
(k − 2) +

(
n

k

)
k.

Hence, by using that, for all r ≥ 1,

r∑
j=0

d(n−j,j−1),(1) =

(
n

r

)
(n− r) =

(
n

r + 1

)
(r + 1) and

r∑
j=1

[
d(n−j,j),∅ + d(n−j−1,j,1),∅

]
=

(
n

r + 1

)
r,
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we get the following:

c∗n(Nk+1) = c∗n(Nk) +
(
n
k−1
)
(k − 2) +

(
n
k

)
k

= c∗n(Ak) +
k−2∑
j=1

[d(n−j,j),∅ + d(n−j−1,j,1),∅] +
k−1∑
j=0

d(n−j−1,j),(1)

= d(n),∅ +
k−2∑
j=1

(k − j − 1)[d(n−j,j),∅ + d(n−j−1,j,1),∅] +
k−1∑
j=0

(k − j)d(n−j−1,j),(1)

Thus the result is true for any k ≥ 2. �

Theorem 3.16. For k ≥ 3, we have

(1) χ∗n(Nk) = χ(n),∅ +
k−3∑
j=1

(k − j − 2)
[
χ(n−j,j),∅ + χ(n−j−1,j,1),∅

]
+
k−2∑
j=0

(k − j − 1)χ(n−j−1,j),(1).

(2) l∗n(Nk) =
3k2 − 11k + 14

2
.

Proof. The proof is similar to the proof of Lemma 3.13. By the previous remark, we have that, for
any k ≥ 3,

c∗n(Nk) = d(n),∅ +
k−3∑
j=1

(k − j − 2)[d(n−j,j),∅ + d(n−j−1,j,1),∅] +
k−2∑
j=0

(k − j − 1)d(n−j−1,j),(1).

It is clear that m(n),∅ = 1. In order to prove the desired decomposition of χ∗n(Nk), we shall prove that
the characters χ(n−j,j),∅, χ(n−l−1,l,1),∅ and χ(n−t−1,1),(1), for 1 ≤ j, l ≤ k−3 and 0 ≤ t ≤ k−2, appear in the
decomposition of the ∗-cocharacter χ∗n(Nk) with multiplicity m(n−j,j),∅ = k− j−2, m(n−l−1,l,1),∅ = k− l−2
and m(n−t−1,1)(1) = k − t− 1, respectively.

(i) For fixed 1 ≤ j ≤ k− 3, for the pair of partitions ((n− j, j), ∅) and for 0 ≤ p ≤ k− j− 3, we consider
the pair of tableaux (3.12) given in Lemma 3.13 whose corresponding highest weight vector is

fp = yn−2j−p1 ȳ1 · · · ỹ1︸ ︷︷ ︸
j

ȳ2 · · · ỹ2︸ ︷︷ ︸
j

yp1 .

By making the evaluation y1 = I + E and y2 = I + e13 + e2k−2,2k we get

fp(y1, y2) = α

k−2∑
i=0

(
n− 2j − p

i

)
e2k−j−i−2,2k + β

p∑
i=0

(
p

i

)
e1,3+j+i,

with α and β non-zero values. Then , for any 0 ≤ p ≤ k − j − 3, fp is not a ∗-identity of Nk. Moreover, the
same evaluation shows that these (k − j − 2) polynomials are linearly independent modulo Id∗(Nk). Thus
m(n−j,j),∅ ≥ k − j − 2, for any 1 ≤ j ≤ k − 3.

(ii) Now, for fixed 1 ≤ l ≤ k − 3, for the pair of partitions ((n− l− 1, l, 1), ∅) and 0 ≤ p ≤ k − j − 3, we
consider the pair of tableaux (3.13) with the following corresponding highest weight vector:

gp = yn−p−2l−11 ȳ1 · · · ¯̄y1︸ ︷︷ ︸
l−1

ỹ1ỹ2ỹ3 ȳ2 · · · ¯̄y2︸ ︷︷ ︸
l−1

yp1 .

Evaluating y1 = I + E, y2 = E and y3 = e13 + e2k−2,2k, we also get that

gp(y1, y2, y3) = α

k−2∑
i=0

(
n− 2j − p

i

)
e2k−j−i−2,2k + β

p∑
i=0

(
p

i

)
e1,3+j+i,

with α and β non-zero values. Thus gp, for any 0 ≤ p ≤ k−j−3, is not a ∗-identity of Nk and these (k−l−2)
polynomials are linearly independent modulo Id∗(Nk). Hence we have that m(n−l−1,l,1) ≥ (k − l − 2), for
any 1 ≤ l ≤ k − 3.

(iii) Finally, for fixed 0 ≤ t ≤ k−2, for the pair of partitions ((n− t−1, t), (1)) and for 0 ≤ p ≤ k−j−2,
we consider the pair of tableaux (3.14) and its corresponding highest weight vector
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hp = yn−p−2t−11 ȳ1 · · · ¯̄y1︸ ︷︷ ︸
t

z ȳ2 · · · ¯̄y2︸ ︷︷ ︸
t

yp1 .

By making the evaluation y1 = I + E and z = e12 − e2k−1,2k, in case t = 0, and y1 = I + E, y2 = E
and z = e12 − e2k−1,2k otherwise, we get that

hp(y1, y2, z) = α

k−2∑
i=0

(
n− 2j − p

i

)
e2k−j−i−1,2k + β

p∑
i=0

(
p

i

)
e1,2+j+i,

with α and β non-zero values. Thus m(n−t−1,t),(1) ≥ (k− t− 1), for any 0 ≤ t ≤ k− 2, since that hp is not a
∗-identity of Nk, for all 0 ≤ p ≤ k− t− 2, and these (k− t− 1) polynomials are linearly independent modulo
Id∗(Nk).

Thus we have that

c∗n(Nk) ≥ d(n),∅ +
k−3∑
j=1

(k − j − 2)[d(n−j,j),∅ + d(n−j−1,j,1),∅] +
k−2∑
j=0

(k − j − 1)d(n−j−1,j),(1).

Hence, by the previous remark, χ∗n(Nk) has the desired decomposition and l∗n(Nk) =
3k2 − 11k + 14

2
. �

We finish this section by calculating the ∗-cocharacters and ∗-colengths of var∗(Uk), for all k ≥ 3.

Lemma 3.17. χ∗n(U3) = χ(n),∅ + χ(n−1,1),∅ + χ(n−2,1,1),∅ + χ(n−1),(1) and l∗n(U3) = 4.

Proof. Notice that

d(n),∅ + d(n−1),(1) + d(n−1,1),∅ + d(n−1,12),∅ = 1 + n+ (n− 1) +
(n− 1)(n− 2)

2
= c∗n(U3).

Then, since m(n),∅ = 1, if we find a highest weight vector for each pair of partitions ((n−1), (1)), ((n−1, 1), ∅)
and ((n−1, 12), ∅) which is not a ∗-identity of U3 we may conclude that χ∗n(U3) has the desired decomposition.

In fact, let f = yn−1z be the highest weight vector associated to the pair of partitions ((n− 1), (1)) and
corresponding to the pair of tableaux:

(3.16) ( 1 2 · · · n− 1 , n ) .

By making the evaluation y = I and z = e13−e46, we get that f = e13−e46 6= 0 and, so, f is not a ∗-identity
of U3.

Now we consider g = [y1, y2]yn−21 the highest weight vector associated to the pair of partitions
((n− 1, 1), ∅) and corresponding to the pair of tableaux:

(3.17)
(

1 3 · · · n

2
, ∅

)
.

By making the evaluation y1 = I + e12 + e56 and y2 = e23 + e45, we get that g = e13− e46 6= 0. It shows that
g is not a ∗-identity of U3.

Finally we consider h = St3(y1, y2, y3)yn−31 the highest weight vector associated to the pair of partitions
((n− 1, 12), ∅) and corresponding to the pair of tableaux:

(3.18)

(
1 4 · · · n

2

3
, ∅

)
.

By making the evaluation y1 = I, y2 = e23 + e45 and y3 = e12 + e56, we get that h = −e13 + e46 6= 0 and this
says that h is not a ∗-identity of U3. Hence we have that χ∗n(U3) = χ(n),∅+χ(n−1,1),∅+χ(n−2,1,1),∅+χ(n−1),(1)
and l∗n(U3) = 4. �

The proof of the next result is similar to the proof of Lemma 3.16.

Theorem 3.18. For k ≥ 3, we have

(1) χ∗n(Uk) = χ(n),∅ +
k−2∑
j=1

(k − j − 1)
[
χ(n−j,j),∅ + χ(n−j−1,j,1),∅

]
+
k−3∑
j=0

(k − j − 2)χ(n−j−1,j),(1).

(2) l∗n(Uk) =
3k2 − 9k + 8

2
·
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4. Characterizing varieties of small ∗-colength

In this section we shall classify the varieties such that their sequence of ∗-colengths is bounded by three,
for n large enough. We start by considering the algebra G∗2, the Grassmann algebra with 1 generated by the
elements e1, e2 over F subject to the condition e1e2 + e2e1 = e21 = e22 = 0, and endowed with the involution
∗ such that e∗i = −ei, for i = 1, 2. We have the following.

Lemma 4.1. For the algebra G∗2 we have

(1) Id∗(G∗2) = 〈[y1, y2], [y, z], z1z2 + z2z1, z1z2z3〉T∗ .

(2) c∗n(G∗2) = 1 + n+
n(n− 1)

2
.

(3) χ∗n(G∗2) = χ(n),∅ + χ(n−1),(1) + χ(n−2),(12) and l∗n(G∗2) = 3.

Proof. In [21, Lemma 16] the authors determined the T ∗-ideal and computed the nth ∗-codimension
of the algebra G∗2. Here we shall prove that χ∗n(G∗2) = χ(n),∅ + χ(n−1),(1) + χ(n−2),(12). We start by noticing

that (G∗2)+ = spanF {1} and (G∗2)− = spanF {e1, e2, e1e2}. Moreover, we have

d(n),∅ + d(n−1),(1) + d(n−2),(12) = 1 + n+
n(n− 1)

2
= c∗n(G∗2).

Then, since m(n),∅ = 1, we just need to find a highest weight vector for each pair of partitions ((n−1), (1))

and ((n− 2), (12)) which is not a ∗-identity of G∗2 to conclude that χ∗n(G∗2) has the desired decomposition.
In fact, let f = yn−1z1 and g = yn−2[z1, z2] be the highest weight vectors associated to the pairs of

partitions ((n− 1), (1)) and ((n− 2), (12)) and corresponding to the pairs of tableaux, respectively:

(4.1) ( 1 2 · · · n− 1 , n ) and
(

1 2 · · · n− 2 ,
n− 1

n

)
.

By making the evaluation y = 1, z1 = e1 and z2 = e2, we get that f = e1 6= 0 and g = 2e1e2 6= 0; then f
and g are not ∗-identities of G∗2 and the proof is complete. �

Next we consider the algebra G∗2 ⊕C3 and the algebra G∗3, the Grassmann algebra with 1 generated by
the elements e1, e2, e3 over F subject to the condition eiej + ejei = e2i = 0, for all i, j = 1, 2, 3, and endowed
with the involution ∗ such that e∗i = −ei, for i = 1, 2, 3. The next lemma can be proved as the previous one.

Lemma 4.2. For the algebras G∗3 and G∗2 ⊕ C3 we have

(1) Id∗(G∗3) = 〈[y1, y2], [y, z], z1z2 + z2z1, z1z2z3z4〉T∗ .

(2) c∗n(G∗3) = 1 + n+
n(n− 1)

2
+
n(n− 1)(n− 2)

6
.

(3) χ∗n(G∗3) = χ(n),∅ + χ(n−1),(1) + χ(n−2),(12) + χ(n−3),(13).
(4) Id∗(G∗2 ⊕ C3) = 〈[y1, y2], [y, z], z1z2z3〉T∗ .
(5) c∗n(G∗2 ⊕ C3) = n2 + 1.
(6) χ∗n(G∗2 ⊕ C3) = χ(n),∅ + χ(n−1),(1) + χ(n−2),(12) + χ(n−2),(2).
(7) l∗n(G∗3) = l∗n(G∗2 ⊕ C3) = 4.

Recall that if A = F + J is a finite dimensional algebra over F where J = J(A) is its Jacobson radical,
then J can be decomposed into the direct sum of B-bimodules

(4.2) J = J00 ⊕ J01 ⊕ J10 ⊕ J11
where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or i = 0, respectively.
In a similar way, Jik is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively.
Moreover, for i, k, r, s ∈ {0, 1}, JirJrs ⊆ Jis, JikJrs = 0 for k 6= r and J11 = BN for some nilpotent
subalgebra N of A commuting with B [9].

Notice that if the algebra A has an involution ∗, then J00 and J11 are stable under the involution whereas
J∗01 = J10.

In what follows we use the following result.
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Proposition 4.3. [20, Theorem 2] Let A be an algebra with involution over a field F of characteristic
zero and suppose that c∗n(A), n = 1, 2, . . . , is polynomially bounded. Then A ∼T∗ B1 ⊕ · · · ⊕ Bm where, for
each i ∈ {1, · · · ,m}, Bi is a finite-dimensional algebra with involution over F and dimBi/J(Bi) ≤ 1, for
all i = 1, . . . ,m.

Now, by applying [24, Corollary 5.5] we get the following.

Theorem 4.4. Let A be an algebra with involution over a field F of characteristic zero. Then c∗n(A),
n = 1, 2, . . . , is polynomially bounded if and only if l∗n(A) ≤ k, for some constant k and for all n ≥ 1.

Proof. If c∗n(A), n = 1, 2, . . . , is polynomially bounded then by Proposition 4.3, A satisfies the same ∗-
identities as a finite dimensional algebra and the result follows by applying Corollary 5.5 in [24]. Conversely,
suppose that l∗n(A) ≤ k, for some constant k and for all n ≥ 1. Then by [22] and [6], M and D do not belong
to the variety generated by A since their ∗-colengths are not bounded by any constants. Then, by Theorem
3.1, c∗n(A), n = 1, 2, . . . , is polynomially bounded. �

Much effort has been put into the study of algebras with colengths bounded by a constant (see [4, 15,
12, 18] for the ordinary and graded cases). Here we deal with the case of algebras with involution.

Lemma 4.5. [21, Lemma 14] If A = F + J is a finite-dimensional algebra with involution where J =
J00 ⊕ J01 ⊕ J10 ⊕ J11 and A2 /∈ var∗(B) then J10 = J01 = 0.

Next we study ∗-algebras of the type F + J11.

Lemma 4.6. Let B = F + J11. If Ci /∈ var∗(B), for i ≥ 2, then zi−1 ≡ 0 on B.

Proof. We give a proof of the result by following closely the proof of [21, Lemma 27]. Suppose that
there exists a ∈ J−11 such that ai−1 6= 0 and consider the ∗-subalgebra R of B generated by 1 and a over

F . Then if I is the ∗-ideal generated by ai, we have that the algebra R = R/I has induced involution
and R = span{1, a, a2, . . . , ai−1}. It is easily seen that R ∼= Ci through the isomorphism ϕ such that
ϕ(1) = e11+ · · ·+eii, ϕ(a) = e12+ · · ·+ei−1 i. Hence Ci ∈ var∗(B) and we have reached a contradiction. �

Lemma 4.7. Let B = F + J11.

(1) If U3 /∈ var∗(B) then [y1, y2] ≡ 0 on B.
(2) If N3 /∈ var∗(B) then [y, z] ≡ 0 on B.

Proof. Suppose, for a contradiction, that [y1, y2] 6≡ 0. Let a, b ∈ J+
11 be such that [a, b] 6= 0 and consider

the ∗-subalgebra R generated by 1, a, b over F and let I be the ∗-ideal generated by a2, b2, ab + ba. So the
∗-algebra R = R/I is linearly generated by {1, a, b, ab} and we claim that Id∗(R) = Id∗(U3). Clearly z1z2 ≡ 0
and [z, y] ≡ 0 are ∗-identities of R, and so, Id∗(U3) ⊆ Id∗(R).

Let f ∈ P ∗n ∩ Id∗(R) a multilinear polynomial of degree n. By [21, Lemma 19] we can write f (mod
Id∗(U3)) as:

f = αy1 · · · yn +
∑

1≤i<j≤n

αijyi1 · · · yin−2 [yi, yj ] +

n∑
i=1

αiyj1 · · · yjn−1zi,

where i1 < i2 < · · · < in−2 and j1 < j <2 · · · < jn−1. By making the evaluations y1 = · · · = yn = 1 and
zi = 0 for i = 1, . . . , n, we get α = 0. Also, for a fixed i < j the evaluation yi = a, yj = b, yk = 1 for

k 6∈ {i, j} and zl = 0 for l = 1, . . . , n, gives αij = 0. Finally the evaluation zi = [a, b], yj = 1 for j 6= i gives

αi = 0. Hence f ∈ Id∗(U3) and, so, Id∗(R) ⊆ Id∗(U3.) Thus U3 ∈ var∗(B) and the proof of the first part is
complete.

The second part of the lemma is proved similarly. �

Lemma 4.8. Suppose that B = F + J11 satisfies z1z2 + z2z1 ≡ 0. If z1z2z3 6≡ 0 then G∗3 ∈ var∗(B).

Proof. Consider a, b, c ∈ J−11 such that abc 6= 0. Let R be the subalgebra of B generated by 1, a, b, c.
Since z1z2 + z2z1 ≡ 0 in R we have a2 = b2 = c2 = 0 and so R = span{1, a, b, c, ab, ac, bc, abc}. As a
consequence, the correspondence

1 7→ 1, a 7→ e1, b 7→ e2, c 7→ e3

defines an isomorphism between R and G∗3. �
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Lemma 4.9. If B = F + J11 is such that [z1, z2] 6≡ 0 then G∗2 ∈ var∗(B).

Proof. Consider a, b ∈ J−11 such that [a, b] 6= 0. Let R be the subalgebra of B generated by 1, a, b

and let I be the ∗-ideal generated by a2, b2, ab + ba. So the ∗-algebra R = R/I is linearly generated by
{1, a, b, ab}. We have R is isomorphic to G∗2 and so G∗2 ∈ var∗(B). �

Now we are in position to prove the main result of this section which allows us to classify the varieties
with ∗-colengths bounded by 3, for n large enough.

Theorem 4.10. Let A be an algebra with involution over a field F of characteristic zero. The following
conditions are equivalent.

(1) l∗n(A) ≤ 3, for n large enough.
(2) A2, N3, U3, C4, G

∗
3, G

∗
2 ⊕ C3 /∈ var∗(A).

(3) A is T ∗-equivalent to N or C ⊕N or C2⊕N or C3⊕N , G∗2⊕N , where N is a nilpotent ∗-algebra
and C is a commutative non-nilpotent algebra with trivial involution.

Proof. First, notice that the condition (1) implies the condition (2) since by Lemmas 3.11, 3.17, 3.16,
4.2 and Theorem 3.2 we have that l∗n(A2) = 5, l∗n(N3) = l∗n(U3) = l∗n(G∗2 ⊕C3) = l∗n(G∗3) = l∗n(C4) = 4. Also,
the condition (3) implies the condition (1), by Lemmas 3.14, 3.2 and 4.1.

Suppose now that A2, N3, U3, C4, G
∗
3, G

∗
2 ⊕ C3 /∈ var∗(A). Since C4 ∈ var∗(D) and A2 ∈ var∗(M), it

follows that D,M /∈ var∗(A). Hence, by Theorem 3.1, the ∗-codimensions of A are polynomially bounded
and by Proposition 4.3, we may assume that

A = B1 ⊕ · · · ⊕Bm

is a direct sum of finite-dimensional ∗-algebras where either Bi is nilpotent or Bi = F + J(Bi).
If Bi is nilpotent for all i, then A is a nilpotent ∗-algebra and we are done in this case.
Therefore we may assume that there exists i = 1, . . . ,m such that Bi = F + J(Bi) and J(Bi) =

J00 ⊕ J01 ⊕ J10 ⊕ J11.
Since A2 /∈ var∗(Bi), by Lemma 4.5, we have that J01 = J10 = 0 and, so, Bi = (F +J11)⊕J00 is a direct

sum of ∗-algebras and we study B = F + J11.
Since N3, U3 /∈ var∗(B), by Lemma 4.7, it follows that [y1, y2] ≡ 0 and [y, z] ≡ 0 are ∗-identities of B.
Now we have to consider two different cases:

(1) [z1, z2] ≡ 0 on B
(2) [z1, z2] 6≡ 0 on B.

In case (1), we have that B ∈ var∗(D). Since C4 /∈ var∗(B), by Theorem 3.3 we must have that B is
T ∗-equivalent to either C or C2 or C3.

Now assume that [z1, z2] 6≡ 0 on B. So, by Lemma 4.9, G∗2 ∈ var∗(B). On the other hand, since
G∗2⊕C3 /∈ var∗(A) we must have that C3 /∈ var∗(A). Hence, by Lemma 4.6, z2 ≡ 0 on B and after linearizing
we get that z1z2 + z2z1 ≡ 0 on B. Finally, since G∗3 /∈ var∗(B), by Lemma 4.8, we have that z1z2z3 ≡ 0.
Hence Id∗(G∗2) ⊆ Id∗(B) and it follows that B is T ∗-equivalent to G∗2.

Recalling that A = B1 ⊕ · · · ⊕Bm and putting together all pieces, we get the desired conclusion. �

Actually, notice that if l∗n(A) ≤ 3, then for n large enough, l∗n(A) is always constant.
In conclusion we have the following classification: for any ∗-algebra A and n large enough,

1. ln(A) = 0 if and only if A ∼T∗ N .
2. ln(A) = 1 if and only if A ∼T∗ C ⊕N .
3. ln(A) = 2 if and only if A ∼T∗ C2 ⊕N .
4. ln(A) = 3 if and only if either A ∼T∗ C3 ⊕N or A ∼T∗ G∗2 ⊕N ,

where N is a nilpotent ∗-algebra and C is a commutative non-nilpotent algebra with trivial involution.
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