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Understanding the interaction patterns among simultaneous recordings of spike trains from mul-
tiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these
interactions has not been established, as existing methods either do not consider the inherent point
process nature of spike trains or are based on parametric assumptions that may lead to wrong in-
ferences if not met. This work presents a framework, grounded in the field of information dynamics,
for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal)
interactions between pairs of spike trains. The framework decomposes the overall information ex-
changed dynamically between two point processes X and Y as the sum of the dynamic mutual
information (dMI) between the histories of X and Y, plus the transfer entropy (TE) along the di-
rections X → Y and Y → X. Building on recent work which derived theoretical expressions and
consistent estimators for the TE in continuous time, we develop algorithms for estimating efficiently
all measures in our framework through nearest neighbor statistics. These algorithms are validated
in simulations of independent and coupled spike train processes, showing the accuracy of dMI and
TE in the assessment of undirected and directed interactions even for weakly coupled and short
realizations, and proving the superiority of the continuous-time estimator over the discrete-time
method. Then, the usefulness of the framework is illustrated in a real data scenario of recordings
from in-vitro preparations of spontaneously-growing cultures of cortical neurons, where we show
the ability of dMI and TE to identify how the networks of undirected and directed spike train
interactions change their topology through maturation of the neuronal cultures.

PACS numbers: 02.50.Ey, 05.45.Tp, 87.10.Mn, 92.70.Gt

I. INTRODUCTION

Multi-electrode recording techniques, which have be-
come a standard in the neuroscience, provide large
amounts of data about the neural activity measured at
different temporal and spatial scales. In particular, si-
multaneous recordings of the firing activity of hundreds
of neurons in various regions of the brain are nowadays
widely available, and such availability is raising more and
more the interest of neuroscientists about how groups of
neurons influence reciprocally their firing and act in con-
cert to determine the function of a given brain region
[1].

Thrust by this interest, the field of computational
neuroscience has witnessed a continuous development of
tools and algorithms to quantify the degree of interac-
tion between two or more simultaneously recorded spike
trains. The large body of work in this context has evolved
along two main directions: the development of symmetric
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(undirected) measures of coupling between pairs of spike
trains, commonly denoted as synchrony measures [2], and
the design of causal (directed) interaction measures, typ-
ically based on the statistical concept of Granger causal-
ity (GC) [3]. Synchrony measures are essentially aimed
at detecting pairwise correlations in spike trains [4], and
are based on standard tools like cross-correlation [5] and
coherence [6] or on specific statistics applied to the inter-
spike intervals (ISIs) extracted from the two analyzed
trains [2, 7]. On the other hand, directed measures at-
tempt to infer the causal influence that one neural unit
exerts over another by adopting different strategies for
the implementation to spike train data of the concept
of predictability improvement inherent in the definition
of GC [8, 9]. Up to now, these two approaches have
been pursued as alternative to one another, and unifying
frameworks embedding directed and undirected measures
of spike train interaction as complementary aspects of
the overall dynamic interaction between spike trains are
lacking.

A major issue with the estimation of both undirected
and directed interactions between neural spike trains is
that the underlying tools usually do not consider the
point process nature of neural spike train data. In fact,
interaction measures like correlation and GC are typically
defined for continuously valued signals uniformly sam-
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pled in time (i.e., time series), and their computation for
point processes poses both theoretical and practical chal-
lenges. The application of these measures to neural spike
trains has been performed transforming the spike train
data either into discrete-time sequences through binning
of the temporal axis (e.g., [10]), or into continuously val-
ued signals through convolution with smoothing kernels
(e.g., [11]). In either case, the alteration of the nature
of the observed data causes a loss of information (in the
case of time discretization) or the addition of distort-
ing information (in the case of smoothing) which makes
the estimation of the desired measure intrinsically sub-
optimal. Moreover, the parameters associated with the
transformation (e.g., width of the time bin, kernel type)
are difficult to set and impact substantially on the es-
timated interaction measure. Alternatives which avoid
data transformation have been proposed in the context
of parametric modeling, for example in [8, 12] where lin-
ear parametric models were introduced to compute GC
specificaly for point processes. However, parametric ap-
proaches are limited in the fact that they set a priori the
type of interaction to be studied, and may miss to reveal
important aspects of such interaction if the data do not
fit the assumed model.

To overcome the above limitations, the present study
introduces a framework for the computation of directed
and undirected measures of interaction between neural
spike trains, which is directly applicable to point pro-
cesses evaluated in continuous time and does not require
a model of the interactions. The framework is defined
in the emerging field of information dynamics [13, 14],
and exploits well-known concepts like mutual informa-
tion (MI) [15] and transfer entropy (TE) [16]. The MI is a
model-free undirected measure of the ’static’ interaction
between two processes, while the TE is a dynamic and di-
rected measure that implements the probabilistic notion
of GC in a non-parametric fashion. Here, we consider
a measure of the overall information exchanged dynami-
cally between two spike train processes X and Y , and ex-
pand it as the sum of the dynamic MI (dMI) between the
histories of X and Y and the TE along the two directions
X → Y and Y → X. Importantly, we build on the theo-
retical formulation of the TE for point processes [17] and
on the recent introduction of a fully model-free estimator
based on nearest neighbor statistics [18], to compute all
measures in our framework in continuous-time for spike
train processes. The resulting dMI and TE measures are
first validated in simulated scenarios of independent and
coupled spike trains, and then used to identify the net-
works of undirected and directed interactions underlying
the spiking activity of spontaneously-growing cultures of
cortical neurons.

The Matlab Software relevant to this work is avail-
able for free download from the github repository
https://github.com/mijatovicg/TEMI.

II. METHODS

A. Information-theoretic framework to assess the
dynamic interaction between stochastic processes

Given two possibly coupled dynamical systems X and
Y, we assume that their evolution over time is described
by the stochastic processes X = {Xt} and Y = {Yt}, t ∈
R. To evaluate the dynamic interaction between the two
systems in the information-theoretic domain, we consider
a measure quantifying the amount of information shared
between the present and past states of the related pro-
cesses. Formally, if Xt, Yt denote the present state of the
two processes and X−t , Y

−
t denote their past history, the

overall dynamic information shared between X and Y is
defined as:

IX;Y = I(X−t ;Y −t )+I(Xt;Y
−
t |X−t )+I(Yt;X

−
t |Y −t ), (1)

where I(·; ·) and I(·; ·|·) denote mutual information (MI)
and conditional MI (CMI). In particular, the MI term
in (1) is a measure of the information shared by the
past states of the two analyzed processes, which we de-
note as dynamic mutual information (dMI) between the
histories of X and Y , IX−;Y − = I(X−t ;Y −t ); the two
CMI terms correspond to the information transfer from
X to Y and from Y to X, TX→Y = I(Yt;X

−
t |Y −t ) and

TY→X = I(Xt;Y
−
t |X−t ), quantified according to the well-

known notion of transfer entropy (TE) [16]. Note that in
the definition of IX−;Y − , TX→Y and TX→Y the time in-
dex is dropped under the hypothesis of stationarity of the
processes. Eq. (1) is explained graphically in the Venn
diagram representation of Fig. 1, and evidences how the
overall dynamic interaction measure IX;Y is decomposed
as the sum of the two directional TE measures, TX→Y

and TY→X , plus the symmetric measure of dynamic MI,
IX−;Y − .

The information-theoretic measures defined above are
typically computed for discrete-time stochastic processes,
i.e. processes defined at discrete time instants tn =
n∆t, n ∈ Z, where ∆t is the interval between time sam-
ples expressed in units of time. In discrete time, informa-
tion dynamic measures are well-established and a num-
ber of practical approaches exist to estimate dMI and
TE measures starting from realizations of the processes
X and Y provided in the form of synchronous time series
of finite length [19]. The definition and subsequent com-
putation of information dynamic measures in continuous
time, i.e. in the limit ∆t→ 0, is much more cumbersome
and has been proposed only recently [17, 18]. In either
case, to ensure convergence in the limit of small time bin
size it is important to compute the information dynamic
measures as rates, normalizing them to the width of the
time bins. Using information rates, the decomposition
of the overall dynamic interaction between X and Y be-
comes:

İX;Y = İX−;Y − + ṪX→Y + ṪY→X , (2)



3

H(X  )

H(X )

T       Y X

H(Y )

H(Y  )

IX   ,Y

T       X Y

a) b) c)
IX ,Y

H(X   )t

H(Xt)

H(Yt)

H(Y   )t

a)

T       Y X T       X Y

c)b)
IX ,Y IX   ,Y

H(Xt)

a) c)b)

H(Yt)

T       Y X T       X Y

H(X   )t H(Y   )t

I       X Y  ;I  X ;Y

FIG. 1. Venn diagram representation of the proposed measure of dynamic mutual information and of its decomposition. (a)
Entropy of the present state (H(Xt), H(Yt)) and of the past states (H(X−t ), H(Y −t )) of two processes X and Y spike trains
and the corresponding pasts X− and Y −. (b) Overall dynamic information shared between X and Y , IX;Y . Decomposition of
IX;Y revealing the directional transfer entropies TX→Y and TY→X , and the symmetric dynamic mutual information IX−;Y− .

where the dMI and TE rates are obtained normalizing
the corresponding terms in (1) by the time bin width

(e.g., İX−;Y − = (1/∆t)IX−;Y − , ṪY→X = (1/∆t)TY→X).
In discrete-time, setting tn as the present time step, the

random variables describing the present and past states
of the processes X and Y are Xtn , Ytn and X−tn , Y

−
tn , re-

spectively. With this notation, the dMI and TE rates
appearing in (2) are formulated as follows:

İX−;Y − = λ · E
[
ln

p(x−n , y
−
n )

p(x−n )p(y−n )

]
= lim

T→∞

1

T

N∑
n=1

ln
p(x−n , y

−
n )

p(x−n )p(y−n )
,

(3)

ṪY→X = λ · E
[
ln
p(xn|x−n , y−n )

p(xn|x−n )

]
= lim

T→∞

1

T

N∑
n=1

ln
p(xn|x−n , y−n )

p(xn|x−n )
,

(4)

where λ = 1/∆t = N/T is the sampling rate of the
discrete-time processes, T = N∆t is the duration of
a time window containing N samples of the processes,
xn, yn and x−n = [xn−1, xn−2 . . .], y

−
n = [yn−1, yn−2 . . .],

are realizations of Xtn , Ytn and of X−tn , Y
−
tn , and p(·),

p(·, ·) and p(·|·) denote marginal, joint and conditional
probability density. Note that the equivalences in (3)
and (4) hold for ergodic processes where time averages
can replace ensemble averages. In the following section,
we show how similar formulations can be obtained for a
particular class of continuous-time processes, i.e., spike
trains.

B. Formulation of the framework for spike train
processes

In this section, the framework introduced above for
the dynamic analysis of generic stochastic processes is

formalized for spike train processes. Spike trains are
continuous-time processes described by the occurrence at
specific non-overlapping time instants of indistinguish-
able events, or spikes. As such, spike trains are typi-
cally observed as series of time points corresponding to
the event times; here, we consider the spike trains X =
{xi}, i = 1, 2, . . . , NX , and Y = {yj}, j = 1, 2, . . . , NY ,
where xi and yj are real numbers denoting the time
points of the ith spike of the train X and of the jth spike
of the train Y . We stress that this is in contrast with the
discrete-time formulation of stochastic processes, where
realizations of the processes X and Y are time series of
values measured at synchronously sampled time points.

While for discrete-time processes the system state is
mapped by the time series values, in the case of point
processes the state is defined at each time instant by
the so-called counting process, i.e. by the continuous-
time process that counts the number of spikes which have
occurred up to the present time; for the spike train X, the
counting process is NX,t = n: xn ≤ t < xn+1 (NX,t = 0
∀t < x1, NX,t = NX ∀t ≥ XNX

). Then, the firing rate
measures the probability for the train X to fire in a time
interval [u, u + ∆u] relative to the duration ∆u of the
interval; given the counting process, the instantaneous
firing rate computed at time u for the processX is λX,u =
lim∆u→0 pu

(
NX,u+∆u − NX,u = 1

)
/∆u, where pu refers

to a probability density evaluated in continuous time (i.e.,
at any time u). With this formalism, the TE rate from
the source spike train Y to the target spike train X is
defined as [17]:

ṪY→X = λXEpx

[
ln
λX,xi|X−xi

,Y −xi

λX,xi|X−xi

]

= lim
T→∞

1

T

NX∑
i=1

ln
λX,xi|X−xi

,Y −xi

λX,xi|X−xi

,

(5)

where NX is the number of spikes occurring in X during
the period T and λX = NX/T is the average firing rate
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of X. In (5), λX,xi|X−xi
and λX,xi|X−xi

,Y −yi
are the instanta-

neous firing rates of the target process X evaluated at the
time of its ith spike xi, respectively conditioned on the
past history of the target process only and on the past
histories of both the target and the source. Importantly,
while the probability density pu defining the instanta-
neous firing rate is taken at any arbitrary time point
(unconditionally to events in any process), the proba-
bilities defining the conditional firing rates used to as-
sess the TE rate are taken at the times of the spiking
events in the target. This aspect, which is stressed mak-
ing it explicit in (5) that the expectation is taken over the
distribution px, is crucial for the further developments
that lead to the estimation of the TE rate in continu-
ous time. Indeed, expressing the conditional firing rates
in terms of pu, making a Bayes inversion and observing
that lim∆u→0 pu(·|NX,u+∆u−NX,u = 1

)
= px(·), (5) can

be rewritten as [18]:

ṪY→X = λXEpx

[
ln

(
px(X−xi

, Y −xi
)

pu(X−xi , Y
−
xi )
·
pu(X−xi

)

px(X−xi)

)]
, (6)

which provides the basis for the estimation of the TE rate
in continuous time reported in Sect. II C.

The TE rate from X to Y is defined in a straight-
forward way by inverting the role of source and target
spike trains in the derivations above. As regards the dMI
rate quantifying the symmetric interactions between the
past histories of the two processes, we define it extend-
ing (3) to spike train processes in analogy to how (4) was
extended to yield (5). Specifically, given the joint and
marginal probability densities of the past history of the
two processes evaluated in continuous time, pu(X−u , Y

−
u ),

pu(X−u ) and pu(Y −u ), u ∈ R, the dMI rate is defined as:

İX−;Y − = λUEpu

[
ln

pu(X−u , Y
−
u )

pu(X−u )pu(Y −u )

]
= lim

T→∞

1

T

NU∑
i=1

ln
pu(X−ui

, Y −ui
)

pu(X−ui)pu(Y −ui )
,

(7)

where NU time points, u1, . . . , uNU
, are assumed to occur

with intensity λU = NU/T during a period of duration T .
Similarly to (6), the derivation in (7) provides a means
to estimate the dMI rate for spike trains.

C. Continuous time estimation

This section presents the estimation of the TE and
dMI measures composing the overall dynamic informa-
tion shared by two spike trains X and Y . The measures
are introduced in (1) for generic stochastic processes and
are made explicit as rates in (6) and (7) for the case of
spike train processes. The estimation approach is based
first on building realizations of the past of the two pro-
cesses from the available data by means of a history em-
bedding strategy [18], and then on applying on such re-
alizations the nearest neighbor entropy estimator [20] to

xi

a) 

Y

X

b) 

Y

X

 Y  ,1xi

ui

 Y  ,2xi
Y  ,3xi

 X  ,1xi

 X  ,2xi

 X  ,3xi

 X  ,1ui

 X  ,2ui

 X  ,3ui

 Y  ,1ui

 Y  ,2ui

 Y  ,3ui

FIG. 2. Example of history embeddings reconstructed with
embedding length l = 3. (a) Joint history embeddings J l

xi
=

[Xxi , Yxi ] at a target event xi. (b) Joint history embeddings
J l
ui

= [Xui , Yui ] at a random event ui.

compute the different entropy terms that compose the
TE and dMI rates to be estimated; entropy estimation is
performed following a strategy that favors compensation
of the bias of the individual entropy terms when they are
summed to get the desired measure [18, 21].

History embedding is performed in order to approx-
imate the past of the two spike trains referred to spe-
cific time points such as the spike times xi or yj ,
or to arbitrary time points ui sampled in continuous
time. In the first case, the histories needed to com-
pute the TE rate (6) are constructed, from the set of
target spike times xi, i = 1, . . . , NX , as illustrated in
Fig. 2a: the history of the target train X referred to
the ith spike time xi is approximated taking l inter-
spike intervals as X−xi

≈ X l
xi

= [Xxi,1, · · · , Xxi,l], where
Xxi,k = xi−k+1 − xi−k, k = 1, . . . l; the history of the
driver train Y referred to xi is approximated taking
first the interval from the most recent driver spike (i.e.,
yp : yp < xi, yp+1 ≥ xi) to xi and then the preceding
l − 1 ISIs, i.e. Y −xi

≈ Y l
xi

= [xi − yp, Y
l−1
yp

]; the joint

history at xi, J
−
xi

= [X−xi
, Y −xi

] is approximated by the 2l

vector J l
xi

= [X l
xi
, Y l

xi
]. In the second case, the histories

needed to compute the MI rate (7) are constructed, from
a set of arbitrary times ui, i = 1, . . . , NU , as illustrated
in Fig. 2b: in this case the histories of both spike trains
referred to ui are approximated taking the interval from
the most recent spike to ui followed by l − 1 ISIs, i.e.
X−ui
≈ X l

ui
= [ui−xp, X l−1

xp
], Y −ui

≈ Y l
ui

= [ui−yp, Y l−1
yp

],

J−ui
≈ J l

ui
= [X l

ui
, Y l

ui
]; the times ui are placed randomly

over the time axis, according to criteria determined de-
pending on the application. Note that here we assume
the same length l for all history embeddings, but this can
be optimized for each embedding separately [18].

The history embeddings built as described above at
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target spike times form the data matrices Xl
x ∈ R(N ′X×l)

and Jl
x ∈ R(N ′X×2l) which contain in the nth row respec-

tively the vectors X l
xn+l

and J l
xn+l

, n = 1, . . . , N ′X , while
the history embeddings at arbitrary times form the data
matrices Xl

u ∈ R(N ′U×l) and Jl
u ∈ R(N ′U×2l) which con-

tain in the nth row respectively the vectors X l
un

and J l
un

,
n = 1, . . . , N ′U (N ′X and N ′U are in general lower than
NX and NU , see supplementary material).

These data matrices are passed as input to the algo-
rithms for the estimation of TE and dMI rates, whose
pseudo-codes and codes are provided in the supplemen-
tary material. Estimation of the TE rate and of the
dMI rate is performed by first expanding (6) and (7)
in differential entropy terms, to obtain the equations
ṪY→X = λXTY→X and İX−;Y − = λUIX−;Y − , where

TY→X = Hpu(X−xi
, Y −xi

)−H(X−xi
, Y −xi

)+H(X−xi
)−Hpu(X−xi

)
(8)

IX−;Y − = H(X−ui
) +H(Y −ui

)−H(X−ui
, Y −ui

); (9)

the notations H(·) and Hpu
(·) refer to ’standard’ differ-

ential entropy where expectation is taken over the same
probability distribution for which the log-likelihood is
estimated (e.g., H(X−xi

) = −Epx
[ln px(X−xi

)]), and to
’cross-entropy’ where the two distributions differ (e.g.,
Hpu(X−xi

) = −Epx [ln pu(X−xi
)]) [18]. Then, each entropy

term is estimated using the well-known Kozachenko-
Leonenko (KL) method [20]. Starting from N realiza-
tions of a generic d-dimensional variable W forming the
data matrix W ∈ R(N×d), this method estimates the dif-
ferential entropy H(W ) = −Epw [ln pw(w)] as:

Ĥ(W ) = ln(N−1)−ψ(k)+ln cd+
d

N

N∑
i=1

ln εwi,k,W (10)

where ψ(·) is the digamma function, cd is the volume of
the d-dimensional unit ball under a given norm (cd = 1
for the maximum norm used in this work), and εwi,k,W is
twice the distance between the ith realization of W and
its kth nearest neighbor taken from W. To estimate a

cross-entropy term Hpv
(W ) = −Epw

[ln pv(w)] from two

data matrices W ∈ R(N×d) and V ∈ R(M×d), eq. (10) is
modified as

Ĥpv (W ) = ln(M)−ψ(k) + ln cd +
d

N

N∑
i=1

ln εwi,k,V (11)

where εwi,k,V is twice the distance between the vector
wi ∈W and its kth nearest neighbor taken from V.

The formulations of the differential entropy and cross-
entropy are exploited to compute the four entropy terms
composing the TE in (8) and the three entropy terms
composing the dMI in (9), using from time to time the
data matrices resulting from history embedding in place
of the generic matrices W and V. While a naive estima-
tor would fix the parameter k and use (10) and (11) for

each entropy term composing ṪY→X and İX−,Y − , here
we adopt the bias compensation strategies proposed in
[18, 22], whereby the number of neighbors k is changed
at each data sample in order to use the same range of dis-
tances in spaces of different dimensions and ultimately
reduce the bias in the estimation of sums of entropies.
The two strategies are implemented in Algorithm 1 and
Algorithm 2 described in the supplementary material.
Both algorithms start with a fixed parameter kglobal that
will be the minimum number of nearest neighbors in any
search space. At the ith iteration, corresponding to a
realization wi of the data matrix W, the algorithms per-
form both neighbor searches whereby k is fixed and the
distance εwi,k,W between wi and its kth nearest neigh-
bor within W (or within a different data matrix V in
case of cross-entropy estimation) is computed, and range
searches whereby the number of neighbors kwi,W of wi

found inside W (or inside V in case of cross-entropy) is
counted. Applying (8) and (9) with entropy and cross-
entropy as in (10) and (11) where the role of wi is taken
by X l

xi
, J l

xi
, X l

ui
, Y l

ui
or J l

ui
, leads finally to estimate the

TE rate as the output of Algorithm 1 [18], and the dMI
rate as the output of Algorithm 2 [22], as follows:

ṪY→X =
λX
N ′X

N ′X∑
i=1

ψ(kXl
xi

,Xl
u
)− ψ(kXl

xi
,Xl

x
) + ψ(kJl

xi
,Jl

x
)− ψ(kJl

xi
,Jl

u
) + l ln

εXl
xi

,k
Xl

xi
,Xl

x
,Xl

x
· ε2Jl

xi
,k

Jl
xi

,Jl
x
,Jl

x

εXl
xi

,k
Xl

xi
,Xl

u
,Xl

u
· ε2

Jl
xi

,k
Jl
xi

,Jl
u
,Jl

u

, (12)

İX−;Y − = λU
[
ψ(kglobal) + ln(N ′U − 1)− 1

N ′U

N ′U∑
i=1

(
ψ(kXl

ui
,Xl

u
) + ψ(kY l

ui
,Yl

u
)
)]
. (13)

III. VALIDATION ON SIMULATED SPIKE
TRAINS

This Section reports the application of the proposed
analysis framework on synthetic spike trains simulated

under controlled conditions of firing and synchrony. Two
different simulation scenarios are designed to reproduce
the spiking dynamics of uncoupled processes and of cou-
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pled processes with different direction and intensity of in-
teraction. In both simulations, the continuous-time mea-
sures of dMI rate and TE rate defined in Sect. II B and
estimated as reported in Sect. II C are compared with
the discrete-time estimates of the same measures; the
latter are obtained dividing the temporal axis into time
bins, building the discrete-time process that counts the
number of spikes falling into each time bin, and applying
Eqs. (3) and (4) to the resulting sequences of natural
numbers.

Both simulations are relevant to Poisson spike trains
with mean firing rate λ = 1 spike/s. The first scenario
considers pairs of independent Poisson trains X and Y ,
for which the ground truth value of the overall dynamic
information exchanged between the processes is zero
(İX−;Y − = ṪX→Y = ṪY→X = 0). Process realizations
are generated with variable duration, to simulate a num-
ber of target events NX = NY ∈ {100, 300, 500, 1000}
spikes. The second scenario examines coupled Poisson
spike trains which can be coupled unidirectionally or
without a preferential direction of interaction. This is
achieved generating a master process X as a Poisson
spike train, and a driven process Y such that, for each
spike occurring at time xi in X, a spike in Y is placed
at the time point yi = xi + τ + ui, where τ is a constant
time delay and ui is a random time jitter sampled from
the uniform distribution U(−δ, δ). With this setting, the
parameter δ is inversely related to the coupling between
the two trains, and changing the delay τ it is possible
to achieve different coupling configurations: τ = 0 cor-
responds to absence of a preferential coupling direction,
while τ < 0 and τ > 0 determine unidirectional coupling,
respectively from Y to X and from X to Y . Here we in-
vestigate the behavior of the dMI and TE rates when
τ = aδ, with a ∈ {−1,−0.5, 0, 0.5, 1}, and reproducing
conditions from very strong coupling (δ ≈ msec) to very
weak coupling (δ ≈ s).

In all simulations, the continuous time estimator is im-
plemented choosing a number of arbitrary time points
for entropy estimation equal to the number of simulated
spikes NU = NX = NY , and drawing such points from
the uniform distribution U(0, T ); the length of the history
embedding and the initial parameter for nearest neighbor
analysis were set as l = 1 and kglobal = 5. The discrete-
time estimator is implemented using combinations of the
time bin width and embedding length set to cover the
average duration of the inter-spike intervals (∆t · l = 1
s, ∆t = 0.1 s). Further evaluation of the dependence
of the dMI and TE rates on the analysis parameters are
reported in the supplementary material (Figs. S1, S2).

In each simulation, the ability of the continuous and
discrete-time estimators to reveal the absence or presence
of a connection is tested assessing the statistical signifi-
cance of the estimated dMI and TE values. To this end,
for any given measure, the value estimated for the pair of
simulated spike trains is compared with the distribution
of values of the same measure obtained from 100 pairs
of surrogate spike trains generated under the null hy-

pothesis of uncoupling. Surrogate trains were produced
using the JOint DIstribution of successive inter-event in-
tervals (JODI) algorithm [23], which retains the ampli-
tude distribution and approximates the auto-correlation
of the inter-spike intervals of the two original trains while
destroying any coupling between them. According to a
one-tailed hypothesis test with 5% significance, the inves-
tigated measure (ṪY→X , ṪX→Y , or İX−,Y −) is deemed as
statistically significant if its value on the original trains
exceeds the 95th percentile of its distribution on surro-
gates.

The comparison between the performances of
continuous- and discrete-time estimators on independent
processes is illustrated in Fig. 3. For each measure, the
performance can be inferred in terms of bias (i.e, the
deviation of the average value across realizations from
the expected zero level) and variance across realizations.
The discrete-time estimates of both TE and dMI exhibit
a substantial bias for all the reported data lengths, while
the continuous-time estimates are always very close
to the true value. The variance is also lower for the
continuous-time estimates, especially as regards the dMI
measure. As expected, both estimators improve their
performance with increasing the data length. As regards
the statistical significance of the detected interactions,
both estimators rejected the null hypothesis of uncou-
pling in a limited number of realizations, compatible
with the nominal rate of false positives.

In Fig. 4 the two estimators are compared for pairs
of spike trains of length T = 300 s, interacting along the
direction X → Y (τ = δ) with varying coupling strength
modulated inversely by the parameter δ. The progressive
de-coupling of the two trains obtained increasing δ is re-
flected by the TE rate from X to Y estimated in continu-
ous time, while the discrete-time estimates exhibit a less
interpretable non-monotonic behavior (Fig. 4a). Along
the uncoupled direction, the discrete-time TE rates de-
viate substantially from the expected zero level and dis-
play a bias dependent on δ, while the continuous-time
estimates are consistently null (Fig. 4b). The MI rate
decreases with δ for both estimators, but the discrete-
time estimates seem to be again biased as they stabilize
at ∼ 8 nats/s when δ reaches the highest values corre-
sponding to maximum de-coupling (Fig. 4c).

Fig. 5 provides an exhaustive description of the sce-
nario with coupled Poisson spike trains investigated by
the proposed continuous-time estimator. Simulations of
length T = 300 s are iterated to reproduce conditions
of strong (τ = ±δ) and intermediate (τ = ±0.5δ) cou-
pling from X to Y (τ > 0) and from Y to X (τ < 0), as
well as bidirectional coupling (τ = 0), each with coupling
strength decreasing progressively as the de-coupling pa-
rameter increases from δ = 0.005 to δ = 2. The overall
dynamic information exchanged between the two trains
(İX;Y , Fig. 5a) is insensitive to the coupling direction,
as seen by the overlap of its average values for τ = ±δ
and for τ = ±0.5δ, and reflects the coupling strength,
as seen by its monotonic decrease observed at increasing



7

a)

0

0.5

1

1.5

0

0.5

1

1.5

 100  300  500 1000

# of target events

0

5

10

15

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

b)

7 4 5 6

1 4 5 4

2 7 65

4 2 4 5

9 4 11 5

8 5 6 8

T
  

  
  

[n
at

s/
s]

X
Y

T
   

  
 

[n
at

s/
s]

Y
X

I   
   

 
[n

at
s/

s]
Y

X
;

 100  300  500 1000

# of target events

FIG. 3. Comparison between discrete-time (a, orange) and
continuous-time (b, blue) estimators of the TE and dMI rates
applied to independent Poisson spike trains. Plots depict the
mean (circles) and standard deviation (shades) of each mea-
sure, computed over 100 simulation runs as a function of the
spike train duration. The number of realizations detected as
statistically significant using JODI surrogates is reported for
each measure and duration.

ẟ [s]

0.5

1.5

2.5

T      YX

0

0.5

1

1.5

2

2.5

3

0
.0
0
5

0
.1

0.
3

0.
5

0.
7

0
.9 1
.1 1.
3

1
.5 2.
0

[nats/s]a)

0

1

2

3

T      
[nats/s]

XY

0
.0
0
5

0
.1

0.
3

0.
5

0.
7

0
.9 1
.1 1.
3

1
.5 2.
0

ẟ [s]

b) I      
[nats/s]

YX ;

0

5

10

15

20

25

0
.0
0
5

0
.1

0.
3

0.
5

0.
7

0
.9 1
.1 1.
3

1
.5 2.
0

ẟ [s]

c)

FIG. 4. Comparison between discrete-time (orange) and
continuous-time (blue) estimators of the TE and dMI rates
applied to interacting Poisson spike trains coupled from X to
Y . Plots depict the mean (circles) and standard deviation
(shades) of each measure, computed over 100 simulation runs
as a function of the de-coupling parameter δ.

δ. The TE rates along the two directions of interaction

between X and Y (Fig. 5b,c) exhibit symmetric trends,

with ṪY→X decreasing progressively and ṪX→Y increas-
ing progressively as the preferential coupling direction
shifts from Y → X (τ = −δ) to from X → Y (τ = δ).
Both TE rates decrease with increasing the de-coupling
parameter and start losing statistical significance for δ
higher than ' 0.9, becoming largely non-significant for
δ = 2; the analysis of surrogate data indicates also the
absence of directed interactions along the uncoupled di-
rection, as documented by the small rate of detection of
significant ṪY→X values when τ = δ and of significant
ṪY→X values when τ = −δ. Finally, the rate of dynamic
information shared by the process histories (İX−;Y − ,
Fig. 5d) decreases monotonically with δ and is almost
insensitive to τ ; the dMI rate remains high and statisti-
cally significant also when the coupling direction is not
unequivocal (τ = ±0.5δ) or not established (τ = 0), pro-
viding in these conditions higher detection rates than the
TE even when the coupling is weak (δ ≥ 1).

In sum, the reported simulations demonstrate the con-
sistency and accuracy of the continuous-time estimator
of the rate of dynamic information shared between two
spike train processes and of its dMI and TE components,
as well as its superiority over the standard discrete-time
estimation. Importantly, the TE rate estimator is able to
detect directed interactions even for weakly coupled and
short spike trains, and the dMI rate estimator is able to
detect undirected interactions in challenging conditions
of weak bidirectional coupling.

IV. APPLICATION

To test the usefulness of the presented framework in a
real-world scenario of interacting neural spike trains, we
considered the data from a public repository of in-vitro
cultures of dissociated cells grown on multi-electrode ar-
rays (MEAs) [24, 25]. In this experimental setting, neo-
cortical cells were harvested from the brains of rat em-
bryos and plated on glass culture wells; each culture was
obtained plating ∼ 50000 cells in a droplet instrumented
by a MEA with a grid of 8× 8 electrodes, in which each
electrode captures the spontaneous firing activity of ∼
100-1000 neurons [24]. This recording modality achieves
a mesoscale spatial description of the neural activity. A
similar mesoscale representation is obtained also in time,
due to the temporal binning of the spike times by the
sampling rate of the analog-to-digital (ADC) converter;
this temporal coarse graining does not detract in any way
the opportunity to use our continuous time measures, as
the spiking nature of the data remains intact.

Since the most prominent feature of the electrical ac-
tivity of high-density cortical cultures is their propensity
to synchronized firing [24, 26, 27], our analysis was fo-
cused on the phenomenon of network bursting, i.e. the
sporadic synchronous activity across electrodes. In the
analyzed preparation, such activity becomes visible after
about 10 days in-vitro (DIV) and develops until 30 DIV,
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FIG. 5. Continuous-time estimation the overall dynamic in-
formation shared between coupled Poisson spike trains (a) and
of its TE rate (b,c) and dMI rate (d) components. Plots de-
pict the distribution (mean ± SD) of each measure, computed
over 100 simulation runs as a function of the de-coupling pa-
rameter δ, for different values of the parameter τ determin-
ing the coupling direction. Bar plots report the number of
realizations for which the considered measure is detected as
statistically significant using JODI surrogates.

while in the beginning cells are electrically quiescent and
after 30 DIV they start to degenerate [24]. Accordingly,
we considered 25 cultures analyzed through three stages
of maturation, labeled as early (∼ 7 DIV), developing (∼

15 DIV) and mature (∼ 25 DIV). For each culture and
stage, the analysis was performed as depicted in Fig. 6
and explained in the following.

First, bursts were detected at the level of single elec-
trode through temporal clustering (Fig. 6a), according
to an empirical criterion whereby sequences of at least
four consecutive spikes were grouped into a burst if all
ISIs are lower than a threshold empirically set as the
minimum between 1/(4λ) and 0.1 s; the minimal ISI was
set adaptively, with the value 0.1 s empirically accounting
for a worst-case scenario of the timing of axonal propaga-
tion among neurons [28]). Afterwards, the timing of each
burst was identified as the center of mass of the temporal
distribution of the spikes within the burst. We chose to
perform this coarse-graining procedure as setting a tem-
poral mesoscale is in this case more representative of a
continuous process since the individual spikes are binned
by the temporal resolution of the ADC converter. With-
out this procedure, our analysis performed at the level of
individual spikes did not yield significant dMI or TE val-
ues; this can be explained considering that spikes outside
the bursts are largely stochastic and unrelated to connec-
tivity, while spikes within a burst represent a variety of
complex phenomena which cannot be fully disentangled
by MEA electrodes each sampling many neurons [28],
even if complex features are otherwise visible [29, 30].

Consequently, the burst spike trains obtained by tem-
poral clustering (see Fig. 6a) were analyzed in pairs es-
timating the proposed information-theoretic measures in
continuous time to get a symmetric dMI rate matrix and
an asymmetric TE rate matrix (Fig. 6b). Estimation
was performed setting NU = NX and kglobal = 5 as in
the simulations, and using l = 1 intervals for history
embedding; while the choice of the dimension of embed-
dings remains crucial in real data analysis, here the in-
vestigation of longer uniform embeddings (l = 2, l = 3)
did not lead to evident differences (results not shown
for brevity). The statistical significance of each mea-
sure (dMI or TE) estimated from a pair of spike trains
was assessed generating 100 JODI surrogate trains, us-
ing inverse percentiles to derive the probability that the
surrogate measure is larger than the original measure,
and comparing this probability with a critical significance
level set to α = 0.01/M (M = 59 is the network size);
this achieved a Bonferroni correction for the inference of
non-isolated network nodes (i.e., for each node, there is a
0.01 chance that it is connected to at least another node
under the null hypothesis of disconnection). Statistical
testing provided a threshold to validate connections in
the dMI and TE rate matrices; after binarization of the
directed dMI network and of the directed TE network
(Fig. 6c), we computed the percentages of active nodes
and of significant links in each network. Moreover we
studied the distributions of the weighted degree of dMI
and TE rates (Fig. 6d), as well as the distributions of the
weighted in-degree and out-degree of the TE rate (Fig.
6e), in terms of statistical comparison (paired Wilcoxon
signed-rank test) and of histogram representation (nor-
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stage (25 days in vitro). (a) Raster plot of the recorded spike trains (dots) for an exemplary portion of the recording,
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the undirected (dMI) and directed (TE) interaction measures computed between each pair of trains for the whole-duration
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active nodes.

malized entropy).

The results shown for the culture in Fig. 6 generalize to
the 25 analyzed cultures, as depicted in the network rep-
resentation of Fig. 7 for two arbitrarily-chosen but rep-
resentative cultures studies across stages of maturation,
as well as in the complete results reported in the sup-
plementary material. We found that, in line with previ-
ous observations showing increasing network activity and
connectivity with the age of the cultures [28, 29, 31], the
number of non-isolated nodes and of significant network
links increased moving from the early to the develop-
ing and mature stages. The progression across the three
stages was highlighted clearly using dMI (Fig. 7a), while
TE revealed rich network structures eliciting nodes act-
ing as sources and sinks of information flow in the mature
stage (Fig. 7b); the two measures detected a comparable
percentage of active nodes, whereas the network connec-
tivity was higher using dMI than TE (Fig. 7 and Fig.
S3a,b). Moving from the early to the developing and
mature stages, the weighted node degree became higher
and more dispersed across nodes (increasing median and
entropy of the degree distribution, Fig. S3c,d, Fig. S4);
upon maturation, the weighted degree derived from dMI
was stronger (higher median) and more dispersed across
nodes (higher entropy) than the degree derived from TE
(Fig. 6d and Figs. S3c,e, Fig. S4a,b). The distributions
of the weighted in-degree and out-degree of TE rate be-
came also more skewed and with higher entropy through
the maturation process, but did not differ significantly
from each other (Fig. S3d,f and Fig. S4c,d).

These results document that both the dMI rate and the

TE rate can detect the expected larger involvement of the
neuronal units in the establishment of networked func-
tional interactions occurring as the neural cultures spon-
taneously develop their anatomical connections. Mirror-
ing our simulations, the directed interactions captured
by dMI are generally of higher intensity than the undi-
rected interactions captured by TE. The dMI was bet-
ter able to describe the gradually raising heterogeneity
of the nodal strength also observed in previous stud-
ies for these spontaneously growing neuronal networks
[29, 31]. In the mature stage however, both dMI and TE
highlighted the emergent structural organization of the
functional connections between neurons, showing fatter
tailed node degree distributions with the appearance of
groups of high-strength nodes. The emergence with mat-
uration of a significant proportion of highly connected
nodes (hubs) was revealed also in a previous extensive
analysis of the firing activity of these cultures, where it
was related to the small-world topology of the underlying
functional networks [29]. Small-world networks have an
architecture which supports efficient information transfer
[32], and the increasing appearance of highly connected
nodes in older cultures suggests that such hubs may play
a role in organizing the information transfer, possibly act-
ing as sources or sinks for the network activity. This hy-
pothesis is supported in our analysis by the heavy tailed
distributions of the in- and out-degree of the TE rate in
the mature cultures, where high degrees were observed
for a small but non-negligible number of nodes. Of note,
our analysis could not establish the prevalence of sinks or
sources of information transfer, as we found a high simi-
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FIG. 7. Undirected dMI networks (a) and directed TE networks (b) obtained through information-theoretic analysis of spike
trains from two neuronal cultures (rows) considered at different age (early, ∼ 7 DIV; developing, ∼ 15 DIV; mature, ∼ 25
DIV). Green intensity denotes edge strength (dMI or TE magnitude), node size is proportional to dMI degree in (a) and to TE
in-degree in (b), node color in maps TE out-degree in (b).

larity between the distributions of weighted in- and out-
degree of the TE rate. Such similarity may be explained
methodologically: with the rise of synchronized activity,
pairwise interactions tend to appear more bidirectional
due to the increasing influence of spurious effects (e.g.,
cascade, common driver) due to processes excluded from
the bivariate analysis [33, 34]. An extension of the TE
rate to multivariate spike trains [18] is recommended to
face this issue and explore more efficiently the topological
properties of large-scale and densely connected networks
like those emerging from the activity of these neuronal
cultures.

V. DISCUSSION

Although information-theoretic methods are widely
used for the analysis of multivariate time series in com-
putational neuroscience and physiology [13, 14, 19, 35],
their application to spike train data is far less popular.
The main reason for this is methodological, being related
to the difficulty of a reliable implementation in contin-
uous time of methods intrinsically defined for discrete-
time processes like MI, TE, and many other measures
of information dynamics. In fact, while a continuous-
time formalism can be avoided in the study of processes
which are intrinsically occurring in discrete time (e.g.,
cardiovascular variability series [14, 35]) or can be rea-
sonably represented through sampling techniques (e.g.,
electromagnetic neural signals [36, 37]), it becomes of ut-
most importance when the information carried by the
analyzed process relies on its continuous-time nature, as
happens for point processes and for neural spike trains
in particular [18]. In these processes, the analysis based

on time discretization - though being common [38–40] -
is impractical due to issues of estimation bias, data re-
quirement and inability to capture interactions deployed
over multiple time scales [18]. These issues are observed
also in our simulations, where we confirm the high bias
and strong dependence on data size (number of spikes re-
quired) and analysis parameters (temporal bin size and
history embedding length) of the discrete-time estimator
of the TE rate, and find similar issues for the dMI rate.
On the contrary, the adoption of a continuous time for-
malism implemented with an accurate nearest-neighbor
estimator, developed as in [18] for the TE rate and newly
designed for the dMI rate, leads to overcome all short-
comings of the traditional estimates, yielding low-bias,
data-efficient and essentially parameter-free measures of
directed information flow and neural synchrony. In addi-
tion, being based on the non-parametric estimation of in-
formation measures, our approach is model-free and thus
inherently nonlinear. This stands in contrast to most
of the methods explicitly devised to capture directed in-
teractions for point processes, which make use of linear
parametric models [8, 12].

Our developments build on recent work offering for
the first time the possibility to assess in continuous time
the directed transfer of information (TE) between event-
based data [18]. This approach, bringing the computa-
tional reliability discussed above, opens unique possibil-
ities for the description of brain activities in terms of in-
formation flow when such flow is encoded by neural spikes
[1]. Furthermore, following a dominant trend in neuro-
science whereby the degree of concurrent firing of neural
spike trains is assessed to quantify the general concept
of neural synchrony [4], we frame into our continuous-
time information-theoretic analysis also the evaluation
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of a symmetric measure of correlation between pairs of
trains. Indeed, besides computing the TE, we define and
quantify also the dMI as a dynamic form of mutual infor-
mation. This measure addresses symmetric interactions
that are not captured by the TE, providing the com-
plementary information needed to evaluate thoroughly
the whole dynamic interaction between two processes
(i.e., the interaction involving different temporal states
in the processes, see Fig. 1). Importantly, the undi-
rected dynamic information provided by dMI turns out
to be a useful complement to the directional information
provided by the TE. In our simulations, we found that
dMI can capture better than TE conditions of weakly
coupled processes in which the coupling direction does
not emerge clearly. These conditions are encountered
often in the analysis of neural spike trains, where the
synchronous firing of different neural units is not clearly
directional and is not consistent in time (e.g., due to the
complex properties of neuronal firing and/or to inaccu-
racy of spike sorting). In the analysis of real-data the
dMI rate captured better than the TE rate, in terms of
properties of the weighted node degree distribution, the
development of the neuronal cultures, showing how net-
work structures containing some densely connected nodes
are formed upon maturation.

In summary, the proposed information-theoretic
framework provides principled measures to assess pair-
wise interactions in point process data in a more robust

and flexible way than the discrete-time or parametric ap-
proaches previously proposed, and has thus potential to
provide new physiological insight into the functional cou-
pling among neural spike trains. To further improve such
potential, future work is envisaged which extends the
bivariate approach and allows embracing a fully multi-
variate perspective on the analysis of spike train data.
The definition of a whole set of measures, hierarchically
organized to quantify self-interactions in a spike train
(e.g., via information storage [13]) as well as pairwise
and higher-order interactions among multiple spike trains
(e.g., via conditional TE or MI measures [19, 22], or
via synergy/redundancy measures [14, 41]), will offer the
possibility to study generalized network structures where
interactions of different orders are represented [42]. The
interest for these enhanced representations of spike train
networks extends to other modalities for brain monitor-
ing (e.g. fMRI [43, 44]), and reaches far beyond neuro-
science encompassing research fields as diverse as physi-
ology, social systems, seismology and finance [45–48].
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