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Abstract

Various semantics for studying the square of opposition and the hexagon of opposition have been proposed recently.

We interpret sentences by imprecise (set-valued) probability assessments on a finite sequence of conditional events.

We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of

the square and of the hexagon in terms of acceptability. Then, we show how to construct probabilistic versions of

the square and of the hexagon of opposition by forming suitable tripartitions of the set of all coherent assessments on

a finite sequence of conditional events. Finally, as an application, we present new versions of the square and of the

hexagon involving generalized quantifiers.
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1. Introduction

There is a long history of investigations on the square of opposition spanning over two millennia ([5, 49]). A

square of opposition represents logical key relations among basic (syllogistic) sentence types in a diagrammatic way.

The basic sentence types, traditionally denoted by A (universal affirmative: “Every S is P”), E (universal negative:

“No S is P”), I (particular affirmative: “Some S is P”), and O (particular negative: “Some S is not P”), constitute

the corners of the square. The diagonals and the sides of the square of opposition are formed by the following

logical relations among the basic sentence types: A and E are contraries (i.e., they cannot both be true), I and O are

subcontraries (i.e., they cannot both be false), A and O as well as E and I are contradictories (i.e., they cannot both be

true and they cannot both be false), I is a subaltern of A and O is a subaltern of E (i.e., A entails I and E entails O); for

a visual representation see Figure 1 below, and cover the probabilities for seeing the traditional square of opposition).

In the early 1950ies, the square of opposition was expanded to the hexagon of opposition, by adding the sentence

U : A _ E at the top and the sentence Y : I ^ O at the bottom of the square (see Figure 2). Recently, the square

of opposition as well as the hexagon of opposition and its extensions have been investigated from various semantic

points of view (see, e.g., [4, 5, 14, 24, 25, 26, 34, 45, 46, 47]). In this paper we present a probabilistic analysis of the

square of opposition under coherence, introduce the hexagon of opposition under coherence, and study the semantics

of basic key relations among quantified statements.

After preliminary notions (Section 2), we introduce, based on g-coherence, a (probabilistic) notion of sentences

and their acceptability and show how to construct squares of opposition under coherence from suitable tripartitions

(Section 3). Then, we present an application of our square to the study of generalized quantifiers (Section 4). In

Section 5 we introduce the hexagon of opposition under coherence. Section 6 concludes the paper by some remarks

on future work.

✩This is a substantially extended version of a paper ([58]) presented at the 8th International Conference Soft Methods in Probability and

Statistics 2016 (SMPS 2016) held in Rome in September 12–14, 2016.
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A: Every S is P

ppP|S q “ 1

ppP|S q ą 0

I: Some S is P

ppP|S q ă 1

O: Some S is not P

ppP|S q “ 0
E: No S is P

subalterns subalternscontradictories

contraries

subcontraries

Figure 1: Traditional and probabilistic square of opposition defined on the four classical sentence types A, E, I,O and their relations in between.

The probabilistic semantics of the basic sentence types involving the predicate term P and the subject term S is interpreted by a suitable probability

assessment on the conditional event P|S (see Table 1). For the relations see Definition 9.

2. Preliminary Notions

The coherence-based approach to probability and to other uncertain measures has been adopted by many authors

(see, e.g., [6, 8, 12, 13, 17, 18, 20, 19, 21, 22, 30, 32, 37, 38, 39, 50, 54, 55, 57]); we therefore recall only selected key

features of coherence and its generalizations in this section.

An event E is a two-valued logical entity which can be either true or false. The indicator of E is a two-valued numerical

quantity which is 1, or 0, according to whether the event E is true, or false, respectively. We use the same symbols for

events and their indicators. We denote by J the sure event (i.e., tautology or logical truth) and by K the impossible

event (i.e., contradiction or logical falsehood). Moreover, given two events E and H, we denote by E ^ H (resp.,

E _ H) conjunction (resp., disjunction). To simplify notation, we will use the product EH to denote the conjunction

E ^ H, which also denotes the indicator of E ^ H. We denote by sE the negation of E.

Given two events E and H, with H ‰ K, the conditional event E|H is defined as a three-valued logical entity which

is true if EH (i.e., E ^ H) is true, false if sEH is true, and indetermined (void) if H is false ([23, p. 307]). In

terms of the betting metaphor, if you assess ppE|Hq “ p, then you are willing to pay (resp., to receive) an amount

p and to receive (resp., to pay) 1, or 0, or p, according to whether EH is true, or sEH is true, or sH is true (the bet

is called off), respectively. For defining coherence, consider a real-valued function p : K Ñ R, where K is an

arbitrary (possibly not finite) family of conditional events. Consider a finite sequence F “ pE1|H1, . . . , En|Hnq, with

Ei|Hi P K , i “ 1, . . . , n, and the vector P “ pp1, . . . , pnq, where pi “ ppEi|Hiq , i “ 1, . . . , n. We denote byHn the

disjunction H1_¨ ¨ ¨_Hn. With the pair pF ,P) we associate the random gainG “
řn

i“1 siHipEi´piq, where s1, . . . , sn

are n arbitrary real numbers. G represents the net gain of n transactions, where for each transaction its meaning is

specified by the sign of si (plus for buying or minus for selling) and its scaling is specified by the magnitude of si.

Denoting by GHn
the set of values of G restricted toHn, we recall

Definition 1. The function p defined onK is called coherent if and only if, for every integer n, for every sequence F

of n conditional events in K and for every s1, . . . , sn, it holds that: min GHn
ď 0 ď max GHn

.
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A: Every S is P

ppP|S q “ 1

E: No S is P

ppP|S q “ 0

U : A_ E

ppP|S q “ 1 or ppP|S q “ 0

I: Some S is P

ppP|S q ą 0

O: Some S is not P

ppP|S q ă 1

Y : I ^ O

0 ă ppP|S q ă 1

Figure 2: Probabilistic hexagon of opposition on the six sentence types A, E, I,O,U,Y , where A, E, I,O is a square of opposition, U “ A _ E

and Y “ I ^ O. The arrows indicate subalternation, dashed lines indicate contraries, and dotted lines indicate sub-contraries. Contradictories are

indicated by combined dotted and dashed lines.
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We say that p is incoherent if and only if p is not coherent.

As shown by Definition 1, a probability assessment is coherent if and only if, in any finite combination of n bets, it

does not happen that the values in the set GHn
are all positive, or all negative (no Dutch Book). In particular, coherence

of ppE|Hq requires that ppE|Hq P r0, 1s for every E|H P K . If p onK is coherent, we call it a conditional probability

on K (see, e.g., [2, 20, 21, 61]). Notice that, if p is coherent, then p also satisfies all the well known properties of

finitely additive conditional probability (while the converse does not hold; see, e.g., [21, Example 13] or [27, Example

8]). Moreover, coherence can be characterized in terms of proper scoring rules ([9, 35]), which can be related also to

the notion of entropy in information theory ([42, 43]).

In what follows F refers to a finite sequence of conditional events, pE1|H1, . . . , En|Hnq and F “ tE j|H j, j “ 1, . . . , nu
denotes the family of events in F . Moreover, we denote by P a (precise) probability assessment P “ pp1, . . . , pnq
on F , where p j “ ppE j|H jq, j “ 1, . . . , n. Then, we say that a probability assessment P on F is “coherent” if and

only if the corresponding function p : F Ñ R, defined as ppE j|H jq “ p j, j “ 1, . . . , n, is coherent (see Definition 1).

As coherence requires that ppE j|H jq P r0, 1s, in what follows we will only consider probability assessment P on F

such that: P P r0, 1sn. Let Π denote the set of all coherent precise assessments on F . We recall that when there

are no logical relations among the events E1,H1, . . . , En,Hn involved in F , that is E1,H1, . . . , En,Hn are logically

independent, then the set Π associated with F is the whole unit hypercube r0, 1sn. If there are logical relations, then

the set Π could be a strict subset of r0, 1sn. As it is well known Π ‰ H; therefore,H ‰ Π Ď r0, 1sn.

Definition 2. An imprecise, or set-valued, probability assessment I on a sequence of n conditional events F is a

(possibly empty) set of precise probability assessments P on F .

Definition 2 states that an imprecise (probability) assessment I on a sequence of n conditional events F is just a

(possibly empty) subset of r0, 1sn ([31, 33, 34]). Of course, any n-dimensional rectangleI “ rα1, β1sˆ¨ ¨ ¨ˆrαn, βns Ď
r0, 1sn is an imprecise assessment on a sequence of n conditional events F “ pE1|H1, . . . , En|Hnq. Such an assess-

ment is usually denoted by the interval-valued probability assessment prα1, β1s, . . . , rαn, βnsq on F or by the lower and

upper probability constraints: α j ď ppE j|H jq ď β j, j “ 1, . . . , n. Moreover, By Definition 2 an imprecise assessment

could also be a subset of r0, 1sn which is not an n-dimensional rectangle. Then, in our approach, imprecise prob-

ability assessments are not merely interval-valued probability assessments. For instance, think about an agent (like

Pythagoras) who considers only rational numbers to evaluate the probability of an event E|H. Pythagoras’ evaluation

can be represented by the imprecise assessment I “ r0, 1s X Q on E|H. Moreover, a constraint like ppE|Hq ą 0

(resp., ppE|Hq “ t0u Y t1u) can be represented by the imprecise assessment I “s0, 1s (resp., I “ t0, 1u) on E|H.

A generalized notion of coherence for interval-valued probability assessments was introduced in [28], which became

known as “g-coherence” ([6]). We recall that, by replacing each upper probability bound PpE|Hq ď β by the lower

bound PpsE|Hq ě 1´β, a given interval-valued conditional probability assessments can be represented as a conditional

lower probability assessment. Moreovoer, it can be shown that ([7, 29]) an interval-valued conditional probability as-

sessments assessment is g-coherent if and only if the corresponding conditional lower probability “avoids uniform

loss” (“avoids sure loss” in the unconditional case) ([64, 65, 66]). In this sense, the notion of g-coherence for interval-

valued conditional probability assessments coincides with the property of “avoiding uniform loss” (AUL) for lower

conditional probabilities. In this context upper and lower probabilities are defined as special cases of upper and lower

previsions. For surveys on imprecise probability and lower previsions see [1, 44, 63]).

We now recall the notions of g-coherence and total coherence in the general case of imprecise (in the sense of set-

valued) probability assessments ([34]).

Definition 3 (g-coherence). Given a sequence of n conditional events F . An imprecise assessment I Ď r0, 1sn on F

is g-coherent if and only if there exists a coherent precise assessment P on F such that P P I.

Definition 4 (t-coherence). An imprecise assessmentI onF is totally coherent (t-coherent) if and only if the following

two conditions are satisfied: (i) I is non-empty; (ii) if P P I, then P is a coherent precise assessment on F .

Definition 5 (t-coherent part). Let Π be the set of all coherent assessments on a sequence of n conditional events F .

For each subset I Ď r0, 1sn, the t-coherent part of I, denoted by πpIq, is defined as πpIq “ ΠX I.

Of course, πpIq Ď I. Moreover, if πpIq ‰ H, then I is g-coherent and πpIq is t-coherent.
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3. From Imprecise Assessments to the Square of Opposition

In this section we consider imprecise assessments on a given sequence F of n conditional events. In our approach,

a sentence s is a pair pF ,Iq, where I Ď r0, 1sn is an imprecise assessment on F . Given an imprecise assessment I

we denote by sI the complementary imprecise assessment of I, i.e., sI “ r0, 1snzI.

We introduce the following equivalence relation under t-coherence:

Definition 6. Given two sentences s1 : pF ,I1q and s2 : pF ,I2q, s1 and s2 are equivalent, denoted by s1 “ s2, if and

only if πpI1q “ πpI2q.

Definition 7. Given three sentences s : pF ,Iq, s1 : pF ,I1q, and s2 : pF ,I2q. We define s1 ^ s2 : pF ,I1 X I2q
(conjunction); s1 _ s2 : pF ,I1 Y I2q (disjunction); ss : pF , sIq (negation).

Remark 1. As the basic operations among sentences are defined by set-theoretical operations, they inherit the cor-

responding properties (including associativity, commutativity, De Morgan’s law, etc.). Moreover, given two sentences

s1 : pF ,I1q and s2 : pF ,I2q, as πpI1 X I2q “ πpI1q X πpI2q, by setting s˚
1

: pF , πpI1qq, s˚
2

: pF , πpI2qq and

ps1^ s2q
˚ : pF , πpI1XI2qq, it follows that ps1^ s2q “ ps1^ s2q

˚ “ s˚
1
^ s˚

2
. Likewise, s1_ s2 “ ps1_ s2q

˚ “ s˚
1
_ s˚

2
.

As we interpret the basic sentence types involved in the square of opposition by imprecise probability assessments

on sequences of conditional events, we will introduce the following notion of acceptability, which serves as a semantic

bridge between basic sentence types and imprecise assessments:

Definition 8. A sentence s : pF ,Iq is (resp., is not) acceptable if and only if the assessment I on F is (resp., is not)

g-coherent, i.e., πpIq is not (resp., is) empty.

Remark 2. If s1 ^ s2 is acceptable, then s1 is acceptable and s2 is acceptable. However, the converse does not hold.

Indeed, given a conditional event E|H, with E ^ H ‰ K and E ^ H ‰ H, as the set of all coherent assessments on

E|H is Π “ r0, 1s, we notice that s1 : pE|H, t1uq is acceptable and that s2 : pE|Hq, t0uq is acceptable. However,

s1 ^ s2 : pE|H,Hq is not acceptable because πpHq “ H.

Definition 9. Given two sentences s1 : pF ,I1q and s2 : pF ,I2q, we say: s1 and s2 are contraries if and only if the

sentence s1 ^ s2 is not acceptable;2 s1 and s2 are subcontraries if and only if ss1 ^ ss2 is not acceptable; s1 and s2 are

contradictories if and only if s1 and s2 are both contraries and subcontraries; s2 is a subaltern of s1 if and only if the

sentence s1 ^ ss2 is not acceptable.

Remark 3. By Remark 1, we observe that two sentences s1 and s2 are contraries if and only if πpI1XI2q “ πpI1qX
πpI2q “ H. Moreover, two sentences s1 and s2 are subcontraries if and only if πpsI1 X sI2q “ πpsI1q X πpsI2q “ H,

that is (by De Morgan’s law) if and only if πpI1q Y πpI2q “ Π. Then, two sentences s1 and s2 are contradictories

if and only if πpI1q X πpI2q “ H and πpI1q Y πpI2q “ Π, that is if and only if s2 “ ss1 (and, of course, s1 “ ss2).

Given two sentences s1, s2, we also observe that s2 is a subaltern of s1 if and only if ΠX pI1 X sI2q “ H, which also

amounts to say that Π X I1 Ď Π X I2, that is if and only if πpI1q Ď πpI2q. For instance, s1 _ s2 is a subaltern of

s1 and also of s2; similarly, s1 is a subaltern of s1 ^ s2, and s2 is a subaltern of s1 ^ s2. Furthermore, if s1 is not

acceptable, that is πpI1q “ H, then any sentence s2 is a subaltern of s1. For example, the sentence s1 : pE|sE, t1uq is

not acceptable because Π “ t0u and then any sentence s2 : pE|sE,Iq, where I Ď r0, 1s, is a subaltern of s1.

Based on the relations given in Definition 9 we define a square of opposition as follows.

Definition 10. Let sk : pF ,Ikq, k “ 1, 2, 3, 4, be four sentences. We call the ordered quadruple ps1, s2, s3, s4q a square

of opposition (under coherence) if and only if the following relations among the four sentences hold:

(a) s1 and s2 are contraries, i.e., πpI1q X πpI2q “ H;

(b) s3 and s4 are subcontraries, i.e., πpI3q Y πpI4q “ Π;

2Some definitions of contrariety additionally require that “s1 and s2 can both be acceptable”. For reasons stated in [34], we omit this additional

requirement. Similarly, mutatis mutandis, in our definition of subcontrariety.
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(c) s1 and s4 are contradictories, i.e., πpI1q X πpI4q “ H and πpI1q Y πpI4q “ Π;

s2 and s3 are contradictories, i.e., πpI2q X πpI3q “ H and πpI2q Y πpI3q “ Π;

(d) s3 is a subaltern of s1, i.e., πpI1q Ď πpI3q;
s4 is a subaltern of s2, i.e., πpI2q Ď πpI4q.

Figure 3 shows the square of opposition based on Definition 10.

s1

s3 s4

s2

subalterns subalternscontradictories

contraries

subcontraries

Figure 3: Probabilistic square of opposition defined by the quadruple ps1 , s2 , s3, s4q.

Remark 4. Based on Definition 10, we observe that in order to verify if a quadruple of sentences ps1, s2, s3, s4q,
where sk : pF ,Ikq, k “ 1, 2, 3, 4, is a square of opposition, it is necessary and sufficient to check that the quadruple

ps˚
1
, s˚

2
, s˚

3
, s˚

4
q, where s˚

k
: pF ,I˚

k
q, I˚

k
“ πpIkq, k “ 1, 2, 3, 4, is a square of opposition. Then, we observe that two

squares ps1, s2, s3, s4q and ps˚
1
, s˚

2
, s˚

3
, s˚

4
q coincide when πpIkq “ πpI

˚
k
q for each k.

Remark 5. Based on Definition 10, we observe the following equivalence between two squares: ps1, s2, s3, s4q is a

square of opposition if and only if ps2, s1, s4, s3q is a square of opposition. However, we cannot say in general that

a generic permutation psi1 , si2 , si3 , si4q of a square of opposition ps1, s2, s3, s4q is also a square of opposition. For

instance, as subalternation is asymmetric, we cannot say in general that ps3, s4, s1, s2q is a square of opposition, if

ps1, s2, s3, s4q is a square of opposition.

Definition 11. An (ordered) tripartition of a set S is a triple pD1,D2,D3q, where D1, D2, and D3 are subsets of S,

such that the following conditions are satisfied: (i)DiXD j “ H, i ‰ j for all i, j “ 1, 2, 3; (ii);D1YD2YD3 “ S.

Theorem 1. Let any sequence of n conditional eventsF and a quadruple ps1, s2, s3, s4q of sentences, with sk : pF ,Ikq,
k “ 1, 2, 3, 4, be given. Define D1 “ πpI1q, D2 “ πpI2q, and D3 “ πpI3q X πpI4q. Then, the quadruple

ps1, s2, s3, s4q is a square of opposition if and only if pD1,D2,D3q is a tripartition of (the non-empty set) Π such that:

πpI3q “ D1 YD3, πpI4q “ D2 YD3.
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Proof. pñq. We assume that D1 “ πpI1q, D2 “ πpI2q, and D3 “ πpI3q X πpI4q. Of course,Dk Ď Π, k “ 1, 2, 3.

We now prove that: piq D1 XD2 “ H; piiq D3 “ ΠzpD1 YD2q. piq From condition (a) in Definition 10, as s1 and

s2 are contraries, it follows that D1 XD2 “ H. piiq We first prove that D3 Ď ΠzpD1 YD2q. This trivially follows

when D3 “ H. If D3 ‰ H, then let x P D3 “ πpI3q X πpI4q. As x P πpI3q, from condition (c) in Definition 10,

we obtain x R πpI2q. Likewise, as x P πpI4q, from condition (c) in Definition 10, we obtain x R πpI1q. Then,

x P Π and x R pπpI1q Y πpI2qq, that is x P ΠzpD1 YD2q. We now prove that ΠzpD1 YD2q Ď D3. This trivially

follows when ΠzpD1 Y D2q “ H. If ΠzpD1 Y D2q ‰ H, let x P ΠzpπpI1q Y πpI2qq. As x P ΠzπpI1q, from

condition (c) in Definition 10, we obtain x P πpI4q. Likewise, as x P ΠzπpI2q from condition (c) in Definition 10,

we obtain x P πpI3q. Then, x P pπpI3q X πpI4qq “ D3. Therefore pD1,D2,D3q is a tripartition of Π. By our

assumption, πpI1q “ D1 and πpI2q “ D2. We observe that πpI3q X D3 “ D3; moreover, from conditions (c)

and (d), we obtain πpI3q X D2 “ πpI3q X πpI2q “ H and πpI3q X D1 “ πpI1q X πpI3q “ πpI1q “ D1; then

πpI3q “ πpI3qXpD1YD2YD3q “ D1YD3. Likewise, we observe that πpI4qXD3 “ D3; moreover, from conditions

(c),(d) in Definition 10, we obtainD1XπpI4q “ πpI1qXπpI4q “ H andD2XπpI4q “ πpI2qXπpI4q “ πpI2q “ D2;

then πpI4q “ πpI4q X pD1 YD2 YD3q “ D2 YD3.

pðqAssume that pD1,D2,D3q, whereD1 “ πpI1q,D2 “ πpI2q,D3 “ πpI3qXπpI4q, is a tripartition ofΠ such that

D1 YD3 “ πpI3q andD2 YD3 “ πpI4q, we prove that the quadruple ps1, s2, s3, s4q satisfies conditions (a), (b), (c),

and (d) in Definition 10. We observe that πpI1q X πpI2q “ D1 XD2 “ H, which coincides with (a). Condition (b)

is satisfied because πpI3q Y πpI4q “ D1 YD3 YD2 YD3 “ Π. Moreover, πpI1q X πpI4q “ D1 X pD2 YD3q “ H
and πpI1qY πpI4q “ D1YpD2YD3q “ Π; likewise, πpI2qX πpI3q “ D2XpD1YD3q “ H and πpI2qY πpI3q “
D2 Y pD1 Y D3q “ Π. Thus, the conditions in (c) are satisfied. Finally, πpI1q “ D1 Ď D1 Y D3 “ πpI3q and

πpI2q “ D2 Ď D2 YD3 “ πpI4q which satisfy conditions in (d).

A method to construct a square of opposition by starting from a tripartition of Π is given in the following result

(see also [24]).

Corollary 1. Given any sequence of n conditional events F and a tripartition pD1,D2,D3q of Π, then the quadruple

ps1, s2, s3, s4q, with sk : pF ,Ikq, k “ 1, 2, 3, 4, and πpI1q “ D1, πpI2q “ D2, πpI3q “ D1 YD3, πpI4q “ D2 YD3

is a square of opposition.

Proof. The proof immediately follows by observing that πpI3qXπpI4q “ D3 and by the (ð) side proof of Theorem 1.

The following result allows to construct a square of opposition by starting from a tripartition of the whole set

r0, 1sn:

Corollary 2. Given a tripartition pB1,B2,B3q of r0, 1sn, let I1 “ B1, I2 “ B2, I3 “ B1 Y B3, and I4 “ B2 Y B3.

For any sequence of n conditional eventsF , the quadruple ps1, s2, s3, s4q, where sk : pF ,Ikq, k “ 1, 2, 3, 4, is a square

of opposition.

Proof. Let F be any sequence of n conditional events and Π be the associated set of all coherent precise assessments.

We set Di “ πpBiq, i “ 1, 2, 3. Of course, pπpB1q, πpB2q, πpB3qq is a tripartition of Π. Moreover, πpI1q “ D1,

πpI2q “ D2, πpI3q “ D1YD3, πpI4q “ D2YD3. Then, by Corollary 1 and Remark 4 we obtain that ps1, s2, s3, s4q
is a square of opposition.

Traditionally the square of opposition can be constructed based on the fragmented square of opposition which re-

quires only the contrariety and contradiction relations (which goes back to Aristotle’s De Interpretatione 6–7, 17b.17–

26, see [49, Section 2]). This result also holds in our framework:

Theorem 2. The quadruple ps1, s2, s3, s4q of sentences, with sk : pF ,Ikq, k “ 1, 2, 3, 4, is a square of opposition if

and only if relations (a) and (c) in Definition 10 are satisfied.

Proof. pñq It follows directly from Definition 10. pðq We prove that (d) and (b) in Definition 10 follow from (a)

and (c). If πpI1q “ H, then of course πpI1q Ď πpI3q. If πpI1q ‰ H, let x P πpI1q Ď Π, from (a) it follows

that x R πpI2q, and since (c) requires πpI2q Y πpI3q “ Π, we obtain x P πpI3q. Thus, πpI1q Ď πpI3q; likewise,

πpI2q Ď πpI4q. Therefore, (d) is satisfied. Now we prove that (b) is satisfied, i.e., πpI3q Y πpI4q “ Π. Of course,
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B1pxqB2pxq B3pxq

0 11 ´ x x

Figure 4: Example of a tripartition pB1pxq,B2pxq,B3pxqq of r0, 1s, with x Ps 1
2
, 1s.

πpI3q Y πpI4q Ď Π. Let x P Π. If x R πpI3q, then, x P πpI2q from (c). Moreover, from (d), x P πpI4q. Then,

Π Ď πpI3q Y πpI4q. Therefore, (b) is satisfied.

Corollary 3. The quadruple ps1, s2, s3, s4q of sentences, with sk : pF ,Ikq, k “ 1, 2, 3, 4, is a square of opposition if

and only if ps1, s2, s3, s4q “ ps1, s2, ss2, ss1q with s1 and s2 being contraries.

Proof. Of course, if ps1, s2, s3, s4q is a square of opposition, then s1 and s2 are contraries. Moreover, s1 and s4 are

contradictories, that is: πpI1q X πpI4q “ H and πpI1q Y πpI4q “ Π. Therefore, ΠzπpI4q “ πpI1q, which amounts

to s4 “ ss1. Similarly, as s2 and s3 are contradictories, it holds that s3 “ ss2. Conversely, assume that s1 and s2 are

contraries. By instantiating Theorem 2 with s3 “ ss2 and with s4 “ ss1, it follows that the quadruple ps1, s2, ss2, ss1q is a

square of opposition.

In the next section we consider the case where F consists of one conditional event only.

4. Square of Opposition and Generalized Quantifiers

From a traditional logical point of view, the quantifier some is interpreted in the context of the square of opposition

to mean at least one. From a natural language point of view, however, speakers usually use generalized quantifiers,

like (at least) most and (at least) almost all. Even if speakers mention words like “every” or “all”, they often mean

quantifiers which allow for exceptions (like (at least) almost all; see, e.g., [15, 16, 48, 53, 56, 59]). Of course,

generalized quantifiers allow for many more applications compared to the “extreme” quantifiers at least one, no and

every ([51]).

In this section we extend our semantics to deal with generalized quantifiers by introducing a threshold which

makes a criterion for asserting such quantifiers explicit. Of course, the selection of the threshold may depend on

the speaker’s degrees of belief and on the context. One could, for example, set the threshold x equal to .6; then,

ppP|S q ě .6 represents most S are P (in the sense of “at least most S are P”). In other contexts, the threshold could

be lower or higher than .6 to represent most S are P. Likewise, ppP|S q ě .9 could represent almost all S are P (in

the sense of “at least almost all S are P”).

Let a conditional event P|S (where S ‰ K) and a threshold x Ps 1
2
, 1s be given. We denote by pB1pxq,B2pxq,B3pxqq

a tripartition of r0, 1s, where B1pxq “ rx, 1s, B2pxq “ r0, 1 ´ xs, B3pxq “s1 ´ x, xr and x Ps 1
2
, 1s (see Figure 4).

Consider the quadruple of sentences pApxq, Epxq, Ipxq,Opxqq, with Apxq : pP|S ,IApxqq, Epxq : pP|S ,IEpxqq, Ipxq :

pP|S ,IIpxqq, Opxq : pP|S ,IOpxqq, whereIApxq “ B1pxq “ rx, 1s, IEpxq “ B2pxq “ r0, 1´xs,IIpxq “ B1pxqYB3pxq “
s1´x, 1s, andIOpxq “ B2pxqYB3pxq “ r0, xr. By applying Corollary 2 with ps1, s2, s3, s4q “ pApxq, Epxq, Ipxq,Opxqq,

it follows that pApxq, Epxq, Ipxq,Opxqq is a square of opposition for any x Ps 1
2
, 1s (see Figure 5). We recall that in

presence of some logical relations between P and S the set Π could be a strict subset of r0, 1s. More precisely, we

have the following three cases (see, [36, 37]): (i) if P ^ S ‰ K and P ^ S ‰ S , then Π “ r0, 1s; (ii) if P ^ S “ S ,

then Π “ t1u; (iii) if P ^ S “ K, then Π “ t0u. The quadruple pApxq, Epxq, Ipxq,Opxqq, with the threshold
1
2
ă x ď 1, is a square of opposition in each of the three cases. In particular we obtain: case (i) πpIApxqq “ IApxq,

πpIEpxqq “ IEpxq,πpIIpxqq “ IIpxq, and πpIOpxqq “ IOpxq; case (ii): πpIApxqq “ t1u, πpIEpxqq “ H,πpIIpxqq “ t1u,
and πpIOpxqq “ H; case (iii): πpIApxqq “ H, πpIEpxqq “ t1u,πpIIpxqq “ H, and πpIOpxqq “ t1u. We note that in

cases (ii) and (iii) we obtain degenerated squares each, where—apart from the contradictory relations—all relations are

strengthened (see Figure 6). Specifically, both contrary and the subcontrary become contradictory relations. Moreover,

both subalternation relations become symmetric. As by coherence ppP|S q ` ppsP|S q “ 1, the probability constraint

ppP|S q ď 1 ´ x is equivalent to ppsP|S q ě x, likewise, ppP|S q ă x is equivalent to ppsP|S q ą 1 ´ x. Table 1
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Apxq
ppP|S q ě x

Ipxq
ppP|S q ą 1´ x

Opxq
ppP|S q ă x

Epxq
ppP|S q ď 1´ x

subalterns subalternscontradictories

contraries

subcontraries

Figure 5: Probabilistic square of opposition Spxq involving generalized quantifiers defined on the four sentence types pApxq, Epxq, Ipxq,Opxqq with

the threshold x Ps 1
2
, 1s (see also Table 1). In the extreme case where x “ 1, we obtain a new interpretation of the traditional square of opposition

(see also Figure 1), where the corners are labeled by “Every S is P” (A), “No S is P” (E), “Some S is P” (I), and “Some S is not P” (O).

Π “ t1u Π “ t0u

πpIApxqq “ t1u πpIEpxq q “ H

πpIIpxqq “ t1u πpIOpxqq “ H

contradictories

eq
u
iv

a
le

n
ts

eq
u
iv

a
le

n
ts

contradictories

contradictories

πpIApxqq “ H πpIEpxq q “ t0u

πpIIpxqq “ H πpIOpxqq “ t0u

contradictories

eq
u
iv

a
le

n
ts

eq
u
iv

a
le

n
ts

contradictories

contradictories

Figure 6: Degenerated squares of opposition pπpIApxqq, πpIEpxqq, πpIIpxqq, πpIOpxqqq when F consists of the conditional event P|S and the set of

all coherent assessments on P|S is Π “ t1u (i.e., P ^ S “ S ; left) or Π “ t0u (i.e., P ^ S “ K; right).

presents generalization of basic sentence types Apxq, Epxq, Ipxq, and Opxq involving generalized quantifiers Q. The

generalized quantifiers are defined on a threshold x ą 1
2
. The value of the threshold may be context dependent and

provides lots of flexibility for modeling various instances of generalized quantifiers (like most, almost all).

Given two thresholds x1 and x2, with 1
2
ă x2 ă x1 ď 1, we analyze the relations among the same sentence types

in the two squares of opposition Spx1q and Spx2q, with Spxiq “ pApxiq, Epxiq, Ipxiq,Opxiqq, i “ 1, 2. It can be easily

proved that: Apx2q is a subaltern of Apx1q, Epx2q is a subaltern of Epx1q, Ipx1q is a subaltern of Ipx2q, and Opx1q is a

subaltern of Opx2q. In the extreme case x “ 1 we obtain the probabilistic interpretation under coherence of the basic
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Sentence Probability constraints Assessment on P|S
Apxq : pQěx S are P) ppP|S q ě x IApxq “ rx, 1s
Epxq : pQěx S are not P) ppsP|S q ě x IEpxq “ r0, 1´ xs
Ipxq : (Qą1´x S are P) ppP|S q ą 1´ x IIpxq “s1´ x, 1s
Opxq : (Qą1´x S are not P) ppsP|S q ą 1´ x IOpxq “ r0, xr
Ap1q : (Every S is P) ppP|S q “ 1 IA “ t1u
Ep1q : (No S is P) ppsP|S q “ 1 IE “ t0u
Ip1q : (Some S is P) ppP|S q ą 0 II “s0, 1s
Op1q : (Some S is not P) ppsP|S q ą 0 IO “ r0, 1r

Table 1: Probabilistic interpretation of the sentence types A, E, I, and O involving generalized quantifiers Q defined by a threshold x (with x Ps 1
2
, 1s)

on the subject S and predicate P and the respective imprecise probabilistic assessments IApxq , IEpxq , IIpxq , and IOpxq on the conditional event

P|S (above). When x “ 1, we obtain our probabilistic interpretation of the traditional sentence types A, E, I, and O (below).

sentence types involved in the traditional square of opposition pA, E, I,Oq, which is illustrated in Figure 1. Notice that

this square of opposition coincides with the default square of opposition involving defaults and negated defaults given

in [34].

Remark 6. In agreement with De Morgan (as pointed out by [24]) by the quadruple pa, e, i, oq we denote the square

of opposition obtained from pA, E, I,Oq when the events P and S are replaced by sP and sS , respectively. Specifically,

a : psP|sS , t1uq, e : psP|sS , t0uq, i : psP|sS , s0, 1sq, and o : psP|sS , r0, 1rq. From a geometric point of view, one might ask

whether it is possible to construct a “cube of opposition” such that pA, E, I,Oq and pa, e, i, oq are opposing facing

sides of such a cube (see, e.g., [24]) and where each edge represents a probabilistic constraint between the end points

of the edge (i.e., the two vertexes). Then, we would require probabilistic constraints between some sentences s1 and

s2, where s1 P tA, E, I,Ou and s2 P ta, e, i, ou. However, we observe that in the general case when P and S are

logically independent, it can be proved that the set of all coherent assessments on pP|S , sP|sS q is the unit square r0, 1s2

(see, e.g., [31, Proposition 12]; related theoretical results are given in [17, Proposition 1] and [18, Theorem 4]).

Thus, in the general case there are no relations between any two sentences s1 and s2, where s1 P tA, E, I,Ou and

s2 P ta, e, i, ou. Therefore, it does not make sense to construct a “cube of opposition” (with these two squares as

opposite facing sides) in our context, as both squares of opposition pA, E, I,Oq and pa, e, i, oq are “independent” of

each other.

Remark 7. Given two thresholds x, y such that 0 ď y ď 1
2
ă x ď 1, we set B1px, yq “ rx, 1s, B2px, yq “ r0, ys,

and B3px, yq “sy, xr. Then, pB1px, yq,B2px, yq,B3px, yqq is a tripartition of r0, 1s. Consider now the four sen-

tences pP|S , rx, 1sq, pP|S , r0, ysq, pP|S , sy, 1sq, pP|S , r0, xrq, which represent the probability assessments ppP|S q ě x,

ppP|S q ď y, ppP|S q ą y, and ppP|S q ă x, respectively. As B1px, yq “ rx, 1s, B2px, yq “ r0, ys,B1px, yqYB3px, yq “
sy, 1s, andB2px, yqYB3px, yq “ r0, xr, by applying Corollary 2 it follows that the quadruple of sentences ppP|S , rx, 1sq,
pP|S , r0, ysq, pP|S , sy, 1sq, pP|S , r0, xrqq is a square of opposition.

5. Hexagon of Opposition

Compared to the millennia long history of investigations on the square of opposition, the hexagon of opposition

was discovered fairly recently, namely in the 1950ies. The hexagon generalizes the square by adding the disjunction

of the top vertices of the square to build a new vertex at the top and by adding the conjunction of the bottom vertices

of the square to build a new vertex at the bottom. According to Béziau ([3]), the hexagon of opposition was introduced

by the French priest and logician Augustin Sesmat ([62]) and by the philosopher Robert Blanché ([10]), who worked

out the full structure of the hexagon of opposition (for his main work on the hexagon of opposition see [11]). Jaspers

and Seuren ([41]) trace the history of the hexagon back to the American philosopher Paul Jacoby ([40], see also [24]).

In this section we will use the tools developed in Section 3, to construct a hexagon of opposition by starting from a

square of opposition. More precisely, given a traditional square of opposition pA, E, I,Oq, by setting U “ A _ E,

Y “ I ^ O, the tuple pA, E, I,O,U, Yq defines a hexagon of opposition. Accordingly, we define the (probabilistic)

hexagon of opposition in our approach as follows:
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s2

s5

s1

s3

s6

s4

Figure 7: Probabilistic hexagon of opposition defined on the six sentence types ps1 , s2, s3, s4, s5 , s6q, where ps1, s2, s3, s4q is a square of opposition,

s5 “ s1 _ s2, and s6 “ s3 ^ s4 (see Definition 12). The arrows indicate subalternation, dashed lines indicate contraries, and dotted lines indicate

sub-contraries. Contradictories are indicated by combined dotted and dashed lines.

Definition 12 (Hexagon of opposition). Let sk : pF ,Ikq, k “ 1, 2, 3, 4, 5, 6, be six sentences. We call the ordered

tuple ps1, s2, s3, s4, s5, s6q a hexagon of opposition (under coherence) if and only if the following relations among the

six sentences hold:

(i) ps1, s2, s3, s4q is a square of opposition;

(ii) s5 “ s1 _ s2;

(iii) s6 “ s3 ^ s4.

Figure 7 shows the probabilistic hexagon of opposition as given by Definition 12.

Theorem 3. Let sk : pF ,Ikq, k “ 1, 2, 3, 4, 5, 6, be six sentences. The tuple ps1, s2, s3, s4, s5, s6q is a hexagon of

opposition if and only if ps1, s2, s3, s4, s5, s6q “ ps1, s2, ss2, ss1, s1 _ s2, ss1 ^ ss2q, with s1 and s2 being contraries.

Proof. pñq. Let ps1, s2, s3, s4, s5, s6q be a hexagon of opposition. Then, as ps1, s2, s3, s4q is a square of opposition, s1

and s2 are contraries. Moreover, by Corollary 3, it follows that ps1, s2, s3, s4q “ ps1, s2, ss2, ss1q. Then, by Definition 12,

s5 “ s1 _ s2 and s6 “ s3 ^ s4 “ ss1 ^ ss2. Therefore, ps1, s2, s3, s4, s5, s6q “ ps1, s2, ss2, ss1, s1 _ s2, ss1 ^ ss2q.
pðq. Let ps1, s2, s3, s4, s5, s6q “ ps1, s2, ss2, ss1, s1 _ s2, ss1 ^ ss2q, with s1 and s2 being contraries. From Corollary 3, it

follows that ps1, s2, s3, s4q is a square of opposition. Then, by relations piiq and piiiq in Definition 12, it follows that

ps1, s2, s3, s4, s5, s6q is a hexagon of opposition.

11



Remark 8. Assume that s1 and s2 are contraries. Then, by Corollary 3, the quadruple ps1, s2, ss2, ss1q is a square of

opposition, and by Definition 12, the tuple ps1, s2, ss2, ss1, s1 _ s2, ss1 ^ ss2q is a hexagon of opposition.

We now consider relations among a tripartition of the set of all coherent assessments Π and a hexagon of opposi-

tion.

Remark 9. Given a hexagon of opposition ps1, s2, s3, s4, s5, s6q, we observe that the sentence s6 “ s3 ^ s4 represents

the pair pF ,I6q, where I6 “ I3 X I4. Moreover, by Remark 1, πpI6q “ πpI3 X I4q “ πpI3q X πpI4q. Therefore,

based on Theorem 1, the triple pD1,D2,D3q, where D1 “ πpI1q, D2 “ πpI2q, and D3 “ πpI6q, is a tripartition of

Π. Conversely, based on Corollary 1, given a tripartition pD1,D2,D3q of Π, the sequence ps1, s2, s3, s4, s5, s6q where

sk : pF ,Ikq, k “ 1, . . . , 6, with πpI1q “ D1, πpI2q “ D2, πpI3q “ D1 YD3, πpI4q “ D2 YD3, πpI5q “ D1 YD2,

and πpI6q “ D3, is a hexagon of opposition (see also [14, 24, 25]).

Next, we consider relations among a tripartition of r0, 1sn and a hexagon of opposition.

Remark 10. Based on Corollary 2, we can also construct a hexagon of opposition by starting from a tripartition of

the whole set r0, 1sn. Specifically, given a tripartition pB1,B2,B3q of r0, 1sn, let I1 “ B1, I2 “ B2, I3 “ B1 Y B3,

I4 “ B2YB3, I5 “ B1YB2, andI6 “ B3. For any sequence of n conditional eventsF , the tuple ps1, s2, s3, s4, s5, s6q,
where sk : pF ,Ikq, k “ 1, . . . , 6, is a hexagon of opposition.

Theorem 4. Given a hexagon of opposition ps1, s2, s3, s4, s5, s6q, by Definition 12 all relations among the basic

sentence types in the square ps1, s2, s3, s4q hold. Moreover, by Theorem 3 (and also by Remark 3), the following

relations hold:

(i) s1 and s6 are contraries (since s6 “ ss2 ^ ss1 and πpI1 X sI2 X sI1q “ H);

(ii) s2 and s6 are contraries (since s6 “ ss2 ^ ss1 and πpI2 X sI2 X sI1q “ H);

(iii) s3 is a subaltern of s6 (since s6 “ s3 ^ s4);

(iv) s4 is a subaltern of s6 (since s6 “ s3 ^ s4);

(v) s5 is a subaltern of s1 (since s5 “ s1 _ s2);

(vi) s5 is a subaltern of s2 (since s5 “ s1 _ s2);

(vii) s5 and s3 are subcontraries (as s5 “ s1 _ s2 and s3 “ ss2, hence πpI1 Y I2q Y πpsI2q “ Π);

(viii) s5 and s4 are subcontraries (as s5 “ s1 _ s2 and s4 “ ss1, hence πpI1 Y I2q Y πpsI1q “ Π);

(ix) s5 and s6 are contradictories (as s5 “ s1 _ s2, s6 “ s3 ^ s4 “ ss2 ^ ss1, hence πppI1 Y I2q X psI1 X sI2qq “ H
and πppI1 Y I2q Y psI1 X sI2qq “ Π).

Figure 7 illustrates all the relations in the hexagon of opposition described in Theorem 4. This figure also shows

the two triangles T1 : ps1, s2, s6q and T2 : ps3, s4, s5q. We note that the sides of T1 consist of contrary relations,

whereas the sides of T2 consist of subcontrary relations. Moreover, the coherent part of the imprecise assessments

defined by sentences in T1 (i.e., D1 “ πpI1q, D2 “ πpI2q and D3 “ πpI6q) forms a tripartition pD1,D2,D3q of Π.

Whereas, the imprecise assessments defined by sentences in T2 are such that πpI3q “ D1 YD3, πpI4q “ D2 YD3,

and πpI5q “ D1 YD2.

Remark 11. We can construct a hexagon of opposition involving assessments on a conditional event P|S by basing

it on the square of opposition pApxq, Epxq, Ipxq,Opxqq introduced in Section 4. By using Definition 12, we obtain the

following hexagon of opposition: pApxq, Epxq, Ipxq,Opxq,Upxq, Ypxqq with x Ps1{2, 1s, where Upxq denotes Apxq _
Epxq and Ypxq denotes Ipxq^Opxq (see Table 2). Figure 8 illustrates the hexagon pApxq, Epxq, Ipxq,Opxq,Upxq, Ypxqq
with x Ps1{2, 1s.

We now consider a generalization of the hexagon of opposition pApxq, Epxq, Ipxq,Opxq,Upxq, Ypxqq described in

Remark 11 by considering a suitable assessment on n conditional events P1|S 1, P2|S 2, . . . , Pn|S n.

12



Epxq : ppP|S q ď 1´ x

Upxq : ppP|S q P r0, 1´ xs Y rx, 1s

Apxq : ppP|S q ě x

Ipxq : ppP|S q ą 1´ x

Ypxq : 1´ x ă ppP|S q ă x

Opxq : ppP|S q ă x

Figure 8: Probabilistic hexagon of opposition pApxq, Epxq, Ipxq,Opxq,Upxq, Ypxqq involving generalized quantifiers defined on the six sentence

types with the threshold x Ps 1
2
, 1s (see Table 1 and Table 2). It provides a new interpretation of the hexagon of opposition, which we compose of

the probabilistic square of opposition and the two additional vertices Upxq (i.e., Apxq _ Epxq; top) and Ypxq (i.e., Ipxq ^ Opxq; bottom). In the

extreme case when x “ 1, we obtain our probabilistic version of the traditional hexagon of opposition (see also Figure 2).
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Sentence Probability constr. Assessment on P|S

Upxq : Apxq _ Epxq
ppP|S q ě x

or

ppsP|S q ě x

IUpxq “ r0, 1´ xs Y rx, 1s

Ypxq : Ipxq ^ Opxq

"
ppP|S q ą 1´ x

ppsP|S q ą 1´ x
IYpxq “s1´ x, xr

Up1q :

Every S is P

or

No S is P

ppP|S q “ 1

or

ppsP|S q “ 1

IU “ t0u Y t1u

Yp1q :

Some S is P

and

Some S is sP

"
ppP|S q ą 0

ppsP|S q ą 0
IY “s0, 1r

Table 2: Probabilistic interpretation of the sentence types at the top (U) and at the bottom (Y) of the hexagon of opposition involving generalized

quantifiers Q defined by a threshold x (with x Ps 1
2
, 1s) on the subject S and predicate P and the respective imprecise probabilistic assessments

IUpxq , and IYpxq on the conditional event P|S (above). When x “ 1, we obtain our probabilistic interpretation of the traditional sentence types U ,

Y .

Remark 12. Let F “ pP1|S 1, . . . , Pn|S nq be a sequence of n conditional events. Exploiting Remark 10, we construct

a hexagon of opposition by considering the following tripartition of r0, 1sn: pB1pxq,B2pxq,B3pxqq, with x Ps1{2, 1s,
where

B1pxq “ tpp1, . . . , pnq P r0, 1s
n :

řn
i“1

pi

n
ě xu,

B2pxq “ tpp1, . . . , pnq P r0, 1s
n :

řn
i“1

pi

n
ď 1´ xu,

B3pxq “ tpp1, . . . , pnq P r0, 1s
n : 1´ x ă

řn
i“1

pi

n
ă xu.

We obtain the following hexagon of opposition pApxq, Epxq, Ipxq,Opxq,Upxq, Ypxqq involving the generalized quanti-

fiers Apxq : pF ,IApxqq, Epxq : pF ,IEpxqq, Ipxq : pF ,IIpxqq, Opxq : pF ,IOpxqq, Upxq : pF ,IUpxqq, Ypxq : pF ,IYpxqq,
where

IApxq “ B1pxq, IEpxq “ B2pxq, IYpxq “ B3pxq,
IIpxq “ B1pxq Y B3pxq “ tpp1, . . . , pnq P r0, 1s

n :
řn

i“1
pi

n
ą 1´ xu,

IOpxq “ B2pxq Y B3pxq “ tpp1, . . . , pnq P r0, 1s
n :

řn
i“1

pi

n
ă xu,

IUpxq “ B1pxq Y B2pxq “ tpp1, . . . , pnq P r0, 1s
n :

řn
i“1

pi

n
ě x or

řn
i“1

pi

n
ď 1´ xu.

Finally, we generalize the hexagon of opposition involving n conditional events described in Remark 12

Remark 13. Let F “ pP1|S 1, . . . , Pn|S nq be a sequence of n conditional events. Exploiting Remark 10, for any given

vector pλ1, . . . , λnq, where λi ě 0, i “ 1, . . . , n and
řn

i“1 λi “ 1, we construct a hexagon of opposition by considering

the following tripartition of r0, 1sn: pB1pxq,B2pxq,B3pxqq, with x Ps1{2, 1s, where

B1pxq “ tpp1, . . . , pnq P r0, 1s
n :

řn
i“1 λi pi ě xu,

B2pxq “ tpp1, . . . , pnq P r0, 1s
n :

řn
i“1 λi pi ď 1´ xu,

B3pxq “ tpp1, . . . , pnq P r0, 1s
n : 1´ x ă

řn
i“1 λi pi ă xu .

(1)

We obtain the following hexagon of opposition pApxq, Epxq, Ipxq,Opxq,Upxq, Ypxqq involving the generalized quanti-

fiers Apxq : pF ,IApxqq, Epxq : pF ,IEpxqq, Ipxq : pF ,IIpxqq, Opxq : pF ,IOpxqq, Upxq : pF ,IUpxqq, Ypxq : pF ,IYpxqq,
where

IApxq “ B1pxq, IEpxq “ B2pxq, IYpxq “ B3pxq,
IIpxq “ B1pxq Y B3pxq “ tpp1, . . . , pnq P r0, 1s

n :
řn

i“1 λi pi ą 1´ xu,
IOpxq “ B2pxq Y B3pxq “ tpp1, . . . , pnq P r0, 1s

n :
řn

i“1 λi pi ă xu,
IUpxq “ B1pxq Y B2pxq “ tpp1, . . . , pnq P r0, 1s

n :
řn

i“1 λi pi ě x or
řn

i“1 λi pi ď 1´ xu.

Of course, we recover the hexagon of opposition described in Remark 12 by setting λi “
1
n
, i “ 1, . . . , n. If n “ 1, we

recover the hexagon of opposition described in Remark 11.
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Example

Let P|S be a conditional event. Moreover, let S 1, . . . , S n be a partition of S , that is S 1_¨ ¨ ¨_S n “ S and S i^S j “ K,

i ‰ j. Coherence requires that

ppP|S q “ ppP|S 1qppS 1|S q ` . . .` ppP|S nqppS n|S q

and that
řn

i“1 ppS i|S q “ 1. Assume ppS i|S q “ λi ě 0, i “ 1, . . . , n, with
řn

i“1 λi “ 1. Then, for any coherent

assessment pp1, . . . , pnq on pP|S 1, . . . , P|S nq it holds that ppP|S q “
řn

i“1 λi pi. Let x Ps 1
2
, 1s. We observe that, the

susbsets B1pxq,B2pxq, and B3pxq of r0, 1sn, which are defined as in (1), represents the sets of probability assessments

pp1, . . . , pnq on pP|S 1, . . . , P|S nq such that ppP|S q ě x, ppP|S q ď 1´ x, and 1´ x ă ppP|S q ă x, respectively.

6. Concluding Remarks

Finally, we note that conditional probability interpretations of quantified statements were also proposed in psy-

chology (see, e.g., [15, 16, 48, 51, 53, 56, 59]), since generalized quantifiers are psychologically much more plausible

compared to the traditional logical quantifiers, as the latter are either too strict (@ does not allow for exceptions) or

too weak (D quantifies over at least one object) for formalizing everyday life sentences. Recent experimental data

suggests that people negate conditionals and quantified statements mainly by building contraries (in the sense of in-

ferring pp C|Aq “ 1 ´ x from the negated ppC|Aq “ x) but hardly ever by building contradictories (in the sense of

inferring ppC|Aq ă x from the negated ppC|Aq “ x; see [52, 59, 60]). However, this empirical result calls for further

experiments. The square presented in Section 4 and the hexagon presented in Section 5 can serve as a new rationality

framework for formal-normative and psychological investigations of basic relations among quantified statements.

Finally, we note that the generalized quantifiers can be used to study various forms of inferences. For instance,

recall the probability propagation rules for the CUT rule of System P [30, p. 23]: from x1 ď ppM|S q ď x2 and

y1 ď ppP|S ^ Mq ď y2 infer x1y1 ď ppP|S q ď x2y1 ` 1 ´ x2. The CUT rule in terms of basic sentence types holds:

From every S is M (interpreted by ppM|S q “ 1), and every S ^ M is P (i.e., ppP|S ^ Mq “ 1), infer every S is P

(i.e. ppP|S q “ 1). If the premises are interpreted by the generalized quantifiers almost all (by using the threshold

.9 “ x1 “ y1), the conclusion holds with the generalized quantifier most: In particular, the premises almost all S are

M (interpreted by .9 ď ppM|S q ď 1) and almost all S ^ M are P (i.e., .9 ď ppP|S ^ Mq ď 1) imply the conclusion

most S are P (i.e., .81 ď ppP|S q ď 1). We will devote future work on studying probabilistic versions of categorical

syllogisms involving generalized quantifiers.

Acknowledgement

We are grateful to Angelo Gilio and to two anonymous referees for helpful comments on a previous version of this

paper. We thank Deutsche Forschungsgemeinschaft (DFG), Fondation Maison des Sciences de l’Homme (FMSH),

and Villa Vigoni for supporting joint meetings at Villa Vigoni where parts of this work originated (Project: “Human

Rationality: Probabilistic Points of View”). Niki Pfeifer is supported by his DFG project PF 740/2-2 (within the

SPP1516 “New Frameworks of Rationality”). Giuseppe Sanfilippo is supported by the INdAM–GNAMPA Project

(2016 Grant U 2016/000391).

References

[1] T. Augustin, P. A. F. Coolen, G. de Cooman, and M. C. M. Troffaes, editors. Introduction to imprecise probabilities. Wiley, Chichester, 2014.

[2] P. Berti and P. Rigo. On coherent conditional probabilities and disintegrations. Annals of Mathematics and Artificial Intelligence, 35(1):71–82,

2002.

[3] J.-Y. Beziau. The power of the hexagon. Logica Universalis, 6(1):1–43, 2012.

[4] J.-Y. Beziau and G. Payette, editors. The square of opposition: A general framework of cognition. Peter Lang, Bern, 2012.

[5] J.-Y. Beziau and S. Read. Editorial: Square of opposition: A diagram and a theory in historical perspective. History and Philosophy of Logic,

35(4):315–316, 2014.

[6] V. Biazzo and A. Gilio. A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. IJAR,

24(2-3):251–272, 2000.

[7] V. Biazzo and A. Gilio. Some theoretical properties of interval-valued conditional probability assessments. In Proc. of ISIPTA’05, pages

68–67, 2005.

15



[8] V. Biazzo, A. Gilio, T. Lukasiewicz, and G. Sanfilippo. Probabilistic logic under coherence: Complexity and algorithms. AMAI, 45(1-2):35–

81, 2005.

[9] V. Biazzo, A. Gilio, and G. Sanfilippo. Coherent conditional previsions and proper scoring rules. In Advances in Computational Intelligence.

IPMU 2012, volume 300 of CCIS, pages 146–156. Springer Heidelberg, 2012.
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