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Abstract 

The objective of this study is to test the hypothesis that the baroreflex control of 15 

arterial pressure is altered after acute myocardial infarction (AMI) comparing 
different approaches for its evaluation based on the spectral analysis of spontaneous 
systolic arterial pressure (SAP) and heart period (HP) variability. We present a new 
method to assess directed interactions between SAP and RR from their linear model 
representation, based on pole decomposition of the model transfer function and 20 

evaluation of causal measures of coupling and gain from the poles associated to low 
frequency (0.04-0.15 Hz) oscillatory components. The method was compared with 
traditional non-causal approaches for the spectral analysis of the baroreflex gain, and 
with causal approaches based on the directed coherence, in a group of AMI patients 
and in Young and Old healthy controls studied at rest and during head-up tilt. 25 

Analysis of feedforward interactions from RR to SAP was also performed. Our 
results support the importance of using causal approaches to quantify separately 
baroreflex and feedforward interactions between RR and SAP. In AMI patients, these 
approaches revealed lower coupling and gain from SAP to RR, suggesting weaker 
effectiveness and lower sensitivity of the baroreflex after infarction, while they did 30 

not indicate clear alterations in the response to tilt. The postural stress altered instead 
the feedforward interactions selectively across groups, being related to decreased 
coupling only in Young and to increased gain mostly in AMI. These results have 
significance for the clinical assessment of the baroreflex and the physiological 
evaluation of cardiovascular interactions. 35 
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1. Introduction 

The baroreflex mechanism has a key role in the short-term regulation of systolic 
arterial pressure (SAP) and heart period (measured as the RR interval of the 
electrocardiogram, ECG), which are known to dynamically interact in a closed loop, 
as a consequence of the baroreflex feedback of SAP on RR and of feedforward 45 

pathways of mechanical nature, whereby SAP is influenced by previous RR changes 
[1,2]. The baroreflex represents a fundamental mechanism to maintain the optimal 
blood pressure level continuously or in response to changing physiological conditions, 
and accomplishes to such a task modulating the heart rate [3–6]. Specifically, a 
decrease in arterial blood pressure evokes a baroreflex response leading to an 50 

increased heart rate, while an increase in arterial blood pressure is followed by the 
opposite effect. While in healthy subjects the baroreflex acts in response to 
physiological stressors such as change of posture, mental workload and others, an 
impairment of baroreflex control is thought to be often associated with age, 
orthostatic intolerance and pathologies like heart failure or acute myocardial 55 

infarction (AMI), as postural circulatory stress and cardiovascular diseases elicit 
baroreceptor unloading [7–10]. Therefore, assessment of the baroreflex sensitivity 
(BRS), often evaluated from the spontaneous beat-to-beat fluctuations of RR and SAP 
as the magnitude of the reflex change in RR corresponding to a unitary change in 
SAP, can provide valuable information for the analysis of cardiovascular regulation in 60 

normal and pathological conditions and can have an important diagnostic and clinical 
value [4,11,12]. An appropriate evaluation of the BRS should take into account not 
only the oscillatory nature of cardiovascular parameters, being able to separate 
contributions occurring in different frequency bands - typically divided into very low-
frequency (VLF, up to 0.04 Hz), low-frequency (LF, 0.04 – 0.15 Hz) and high-65 

frequency (HF, 0.15– 0.4 Hz) bands- but also the closed-loop nature of cardiovascular 
interactions [13]. Usually, the frequency analysis of feedback baroreflex interactions 
is carried out focusing on the LF band to avoid the confounding effects of other 
variables operating at different frequencies (e.g., respiration) and causal analysis 
methods are adopted to minimize the effect of non-baroreflex mechanisms on the 70 

BRS estimates [14–18]. On the other hand, though much less investigated, the 
feedforward mechanism from RR to SAP is also important in the assessment of the 
balanced cardiovascular regulation in normal and diseased conditions [7].  

The directed (causal) coherence (DC) has been proposed and used as a linear 
frequency domain measure of causal interactions between coupled dynamic processes 75 

[11,19]. The DC from a source to a target process is computed from the spectral 
representation of their descriptive vector autoregressive (AR) model, whose 
parameters provide the basis to separate the power spectral density (PSD) of the target 
process into partial spectra related to its own dynamics and to the dynamics of the 
source process. As in practical applications both the DC function and baroreflex gain 80 

need to be quantified in specific frequency regions, empirical approaches are 
generally adopted. They consist in taking the maximum or average value, within the 
band of interest, of the analyzed spectral function. However, these approaches often 
lead to ambiguous choices (a maximum value can be absent within the observed 
band) or imprecise quantifications (the average value may be affected by spectral 85 

effects of nearby broadband oscillations) [11].  



To overcome these limitations, the present study introduces a modification of the 
causal coherence and of the previous definitions of spectral baroreflex gain [10,20] 
based on the spectral decomposition method [21]. Specifically, spectral 
decomposition is applied to the partial spectra of the PSD of the target process, 90 

representing each partial spectrum as the sum of bell-shaped functions with features 
(power, frequency, spectral bandwidth) related to the type and location (modulus and 
phase) of the poles of the transfer function which defines the vector AR process in the 
Z-domain. Then, the power content associated to the decomposed spectral 
components with frequency inside the band of interest (here, the LF band) is 95 

elaborated to obtain pole-specific measures of coupling and gain within the band. 
These measures, which we refer to as “local” due to their frequency-specific nature, 
are compared in the present work with the corresponding “global” measures obtained 
as the band-averaged DC and gains. The analysis, also extended to the comparison 
between causal and non-causal measures of gain and to the quantification of 100 

feedforward (non-baroreflex) interactions, is performed on the joint variability series 
of the heart period and the systolic arterial pressure measured in a group of post-AMI 
patients monitored at rest and during orthostatic stress, as well as in two control 
groups of healthy subjects (younger and age-matched with AMI). Preliminary 
methodological and applicative results have been presented in a reduced form in 105 

conference contributions [13], [22]. 

2. Methods 

2.1 Measures of causal coupling and gain derived from parametric 

cross-spectral analysis 

Let us consider a bivariate stochastic process � composed by two jointly stationary, 110 

zero mean discrete stochastic processes ��  and ��. Defining �(�) = [��(�) ��(�)]� 
as the vector variable sampling the process at time � = ���, where �� is the sampling 
period, it is possible to express the causal interactions occurring between the 
processes in a parametric form through a p-order bivariate autoregressive (AR) model 
as follows [22–24] 115 

 
   �(�) = ∑ �(�)�(� − �) + �(�)����  ,  (1) 
 

being �(�) = [��(�) ��(�)]� a vector of zero-mean uncorrelated white noises with 
22 diagonal covariance matrix � = diag{σ��, σ��}, and �(�) the 22 coefficient 120 

matrix in which the coefficient $%&(�) describes the interaction from �&(� − �) to �%(�) (i,j=1,2). 
The estimated model coefficients are represented in the Z domain through the Z-

transform of (1), thus yielding �(') = ((')�('), where the 22 transfer matrix is 
 125 



  ((') = )*��(') *��(')*��(') *��(')+ = [, − �(')]-� = �.(')-� , (2) 

 
being �(') = ∑ �(�)'-�����  the coefficient matrix in the Z domain and , the 2×2 
identity matrix. Taking the inverse of �.('), each element of the transfer matrix is 
represented as follows (i,j=1,2; i≠j) 130 

 

   *%%(') = /̅11(2)|�.(2)| ; *%&(') = -/̅41(2)|�.(2)| .   (3) 

 
Computing ((') on the unit circle in the complex plane (((5) = ((')|2�61789:;), 
the 22 spectral density matrix of the bivariate process in the frequency domain 135 

becomes <(5) = ((5)�(∗(5), where * indicates the Hermitian transpose. In this 
matrix, the diagonal terms >%%(5) correspond to the auto-spectra, while the off-
diagonal terms >%&(5) correspond to the cross-spectra. 

From the frequency domain representation of the AR model, the diagonal elements 
of the spectral density matrix can be elaborated to estimate a non-causal measure of 140 

spectral gain from �& to �% (?, @ = 1,2, ? ≠ @): 
 

    D%&E(5) ≜ GH44(I)H11(I)    (4) 

 
where the superscript J denotes the non-causal index first used by Pagani et al. [20]. 145 

The α measure is a non-causal index of gain, because its main assumption is that the 
whole variability of �% is driven by �&. To get a causal measure, first each auto-
spectrum is expressed as the sum of causal contributions from Eqs. (2,3) to yield 

 
  >%(5) ≜ >%%(5) = K%�|*%%(5)|� + K& �|*%&(5)|� ,  (5)150 

  
being K& �|*%&(5)|� ≜ >%|&(5) the partial spectrum of �% given �& (i,j=1,2). A left-side 
normalization of (5) produces L%%�(5) + L%& �(5) = 1, where 

 

   L%&� (5) ≜ M1 7|N41(I)|7
H44(I) = H4|1(I) 

H4(I)    (6) 155 

 
is the squared directed (causal) coherence (DC) from �& to �%, a function assessing the 
normalized coupling strength from �& to �% in the frequency domain [19]. The DC 
ranges between 0 and 1, being 0 when �& does not cause �% at frequency f, and 1 when 
the whole power of �% at frequency f is due to the variability of �& [24]. The causal 160 

information conveyed in the DC allows to define a causal measure of spectral gain, 
first used by Faes et al. [10]: 

 
    D%&O (5) ≜ D%&E(5)L%&� (5)   (7) 
 165 



The γ measure (7) weights the power ratio defined in (4) through the causal 
coherence from �& to �%. 

2.2 Measures of causal coupling and gain derived from causal 

spectral decomposition 

The measures defined by Eqs. (4, 6, 7) are “frequency-specific” in the sense that 170 

they are computed at each frequency; therefore, when they have to be computed 
within a specific frequency band, an “overall” estimate is typically extracted as the 
average of that measure within the band. For this reason, these are referred to as 
“global measures” in the following. Nonetheless, such global values in the selected 
band can be misleading, being unable to objectively quantify the causal contribution 175 

of the source process to the power of the target one [22]. As an alternative, we herein 
propose “pole-specific” measures that can be related to the poles of the transfer 
function of the bivariate AR model. Their computation is associated to the pole 
frequency, and thus allows to get “local” measures of causal coupling or gain, where 
“local” is meant to indicate individual oscillations localized at specific frequencies. In 180 

the following, we define local measures of causal coupling (pole-specific spectral 
causality, PSSC [22]) and causal and non-causal local measures of gain (pole-specific 
spectral gain, PSSG) to assess in the frequency domain both the strength and the 
magnitude of the directed interactions between two processes. 

Exploiting spectral decomposition [21], each transfer function defined as in (3) is 185 

decomposed as the sum of q spectral components (q≅ p/2), which correspond to the 
poles of the determinant of �.('). Every spectral component is described by a specific 
profile and has an associated frequency (related to the pole phase) and power (related 
to the pole residual). In this way, the complex partial PSD of the ?Qℎ process given the @Qℎ process, which can be written in the Z-domain as 190 

 
   >%|&(') = *%&(')K&�*%&∗ (1 '∗)⁄ ,   (8) 
 

can be expanded decomposing the ? − @Qℎ transfer function as 
 195 

   *%&(') = /̅41(2)|�.(2)| = /̅41(2)∏ (2-2T)T  ,    (9) 

 
being the poles '�, k=1,...q the roots of |�.(')|. The expansion of each partial 
spectrum in (8) is performed exploiting Heaviside decomposition with simple 
fractions relevant to all its poles (i.e., the poles '� inside the unit circle and their 200 

reciprocals '̅� = '�-� outside the unit circle, with k=1,...,q), which are fractions 
weighted by the relevant residuals of >%|&(') (i.e., U�'� and −U� '̅�), to get [21]  
 

                >%|&(') = ∑ >%|& (�)(')V��� ,  >%|& (�)(') = WT2T2-2T − WT2̅T2-2̅T.  (10) 

    205 



After extracting the residuals and expanding the partial spectrum in simple fractions 
and given that >%(') = >%|%(') + >%|&('), we obtain the spectrum of �% computing (10) 
for values of z on the unit circle of the complex plane [22]: 

 
                     >%(5) = ∑ >%(�)(5)V��� = ∑ >%|%(�)(5) + >%|& (�)(5)V���  .  (11) 210 

 
The �QX spectral component >%|& (�)(5), ?, @ = 1,2, has an associated frequency related 
to the pole phase, 5(�) = arg {'�}, and power related to the pole residuals, Z%|&(�) =U� for real poles and Z%|&(�) = U� + U�∗ for complex conjugate poles. It is then possible 
to achieve a decomposition for the DC from �& to �% normalizing the spectral 215 

components to the total spectrum as follows: 
 

  L%&� (5) = ∑ L%&�(�)(5)V��� ,  L%&�(�)(5) ≜ H4|1(T)(I)
H4(I) .  (12)  

 
Furthermore, causal contributions to the spectral power can be obtained by integrating 220 

each spectral component over the whole frequency axis. This allows to exploit (11) 
for decomposing the variance of the process �%, [%�, as 
 [%� = �I\ ] >%(5)^5 =I\� ∑ Z%|%(�) + Z%|&(�) = ∑ Z%(�)V���V���   (13) 

 225 

where Z%|%(�) = ] >%|%(�)(5)^5I\�  is the part of the variance of �% due to its own 

dynamics and relevant to �QX  oscillation (pole), Z%|&(�) = ] >%|& (�)(5)^5I\�  is the part 

of the variance of �% due to �& and relevant to the �QX pole, and by summing these two 
contributions to the variance we get the part of the variance of �% relevant to the k-th 
pole, i.e, Z%(�) = Z%|%(�) + Z%|&(�). Using these partial variances, the PSSC relevant 230 

to the �QX oscillation is obtained as a local causal measure of coupling from �& to �%: 
 

    L%|&� (�) ≜ _4|1(�)
_4(�)  .   (14) 

 
The PSSC ranges between 0 and 1, being equal to 0 when the power of the �Qℎ 235 

oscillation of �% (i.e. the oscillation at frequency 5�) is totally due to its internal 
dynamics and equal to 1 when it is totally caused by the dynamics of �& assessed at 
the same frequency 5� . Given that the frequency 5�  is associated to a specific causal 
spectral profile, the corresponding PSSC value represents an objective measure of the 
causal power at that frequency, so that the total causal power in a specific frequency 240 

band 5 can be easily computed summing all PSSC values with frequency within that 
band. Using the same formalism, we also define a local non-causal measure of gain 
(local PSSG) from �& to �%  related to the �QX pole as 
 

D%&E(�) ≜ G_4(�)_1(�).    (15) 245 

 



The gain measure defined in (15) relates the whole variability of the output process �% 
to that of the input process �& without attempting to separate causal and non-causal 
contributions. To get a causal measure, we consider only the power of �% causally due 
to �& and related to the �QX pole and define the local PSSG from �& to �% as: 250 

 

    D%|&O (�) = G_4|1(�)
_1(�) .   (16) 

 
Note that, while the spectral causality is an adimensional measure, the spectral gain is 
expressed in units of measurement of the output series divided by units of 255 

measurement of the input series. 

2.3 Computation in cardiovascular variability analysis 

To evaluate the new proposed local measures in comparison with the traditional 
global measures of both causal coupling and gain, the latter distinguishing also 
between causal and non-causal indices, we considered pairs of simultaneously 260 

observed beat-to-beat time series of SAP and RR, corresponding respectively to 
realizations of the processes �� and ��. In the frequency domain analysis, the coupling 
and gain functions were evaluated within the LF band, ranging from 5%�I`a = 0.04 Hz 
to 5�e�`a = 0.15 Hz [25], in order to minimize the effects of non-baroreflex 
mechanisms on the assessed measures and especially to avoid the confounding effects 265 

of respiration on SAP and RR which are primarily confined in the HF band [14–
18,25]. Accordingly, after computing the spectrum of RR and SAP as well as their 
partial spectra and decomposition, the global measures of causal coupling (6), non-
causal gain (4) and causal gain (7) were averaged in the LF band to get the following 
indexes (?, @ = 1,2, ? ≠ @): 270 

 

 Global causal coupling: L&%� (gh) ≜ �I;ijkl -I4m9kl ] L&%� (5)I;ijkl
I4m9kl ^5  (17) 

 Global non-causal gain: D&%E(gh) ≜ �I;ijkl -I4m9kl ] D&%E(5)I;ijkl
I4m9kl ^5 (18) 

 Global causal gain: D&%O(gh) ≜ �I;ijkl -I4m9kl ] D&%O(5)I;ijkl
I4m9kl ^5.  (19) 

 275 

On the other hand, local band-specific measures were obtained applying the 
equations for causal coupling (14), non-causal gain (15) and causal gain (16) after 
summing the power content of all the components with central frequency 5�  within 
the LF range, i.e. computing (?, @ = 1,2, ? ≠ @):  

 280 

 Local causal coupling: L&|%� (�`a) = ∑ _1|4(�)9T∈kl∑ _1(�)9T∈kl    (20) 



 Local non-causal gain: D&%E(�`a) = o∑ _1(�)9T∈kl∑ _4(�)9T∈kl    (21) 

 Local causal gain: D&|%O (�`a) = o∑ _1|4(�)9T∈kl∑ _4(�)9T∈kl .   (22) 

 
The derivation of the local measures of coupling and gain is illustrated in Fig. 1 for 285 

representative SAP and RR time series. For the same time series, the derivation of the 
local measures of coupling and gain is illustrated in Fig. 2.   

2.4 Experimental protocol and data analysis 

The study included 35 post-AMI patients (58.5 ± 10.2 yrs, 4 female), examined 10 
± 3 days after AMI, and two groups of healthy subjects, 19 young (25.0 ± 2.6 yrs, 9 290 

female) and 12 old (63.1 ± 8.3 yrs, 9 female), all monitored in the resting supine 
position and in the 60° upright position reached after passive head-up tilt [7,26]. After 
recording ECG (Siemens Mingograph, hardware bandpass filter 0.3-1000Hz, lead II) 
and non-invasive finger arterial pressure (Ohmeda 2300; Englewood, CO), the beat-
to-beat variability series of RR interval and SAP were measured on a beat-by-beat 295 

basis. Two stationary and artifact-free windows, each of ~5 min duration, 
corresponding to 300 beats, were then selected in correspondence with the two epochs 
of the test. All signals were filtered to avoid the effect of long-term trends on the data 
analysis, employing an autoregressive high-pass filter with zero phase. Further details 
on experimental protocol and data acquisition can be found in [7,26]. 300 

Each pair of RR and SAP series were fitted by a bivariate AR model, after 
allowing instantaneous zero-lag effects in the direction from SAP to RR, (i.e., setting $��(0) ≠ 0 and $%&(0) = 0 as a constraint for model identification) to allow fast 
within-beat baroreflex influences in agreement with the adopted measurement 
convention. Model identification was performed via the vector least-squares 305 

approach, setting the model order p according to the multivariate version of the 
Akaike criterion [27]. In some cases, the use of the Akaike criterion led to negative 
power contributes and/or complex coupling and gain indices as a result of the residue 
theorem, which may have caused erroneous final results. To avoid such a problem, all 
the obtained results were manually checked and, in case of negative power 310 

contributions, the model order p was slightly varied and thus manually selected to 
achieve positive power values. After AR identification, estimation of the global and 
local measures of causal coupling and causal and non-causal gain were computed 
from the estimated model parameters as described in the previous sections. Spectral 
analysis was performed assuming the series as uniformly sampled with the mean heart 315 

period 〈qq〉 taken as the sampling period ��, so that the Nyquist frequency in each 

spectral representation was taken as 
I;� = ��〈ss〉. 

As regards the statistical analysis, the distributions of the coherence and gain 
indices were tested for normality using the Anderson-Darling test [28,29]. Since the 



hypothesis of normality was rejected for most of the distributions, and given the small 320 

sample size especially for young and old subjects, non-parametric tests were 
employed [30]. For any given group, the statistical significance of the difference 
between rest and tilt conditions was assessed using the Wilcoxon signed rank test 
[31]. Afterwards, the statistical significance of the differences of the median of the 
distributions among groups at a given physiological condition (rest or tilt) was 325 

assessed using the non-parametric Kruskal Wallis test [32]. When the null hypothesis 
that the data in each group comes from the same distribution was rejected, a pairwise 
comparison was carried out using the Dunn post-hoc test with Šidák correction for 
multiple comparisons (n=3) [33,34] to assess differences between group pairs (Young 
vs Old, Old vs AMI and Young vs AMI) at a given condition (rest or tilt). Finally, to 330 

assess the statistical differences between global and local or causal vs non-causal 
indices given the group and the condition, the Wilcoxon signed rank test [31] was 
employed. All statistical tests were carried out with 5% significance level. 

 

Figure 1. Example of causal spectral decomposition of the interactions between systolic arterial pressure 335 
(SAP) and heart period (RR intervals). (a) and (e): SAP and RR time series, respectively, for a 
representative AMI subject in the resting supine position. (b): the power spectrum of SAP is given by >�(5) 
and is decomposed as the sum of a causal spectrum [>�|�(5)] and a non-causal spectrum [>�|�(5)]; (c) and 
(d): the non-causal (c) and causal (d) spectra of SAP are in turn decomposed with the spectral 
decomposition method into contributions associated to specific oscillations of the time series, with those in 340 

the LF band (pole k=2) given by >�|�(�)(5) (non-causal part, c) and >�|�(�)(5) (causal part, d). (f): the power 

spectrum of RR is given by >�(5) and is decomposed as the sum of a causal spectrum [>�|�(5)] and a non-
causal spectrum [>�|�(5)]; (g) and (h): the non-causal (g) and causal (h) spectra of RR are in turn 
decomposed into contributions associated to specific oscillations, with those in the LF band given by >�|�(�)(5) (non-causal part, g) and >�|�(�)(5) (causal part, h). Local measures are computed as follows: the 345 

PSSC from SAP to RR in the LF band, L��� (�`a), is computed as the ratio between the power Z�|�(�)(gh) 

(pink area, (h)) and the total power Z�|�(�)(gh) + Z�|�(�)(gh) (pink + cyan areas, (h) and (g)); the non-causal 

PSSG from SAP to RR in the LF band, D��E (�`a), is computed as the squared root of the ratio between the 

total power Z�|�(�)(gh) + Z�|�(�)(gh) (pink + cyan areas, (h) and (g)) and the total power Z�|�(�)(gh) + Z�|�(�)(gh) 

(cyan + pink areas, (d) and (c)); the causal PSSG from SAP to RR in the LF band, D��O (�`a), is computed as 350 

the squared root of the ratio between the power Z�|�(�)(gh) (pink area, (h)) and the total power Z�|�(�)(gh) + Z�|�(�)(gh) (cyan + pink areas, (d) and (c)). The same procedure applies to the computation of the directed 

coherence and gain indexes from RR to SAP. 



 
Figure 2. Example of frequency domain spectral analysis of baroreflex (SAP→RR, top row) and 355 
feedforward (RR→SAP, bottom row) interactions for a representative AMI subject in the resting supine 
position. (a) and (c): directed coherence function, L%&� (5) (i,j=1,2 and i≠j); (b) and (d): spectral profiles of 

the non-causal gain D%&E(5) and of the causal gain D%&O (5) (i,j=1,2 and i≠j). These ‘frequency-specific’ 

measures were averaged in the low frequency band (vertical grey lines in each plot) to get global measures. 

3. Results 360 

 In this section, the results of LF spectral decomposition and analysis are reported, 
showing the distributions of the causal and non-causal indices described in Section 2, 
alongside with the outcomes of the statistical analyses carried out between different 
physiological conditions and between the various measures. The results in terms of 
causal coupling measures and of gain measures are depicted in Figures 3 and 4, 365 

respectively. 
In the baroreflex direction from SAP to RR (Fig. 3, top panels), both global and 

local measures of causal coupling were significantly higher during tilt than during rest 
for all groups, showing a clear response to postural stress of the DC along the 
baroreflex. Moreover, while the global values were significantly lower in Old and 370 

AMI subjects compared with Young during both rest and tilt (Fig. 3a), the local index 
showed a significant decrease only in AMI compared with Young in both postural 
conditions (Fig. 3b). 

As regards the gain measures in the same direction (Fig. 4, top panels) the non-
causal indices decreased in Old compared to Young during postural stress, while they 375 

did not elicit striking differences relevant to the AMI group (Fig. 4a,c). On the 
contrary, the causal gain indices (measured both globally ad locally) detected a 
statistically significant decrease of the gain not only in Old, but also in AMI 
compared to Young, in both body positions (Fig. 4b,d). Moreover, the comparison 
between the two experimental conditions revealed that the gain index decreased 380 

significantly moving from rest to tilt in all the three groups if computed using the non-
causal methods (Fig. 4a,c), only in AMI patients using the causal global method (Fig. 
4b), and in none of the groups using the causal local method (Fig. 4d). 



 

Figure 3. Results of low frequency (LF) spectral causality analysis of baroreflex (top row) and feedforward 385 
(bottom row) interactions based on the global and local directed (causal) coherence (respectively, L%&� (gh) 
and L%&� (�`a), where i,j=SAP, RR and i≠j). Plots depict the distributions across subjects, shown as 
individual values and box-plot distributions, of the directed coherence from SAP to RR and from RR to 
SAP, computed in the supine (green) and upright (red) body positions. Statistically significant differences: 
*, rest vs. tilt; #, global vs. local;  ̶̶̶̶ , YOUNG vs. OLD, YOUNG vs. AMI or OLD vs. AMI. 390 

 
Global and local measures of coupling and gain were also investigated in the 

feedforward direction, where mechanical effects are known to alter RR variability 
according to changes in SAP variability [16]. The local measure of causal coupling 
decreased significantly from rest to tilt in Young but not in Old and AMI (Fig. 3d). 395 

The corresponding global measure of feedforward coupling decreased with tilt also in 
the AMI patients, and was lower in Old than in Young in the supine position (Fig. 3c). 
As regards the gain from RR to SAP, the non-causal measures (both global and local) 
were significantly higher during orthostatic stress in all three groups (Fig. 4e,g), while 
the causal global measure increased significantly in Old and AMI (Fig. 4f) and the 400 

causal local measure increased significantly only in AMI (Fig. 4h). 
Figs. 3 and 4 illustrate also that non-causal measures of gain are always 

significantly lower than the corresponding causal ones, which is an obvious 
consequence of their mathematical formulation (i.e., the global causal gain (7) is 
obtained multiplying the global non-causal gain (4) by the DC, and the local causal 405 

gain (16) contains at the numerator a fraction of the power contained in the global 
non-causal gain (15)). Moreover, local measures tend to be lower in value than the 
corresponding global ones, being related to a specific oscillation in the LF band; the  
statistically significant differences in Fig. 4 are just a few, i.e. for Young (tilt and rest) 
and Old (tilt) in SAPRR non causal index, for Young (rest) with regard to 410 



SAPRR causal index and for Young and AMI (tilt) causal index in RR SAP 
direction. Instead, comparing DC measures (Fig. 3), global and local indices resulted 
statistically different just for AMI tilt (SAPRR direction) and for Young tilt 
(RRSAP). 

  415 

 
 

Figure 4. Distributions over subjects of the BRS computed in the LF band with the two different approaches 
(from left: non-causal and causal global measures, non-causal and causal local measures) along the two 
directions of interest (top: baroreflex direction from SAP to RR; bottom: feedforward direction from RR to 420 
SAP), in the rest (green) and tilt (red) phases of the testing protocol. Statistically significant differences: *, 
rest vs. tilt; #, global vs. local;   ̶̶̶̶ , YOUNG vs. OLD, YOUNG vs. AMI or OLD vs. AMI; x, non-causal vs. 
causal. 

4. Discussion 

 Evaluation of the baroreflex gain is considered an important tool in clinical 425 

practice for diagnosis and prognosis in many cardiac diseases, including acute 
myocardial infarction [4–7,10,13]. A decreased baroreflex sensitivity has been already 
observed in several pathological conditions as a marker of cardiovascular system 
impairment [7,10,13]. In this study, we propose a new method to assess the BRS in 
the frequency domain, investigating the usefulness of using local causal measures (i.e. 430 

‘pole-specific’ measures) in place of already widely employed global approaches (i.e. 
‘frequency-specific’ measures); the comparison is extended to non-baroreflex 
(feedforward) interactions to investigate the relevant underlying mechanisms. 

Causal methods have been already proved in the literature as useful tools, typically 
more reliable than non-causal ones, for the quantitative assessment of cardiovascular 435 

regulatory mechanisms [10,35,36]. Moreover, preliminary results have shown that the 
frequency-averaging approaches commonly undertaken to obtain an individual value 
from a spectral function (e.g., the DC) for evaluating it within a specific band of 
interest (e.g., the LF band) may be inaccurate as they can incorporate spectral 
contributions originating from neighboring frequency ranges [22]. In the following, 440 



we compare more thoroughly causal vs non-causal and local vs global indices to put 
in evidence strengths and drawbacks of each approach in light of our results. 

4.1 Causal vs. non-causal assessment of cardiovascular interactions 

In physiological conditions, RR and SAP normally reciprocally affect each other 
due to both regulatory feedback and mechanical feedforward coupling mechanisms 445 

(mainly of mechanical nature, such as the Windkessel and Frank-Starling effects) 
[23,36]. The presence of a closed-loop interaction between the heart period and the 
systolic arterial pressure highlighted by past works [2,23,36,37] suggests the 
importance to implement causality to assess cardiovascular interactions. 

Our results confirm the findings already reported in the literature [10,35,36] 450 

highlighting the suitability of a causal (γ index) instead of a non-causal method (α 
index) for the frequency domain evaluation of BRS. The values of causal gain indices 
obtained in our analysis are significantly lower than the corresponding non-causal 
ones in all the groups of subjects during rest and head-up tilt. This finding confirms 
that the non-causal approach may overestimate the BRS, while closed-loop modeling 455 

allows to separately evaluate feedback and feedforward pathways, quantifying their 
relative contribution to the overall cardiovascular regulation [10]. 

The mixing between feedback and feedforward RR-SAP interactions can be also 
the reason why the non-causal measures of BRS detected a lower gain during postural 
stress not only in the AMI patients, but also in the Old and Young healthy subjects. 460 

The effect of tilt maneuver on the power spectrum of heart rate variability (HRV) is 
widely known [38–41], as is recognized that it evokes a greater effectiveness of the 
baroreflex that is mirrored by higher values of coupling between SAP and RR during 
postural stress; this effect was observed both in the present and in previous 
investigations [10,16,42]. Nevertheless, a decrease of the magnitude of the reflex, 465 

mirrored by the gain estimate, is more difficult to explain physiologically; here, the 
latter was observed only in the AMI patients using the global causal measure. 
Moreover, the causal measures of gain (both global and local) highlighted a 
significantly lower gain in the Old group, and especially in the AMI group, compared 
to the Young group. These decreased BRS values were observed in both the supine 470 

and upright position, documenting a reduced response of the baroreflex likely related 
to an impairment occurring with the coronary disease. 

As regards the mechanical feedforward, the significant increase with head-up tilt 
observed for the non-causal measures of gain in all groups was found consistently for 
both causal measures only in the AMI patients. This result may be an indication of a 475 

physiological response to tilt that occurs as a consequence of the disease (as discussed 
in Sect 4.3), and is observed in young healthy subjects only when non-causal methods 
are improperly used to assess the gain function. 



4.2 Global vs. local assessment of cardiovascular interactions 

From a methodological point of view, the operation of averaging spectral functions 480 

(like the DC or the gain) to get a global index within an assigned frequency band 
could lead to inaccurate evaluation of the index, because external broadband 
oscillations may convey information into the analyzed band. This aspect, that we 
demonstrated recently in a theoretical example [22], is a major deal in cardiovascular 
variability analysis where VLF oscillations are often predominant and may thus have 485 

an impact on the evaluation of the DC or the BRS in the LF band of the spectrum 
[22]; a similar effect of spreading between adjacent bands may involve also the HRV 
oscillations located in the HF band and mainly due to respiration [14,25,38]. On the 
other hand, the method of spectral decomposition allows to focus more objectively on 
the spectral content within specific ranges, lastly resulting in DC and gain values 490 

(local measures) which are expected to reflect more accurately the underlying 
mechanisms of effectiveness and magnitude of a reflex with regard to the oscillations 
of physiological interest. 

In the light of the methodological considerations above, we interpret the agreement 
often found between global and local measures as indicative of a limited impact of 495 

broadband VLF or HF spectral contributions into the analyzed LF band. This was the 
case, in the feedback direction from SAP to RR, for the significantly lower values of 
both causal coupling and gain observed in AMI compared to Young in both body 
positions and for the increase with tilt of the causal coupling in all groups, and, in the 
feedforward direction from RR to SAP, for the decrease in Young (but not in Old and 500 

AMI) of the causal coupling and the increase in AMI (but not in Young) of the causal 
gain observed moving from rest to tilt. These results, consistently found using both 
global and local causal measures, are interpreted as robust and are discussed 
physiologically in Sect. 4.3. 

On the other hand, a disagreement between global and local measures of causal 505 

influence is likely indicating an effect of bands external to the LF on the global 
computation based on averaging. In our analysis, the main occurrence of this 
disagreement is the detection in AMI of a significant decrease of the causal gain from 
SAP to RR observed moving from rest to tilt with the global method but not with the 
local method; this suggests that, in the analysed post-infarction patients, a depressed 510 

BRS response to tilt occurs with contributions to cardiovascular variability located in 
frequency bands other than the LF. The other differences observed between the global 
and local approaches regard mostly comparisons involving the Old group; these may 
be explained also by the small size of this group (see Sect. 4.4). 

4.3 Characterization of feedback and feedforward cardiovascular 515 

interactions via a local causal approach 

As discussed in the previous subsections, the local causal method may be 
considered the methodologically most accurate approach for assessing the coupling 
and gain related to specific oscillations of the two analyzed time series, as it is able to 
separately evaluate feedback and feedforward pathways and to avoid confounding 520 



spectral contributions from other frequency ranges. In the analyzed data, the local 
causal approach showed a tendency to detect less statistically significant differences 
in the comparisons between groups and conditions; as these seem to be more 
conceivable and with a more robust physiological meaning, we discuss them from a 
physiological viewpoint. 525 

Compared to the young heathy controls, a significantly lower causal coupling 
along the baroreflex direction from SAP to RR was detected in post-AMI patients 
during each of the two analyzed experimental conditions; the difference with Young 
was not statistically significant in the Old group when the local method was adopted 
to measure the causal coupling. This result is in agreement with previous findings in 530 

the literature which highlighted an overall lower synchronization index and an 
increase of the number of subjects showing uncoupled RR and SAP dynamics [7]. 
Moreover, the post-AMI patients showed also significantly an impaired baroreflex 
gain compared to the young subjects, both at rest and during tilt. This result, that was 
observed also in Old during tilt, can be attributed to the higher sympathetic tone of 535 

these subjects and to an inability to respond to changes in cardiac output by further 
sympathetic activation [7], and can be related to the known reduction of heart rate 
variability typically occurring in elderly and AMI subjects [43–45]. 

When the response to head-up tilt was analyzed, we observed in all groups a 
significant increase of the causal coupling along the baroreflex pathway moving from 540 

the supine to the upright position. This finding is typically related to the sympathetic 
activation produced by the postural stress induced by tilt [46,47] which has already 
been widely observed in the literature [38,39,41,48]. Overall, it reflects the increased 
effectiveness of the baroreflex in response to an orthostatic maneuver. The fact that it 
was observed also in the post-AMI patients, together with the observation that none of 545 

the groups denoted significant variations of the local causal gain moving from rest to 
tilt, seems to suggest that the baroreflex response to postural stress is preserved, in 
terms of increased effectiveness and unaltered sensitivity, after myocardial infarction. 
On the other hand, the statistically significant decrease of the global causal gain 
observed with tilt only in AMI patients points out a decreased BRS due to tilt, which 550 

agrees with previous findings indicating a reduced capability to cope with the postural 
challenge after AMI [7,43]. We hypothesize that the symptoms of orthostatic 
intolerance manifested after AMI are associated with fluctuations of RR and SAP 
which are not confined within the LF band of the spectrum. 

Along the feedforward direction, a significant decrease of the causal coupling after 555 

head-up tilt was detected in Young subjects but not consistently in Old or post-AMI 
patients. In healthy subjects, a statistically significant decrease with tilt of the 
coupling from RR to SAP was reported using causal methods in the time domain [49], 
where it was investigated in terms of the cascade of interactions from RR to diastolic 
blood pressure (DBP) and then to SBP. Physiologically, this causal coupling is 560 

associated with the cardiac run-off, the Windkessel effect and the Frank-Starling law, 
according to which modifications of the heart period affect the end diastolic volume 
and then the strength of the systolic contraction [49,50]. The tilt-induced decrease of 
the effectiveness of the feedforward mechanism can be associated by the increased 
heart rate which limits the cardiac run-off and consequently the systolic contraction, 565 

but other mechanisms cannot be excluded as blood pressure variability is also due to 
variations in the sympathetic blood vessels control [36]. The lack of a consistent 



reduction with tilt of the feedforward coupling in Old and AMI patients could thus be 
associated to an impairment of these physiological mechanisms related to age and 
disease. 570 

The feedforward gain was found to increase in Old and post-AMI patients after 
orthostatic stress. Since the occurrence of acute myocardial infarction is thought to be 
responsible of a significant stiffening of the cardiac muscle, and aging is associated 
with a stiffening of the vascular bed, these alterations might lead to an alteration of 
the mechanical effects which allow heart period to drive SAP variability during head-575 

up tilt. A role may be also played by the neural autonomic control, with a larger 
reduction of heart rate variability compared to SAP variability in AMI patients. The 
feedforward gain was found to significantly increase with the postural stress also in 
Old compared to Young subjects. The alteration of the capability of RR to drive SAP 
variability reported in Old people during tilt suggests that also aging can be 580 

responsible for a modification of feedforward mechanisms of mechanical nature that 
characterize the interactions from the heart period to the systolic arterial pressure. 
Such results are in agreement with other findings reported in the literature [7] that 
highlighted an unbalanced RR-SAP regulation in old subjects with increased 
feedforward and decreased feedback mechanism.  585 

4.4 Limitations and future studies 

The present study has some limitations that should be taken into account. First of 
all, according to the study protocol [7], cardiovascular signals of the AMI group were 
recorded at predischarge time on patients in pharmacological washout. Only a small 
subgroup of very low-risk post-AMI patients able to support the suspension of β-590 

blocker treatment without appreciable risk and no taking of antiarrhythmic drugs was 
involved in the study. Therefore, the results of our study cannot be generalized to the 
general post-AMI population. Nonetheless, residual effects of the treatment with 
betablockers may still be present in the AMI patients and thus affect the analyzed 
cardiovascular dynamics [26].  595 

Other limitations are related to the small sample size of Young (19 subjects) and 
especially Old (12 subjects) groups, and to the fact that such groups are not 
homogeneous in the gender distribution (males are prevalent in AMI, females are 
prevalent in Old, while the gender is balanced in Young) [26]. 

A methodological limitation consists in the selection of the order of the parametric 600 

model used to fit the time series. Model order selection is an issue in real data 
analyses, where the true order is usually unknown. A correct model order assessment 
is rather difficult because the estimated order may not meet the user expectations (in 
terms of spectral resolution when it is too low, or in terms of interpretability of highly 
variable spectral profiles when it is too high). In the present study, the use of the 605 

Akaike Information Criterion [27] for model order selection led sometimes to spectral 
contributes of difficult interpretation or even negative power values after spectral 
decomposition. For this reason, the manual selection of the model order p could 
represent a possible workaround to avoid negative power contributes and to obtain a 



better spectral representation in LF band, still maintaining a tradeoff between good 610 

data resolution and reasonably low model complexity.  
Future activities may also include further studies on larger groups of subjects, or on 

patients affected by different pathologies (e.g. hypertension [51,52] or atherosclerosis 
[53,54]). Moreover, an improvement of the automatic order selection algorithm to 
avoid negative power values or the application of other criteria (e.g. Bayesian 615 

Information Criterion) may be envisaged [55]. 

5. Conclusion 

This study emphasizes the importance of combining the novel method of spectral 
decomposition [21,56] and a causal approach to cross-spectral analysis [10,13] to 
investigate the coupling and gain mechanisms underlying the closed-loop 620 

cardiovascular regulation in healthy and diseased stats. Combining such approaches 
allows to quantify objectively, at specific well-defined frequencies, the causal 
contribution of SAP to RR along the baroreflex pathway and of RR to SAP along the 
mechanical feedforward. The application of the proposed method to cardiovascular 
time series of Young, Old and AMI subjects highlighted that causal local measures 625 

perform better than traditional non-causal approaches in the evaluation of BRS, 
suggesting that aging and infarction generate impairment of BRS occurring at rest and 
when carrying out the orthostatic maneuver.  

These findings support the concept that the use of a spectral decomposition 
approach as well as the implementation of causality in the study of interactions 630 

between heart rate and arterial pressure allows to mitigate the confounding effects of 
other variables operating at different frequencies and of reverse-side mechanisms and 
is thus essential to achieve a more accurate BRS assessment in physio-pathological 
states and different postural conditions. 
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