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Abstract
Gastrointestinal stromal tumors (GISTs) are uncommon neoplasms of the 
gastrointestinal tract with peculiar clinical, genetic, and imaging characteristics. 
Preoperative knowledge of risk stratification and mutational status is crucial to 
guide the appropriate patients’ treatment. Predicting the clinical behavior and 
biological aggressiveness of GISTs based on conventional computed tomography 
(CT) and magnetic resonance imaging (MRI) evaluation is challenging, unless the 
lesions have already metastasized at the time of diagnosis. Radiomics is emerging 
as a promising tool for the quantification of lesion heterogeneity on radiological 
images, extracting additional data that cannot be assessed by visual analysis. 
Radiomics applications have been explored for the differential diagnosis of GISTs 
from other gastrointestinal neoplasms, risk stratification and prediction of 
prognosis after surgical resection, and evaluation of mutational status in GISTs. 
The published researches on GISTs radiomics have obtained excellent 
performance of derived radiomics models on CT and MRI. However, lack of 
standardization and differences in study methodology challenge the application 
of radiomics in clinical practice. The purpose of this review is to describe the new 
advances of radiomics applied to CT and MRI for the evaluation of 
gastrointestinal stromal tumors, discuss the potential clinical applications that 
may impact patients’ management, report limitations of current radiomics 
studies, and future directions.

Key words: Gastrointestinal stromal tumors; Radiomics; Texture analysis; Computed 
tomography; Magnetic resonance imaging; Clinical applications
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diagnosis of gastrointestinal stromal tumors (GISTs) with other gastrointestinal neoplasms 
in the stomach and duodenum. Excellent performances have been reported for the 
evaluation of risk status, the preoperative identification of high-risk tumors, and the 
prediction of prognosis after target therapies. Radiogenomics studies are still lacking, with 
only initial evidences describing the potential of radiomics for the diagnosis of GISTs 
without KIT mutations. In this work we review the new advances in radiomics applied to 
the computed tomography and magnetic resonance imaging of GISTs.

Citation: Cannella R, La Grutta L, Midiri M, Bartolotta TV. New advances in radiomics of 
gastrointestinal stromal tumors. World J Gastroenterol 2020; 26(32): 4729-4738
URL: https://www.wjgnet.com/1007-9327/full/v26/i32/4729.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i32.4729

INTRODUCTION
Gastrointestinal stromal tumors (GISTs) are uncommon mesenchymal neoplasms of 
the gastrointestinal tract, originating from the interstitial cells of Cajal[1]. GISTs may 
arise anywhere along all the gastrointestinal tract, being more commonly encountered 
in the stomach (50%-60% of cases) or small intestine (30%-40%), while they are rarely 
observed in the esophagus and colorectum[1,2]. All GISTs have malignant potential with 
varying degree of biological aggressiveness. Liver and peritoneum are the most 
common sites of metastatic disease or recurrence after curative resection, which occurs 
in about 40% of patients[3-5]. GISTs are also characterized by peculiar genetic 
alterations, with 85% of tumors presenting with activating mutations in the KIT proto-
oncogene, while a minority of lesions show mutations of platelet-derived growth 
factor α (PDGFRα), or occasionally may lack of known mutations (wild type GISTs)[6]. 
The advent of imatinib mesylate, a selective tyrosine kinase inhibitor of the KIT and 
PDGFα receptors, has revolutionized the treatment of GISTs, significantly improving 
the patients’ survival even in advanced stages.

Contrast-enhanced computed tomography (CT) is the imaging modality of choice 
for preoperative diagnosis, staging, as well as postoperative follow-up and assessment 
of treatment response in patients with GISTs[7,8]. On contrast-enhanced CT, GISTs 
usually present with peculiar imaging features, most often with large (> 5 cm) 
abdominal mass, heterogeneous enhancement, and variable amount of necrosis[9-12]. 
Other imaging findings include presence of calcifications, ulceration or cystic 
degeneration[11,12]. Magnetic resonance imaging (MRI) may provide additional 
information for the evaluation of primary tumors in peculiar location (i.e., rectum) and 
may be preferred for the differential diagnosis of liver metastasis from other benign 
hepatic lesions[13,14]. In clinical practice, predicting the behavior of GISTs is challenging, 
unless the lesions have already metastasized at the time of diagnosis. Although some 
imaging predictors of malignant potential have been identified (size, location, margins, 
enhancement pattern) and variably correlated with prognosis and survival of GISTs, 
small tumors lacking of concerning imaging features may still metastasize, making 
difficult to predict aggressive tumors.

Radiomics is emerging as a promising tool that allows to quantify lesion 
heterogeneity, extracting additional quantitative data from radiological imaging that 
cannot be evaluated by human eyes[15,16]. In recent years, multiple researches have 
explored the performance of radiomics models in abdominal oncologic applications, 
with significant results for lesions characterization, evaluation of therapeutic response 
and prediction of patients’ survival after surgical or systemic treatments[17-22]. The 
application of radiomics in GISTs could be used to further improve the patients’ 
management and provide new advances in quantitative lesion evaluation due to the 
unique clinical, genetic, and imaging characteristics of these tumors.

With this review, we aim to describe the new advances of radiomics applied to CT 
and MR imaging for the evaluation of gastrointestinal stromal tumors, discuss the 
potential clinical applications that may impact patients’ management, report 
limitations of current radiomics studies, and future directions.

https://www.wjgnet.com/1007-9327/full/v26/i32/4729.htm
https://dx.doi.org/10.3748/wjg.v26.i32.4729
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WORKFLOW OF RADIOMICS ANALYSIS
Radiomics is based on the mathematical quantification of images heterogeneity, 
through the analysis of distribution and relationships of pixel intensities within a 
region of interest (ROI)[15,16]. Radiomics analysis requires a multistep process, starting 
from imaging acquisition, and including lesion segmentation, features extraction, 
features selection and reduction, predictive model building, and finally validation and 
clinical interpretation of the results[19,20,23].

Radiomics can be potentially applied to any type of radiological images, including 
ultrasound, CT, MRI and positron emission tomography/CT, but most of studies are 
nowadays based on CT or MRI examinations[19]. Image acquisition is one of the most 
critical steps for radiomics, since scanning and technical parameters may influence the 
reproducibility of radiomics features. Particularly, reconstruction algorithm and slice 
thickness had demonstrated to largely impact on the reproducibility of radiomics 
features on CT[24-26]. The heterogeneous imaging acquisition may be problematic for 
evaluation of retrospective data acquired with different CT or MRI scanners, while 
prospective study should ensure that all patients will be imaged using standardized 
parameters[27]. It is also important to select the optimal phase/sequence for image 
analysis. Pre-contrast images are not affected by the contrast administration, but lesion 
segmentation is more difficult, especially for smaller tumors that are difficult to 
distinguish on non-contrast CT. Contrast-enhanced images may provide better 
assessment of lesion heterogeneity, but type and non-standardized timing of contrast 
agent administration may represent additional confounding factors, especially for 
images acquired on arterial phase.

Lesion segmentation is the most critical step of radiomics process. Segmentation 
may be performed manually by expert radiologists, using semi-automatic, or 
automatic software[27]. Although manual segmentation is time consuming and it is 
subject to intra- and inter-reader variability, it is still considered as the gold standard 
for most of radiomics studies[18,19,23]. The segmentation is usually realized by drawing a 
ROI within the tumor margins (Figure 1), avoiding the inclusion of any extra-tumoral 
tissues such as bowel mucosa, intestinal content, or peritumoral vessels. The ROI can 
be placed on a single slide (2D ROI) on the largest tumor cross section or include the 
whole lesion (3D ROI). Although the latter may capture more tissue heterogeneity, its 
clinical advantage remains debated.

Several in-house build or commercially available radiomics research software are 
nowadays used for extract a large number of radiomics features. These features may 
be divided into semantic (qualitative features usually reported by radiologists such as 
size, margins, enhancement pattern) or agnostic (which are mathematical and 
quantitative descriptors of heterogeneity) features. Agnostic features are further 
classified in first, second and third order features[19]. The first order features are 
obtained from the analysis of the gray level histogram within a defined ROI, without 
considering spatial relations among pixels. Most common histogram-based features 
include mean (average of the pixels within the ROI), standard deviation (dispersion 
from the mean) ,  skewness  (asymmetric  of  the histogram),  kurtosis  
(peakedness/flatness of the histogram), and entropy (image irregularity or 
complexity)[20]. The second order texture features consider the spatial relationship 
among pixels, and most commonly include grey level co-occurrence matrix (GLCM), 
that quantifies the arrangements of pairs of pixels with the same values in specific 
directions, and grey-level run length matrix (GLRLM), that quantifies consecutive 
pixels with the same intensity along specific directions. Third or higher order features 
evaluate spatial relationship among three or more pixels through statistical methods 
after applying filters or mathematical transforms. These features include fractal 
analysis, wavelet transform, and Laplacian transforms of Gaussian-filtered image. Due 
to the large number of extracted parameters, features reduction should be performed 
in order to excluded features that are not reproducible or with high similarity (i.e., 
redundant features). This is a significant step to avoid overfitting problems, especially 
in small cohorts[18-20,24].

Only uncorrelated features with significant diagnostic performance are selected for 
final radiomics models. The choice of statistical methods and models may depend on 
multiple factors such as evaluation of primary outcome, number of features, and 
number of analyzed lesions[23]. These models can be also combined with other patient 
clinical characteristics in order to increase their predictive power[15]. Finally, radiomics 
models should be tested and validated using independent internal validation cohort or 
external population[18]. To assess the quality of radiomics studies, scores have been 
proposed, such as the Radiomics Quality Score developed by Lambin et al[28], which 
evaluates 16 key components of radiomics workflow[28,29].
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Figure 1  Examples of lesion segmentation using a texture analysis software (LIFEx, www.lifexsoft.org) on axial (A), coronal (B) and 
sagittal (C) contrast-enhanced computed tomography images on venous phase in an 82-year-old man with 4.5 cm gastric gastrointestinal 
stromal tumor.

RADIOMICS METHODOLOGY IN GISTS
Existing articles of radiomics in GISTs (Table 1) have been performed with 
heterogeneous methodology regarding the imaging studies, type of radiomics features 
and analysis[30-44]. Up to May 2020, all the radiomics research studies on GISTs were 
performed in retrospective populat ion,  and only four studies  were 
multicentric[31,32,35,44]. The number of included GISTs widely ranged from 15 to 440 
lesions. All except one of radiomics GIST studies used CT imaging for features 
extraction, while only one study[36] evaluated the MRI. On CT studies, radiomics 
analysis was most commonly carried out on venous phase (48%), followed by arterial 
phase (38%), and pre-contrast images (14%) (Figure 2). No study included the delayed 
phase in radiomics evaluation. First, second, and third order features were extracted in 
80%, 67%, and 20% of studies, respectively. Volumetric analysis (3D ROI) was 
performed in 60% of cases, while 2D ROIs were placed in 47% cases. Only one study[41] 
compared the accuracy of 2D vs 3D ROIs in GISTs, reporting an excellent agreement 
between the two segmentation methods.

Few studies have investigated the intra- and inter-reader variability of radiomics 
features in GISTs, with promising results for reproducibility of tumor segmentation 
and features extraction. A recent study[41] described an almost perfect intra- and inter-
reader reproducibility of radiomics features (reported ICC > 0.98) using both single-
ROI and whole lesions-ROI manual segmentations. Other studies assessed the inter-
reader variability for manual segmentation, all reporting an excellent inter-observer 
agreement for whole tumor radiomics parameters extracted by two abdominal 
radiologists (ICC ranging from 0.85 to 0.99)[35,37-39].

Validation of radiomics models in independent cohorts was performed in 47% of 
studies. However only three of them[31,32,44] included external validation cohorts.

RADIOMICS APPLICATIONS IN GISTS
Differential diagnosis between GIST and other tumors
Stomach is the most common organ affected by GISTs. The differential diagnosis 
should be carried with other gastric benign mesenchymal neoplasms (i.e., 
schwannomas and leiomyomas) or malignant tumors (i.e., gastric adenocarcinomas 
and lymphomas), and it may be difficult due to the overlap in imaging 
appearance[45-47]. Using a texture analysis approach, Ba-Ssalamah et al[30] differentiated 
GISTs from gastric adenocarcinomas and lymphomas with a high successful rate on 
arterial and venous phase CT images.

Another challenging location for the differential diagnosis of GISTs from other 
gastrointestinal neoplasms is the duodenum[48]. GISTs occur rarely in the duodenum 
(less than 5% of cases) and the differentiation from more common duodenal 
adenocarcinomas (DACs), pancreatic ductal adenocarcinomas (PDACs), or pancreatic 
neuroendocrine tumors is significantly relevant for preoperative management and 
patient prognosis[48,49]. To improve the preoperative characterization of these lesions, a 
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Table 1 Summary of radiomics studies including gastrointestinal stromal tumors

Ref. Number of lesions Imaging Radiomics analysis Key radiomics results

Ba-Ssalamah 
et al[30]

15 GISTs, 27 gastric 
adenocarcinomas, 5 
lymphomas

CT Histogram-based, GLCM, 
GLRLM, absolute gradient, 
autoregressive model, Wavelet 
transform.

On AP texture features perfectly differentiated 
between GIST vs lymphoma. On PVP texture 
features differentiated GIST vs adenocarcinoma in 
90% of cases and GIST vs lymphoma in 92% of 
cases.

Chen et al[31] 222 GISTs CT GLCM, GLRLM, GLSZM, 
NGTDM. Support Vector 
Machine for model building.

AUROC 0.84-0.86 of radiomics models for GIST 
risk stratification.

Chen et al[32] 147 GISTs CT Residual Neural Network for 
model building.

AUROC of 0.887-0.947 for ResNet nomogram and 
model for prediction of disease-free survival after 
surgical resection.

Choi et al[33] 145 GISTs CT Histogram-based. AUROC of 0.782-0.779 of mpp and kurtosis for 
differentiation of high-risk GISTs.

Ekert et al[34] 25 GISTs CT Histogram-based, GLCM, 
GLDM, GLRLM, GLSZM, 
NGLDM.

Ten GLCM, GLRLM, NGLDM features 
significantly correlated with disease progression 
and progression free survival.

Feng et al[35] 90 GISTs CT Histogram-based. AUROC of 0.823-0.830 of entropy for the 
differentiation of low from high-risk GISTs.

Fu et al[36] 51 GISTs MRI Fractal features, GLCM, GLRLM. Texture features on DWI and ADC map correlated 
with overall survival in metastatic GISTs.

Liu et al[37] 78 GISTs CT Histogram-based. AUROC of 0.637-0.811 for the identification of very 
low and low-risk GISTs.

Lu et al[38] 28 GISTs, 26 DACs, 20 
PDACs

CT Histogram-based. AUROC of 0.809-0.936 of 90th percentile for 
differentiation of GISTs from DACs and PDACs.

Ren et al[39] 440 GISTs CT Histogram-based, GLCM. AUROC of 0.933-0.935 for the differentiation of low 
from high-risk GISTs.

Wang et al[40] 333 GISTs CT Histogram-based, GLCM, 
GLRLM.

AUROC of 0.882-0.920 for the differentiation of low 
from high-risk GISTs. AUROC of 0.769-0.820 for the 
differentiation of low from high mitotic count.

Xu et al[41] 86 GISTs CT Histogram-based, GLCM, 
GLRLM.

AUROC of 0.904-0.962 of standard deviation for 
diagnosis of GIST without KIT exon 11 mutations.

Yan et al[42] 213 GISTs CT Histogram-based, GLCM, 
GLRLM, absolute gradient, 
autoregressive model, Wavelet 
transform.

AUROC of 0.933 of texture analysis model for 
preoperative risk stratification.

Zhang et al[43] 140 GISTs CT Histogram-based, shape-based, 
GLCM, GLRLM, GLSZM.

AUROC of 0.809-0.935 for discrimination of 
advanced GISTs and four risk categories of GISTs

Zhang et al[44] 339 GISTs CT GLCM, GLRLM, GLSZM, 
GLDM.

AUROC of 0.754-0.787 of radiomics features for 
prediction of high Ki67 expression.

AUROC: Area under the receiver operating characteristics curve; CT: Computed tomography; DACs: Duodenal adenocarcinomas; GIST: Gastrointestinal 
stromal tumors; GLCM: Grey level co-occurrence matrix; GLDM: Grey-level dependence matrix; GLRLM: Grey-level run length matrix; GLSZM, Gray-
level size zone matrix; GLZLM: Grey-level zone length matrix; MRI: Magnetic resonance imaging; NGLDM: Neighborhood grey-level different matrix; 
NGTDM: Neighbourhood gray-tone difference matrix; PDACs: Pancreatic ductal adenocarcinomas.

study by Lu et al[38] investigated the whole lesion histogram analysis on contrast-
enhanced CT, reporting an excellent discrimination of GISTs from DACs and PDACs 
in the periampullary region.

Risk stratification and prediction of prognosis of GISTs
Accurate evaluation of malignant risk and outcome in GISTs is mainly based on tumor 
size, location (gastric vs non-gastric tumors), and mitotic count obtained with resection 
specimens. These factors are combined in the National Institutes of Health 2008 
criteria[50], which classified GISTs four risk classes: very low, low, intermediate and 
high-risk tumors. However, in clinical practice risk stratification may be limited by the 
evaluation of mitotic count in patients treated with neoadjuvant therapies, or by the 
assessment of biopsy specimens that could not be representative of the whole tumor. 
Therefore, several studies have tried to predict risk stratification based on preoperative 
CT imaging[51-53]. CT features like size, growth pattern, or enlarged feeding vessels have 



Cannella R et al. Radiomics of gastrointestinal stromal tumors

WJG https://www.wjgnet.com 4734 August 28, 2020 Volume 26 Issue 32

Figure 2  Chart shows the frequency of computed tomography imaging phases included in radiomics gastrointestinal stromal tumors 
studies. Corresponding computed tomography images shows an 8.6 cm gastric gastrointestinal stromal tumor in a 64-year-old woman.

been associated with high-risk tumors[51-53]. Nevertheless, risk stratification using 
qualitative imaging evaluation is affected by the readers’ experience, heterogeneous 
definition of imaging features, and subjective assessment with suboptimal 
reproducibility of qualitative features[54].

Radiomics models have demonstrated to improve the preoperative prediction of 
high-risk GISTs compared to the conventional visual evaluation[33,42]. The added value 
of radiomics and texture analysis on contrast-enhanced CT was firstly investigated by 
Yan et al[42] in a retrospective cohort of 213 small bowel GISTs. In that study, texture 
analysis model achieved a similar diagnostic accuracy compared to that of clinical and 
subjective imaging features for preoperative risk prediction of GISTs[42]. When 
combining the clinical and texture analysis features, the diagnostic performance 
(AUROC of 0.943) significantly improved compared to the model incorporating 
clinical and imaging features only[42]. In a more recent study, Choi et al[33] investigated 
the diagnostic performance of histogram-based texture parameters and qualitative 
analysis of CT imaging features for the differentiation of low-risk from high-risk 
GISTs. Their results confirmed that the radiomics features showed a higher diagnostic 
performance (AUROC of 0.782-0.779) compared to conventional qualitative evaluation 
(AUROC of 0.59-0.70) by two radiologists in the differential diagnosis of low-risk from 
high-risk GISTs[33].

The potential of radiomics for the risk stratification in GISTs have been further 
evaluated by other evidences with promising results and excellent diagnostic 
performance[35,37,39,40,43]. Liu et al[37] applied CT-based texture analysis for the 
identification of very low and low risk GISTs in a cohort of 78 patients, reporting a fair 
diagnostic performance (AUROC of 0.637-0.811) for the most discriminant features 
obtained on pre-contrast, arterial and venous phases CT images. Feng et al[35] extracted 
histogram-based parameters from arterial and venous phase CT images of 90 small 
bowel GISTs. Among them, entropy showed the highest diagnostic accuracy on 
arterial and venous phases (AUROC of 0.823 and 0.830, respectively) for the 
identification of high-risk GISTs. Zhang et al[43] analyzed 140 GISTs using arterial phase 
CT images, reporting an excellent diagnostic performance for preoperative prediction 
of advanced (i.e., high and intermediate risk) GISTs and four-class risk stratification 
(AUROC of 0.935 and 0.809, respectively).

In a large population of 440 pathologically proven GISTs, Ren et al[39] reported an 
excellent performance of radiomics models for the differentiation of low-risk from 
high-risk GISTs (AUROC of 0.935 and 0.933 in training and validation cohort, 
respectively). In that study, the prediction nomogram (incorporating lesion size, cystic 
degeneration, and texture-based mean) demonstrated a sensitivity of 90.6% and a 
specificity of 75.7% for the diagnosis of high-risk GISTs[39]. Similarly, Wang et al[40] 
analyzed the contrast-enhanced CT images of 333 GISTs and reported an excellent 
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discrimination capacity of radiomics models between low-risk and high-risk GISTs in 
both training and validation cohorts (AUROC of 0.882 and 0.920, respectively). In 
addition, radiomics models enable to discriminate GISTs with low and high mitotic 
count with a good-to-excellent performance (AUROC: 0.769-0.820)[40].

In two subsequent studies[31,32], Chen et al[31,32] built support vector machine and 
residual neural network based models to predict malignant potential or 3-year and 5-
year recurrence-free survival after complete surgical resection of localized GISTs, 
respectively. In those researches, the Authors enrolled an internal patients’ cohort for 
training the model, which was subsequently validated in internal and external cohorts, 
with a good-to almost perfect performance for GIST risk stratification and prediction 
of recurrence free survival at 3-year and 5-year, respectively[31,32].

Survival analysis for disease progression according to texture features was carried 
out also by Ekert et al[34] on contrast-enhanced CT, while only one study[36] has 
performed radiomics analysis on MRI. Fu et al[36] extracted texture features from T2-
weighted, DWI and ADC map images to determine prognosis of metastatic GISTs, 
reporting that texture features on DWI and ADC map well-correlated with overall 
survival.

Finally, Ki67 index represents a marker of proliferation of tumor cells, which have 
also been associated with poor prognosis in GISTs[55]. In a study of 339 GISTs[44], 
radiomics signature from contrast-enhanced CT have demonstrated a significant 
correlation with Ki67 expression, providing an added value for prognosis assessment.

Assessment of mutational status
Genetic alterations and mutational status is crucial for GISTs optimal target therapy. 
About 80%-85% of GISTs have mutation in KIT genes, 10% of GISTs have mutations in 
PDGFRα, while the remaining 10%-15% GISTs are wild type due to the lack of 
mutations in either of these genes[6]. Particularly, PDGFRα and wild type GISTs have a 
lower response rate or resistance to the target therapies with tyrosine kinase inhibitors, 
depending on the specific mutational status[1,6].

Few data exist regarding the association between CT imaging features and 
mutations in GISTs[57,58]. The performance of radiomics features and radiologists visual 
analysis for the differentiation of GISTs with and without KIT exon 11 mutations have 
been explored by Xu et al[41] in a study cohort and validation group of 69 and 17 GISTs, 
respectively. In that investigation, the standard deviation was strongly correlated with 
absence of KIT exon 11 mutations, and achieved an AUROC of 0.904-0.962. Contrarily, 
there was no statistically significant differences in the visual ratings of lesions 
heterogeneity between GISTs with and without KIT exon 11 mutations. Further 
researches are needed to correlate the radiomics signature with the genomics patterns 
of mutational status (known as radiogenomics analysis[15]) in order to provide reliable 
information to guide the most appropriate treatment, especially in advanced GISTs 
that are not suitable for surgical resection.

LIMITATIONS AND FUTURE DIRECTIONS
Although radiomics has an enormous research potential for the improvement of 
quantitative tumors evaluation, there are some limitations that challenges its 
application in everyday clinical practice. Standardization of methodology is the 
primary problem for radiomics analysis. Differences in imaging acquisition, features 
extraction, and radiomics software challenge the comparisons between studies and the 
repeatability or application of radiomics models in different populations. All the 
current published studies on radiomics of GISTs are retrospective and mostly 
performed in single centers. The lack of standardization in CT and MRI acquisition is 
another major problem for radiomics assessment of GISTs. This latter is strictly related 
to the rarity of GISTs compared to other neoplasms, which require collection of 
imaging studies obtained during a long period of time. Moreover, the peculiar 
histopathological characteristics of GISTs, such as mitotic count and mutational status, 
require pathological diagnosis through resections specimens as reference standard for 
radiomics studies.

The evaluation of treatment response after tyrosine kinase inhibitors therapy needs 
also the be further investigated. Indeed, the response to target therapy may occur even 
without reduction of tumor size[58]. As consequence, Choi criteria[59], based on the 
measurements of CT attenuation values, have been adopted for the evaluation of 
treatment response in patients undergoing target therapies. The added values of 
radiomics in the imaging evaluation of treatment response is currently underexplored 
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and may be investigated in futures studies.
Further prospective multicentric studies will be needed to validate the optimal 

diagnostic performance of radiomics models provided by retrospective analysis. 
Future works are also warranted for optimization and standardization of radiomics 
software, imaging acquisition, features extraction and models analysis.

CONCLUSION
Radiomics is emerging as a promising tool for quantitative evaluation of GISTs, with 
excellent diagnostic performance for the differential diagnosis with other 
gastrointestinal neoplasms, prediction of risk stratification, and evaluation of 
mutational status. Future implementation of radiomics models in clinical practice may 
provide additional information from radiological images that will be helpful to guide 
patients management and more tailored treatments.
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