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In recent years, the chemical speciation of several species has been increasingly

monitored and investigated, employing electrospray ionization mass spectrometry

(ESI-MS). This soft ionization technique gently desolvates weak metal–ligand complexes,

taking them in the high vacuum sectors of mass spectrometric instrumentation. It is,

thus, possible to collect information on their structure, energetics, and fragmentation

pathways. For this reason, this technique is frequently chosen in a synergistic

approach to investigate competitive ligand exchange-adsorption otherwise analyzed

by cathodic stripping voltammetry (CLE-ACSV). ESI-MS analyses require a careful

experimental design as measurement may face instrumental artifacts such as ESI adduct

formation, fragmentation, and sometimes reduction reactions. Furthermore, ESI source

differences of ionization efficiencies among the detected species can be misleading.

In this mini-review are collected and critically reported the most recent approaches

adopted to mitigate or eliminate these limitations and to show the potential of this

analytical technique.
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INTRODUCTION

The IUPAC has defined the term “speciation analysis” as the “analytical activities of identifying
and/or measuring the quantities of one or more individual chemical species in a sample.” It is also
defined as “speciation of an element” the “distribution of an element amongst defined chemical
species in a system.” Taking into account the development of the field and the wave of other -omic
sciences, the term “metallomics” has been recently coined, defining “metallome” as the ensemble
of metals and metalloids present in cells or tissues taking into consideration their nature, quantity,
and localization.

To accomplish the complexity of this new research field, several new analytical methods have
been developed, and integrated mass spectrometric tools were found to be fitting for this purpose.

In particular, for metallomics approaches, the combined use of chromatographic (or
electrophoresis) separation and inductively coupled plasma-mass spectrometry (ICP-MS) is useful,
whereas electrospray ionization-mass spectrometry (ESI-MS) allows the discrimination of species
containing the same metal and to obtain structural elucidation.

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.625945
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.625945&domain=pdf&date_stamp=2021-01-20
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:david.bongiorno@unipa.it
https://doi.org/10.3389/fchem.2020.625945
https://www.frontiersin.org/articles/10.3389/fchem.2020.625945/full


Indelicato et al. Chemical Speciation by ESI-MS

ELECTROSPRAY IONIZATION

ESI has been developed as a soft ionization technique
(Whitehouse et al., 1985) that gently takes into the gas

phase metal–ligand complexes and allows gathering a wealth
of information on their dissociation energetics, shapes, and

fragmentation pathways. ESI-MS analyses require a careful
experimental design as instrumental artifacts, such as adduct
formation, source fragmentation, and sometimes reduction

reactions, can occur.
Attention also must be paid to quantitative determination as

differences in ionization efficiencies among the detected species
can lead to misleading results. We here report the most recent
approaches adopted to mitigate or eliminate these drawbacks.
The potential of complementing ESI-MS results with quantum
mechanical information and the coupling of the ESI sources
with ion mobility (IM), high-resolution mass spectrometry
(HR-MS), or tandem mass spectrometry (MS-MS) experiments,
are also evidenced to provide unique information on the gas
phase complexes.

The coupling of ICP and ESI sources with MS analyzers
allows collapsing each ion into a single signal with a specific
m/z value and precise intensity. This is immensely helpful to
address the complex speciation problem associated with multiple
complexation reactions that can take place in a solution. ESI
as a “soft” ionization technique provides valuable information
concerning the extracting ligands or complex stoichiometry, and
ICP-MS analysis can give information only on the presence of
the metal and on its abundance. However, one of the most
debated arguments concerning ESI-MS spectra is the effective
correspondence between the ionic species therein evidenced
and the status of the correspondent ions or molecules in
the bulk solution (Bongiorno et al., 2011a). Di Marco and
Bombi (2006) have evidenced that perturbations of solution
composition with respect to equilibrium take place during the
ionization process. It is indeed common in the application of
ESI-MS to ascertain differences between the relative abundance
of the signals recorded in the spectra and the actual relative
concentration of the species present in the condensed phase.
These quantitative differences are due to differing gas-phase
acidities/basicities, cation/anion affinities of the ionizing species,
that lead to differing ionization efficiencies of the investigated
species (Oss et al., 2010). Besides this, even large qualitative
differences between solution phase and gas phase have been
observed, self-assembly of alkali salts (Anacleto et al., 1992)
or surfactant molecules being some of the most notable ones
(Borysik and Robinson, 2012, Bongiorno et al., 2016). For these
reasons, ESI requires a careful setup of experimental conditions
to obtain reliable results. One of the most important parameters
to optimize is the cone voltage that defines the so-called “soft and
hard” ESI conditions (Bongiorno et al., 2011b). This potential
is applied between the orifice and the skimmers. It can be
useful, increasing ions’ internal energy, to reduce the presence
of residual clusters but can also lead to a more effective ion
fragmentation and, therefore, to marked differences between
abundances in solution and the gas phase (Indelicato et al., 2016).
It follows that, despite the soft nature of ESI, fragmentation

and/or polymerization phenomena may occur, and the spectra
of species, that are sensitive to different instrumental parameters,
may have different response factors (Espinosa et al., 2016). For
this reason, a careful evaluation of the cone voltage has been
crucial to determine polychalcogenids in solutions and to get
reliable information for polysulfide ion speciation (Gun et al.,
2004; Dorhout et al., 2017). Other authors (Wen et al., 2019)
lowered cone voltages and temperatures to preserve the solution
state at maximum.

The nature of solvents, cosolvents, and pH must be carefully
evaluated as they are strongly related to ESI ionization efficiency.
The introduction of methanol as a cosolvent is known to
alter the solvent structure of water, leading to changes in
both complexation kinetics and thermodynamics (Hawlicka and
Swiatla-Wojcik, 2002; Accorsi et al., 2005; Wang et al., 2014).
The pH variation directs the formation of protonated species
and can have a strong influence on the relative abundance of
formed complexes, leaving qualitatively unmodified the observed
species (Espinosa et al., 2016). Besides this, the flux can have
a small influence on the relative abundances of the aggregates
(Bongiorno et al., 2005). Once these experimental factors are
carefully defined, ESI-MS provides a reliable tool to extract
quantitative information.

COUPLING ESI WITH MASS
SPECTROMETRY ANALYZERS

The general approach followed bymost of the authors developing
ESI-MSmethods to identify and characterizemetallated species is
represented in Scheme 1.

ESI sources have been coupled to several types of MS
analyzers, and therefore, metal speciation experiments have been
conducted in low-resolution MS, tandem MS (MS-MS), or high-
resolution MS. However, there are some limitations for low-
resolution MS for exploratory speciation analysis as evidenced
by Bierla et al. (2018). Most of the drawbacks are due to
slow scanning speed during HPLC runs, a blurred isotopic
pattern due to background from concomitant species, and low
sensitivity in full scan mode. It is possible to overcome these
limitations by adopting multiple low-resolution analyzer systems
(for MS-MS experiments) or adopting instruments with an
increasing resolution power, such as time of flight (TOF), Fourier
transform-orbital traps (FT-MS), and Fourier transform-ion
cyclotron resonance (FT-ICR) mass spectrometers (de Hoffman
and Stroobant, 2007). These different technological approaches
lead to differing results in terms of resolution. Modern TOF
instruments take advantage of a reflection grid to refocus ions
in the space with the same mass, leading to a final resolution
power of up to 50,000 full width at half maximum (FWHM).
FT-MS traps ions in an orbital trap (generating a spindle-shaped
electrostatic field). Ion masses are determined by applying the
Fourier transform to the complex waveform of the image current,
generated on the surface of the outer electrode by the ions
orbiting in the trap. This approach leads to resolution of up to
1,000,000 FWHM. FT-ICR instrumentation takes the resolution
a step further, up to and over 5,000,000 FWHM, but requires
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SCHEME 1 | ESI-MS workflow for metal speciation.

superconducting high field magnets to trap ions while Fourier
transformation is applied to the waveform generated as image
potential by the ions orbiting altogether in the magnetic field,
each one with its own natural ion cyclotron resonance frequency.

ESI-MS-MS FOR METAL SPECIATION

In several cases, the MS-MS approach for metal speciation
is sufficient, guarantees exceptional sensitivity, and is well-
suited for quantitative analysis. At least two independent
approaches have been described by Liu et al. (2018) for speciation
determination and quantitation of arsenic and its metabolites
employing MS-MS.

Tsednee et al. (2016) developed an analytical application
for identifying several transition metal (Co, Cu, Fe, Ni, Zn)
complexes with deoxymugineic acid or nicotinamide by tandem
mass spectrometry (ESI-MS-MS). It monitored, by multireaction
monitoring (MRM), the release of free metals from the
corresponding metal–ligand complexes. This MS-MS method
allowed easily separating metal species whose mass spectra peaks
were clustered together.

Tie et al. (2015) shows that HPLC-ESI-MS-MS is a
sensitive and accurate method for the identification and
quantification of the speciation of selenium. They monitored
Se-methyselenocysteine (Se-MeSeCys) and selenomethionine
(Se-Met) in soybean proteolytic digests throughMRMmode. The
evaluation of the fragmentation pattern of precursor ions (m/z
184 for Se-MeSeCys and m/z 198 for Se-Met) led to the selection
of fragments due to the neutral loss of ammonia. Therefore, the
transitions at m/z values of 184→167 for Se-MeSeCys and m/z
values of 198→181 for Se-Met were monitored.

Quantitation of the appropriate HPLC peaks shows that
inorganic selenium absorbed by the soybean has been
biotransformed mainly into Se-MeSeCys. This species
represented 66.4% of the selenium in Se-protein and 29.2%
of the total selenium in the soybean.

ESI COUPLED TO HIGH-RESOLUTION
MASS SPECTROMETRY ANALYZERS

Although exploitingMS-MS sensitivity is still an actual approach,
in metal speciation, it is far more common to take advantage
of high-resolution sectors, which are capable of well resolving
isotopic clusters even in multiply charged adduct peaks.

The most common application of the simplest high-resolution
mass spectrometry technology is the development of screening
methods. Several authors followed this route. Raymond et al.
(2018) developed a screening method for the characterization
of beryllium complexes with aminopolycarboxylate and some
related ligands. The approach requires only tiny amounts of
material in analyte solutions and provides a quick and safe
strategy for screening beryllium complexes. With a similar setup,
Jo et al. (2019) investigated metal speciation of palladium in
Pd-catalyzed pharmaceutical processes to verify the removal of
elemental impurities from the reaction product mixture. They
usedmetal speciation data to provide both critical information on
the fate of each elemental impurity and a deeper understanding of
the catalytic mechanism investigated. Using an ESI-TOF device,
Wen et al. (2019) semi-quantitatively detected more than 30
types of aqueous vanadium species with <5% relative error.
This led to a straightforward unambiguous molecular formula
and ionic composition determination. Indelicato et al. (2014)
investigated by ESI-MS, tandem mass spectrometry (ESI-MS-
MS), and energy-resolved mass spectrometry (ER-MS) some
lanthanide-functionalized surfactants: the ytterbium and erbium
salts of bis(2-ethylhexyl)-sulfosuccinate (AOT). Evaluating the
cone voltage effect on the metallated surfactant aggregation, they
obtained detailed information on the stability and structural
features of positively and negatively singly charged metallated
species evidencing the formation of very large aggregates
containing up to 5 Yb3+ or Er3+ ions.

Finally, Feng et al. (2015) exploited a similar instrumental
setup to identify Al species in a complex mass spectrum.
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The authors introduce a novel theoretical calculation method
based on the relative intensity of Gaussian-shaped peak clusters
found in the spectra. Changes in m/z and molecular formulas
of oligomers in five typical poly aluminum chloride (PAC)
flocculants were easily deduced.

Exploiting more complex MS experiments and adopting
time-resolved ESI-MS, Cao et al. (2016) monitored the “one-
pot” method for the synthesis of polyoxometalates (POMs),
produced using silicotungstates and vanadium salts. These
authors discovered that the reaction conditions, such as
concentration, temperature, and reaction time, sensitively
changed the speciation.

The latest development of TOF technology, the so-called ion
mobility mass spectrometry (IMMS) allows correlating the time
of flight (drift time) of the ions within a “high pressure” mobility
sector to determine collisional cross-sections of several type of
ions ranging from peptides, small and large clusters, up to protein
complexes (Lapthorn et al., 2013, Bongiorno et al., 2014).

Davis and Clowers (2018) recently used this cutting-edge
approach for the rapid speciation of uranyl complexes. The
authors were capable of stabilizing simple uranyl complexes
during the ionization process and ion-mobility separation to aid
speciation and isotope profile analysis. They measured mobilities
of different uranyl species in simple mixtures by promoting
stable gas-phase conformations with the addition of sulfoxides
[i.e., dimethyl sulfoxide (DMSO), dibutyl sulfoxide (DBSO),
and methyl phenyl sulfoxide (MPSO)]. As an outcome, this
setup allowed the determination of the reduced mobilities of
uranyl salts.

Opposite to the fast sensitivity-oriented approach of
quadrupole ESI-MS or ESI-(q)TOF experiments, the adoption of
FT-MS high-resolution analyzers allows for the development of
more complex gas-phase experiments, opening a wide range of
investigations allowed by the trapping of the ions in the analyzer
for times that arrive to seconds. Waska et al. (2016) exploited
high-resolution FT-ICR to overcome ESI-MS artifact and to
characterize the equilibria of the model ligand citrate, EDTA,
1-nitroso-2-naphthol, and salicylaldoxime with iron (Fe3+) and
copper (Cu2+). This approach allowed the detection of the whole
metal–organic compounds. A cosolvent effect was ascertained,
and methanol-containing samples gave higher sensitivities
compared to those containing only water. It is important,
however, to underline that, in comparing conditional stability
constants determined by competitive ligand exchange-adsorptive
cathodic stripping voltammetry (CLE-ACSV) with that of FT-
ICR-MS determination, a difference was found. Therefore, the
FT-ICR-MS-derived conditional stability constants can only be
compared between similarly processed sample types.

Mapolelo et al. (2009) exploited the high-resolution
capabilities of a custom-built FT-ICR analyzer, coupled
with an infrared multiphoton dissociation CO2 continuous
wave laser to gather the most information on the interaction
of naphthenic acids with divalent (Ca2+, Fe2+, Mg2+) or
monovalent (Na+, K+) ions in produced waters. These authors
evidenced calcium naphthenate deposits that consist mainly
of a C80 tetraprotic acid known as ARN acid bound to Ca2+.
It was also possible to identify low-molecular-weight ARN

acids with a C60-77 hydrocarbon skeleton in one calcium
naphthenate deposit.

ESI-MS AND QUANTUM MECHANICAL
CALCULATIONS

As it is evidenced so far, the coupling of ESI-MS information
with data obtained from synergistic techniques, such as ICP-MS,
NMR, X-RAY, and CLE-ACSV, is common practice. It is not a
surprise to find out that the information obtained from ESI-MS
speciation experiments is often compared to results of Ab-Initio
or DFT quantummechanical calculations. ESI-MS detects species
in the gas phase, in which weak solvent interactions are absent.

This allows building quantum chemical simple and realistic
models that are not impacted by the complex solvation.
Theoretical calculations can be more easily compared to
experimental results, and the model geometry suggests the
structural information that is lacking in an ESI-MS spectrum.
Exploiting these synergistic features, Raymond et al. (2019)
investigated gas-phase coordination chemistry of Be2+ with
1,2- and 1,3-diketone ligands. Their results evidenced the
tendency of beryllium to form stable polynuclear species with
oxido, hydroxido, or diketonato ligands bridging the metal
centers. In ESI-MS spectra were evidenced ions corresponding

TABLE 1 | Research articles summary, based on investigated metallic specie.

Speciated metal Analytical approach

Ag ESI-MS (Jaklová Dytrtová et al., 2016)

Al ESI-TOF (Feng et al., 2015; Raymond et al., 2018)

As ESI-MS-MS (Liu et al., 2018)

Au DESI-MS (Kazimi et al., 2019)

Be ESI-TOF (Raymond et al., 2018)

Ca ESI-FT-ICR (Mapolelo et al., 2009)

Co ESI-MS-MS (Tsednee et al., 2016)

Cu ESI-MS (Jaklová Dytrtová et al., 2016), ESI-MS-MS (Tsednee

et al., 2016), ESI-FT-ICR (Waska et al., 2016)

Er ESI-TOF (Indelicato et al., 2014)

Fe ESI-MS-MS, (Tsednee et al., 2016), ESI-FT-MS (Waska et al.,

2016, Mapolelo et al., 2009)

K ESI-FT-ICR (Mapolelo et al., 2009)

Mg ESI-FT-ICR (Mapolelo et al., 2009)

Na ESI-FT-ICR (Mapolelo et al., 2009)

Ni ESI-MS-MS (Tsednee et al., 2016)

Pd ESI-TOF (Jo et al., 2019)

Ru DESI-MS (Perry et al., 2011)

Se ESI-MS-MS (Tie et al., 2015)

U ESI-TOF (Davis and Clowers, 2018)

V ESI-TOF (Wen et al., 2019), ESI-TOF (time resolved) (Cao

et al., 2016)

W ESI-TOF (time resolved) (Cao et al., 2016)

Yb ESI-TOF (Indelicato et al., 2013)

Zn ESI-MS-MS (Tsednee et al., 2016)
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to predominant bis-chelated beryllium complexes known to be
formed with the monoanionic 1,3-diketonate ligands.

ESI-MS measurements, along with differential functional
theory calculations, have been exploited (Kumar et al., 2016)
to understand the speciation of various uranyl species with
α-hydroxyisobutyric acid. Quantum chemical calculations
evidenced that uranyl complexes with 3 ligands (ML3 with M =

UO2 and L = α-hydroxyisobutyric acid) are more energetically
favorable over the ML2, which, in turn, are more favorable than
ML1. The relative abundance of ML1 < ML2 < ML3 species
in ESI-MS suggest a qualitative correlation between calculated
free energies and observed complex relative stabilities. A similar
approach was adopted to investigate the speciation of uranium–
mandelic acid complexes (Kumar et al., 2017) determining
structures and free energies of the complexes that were in fair
agreement with the ESI spectra. Based on the energetics of this
latter study, the authors further predicted the formation of
T-shaped dimeric uranyl complexes in the complexation process.

DESORPTION ESI AND AMBIENT MASS
SPECTROMETRY APPLICATIONS

To enhance ESI capabilities, some authors have developed some
ancillary devices to couple with ESI sources. Jaklová Dytrtová
et al. (2016) developed an electrochemical device that takes
advantage of the high reactivity of electrochemically generated
metallic ions in statu nascendi. This is suitable for ionization of
various organic compounds (e.g., lipids, lipoproteins, pesticides,
drugs, metabolites, lipids, lipoproteins) in biological and other
matrices. The applicability of the electrochemical device is
demonstrated by the electrochemical activation of pesticide
cyproconazole (Cyp) in a soil solution matrix via formation
and separation of its adducts with Ag and Cu cations without
chromatographic support.

Finally, desorption electrospray ionization (DESI), an ESI-
related technique that allows ionizing samples in the open
environment and introducing them into the mass spectrometer
reducing sample manipulation, is gaining momentum. Some
authors studied Ru+2 complexes (Perry et al., 2011) evidencing
that, in the short time scales of DESI, it is possible to detect

trace levels (pmol) of short-lived intermediates characterized
by lifetimes in the order of milliseconds. In a more recent
work, Kazimi et al. (2019) exploited DESI to investigate,
in the solid phase, a gold-based drug actually in clinical
trials for its anticancer properties: auranofin. Auranofin was
reacted with thiol-containing amino acids to evaluate the ligand
exchange/scrambling reactions. These latter results evidence how
the DESI-MS technique can be a game-changer inmonitoring the
reactions involving coordination compounds in the solid state.

CONCLUSIONS

In conclusion, ESI-MS accompanied by its most recent variants,
such as ambient MS (DESI), is proposing itself as a very
informative method on metal complex–generated binding
ligands, such as anions, bases, peptides, and proteins (seeTable 1)
The most important drawback of ESI-MS still lies in the possible
difference between relative abundances of the species in the
gas phase and in solution. This often requires validating the
quantitative results with alternative spectroscopic techniques
(Feng et al., 2015; Wen et al., 2019).

ESI is especially informative when matrix or ion suppression
effects are tolerable or negligible. When the matrix proves to be
a serious drawback in the ESI determination of the speciated
metals, the complementary information obtained by ICP-MS
is still fundamental (Liu 2018). Some authors (Bierla et al.,
2018) point out, however, that ESI-MS starts outpacing ICP-
MS in terms of detection limits with the further advantage
of the possibility to use the multiple reaction monitoring
for quantification of adducts even in the case of incomplete
separations. This increased sensitivity and the possibility of large-
scale data acquisition is opening new opportunities even in
tasks demanding high sensitivity, such as metallo-metabolomics
and metallo-proteomics of body fluids and tissues of higher
organisms (Bierla et al., 2018).
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