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Every central Cantor set of positive Lebesgue measure is the arithmetic sum of two central Cantor sets of Lebesgue measure 
zero. Under some mild condition this result can be strengthened by stating that the summands can be chosen to be Cs

regular if the initial set is of this class.

1. Introduction

Cantor sets (by which name in this note we understand non-empty bounded nowhere dense perfect subsets
of R) and their arithmetic sums appear in many different settings. Related with the study of bifurcations 
of generic one-parameter families of surface diffeomorphisms having a generic homoclinic tangency at a 
parameter value, J. Palis [10] asked if the arithmetic sum (or difference) of two Cantor sets, both with 
Lebesgue measure zero is either of Lebesgue measure zero or it contains an interval. This is false in full 
generality (see [11], [2], [1]), but Moreira and Yoccoz in the ingenious paper [9] have shown that it is 
generically true for dynamically defined Cantor sets.

The main result of our note shows that every central Cantor set of positive Lebesgue’s measure gives rise 
to a counterexample to the Palis hypothesis. In our second theorem we use the powerful characterization of 
degree of regularity of central Cantor sets – established in [2] – for strengthening our decomposition result 
in terms of regularity.

Given a convergent series 
∑

an of positive and nonincreasing terms, we will denote the set of its subsums
by E(an), that is,

E(an) :=
{
x ∈ R : ∃A ⊂ N x =

∑
n∈A

an

}
.
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The n-th remainder of the series 
∑

an will be denoted by rn, that is, rn :=
∑∞

k=n+1 ak. The classical result
of S. Kakeya says that if an > rn for all n (we say in this case that 

∑
an is fast convergent) then E(an) is

a Cantor set and its Lebesgue measure is μE(an) = limn 2nrn [6–8,5].
A central Cantor set in R is constructed from a sequence (λi)i∈N, with λi <

1
2 for all i ∈ N, in the following

way: choose an arbitrary closed interval K0 and delete the middle open interval of length |K0| − 2λ1|K0|
leaving two intervals each of length λ1|K0|. Call this process “process λ1 on K0”. Let K1 be the union of the
remaining two intervals. Now do the “process λ2 on each of the two intervals of K1” obtaining a compact
set K2 which is the union of 22 intervals each of length λ1λ2|K0|. Proceeding inductively, doing the “process
λi+1 on each of the 2i intervals of Ki”, one constructs for each n ∈ N a set Kn that is the union of 2n
intervals each of length 

∏n
i=1 λi|K0|. The central Cantor set is given by the intersection of these sets. That

is, C(λi) =
⋂∞

i=0 Ki.
There is a natural duality between central Cantor sets and convergent series of positive terms. Namely a 

set C with minC = 0 and maxC = s > 0 is a central Cantor set if and only if it is the set of subsums of
a fast convergent series 

∑
an of positive terms and of sum s. Indeed, if C = C(λi) with the initial interval

[0, s], then C = E(an) where r0 = s, rn := s 
∏n

i=1 λi and an = rn−1 − rn = s(1 − λn) 
∏n−1

i=1 λi for n ∈ N.
Conversely, if 

∑
an is a fast convergent series of positive terms and of sum s, then E(an) = C(λi) where

λi = ri
ri−1

for i ∈ N. Moreover,

μE(an) = μC(λi) = lim
n→∞

2nrn =
∞∏
i=1

(2λi).

A Cantor set C ⊂ [0, 1] is said to be Cr regular for r ≥ 0 if there is a Cr map φ : P → [0, 1] such that:

(i) P is the union of a finite family of at least two pairwise disjoint closed subintervals of [0, 1] such that
0, 1 ∈ P . (The component intervals of P will be enumerated in a natural way from the left to the
right. Then P = P1 ∪ . . . ∪ PN , Pi < Pi+1, minP1 = 0, maxPN = 1.)

(ii) φ is continuous (or, equivalently, for each i = 1, . . . , N the restriction φ
∣∣
Pi

is continuous).
(iii) Each φ

∣∣
Pi

is expanding, that is,

∀i = 1, . . . , N ∃ αi > 1 ∀ x, y ∈ Pi |φ(x) − φ(y)| ≥ αi|x− y|.

(iv) For every i = 1, . . . , N the set φ(Pi) is the convex hull of a nonempty subfamily of {Pk : k =
1, . . . , N }.

(v) ∀i = 1, . . . , N ∃ mi ∈ N P ⊂ φmi(Pi).
(vi)

C =
⋂
n

φ−n([0, 1]).

Every central Cantor set is regular of class C0. It is not easy to characterize Cs regular central Cantor
sets for s ≥ 1, but such an analytic characterization was found by Bamón, Plaza and Vera in [2] under some 
rather mild additional assumptions on the sequence (λi). We are now going to rephrase their Theorem 1 in
terms of conditions on 

∑
an instead of on the sequence (λi).

The Bamón–Plaza–Vera Theorem. Let 
∑

an be a fast convergent series of positive terms satisfying the
conditions:

(B1) there exists a limit γ := limn→∞
an

rn
> 1;

(B2) either an > γ for all n or an < γ for all n,
rn rn
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and let s be a positive integer. Then the set E(an) is regular of class Cs if and only if

lim
n→∞

an − γrn
(rn−1)s

= 0.

Indeed, denoting γi := ai

ri
, we have λi = 1

1+γi
, and the condition λ := lim λi ∈ (0, 1

2) is equivalent to
γ := lim γi > 1. Moreover, λi < λ holds if and only if γi > γ. Hence the condition (A1) from [2] is equivalent
to our (B1) and the weakened (A2) is equivalent to (B2).

The last auxiliary result needed for our note is an enhancement of a less known version of the Stolz–Cesaro 
Theorem (see [4]). To avoid ambiguity let us say explicitly that a sequence (xn) is said to be convergent to
a limit g ∈ R from the right (left) if xn → g and all terms of the sequence (xn) are greater (smaller) than
the limit.

The Stolz–Cesaro Theorem. Let the sequence (bn) decrease strictly to 0 and the sequence (cn) tends to 0.
If the sequence 

(
cn−cn+1
bn−bn+1

)
n∈N

tends to a limit (not necessarily finite) from one side, then the sequence (
cn
bn

)
n∈N

tends to the same limit from the same side.

Proof. We will consider only the case cn−cn+1
bn−bn+1

→ g from the right, g ∈ R, since the remaining three cases
are very similar. Given an ε > 0, there is an integer N such that 0 < ci−ci+1

bi−bi+1
− g < ε for all i ≥ N . Thus,

for all m > n ≥ N ,

g(bn − bm) < cn − cm < (g + ε)(bn − bm). (1)

Passing to limits as m → ∞, we obtain

g ≤ cn
bn

≤ g + ε (2)

for n ≥ N and since ε was arbitrary it follows that cnbn → g.
Since the left inequality in (1) holds for all n, the left inequality in (2) is valid for all n as well. It remains 

to exclude the possibility that cnbn = g for some n. Indeed, if it were the case, then we would get from (1)

g = cn
bn

<
cn − cn+1

bn − bn+1
,

and thus cn+1bn < cnbn+1, yielding

cn+1

bn+1
<

cn
bn

= g

which contradicts the left inequality in (2). �
Let us finish the introduction with the following remark. Our claim that it makes no difference whether 

one considers the sum A + B or the difference A − B of two Cantor sets is true if they both are central 
Cantor sets, since A −B is then a translation of A +B. Our claim fails for more general Cantor sets. A nice 
and brief historical note on that can be read in the introduction to the paper [3].

2. The arithmetic decomposition

Our main decomposition theorem is based on an idea used by Anisca and Ilie [1, Prop. 2].
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Theorem 1. Every central Cantor set is the arithmetic sum of two central Cantor sets of Lebesgue measure 
zero.

Proof. Let C be a central Cantor set. Without loss of generality we may assume that minC = 0. Then
there is a unique convergent series 

∑
an of positive, nonincreasing terms such that C = E(an) and an >

rn =
∑+∞

k=n+1 ak for all n. Moreover the Lebesgue measure of C is

μ(C) = lim
n→∞

2nrn (3)

We define a′n := a2n−1 and a′′n := a2n for all n ∈ N. Let r′n and r′′n be the n-th remainders of the two series ∑
a′n and 

∑
a′′n. We have clearly r′n < a′n and r′′n < a′′n for all n and hence the corresponding sets of subsums 

C1 := E(a′n) and C2 := E(a′′n) are central Cantor sets such that C = C1 + C2.
Moreover r′n + r′′n = r2n and r′n ≥ r′′n and hence 2r′′n ≤ r2n. Thus

0 < 2nr′′n <
22nr2n
2n+1

It implies by (3)

μ(C2) = lim 2nr′′n = 0

Starting with equality r′n + r′n−1 = r2n−1 we obtain μ(C1) = 0 in similar way which completes the proof of
Theorem 1. �

We will say that a series 
∑

an satisfies the condition (B3) if the sequence 
(

ai

ri

)
is monotone, but not

eventually constant.
Using the powerful characterization from [2] we are able to prove a partially stronger version of our 

Theorem 1, a version that discusses the degree of regularity of both summands of the decomposition.

Theorem 2. Let C = E(an) be a Cs-regular central Cantor set satisfying the conditions (B1) and (B3).
Then C is the arithmetic sum of two Cs-regular central Cantor sets of Lebesgue measure zero.

Proof. We know from the proof of Theorem 1 that C = C1 + C2 where C1 = E(a′n) and C2 = E(a′′n) are
central Cantor set of Lebesgue measure zero where a′n = a2n−1 and a′′n = a2n. We are going to prove that
C1 is regular of class Cs.

Since, by (B1), limn→∞
an

rn
= γ > 1, we have

lim
k→+∞

ak
ak+1

= lim
k→∞

ak
rk

(1 + 1
ak+1
rk+1

) = γ + 1 (4)

Moreover if limk→+∞
ak

rk
= γ from the right, then limk→+∞

ak

ak+1
= γ + 1 from the right as well, and if 

limk→+∞
ak

rk
= γ from the left, then limk→+∞

ak

ak+1
= γ + 1 from the left.

We observe also that, by Stolz–Cesaro Theorem,

lim
n→∞

r2n−1

r′n
= lim

n→∞

∑+∞
k=2n ak∑+∞

k=n+1 a2k−1
= lim

n→+∞
a2n + a2n+1

a2n+1
= γ + 2 (5)

Moreover, the sequence ( r2n−1
′ ) tends to γ + 2 from the same side as (an ) tends to γ.
rn rn
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Similarly, by Stolz–Cesaro Theorem we obtain also

lim
n→∞

r′n
r2n

= γ + 1
γ + 2 (6)

Further we have

lim
n→∞

a′n
r′n

= lim
n→∞

a2n−1

r2n−1

r2n−1

r′n
= γ(γ + 2) > 1

This means that the set C1 satisfies the condition (B1).
Denote the last limit by γ′. Since C satisfies (B3), the sequence (a

′
n

r′n
) tends to γ′ from the same side 

as (an

rn
) tends to γ. In particular the series 

∑
a′n, and so the set C1, satisfies the condition (B2) of the

Bamón–Plaza–Vera Theorem. Therefore, by the Bamón–Plaza–Vera Theorem, in order to show that C1 is
regular of class Cs, it suffices to show that

lim
n→∞

a′n − γ′r′n
(r′n−1)s

= 0.

We will use the equality

a′n − γ′r′n
(r′n−1)s

·
(

r′n−1
r2n−2

)s

= a2n−1 − γ(γ + 2)r′n
(r2n−2)s

.

Since the second factor on the left has a finite non-zero limit by (6), it suffices to show that the right-hand 
side tends to zero. Writing the right-hand side in the form of a sum

a2n−1 − γr2n−1

(r2n−2)s
+ γ

r2n−1 − (γ + 2)r′n
(r2n−2)s

, (7)

we see that the first summand in (7) tends to 0 by the Bamón–Plaza–Vera Theorem, because C is regular 
of class Cs.

In order to deal with the second summand in (7) we are now going to observe that if 
(

an

rn

)
tends to γ

from the right, then

0 < r2n−1 − (γ + 2)r′n < a2n−1 − γr2n−1 (8)

for all n. The first inequality follows from the remark we made after (5). Similarly, the remark after (4) says 
that a2n−1

a2n
> γ + 1 for all n. Thus,

(1 + γ)
∞∑

k=n

a2k < a2n−1 +
∞∑

k=n+1

a2k−1

and hence

(1 + γ)
∞∑

k=2n

ak < a2n−1 +
∞∑

k=n+1

a2k−1 + (1 + γ)
∞∑

k=n+1

a2k−1

which means that

(1 + γ)r2n−1 < a2n−1 + (2 + γ)r′n

and the second inequality in (8) follows.
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It can be proven in an analogous way that if 
(

an

rn

)
tends to γ from the left, then

a2n−1 − γr2n−1 < r2n−1 − (γ + 2)r′n < 0

for all n. Thus, if

lim
n→∞

an − γrn
(rn−1)s

= 0,

then

lim
n→∞

r2n−1 − (γ + 2)r′n
(r2n−2)s

= 0

as well. Hence, if C is regular or class Cs then so is C1 by the Bamón–Plaza–Vera Theorem.
The proof that C2 is then regular of class Cs is very similar and we leave it out. �
We express our sincere gratitude to an anonymous referee who pointed out a gap in our first proof of 

Theorem 2 and who appreciated the value of the result despite the gap.
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