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Abstract: The identification of genomic alterations in tumor tissues, including somatic mutations,
deletions, and gene amplifications, produces large amounts of data, which can be correlated with a
diversity of therapeutic responses. We aimed to provide a methodological framework to discover
pharmacogenomic interactions based on Random Forests. We matched two databases from the
Cancer Cell Line Encyclopaedia (CCLE) project, and the Genomics of Drug Sensitivity in Cancer
(GDSC) project. For a total of 648 shared cell lines, we considered 48,270 gene alterations from CCLE
as input features and the area under the dose-response curve (AUC) for 265 drugs from GDSC as the
outcomes. A three-step reduction to 501 alterations was performed, selecting known driver genes and
excluding very frequent/infrequent alterations and redundant ones. For each model, we used the
concordance correlation coefficient (CCC) for assessing the predictive performance, and permutation
importance for assessing the contribution of each alteration. In a reasonable computational time
(56 min), we identified 12 compounds whose response was at least fairly sensitive (CCC > 20) to
the alteration profiles. Some diversities were found in the sets of influential alterations, providing
clues to discover significant drug-gene interactions. The proposed methodological framework can be
helpful for mining pharmacogenomic interactions.

Keywords: cancer; cell lines; drug response; genomic alterations; pharmacogenomic interactions;
Random Forests

1. Introduction
Mining pharmacogenomic interactions in cancer research is of crucial importance for

identifying the profiles of patients who are most likely to benefit from specific therapies [1].
In this regard, the Cancer Cell Line Encyclopedia (CCLE) [2] and the Genomics of Drug
Sensitivity in Cancer (GDSC) [3] projects have screened large panels of cancer cell lines
using multiple drug candidates, unveiling several known and novel biomarkers of drug
sensitivity [4]. In particular, genomic alterations, including somatic mutations and copy
number changes (gene amplifications and deletions), are increasingly being considered
as candidate biomarkers of drug sensitivity [5]. However, complex interactions involving
combinations of genomic alterations may be associated with drug response [6].

Accurate quantification of drug cytotoxicity is crucial in precision medicine for cancer,
and different statistical methods and metrics have been developed based on dose-response
curve characteristics [7]. Among them, the area under the dose-response curve (AUC) has
been recommended [8].

The conventional definition of “pharmacogenomic interaction” in the relevant lit-
erature refers to the situation in which genomic features (X, Z) are associated with the
response to a given drug (Yd) across a set of screened cell lines (Yd ~ X + Z). Although
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usually disregarded, this is in line with the statistical definition of interaction, i.e., the situa-
tion in which the effect of the drug used (d) on a cytotoxicity indicator (Y) depends on the
genomic features of the target cell lines (Y ~ d ⇥ [X + Y]). A natural way of obtaining clues
about the presence of drug-gene interactions is indeed estimating independent models for
several compounds (Yd ~ X + Z) and seeking differential associations [9].

A broad range of supervised machine learning algorithms is available for predict-
ing drug sensitivity in precision oncology applications [10]. In particular, Elastic Net
regression [11] and Random Forests [12] have been recommended due to their good predic-
tive performances [13]. Other approaches adopted in recent studies analyzing data from
CCLE and/or GDSC include drug-gene common module identification methods (based
on non-negative matrix factorization, partial least squares, and network analysis) [14],
mutation pair models (based on linear regression) [15], drug-gene similarity network mod-
els [16], and Bayesian regression [17]. Although all the aforementioned approaches have
been demonstrated to ensure good predictive performances, several concerns may limit
their applicability in pharmacogenomic studies: computational complexity, assumption
validity (e.g., linearity), tuning parameter selection, interpretability, ability to handle nu-
merical/categorical variables, and ability disentangle the importance of single features or
their combinations.

In this regard, Random Forests are quite flexible, assumption-free, and able to incorpo-
rate the effect of predictor combinations (Yd ~ X ⇥ Z) as a natural consequence of their tree
structure [18]. On the other side, Random Forests may be lacking in terms of interpretabil-
ity, and their computational burden (in terms of both time and required memory) rapidly
grows with the number of samples and predictors. Therefore, the estimation of multiple
Random Forests may become unfeasible on ordinary computer platforms.

In 2010, Riddick et al. developed a multistep algorithm for predicting in vitro drug
response from gene expression data, showing that Random Forests yield superior predictive
accuracy to univariate or additive models [19]. This algorithm is able to create drug-specific
gene expression signatures and to identify core cell lines involved in the associations [19].
A similar algorithm has not been developed for mutation data and for mining drug-gene
interactions in a statistical fashion.

In this study, we aimed to provide a methodological framework for mining pharma-
cogenomic interactions based on Random Forests. The proposed methodology is thought
to be carried out with ordinary computational resources and using R version 4.0.2 (R
Foundation for Statistical Computing, Vienna, Austria) as the reference software. A com-
prehensive source code is provided in the Supplementary Material, including indications
about all the required libraries and some data not shown.

2. Materials and Methods
2.1. Alteration and Response Datasets

In the current study, we considered two publicly available datasets from the CCLE
and the GDSC projects. Thereafter, they will be referred to as the “Alteration” dataset and
the “Response” dataset. Both datasets were accessed on 1 February 2021.

The CCLE Alteration dataset (CCLE_MUT_CNA_AMP_DEL_binary_Revealer.gct)
was downloaded from: https://portals.broadinstitute.org/ccle/data (database file date:
29 February 2016). This dataset contains 48,270 rows corresponding to the same amount
of possible gene alterations, labelled by the gene name followed by “_MUT” (somatic
mutation), “_DEL” (deletion) or “_AMP” (amplification). The 1030 columns correspond
to as many tumor tissues (cell lines), labelled by the sample name followed by “_” and
the name of the organ involved. The generic entry of the alteration database is a binary
indicator assuming value 1 if a given alteration is present in a given cell line and 0 otherwise.
There are no missing values in the Alteration dataset.

The GDSC Response dataset (TableS4B.xlxs) was downloaded from: www.cancerrxgene.
org/gdsc1000/GDSC1000_WebResources/Home.html (database file date: 7 July 2016). The
transpose dataset contains 265 rows corresponding to as many pharmacological com-
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pounds, labelled by the drug identifiers. The 990 columns correspond to the same amount
of tumor tissues (cell lines), labelled by the sample name. The generic entry of the response
database is the AUC for a given cell line and a given drug. The AUC is reported as a
fraction of the total area between the highest and lowest screening concentration, ranging
from 0 (highest cytotoxicity) to 1 (lowest cytotoxicity). Missing data are present. The two
datasets were matched by column, for a total of 648 shared cell lines.

2.2. Random Forests
Random Forests [18] are very popular in the field of Machine Learning. A Random

Forest is an ensemble of decision trees trained on different bootstrap samples drawn from
the same training set. The trained forest is used to predict the response variable for new
input data, by averaging the predictions obtained from each individual tree. This allows
working around the problem of overfitting that may characterize a single, deep decision
tree, especially when the number of predictors is large. Moreover, to reduce the correlation
among the trees, a random subset of candidate predictors is selected at random before
performing any step of data split. Indeed, by reducing the redundancy among the trees,
predictive performances are further improved. Random Forests can satisfactorily deal
with both numerical and categorical outcome/predictors. As detailed in Section 2.4 and in
Section 2.5, Random Forests are able to efficiently provide reliable indicators of predictive
performance and variable importance.

Random Forests have two tuning parameters. The first one is the number of trees in
each forest, say B. For this parameter, a value of 500 (R default) can be sufficiently large to
attain model stability. In this study, a stability check was performed ex-post by calculating
the mean of the last ten squared differences in the prediction error through the forest
growth process. The second tuning parameter is the number of candidate predictors to
select at random before each data split, say m. Its optimal selection would require cross-
validation, but this would become computationally prohibitive in our context (because we
have to fit 265 models). Many researchers have generally used “one-third of the predictors”
as the default choice; this is also the default in the R package randomForest [20], and fair
predictive performances have been obtained using this value [21].

In the present study, Random Forests allowed us to satisfactorily cope with the
following aspects: (1) the number of predictors is large, possibly leading to overfitting
concerns; (2) predictors are binary; (3) outcomes are continuous; (4) we are interested in
assessing the extent to which each drug is sensitive to gene alteration profiles; (5) we want
to avoid cross-validation for saving computational time; (6) we are interested in assessing
variable importance, possibly through a p-value.

2.3. Data Reduction
Here we propose a three-step data reduction aiming to save computational costs.

The first step was performed by selecting alterations involving genes included in a list of
568 genes previously identified as cancer drivers [22]. The full list can be downloaded at
the following URL: https://www.intogen.org/download (accessed on 1 February 2021).

The second step stems from considering that alterations that are always or never
observed in the database (0 variance) will never be included in the Random Forests.
Similarly, very frequent/infrequent alterations (low variance) will be less likely to be
included in the forests. Given the alteration proportion, say p (relative frequency), the
alteration variance was derived as p ⇥ (1 � p) (the variance of a binary variable). A
“low” variance was set by specifying a small proportion, i.e., 0.05, and calculating the
corresponding variance as 0.05 ⇥ 0.95 = 0.0475. All the alterations with a variance below
the threshold were excluded from the analyses.

The last step stems from considering that Random Forests tend to level the importance
of highly correlated (redundant) alterations [23]. In this sense, we propose to apply a
hierarchical clustering of predictors [24] to identify groups of correlated alterations and to
reduce the redundancy of information by keeping a single representative for each group.
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In particular, we used a complete-linkage clustering and one minus the squared Pearson
correlation matrix of the alterations as the distance matrix. A “small” distance was set
by specifying a high correlation, i.e., 0.95, and calculating the corresponding distance as
1 � 0.952 = 0.0975. After cutting the dendrogram at the aforementioned small distance, we
stored the original cluster composition and then retained the first alteration in each cluster.

2.4. Predictive Performance
Random Forests provide a convenient way for assessing the “out-of-bag” (OOB)

predictive performance of the model without the need to perform cross-validation. First,
each response (the AUCs, say Yi) is predicted by using the subset of trees (say Bi) trained
without that observation:

ŶOOB
i =

1
|Bi| Â

b2Bi

Ŷb
i (1)

With B sufficiently large, it can be shown that the aforementioned OOB predictions are
virtually equivalent to leave-one-out cross-validation predictions [25]. The aforementioned
vector of OOB predictions could therefore be used to calculate an OOB mean squared
error. However, for the sake of comparability between models, we propose to use another
measure of agreement, i.e., the concordance correlation coefficient (CCC) [26] between
observed AUCs and OOB predictions. The CCC can be calculated as:

CCC(Y, ŶOOB) =
2cov(Y, ŶOOB)

var(Y) + var(ŶOOB) + (Y � YOOB
)

2 (2)

The CCC ranges between �1 and 1, and it is more conservative than a Pearson
correlation (it is 1 only if the two vectors are identical). In this study, the CCCs were
multiplied by 100. The following benchmarks were used to qualify the concordance: 0,
“none”; 1 to 20, “poor”; 21 to 40, “fair”; 41 to 60, “moderate”; 61 to 80, “substantial”; 81 to
100, “excellent” [27]. A 95% confidence interval (CI) was obtained, and a lower limit of
lower CCC > 20 was used to qualify an at least fair concordance.

2.5. Variable Importance
The importance of each predictor (alteration, say Xj) in each forest was quantified by

the permutation importance [28], i.e., the mean change of the prediction error in the OOB
samples of each tree (say OOBb) after random permutation of that predictor (say eXj):

imp(Xj) =
1
B

B

Â
b=1

2

6664

Â
i2OOBb

h
Yi � Ŷi( eXj)

i2

|OOBb|
�

Â
i2OOBb

⇥
Yi � Ŷi(Xj)

⇤2

|OOBb|

3

7775
=

1
B

B

Â
b=1

(impb
j ) (3)

The importance indicators were then normalized through their estimated standard
deviations to obtain an approximate z-score [29] as:

zj =
imp(Xj)s

B
Â

b=1

h
impb

j �imp(Xj)
i2

B�1

(4)

Finally, a p-value for testing the null hypothesis of no importance was derived, for
each alteration, as the areas under the normal curve to the right of zj. Within each model, a
Bonferroni correction was applied to the p-value vector, and a given alteration was deemed
as significantly influential if p < 0.005, i.e., a more conservative criterion (than p < 0.05) that
has been endorsed for claims of new discoveries [30].
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2.6. Missing Values
In GDSC, not all the cell lines were screened for each pharmacological compound.

Therefore, before estimating each model, cell lines with missing AUCs were not included
in the Random Forest. This may alter the distribution of alteration variances, as well as
their pairwise correlations. In particular, they may violate the thresholds set. Therefore,
for each model, we checked the CCC between the original and altered variance/squared
correlation distribution, and the frequency of violated thresholds (low variances and high
correlations), by plotting them against the sample size.

2.7. Reporting Results
After presenting summary statistics for the two datasets, we reported elapsed times

for the 265 Random Forests by sample size and the stability indicator distribution. Then,
we reported the frequency distribution of the prediction CCC across the models by class.
We also investigated the possible effects of sample size and average compound AUC on
the CCC. Therefore, we produced two reports. Report 1 lists the compounds associated
with an at least fair CCC (lower CCC > 20), in decreasing order of CCC, and for each of
them: the CCC and its 95% CI, mean AUC, sample size, number and name of significantly
influential alterations in decreasing order of importance. Report 2 lists the alterations that
influence the compounds in Report 1 in decreasing order of significance frequency and
for each of them: ID and size of the corresponding alteration cluster, names of influenced
compounds in decreasing order of CCC.

2.8. Discovering Drug-Gene Interactions
The two reports were used for obtaining clues about the presence of drug-gene

interactions. In particular, we carried out further investigations for pairs of compounds
with similar average AUCs but different, very influential alterations. In this case, after
logit normalization of the AUC, we performed a graphical investigation by plotting the
overall logit (AUC) distribution for the two compounds, and the logit(AUC) distributions
conditional to combinations of the two alterations. We also performed a formal test for
interaction through a two-way ANOVA with logit (AUC) as the response, the compound
as Factor 1, and the alteration combination as Factor 2.

A comprehensive methodological workflow about the present work is provided in
the Supplementary Material.

3. Results
Figure 1A represents the Alteration dataset, with black dots indicating altered cells.

The 48,270 rows (alteration types, reported on the x-axis) and the 648 columns (cell lines,
reported on the y-axis) were reported in increasing order of alteration frequency. As
indicated by the numbers above the plot, there were about 10,000 rows with less than 1%
(7/648) of altered cell lines. Moreover, there were about 40,000 rows with less than 5%
(33/648) of altered cell lines. Figure 1B represents the Response dataset, with grey dots
indicating missing AUCs. The 265 rows (compounds, reported on the x-axis) were reported
in increasing order of sample size, while the 648 columns (cell lines, reported on the y-axis)
were reported in increasing order of alteration frequency (as in Figure 1A). As indicated by
the numbers above the plot, the proportion of missing AUCs ranged from 67% (436/648)
to 5% (33/648), for an average sample size of 523 cell lines.
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Figure 1. (A) Alteration dataset with the 48,270 rows (alteration types, reported on the x-axis) and
the 648 columns (cell lines, reported on the y-axis) in increasing order of alteration frequency. Black
dots indicate altered cells. Frequency (percentages) above the plot indicate row positions at which
those alteration frequencies are reached for the first time; (B) Response dataset with the 265 rows
(compounds, reported on the x-axis) in increasing order of sample size, and the 648 columns (cell
lines, reported on the y-axis) in increasing order of alteration frequency. Grey dots indicate missing
AUCs. The two frequencies (percentages) above the plot indicate the largest and smallest number of
missing AUCs, respectively.

A total of 2567 alteration types involved one of the 568 driver genes. Among them,
1990 had a variance below the threshold and were excluded. Clustering the 577 remaining
predictors identified 501 alteration groups (447 of size 1), and the 501 corresponding
representatives were included in the final analyses. The most frequent tissues of origin of
the 648 cell lines were the lung and the hematopoietic and lymphoid tissue (Table 1).
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Table 1. Tissues of origin of the 648 cell lines, ordered by frequency.

Tissue No. (%)

Lung 134 (20.7%)

Hematopoietic and lymphoid tissue 111 (17.1%)

Breast 46 (7.1%)

Large intestine 43 (6.6%)

Central nervous system 39 (6%)

Skin 36 (5.6%)

Ovary 31 (4.8%)

Pancreas 28 (4.3%)

Esophagus 24 (3.7%)

Stomach 22 (3.4%)

Liver 17 (2.6%)

Urinary tract 17 (2.6%)

Upper aero digestive tract 16 (2.5%)

Soft tissue 15 (2.3%)

Kidney 14 (2.2%)

Autonomic ganglia 12 (1.9%)

Bone 11 (1.7%)

Endometrium 10 (1.5%)

Thyroid 9 (1.4%)

Pleura 6 (0.9%)

Prostate 5 (0.8%)

Biliary tract 1 (0.2%)

Small intestine 1 (0.2%)

The CCC between alteration variances/squared correlations before and after missing
data removal was always excellent (>80) (Figure 2A). At most, 25% of alteration variances
and 45 pcm (percent mille, or per hundred thousand) of pairwise correlations violated the
thresholds set (Figure 2B). The missing effect decreased as the sample size increased.

Figure 2. (A) Concordance correlation coefficient (CCC) between alteration variances/squared
correlations before and after missing data removal, as a function of sample size; (B) Frequency of
variances/correlations violating the thresholds set, as a function of sample size.
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On a 10th generation Core i7 with 4 cores (up to 3.9 GHz) and 16 GB SDRAM DDR4,
the computational time increased linearly with the sample size, for a total of 56 min
(Figure 3A). The stability indicator was 0 (stability reached) in all models (Figure 3B). For
16/265 (6%) of the Random Forests, the CCC between observed and predicted AUCs was
larger than 20 (lower CCC > 20 for 12 of them) (Figure 4A). On average, model CCCs were
tendentially larger as the sample size increased (Figure 4B), while they were tendentially
smaller as the average compound AUC increased (Figure 4C).

Figure 3. (A) Computational times elapsed as a function of sample size. The p-value is from linear
regression (red line); (B) Distribution of the stability indicator through the 265 models.

Figure 4. (A) Concordance correlation coefficient (CCC) distribution through the 265 Random Forests;
(B) CCC as a function of sample size; (C) CCC as a function of average compound AUC. The p-values
are from linear regressions (red lines). Dashed lines correspond to the thresholds of no concordance
(CCC = 0) and fair concordance (CCC = 20).
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Table 2 shows Report 1 up to the two most influential alterations for each compound;
Supplementary Table S1 shows the whole of Report 1. Dabrafenib was associated with
the largest CCC (67.4, 95% CI: 63.1, 71.3), while (5Z)-7-Oxozeaenol was associated with
the smallest CCC (26.5, 95% CI: 21.6, 31.2) (Table 2). In the whole of Report 1, Trametinib
was associated with the largest number (16) of significantly influential (p < 0.005) alter-
ations (Supplementary Table S1). BRAF mutations were strong predictors for Dabrafenib,
PLX4720, and SB590885. BRAF and KRAS mutations were strong predictors for RDEA119,
Trametinib, AZD6244, and PD-0325901. BRAF and NRAS mutations were strong predictors
for (5Z)-7-Oxozeaenol. TP53 mutation and MAP2K4 deletion were strong predictors for
Nutlin-3a. IKZF3 and ERBB2 amplification were strong predictors for Afatinib (rescreen).

Table 2. Report 1 up to the two most influential alterations for each compound (in decreasing order of CCC).

Compound CCC (95% CI) Mean
AUC

Sample
Size

Number of Influential
Alterations Alteration 1 Alteration 2

Dabrafenib 67.4 (63.1, 71.3) 0.886 573 4 BRAF.V600E_MUT BRAF_MUT
PLX4720 (rescreen) 47.3 (42.3, 52.1) 0.946 606 5 BRAF.V600E_MUT BRAF_MUT

PLX4720 45.1 (39.7, 50.2) 0.937 550 8 BRAF.V600E_MUT BRAF_MUT
RDEA119
(rescreen) 34.5 (29.0, 39.7) 0.824 579 9 BRAF.V600E_MUT KRAS_MUT

Trametinib 33.6 (27.9, 39.0) 0.680 587 16 BRAF.V600E_MUT KRAS_MUT
SB590885 32.0 (26.2, 37.5) 0.957 538 3 BRAF.V600E_MUT BRAF_MUT
Nutlin-3a 31.7 (25.7, 37.4) 0.936 551 10 TP53_MUT MAP2K4_DEL
AZD6244 30.1 (24.4, 35.5) 0.836 603 6 BRAF.V600E_MUT KRAS_MUT
RDEA119 28.4 (22.6, 34.0) 0.796 544 7 BRAF.V600E_MUT KRAS_MUT

Afatinib (rescreen) 27.9 (22.0, 33.6) 0.904 601 6 IKZF3_AMP ERBB2_AMP
PD-0325901 27.6 (21.7, 33.3) 0.826 546 8 BRAF.V600E_MUT KRAS_MUT

(5Z)-7-Oxozeaenol 26.5 (21.6, 31.2) 0.677 603 9 BRAF.V600E_MUT NRAS_MUT

CCC—concordance correlation coefficient between observed AUCs and out-of-bag predictions; CI—confidence interval; AUC—area under
the dose-response curve. Alterations are in decreasing order of permutation importance. Clues about interactions are in green and red.

Table 3 shows Report 2 up to alterations significantly influential (p < 0.005) for >1 com-
pounds; Supplementary Table S2 shows the whole of Report 2. BRAF.V600E_MUT and
BRAF_MUT alterations were significantly influential for the largest number of compounds
in Report 1 (11 and 10, respectively).

Table 3. Report 2 up to alterations significantly influential (p < 0.005) for >1 compounds in Report 1 (in decreasing order of CCC).

Alteration Significance
Frequency Cluster ID Cluster

Size Compound 1 Compound 2

BRAF.V600E_MUT 11 184 1 Dabrafenib PLX4720 (rescreen)

BRAF_MUT 10 385 1 Dabrafenib PLX4720 (rescreen)

NRAS_MUT 6 185 1 RDEA119 (rescreen) Trametinib

KRAS.G12_13_MUT 5 431 1 RDEA119 (rescreen) Trametinib

KRAS_MUT 5 464 1 RDEA119 (rescreen) Trametinib

CREBBP_MUT 4 384 1 Dabrafenib Trametinib

FHL5_DEL 4 116 1 PLX4720 (rescreen) PLX4720

BCL9_AMP 3 358 1 RDEA119 (rescreen) Trametinib

ARHGAP40_AMP 2 303 1 Trametinib PD-0325901

CCDC66_DEL 2 383 1 Dabrafenib Nutlin-3a

MAP2K4_DEL 2 437 1 RDEA119 (rescreen) Nutlin-3a

RAF1_DEL 2 225 1 Trametinib Afatinib (rescreen)

TP53_MUT 2 501 1 Nutlin-3a (5Z)-7-Oxozeaenol
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Two couples of potential drug-gene interactions deserved further investigation. The
first interaction (Figure 5) involved PLX4720 and Nutlin-3a, due to a very similar average
AUC (0.937 and 0.936) and different most influential alterations (BRAF.V600E_MUT and
TP53_MUT). The second interaction (Figure 6) involved Dabrafenib and Afatinib (rescreen),
due to a similar average AUC (0.886 and 0.904) and different most influential alterations
(BRAF.V600E_MUT and IKZF3_AMP).

Figure 5. Graphical inspection of a drug-gene interaction involving the two compounds PLX4720 and Nutlin-3a, and
the two alterations BRAF.V600E_MUT and TP53_MUT. Boxplots represent the median (central line), the mean (square),
25th–75th percentiles (box), and min-max non-outlier values (whiskers); p-values are from the t-test.

Figure 6. Graphical inspection of a drug-gene interaction involving the two compounds Dabrafenib and Afatinib (rescreen),
and the two alterations BRAF.V600E_MUT and IKZF3_AMP. Boxplots represent the median (central line), the mean (square),
25th–75th percentiles (box), and min-max non-outlier values (whiskers); p-values are from the t-test.

In both cases, the average response difference between the two compounds was
related to the particular combination of alteration status, which was suggestive of statistical
drug-gene interaction. A formal test via two-way ANOVA indeed confirmed the presence
of statistically significant interaction effects (p-values < 0.001).
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4. Discussion
We provided a statistical methodological framework for mining and graphically

exploring drug-gene interactions based on Random Forests. After three steps of data
reduction, several models were fitted using the AUC as the drug sensitivity indicator and
copy number and mutation data as the predictors. Then, we used known statistical indica-
tors of model predictive performance and variable importance and produced tabular and
graphical reports of the results. Using an ordinary computer platform and the R software,
we identified 12 compounds associated with an at least fair concordance between observed
AUCs and OOB predictions, in a reasonable computational time (56 min). Moreover, some
diversities were found in the sets of influential alterations, providing clues to discover
significant drug-gene interactions.

The OOB predictive performance of the models was poor for 72.5% of the tested drugs
(Figure 4A). Indeed, the information content of genomic data (somatic mutations and copy
number changes) is known to be lower than, for example, gene expression data in the
pan-cancer setting [4,31]. Copy number changes may be associated with each other, and
mutations may characterize only a few genes [13]. On the other side, genomic data can
more easily translate into clinical biomarkers, as a consequence of the increased molecular
stability of DNA compared to RNA [13]. Moreover, genomic alterations are more likely to
represent functional (causal) drivers of drug sensitivity [13].

Model CCCs were tendentially larger as the number of cell lines tested with each drug
increased (Figure 4B); indeed, smaller sample sizes may have straightforwardly influenced
the predictive performance for several models. Moreover, the CCCs were tendentially
smaller as the average compound AUC increased (Figure 4C). This is consistent with
the finding of an increasing estimation uncertainty of the AUC for experiments with a
partial response (AUC between 0.4 and 0.9) [32]. In general, while using the AUC for
assessing drug sensitivity has been shown to increase the predictive performances in
pharmacogenomic models [13], using a single summary statistic may not be optimal [33].
In this regard, the use of multivariate analysis of variance (MANOVA) has been endorsed
for the joint modelling of multiple drug sensitivity indicators (associated with individual
genomic features), such as the traditional metric of IC50 (the concentration at which the
compound reaches 50% reduction in cell viability) and the slope of the dose-response
curve [3].

The proposed methodological approach may appear simplistic or potentially affected
by workarounds aiming to save computational time (especially data reduction). Never-
theless, we were able to detect well-known associations (Supplementary Table S1) such
as Dabrafenib-BRAF (sensitivity, Figure 6) [34], Nutlin-3a-TP53 (resistance, Figure 5) [35],
Afatinib-ERBB2 and Afatinib-EGFR (sensitivity, data not shown) [36,37], and other asso-
ciations reported by the Drug–Gene Interaction Database (DGIdb 4.0) [38]. Potentially
novel associations were also found, such as Afatinib-IKZF3 (sensitivity, Figure 6) and
Nutlin-3a-MAP2K4 (resistance, data not shown), which need, however, to be validated in
in vivo models. Although we conservatively limited our reports to drugs with an at least
fair CCC (>20), the provided R code (Supplementary Materials) allows users to reduce this
threshold (e.g., >10) to include less predictable compounds in the reports, and to obtain
more (but less precise) clues about potential drug-gene interactions.

In this regard, we also provided clues to producing graphical reports (Figures 5 and 6)
for exploring drug-gene interactions. This was accomplished by considering pairs of
compounds with similar AUCs but different associated alterations, and plotting their
(logit) AUC distributions against combinations of influential alterations. Although AUC
comparisons among drugs may be hazardous, such investigation is more in line with the
statistical definition of interaction, i.e., the situation in which drug effects on a cytotoxicity
indicator depend on the genomic features of the target cell lines. In this novel perspective,
a formal test for statistical interactions was performed via two-way ANOVA with (logit)
AUC as the response, compound as Factor 1, and alteration combination as Factor 2.
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Among available Machine Learning algorithms, we used Random Forests. Random
Forests have already been applied in previous genomic studies [10], showing high predic-
tive accuracy at the expense of model interpretability [13]. Although Elastic Net regression
has been recommended as a valid (or even better) alternative [13], its use was not fully
indicated in the current framework. In particular, Elastic Net regression has two tuning
parameters for the Ridge/Lasso contributions (no defaults have been proposed), requires a
standardization of the (quantitative) features, and does not provide p-values for statistical
testing of feature importance. Moreover, Elastic Net regression does not automatically
account for the effect of feature combinations, does not provide natural alternatives to
cross-validation, and requires a test set for the assessment of predictive performance.
Logic Regression [4] is another elegant solution to evaluate predictor combinations but,
differently from Random Forests, it requires tuning model complexity (number of combi-
nations/alterations involved) and would not be extensible to continuous predictors such
as gene expression. Discovering markers using multiple statistical tests has also been
recommended [39]; however, as for MANOVA, it involves testing one genomic feature at a
time, overlooking feature combinations.

Estimating multiple Random Forests requires time and memory resources, especially
with many predictors. In particular, trying to estimate a single Random Forest with the
original 48,270 alterations rapidly saturated the system in an ordinary computer plat-
form (10th generation Core i7, 4 cores up to 3.9 GHz, 16 GB SDRAM DDR4). For this
reason, we proposed three steps of data reduction: limiting to driver genes, excluding
frequent/infrequent alterations, and excluding redundant alterations. It is worth noting
that, differently from usual feature selection algorithms, the proposed data reduction is
performed before the predictors could see the responses, so that overfitting is prevented.

Although limiting to driver genes may lead to overlooking potentially unexplored
associations, it has been observed that mutations on driver genes can be responsible for
both the genesis and the course of malignancies, including drug sensitivity [40,41].

Similarly, excluding infrequent alterations of driver genes may lead to disregarding
potentially important biomarkers of response to therapies [42]. It should be noted that,
in our application, the term “infrequent” refers to the frequency observed in the specific
dataset. Conversely, the term “rare” would be more appropriate for referring to general
cell line populations [43] (the two terms are associated but not identical). Although we set
a proportion equal to 0.05 (or 0.95) to denote an infrequent (or frequent) alteration, this
parameter can be decreased or even increased according to the available hardware. As a
raw check of statistical power, given the average sample size (523), the t-test for alterations
with a relative frequency of 0.05 (or 0.95), a significant level of 0.05, and a moderate effect
size [44] has a power of about 0.70. This may be acceptable, especially if we assume that
statistical testing through Random Forest ensures higher power [28]. To get a power of
at least 0.80, the small frequency should be set at 0.065 (see the R code provided in the
supplement for calculations).

In the last step of data reduction, we applied a hierarchical clustering of predictors to
reduce the redundancy of information by keeping a single representative for each group.
Because the original cluster composition is stored, excluded (redundant) alterations are not
completely discarded with this reduction step. They will simply be considered as being
as important as their representatives. Although we set a correlation (notice that Pearson
correlation equals Cramer’s V for binary variables) equal to 0.95 (or �0.95) to qualify
redundant (or specular) alterations, this parameter can also be modified according to the
available hardware. In particular, decreasing the threshold (e.g., to 0.8) would produce
fewer alteration clusters and, consequently, fewer representatives.

4.1. Strengths
The main strength of the proposed methodological framework is its relative simplic-

ity, computational efficiency, and flexibility. Indeed, the methodology can be extended
to consider other predictor categories, such as gene expression and DNA methylation,
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and/or different drug sensitivity indicators. Moreover, we gathered data from two publicly
available large-scale pharmacogenomics resources, the CCLE and the GDSC. For these
projects, substantial agreement has been observed in the provided measurements of drug
sensitivity and genomic predictors [45], and powerful connectivity tools have been de-
veloped [46]. Finally, we applied reliable statistical methodologies for assessing feature
importance (permutation importance and the associated p-value) and model predictive
performance (CCC). In particular, differently from previous studies [4,12,16], we used the
more conservative CCC rather than the Pearson correlation coefficient for assessing the
agreement between observed and predicted drug responses. These tools simplified the
creation and interpretation of tabular and graphical reports.

4.2. Limitations
Several limitations should also be acknowledged. First, as previously mentioned, the

proposed methodological approach is affected by workarounds and somewhat arbitrary
choices aimed at saving computational time, especially thresholds for data reduction
and the use of default tuning parameters for the Random Forests. Another concern
is that several missing data were removed. In particular, because the sets of cell lines
with unavailable AUCs were different for different drugs, this may have affected the
comparability among different models. In this regard, we provided suggestions to perform
graphical checks: a check of model stability (Figure 3B) and a check of missing effects
(Figure 2).

Finally, our analysis was carried out by including all cancer types available in the
database (pan-cancer setting). Although this ensures larger sample sizes, between-tissue
heterogeneity in both drug response and tumor molecular characteristics may introduce
biases into pan-cancer analysis [4]. In this case, possible workarounds may include per-
forming tissue-specific analyses (at the expense of the sample size) or considering Random
Forest extensions that are able to incorporate the aforementioned heterogeneity [47].

5. Conclusions
In conclusion, this article presented a reliable, flexible, and efficient framework of sta-

tistical methodology for mining and graphically exploring drug-gene interactions based on
Random Forests. In a reasonable computational time, the proposed methodology allowed
us to identify well-known drug-gene associations and provided clues to discover novel
pharmacogenomic interactions. An open R code was made available for implementation in
ordinary computer platforms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060933/s1. Table S1: Report 1, including all the influential alterations for each
compound (in decreasing order of CCC): CCC—concordance correlation coefficient between observed
AUCs and out-of-bag predictions; CI—confidence interval; AUC—area under the dose-response
curve. Alterations are in decreasing order of permutation importance. Clues about interactions are in
green and red. Table S2: Report 2, including all the alterations significantly influential (p < 0.005) for
the compounds in Report 1 (in decreasing order of CCC). Others: zip archive with comprehensive R
source code; methodological workflow.
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