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Abstract: The flutter phenomenon is a potentially destructive aeroelastic vibration studied for the
design of aircraft structures as it limits the flight envelope of the aircraft. The aim of this work is to
propose a heuristic design of a piezoelectric actuator-based controller for flutter vibration suppression
in order to extend the allowable speed range of the structure. Based on the numerical model of a three
degrees of freedom (3DOF) airfoil and taking into account the FEM model of a V-stack piezoelectric
actuator, a filtered PID controller is tuned using the population decline swarm optimizer PDSO
algorithm, and gain scheduling (GS) of the controller parameters is used to make the control adaptive
in velocity. Numerical simulations are discussed to study the performance of the controller in the
presence of external disturbances.

Keywords: active flutter suppression; V-stack actuator; population decline swarm optimizer; gain scheduling

1. Introduction

The flutter phenomenon is a dynamic instability that arises in lifting structures. It
starts when the velocity becomes greater than a critical speed value, namely the flutter
boundary. The fluid does not absorb the structure’s energy anymore but increases it as
the damping becomes negative in value, causing a condition of fatigue or damage to the
structure. The amplitude of the flutter oscillations can grow indefinitely in the linear model,
particularly for divergent flutter, or reach a constant amplitude, such as with limit cycle
oscillations (LCOs), when there are stiffness or aerodynamic nonlinearities, like in the
actual case. By studying the variation of the damping ratio with the airstream velocity, it is
possible to recognize different types of flutter [1] such as soft flutter, which is characterized
by a slight slope of the damping ratio–speed curve, and hard flutter, which presents an
abrupt variation of the damping ratio beyond the critical point and the hump mode, which
is characterized by an initial reduction of damping that becomes negative in value and
then increases to become positive again, describing a closed flutter region. The danger in
reaching flutter instability is not only related to the high amplitude that can be encountered,
but also to the fatigue effect and the increase of the control surface’s freeplay that it can
cause. Over the years, many measures have been taken to prevent the rise of aeroelastic
vibration phenomena. These can be mainly divided into two categories: passive and active
methods. The study of mass balance belongs to the category of passive methods. The
dimension and the position of masses strongly influence the amplitude and the frequency of
flutter oscillations and modify the coupling mechanism between the bending and torsional
vibration modes. A possible passive solution may be reached by moving the center of mass
of each structural element of the wing closer to the axis of elasticity (AE) or by installing
some concentrated masses to modify the wing’s moment of inertia, with the aim of reducing
the amount of energy extracted from the fluid [2]. The modern methods used for flutter
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suppression are active methods. These use the data recorded from sensors installed on
the structure, such as accelerometers, that are elaborated by a control system to properly
move some aerodynamic surfaces or to implement other changes in the structure shape
in order to obtain the desired dynamic behavior. The first examples of technology for the
control of aeroelastic oscillations were based on the movement of aerodynamic surfaces,
such as the trailing edge flap, by means of servo-hydraulic systems [3]. However, hydraulic
systems present some drawbacks, such as the multiple conversions of the energy from one
type to another, (e.g., from mechanical to hydraulic and to mechanical again). Conversions
of energy lead to losses which, in turn, require higher nominal power of the system and
higher weight as well. Lastly, it has to be said that hydraulic systems usually do not reach
high bandwidth values. Thus, considering that aeroelastic phenomena are characterized
by high frequencies, it follows that they might not be suitable for flutter suppression. The
above-mentioned problems have motivated a growing interest in deformation-induced
actuators, such as piezoelectric actuators. These, in fact, allow one to obtain mechanical
power directly from electric energy. However, piezoelectric actuation does not allow for
obtaining large displacements; thus, amplification mechanisms are to be studied. The first
attempts of piezoelectric actuation were related to the use of bimorph beams realized by
bonding two piezoelectric layers such that when an electric voltage is applied, one stretches
while the other contracts, and bending deformations of the beam are obtained. Applications
of this technology have been studied for the active control of helicopter blade twist by
Waltz and Chopra [4] and for the flutter suppression of cantilever wings by Heeg [5]. An
innovative method for wing oscillation control consists of the integration of actuators into
the structure such that the geometry of the structure itself can be modified, usually in
terms of the airfoil camber. This technology is called morphing actuation and has been
studied since the 1990s, a period in which greater knowledge of piezoelectric materials was
acquired, allowing the modeling of these materials in thin patches that can be integrated
into the structure. The first studies that aimed at verifying the feasibility of piezoelectric
morphing actuation were carried out by Lazarus et al. [6] along with numerous other
scholars. However, they focused on the realization of all-movable aerodynamic surfaces
not specifically designed for aeroelastic suppression. On the contrary, the technology
presented by Fichera et al. [7] was specifically designed for aeroelastic suppression. They
proposed a trailing edge morphing actuator capable of a 25 Hz bandwidth and a ±15◦

maximum equivalent rotation. It is made of two panels: one is an Macro-Fiber Composite-
MFC piezo patch sandwich, which is the active part of the actuator, while the other is
made of an aluminum alloy. Both panels are fixed on the wing box on one end and on
a slider on the other end. In particular, the slider has airfoil trailing edge geometry and
allows the two panels to slide in the deformed configuration. Other works dealing with
piezoelectric actuation for aeroelastic suppression are based on the installation of piezo
patches on the structure’s surface. The actuation of the patches is combined with modern
control techniques in order to obtain a robust suppression system [8].

Other simpler configurations of piezoelectric actuation deal with the use of piezoelec-
tric stacks. Piezo stacks are made by overlapping several piezoelectric layers in order to
obtain a rod able to elongate or compress after the application of an electric voltage. Since
this configuration does not allow one to obtain large displacements, some amplification
mechanisms have been studied. Among others, there are the so-called X and V configura-
tions. The mechanism presented by Hall and Prechtl [9] is based on an X configuration that
allows amplification of the compression deformation of the stacks, resulting in a vertical
displacement. On the other hand, the amplification mechanism proposed by Ardelean and
Clark [10] takes advantage of two piezoelectric stacks arranged in a V configuration. The
latter configuration is the one selected for the investigation carried out in the present study.

In order to realize the flutter suppression of the airfoil, using the movement of aerody-
namic surfaces, many studies have been carried out over the years, and some solutions
were reported in the following. In the work of Chen et al. [11], a two-degrees-of-freedom
airfoil was considered, while the presence of both the leading edge and trailing edge aero-
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dynamic surfaces was taken into account only in the expressions of the aerodynamic loads.
The control method used by Chen et al. [11] was based on a sliding mode controller (SMC)
(i.e., a nonlinear state feedback controller capable of changing its own structure when the
system assumes different states). Thus, this controller presents robustness properties to
external disturbances and uncertainties. However, the conventional SMC assumes that the
controller could switch from one value to another instantaneously, and this is not possible
in real-life applications due to the presence of delays. Therefore, the same authors proposed
a high-order sliding mode controller (HOSMC) that was introduced after the backstepping
procedure. In this way, a continuous input is provided to the controller [12]. In the studies
of Na et al. [13] and Yang et al. [14], the model of a three-degrees-of-freedom airfoil was
taken into account. Thus, the dynamic of the aerodynamic surface was considered. The
control strategy proposed by Na et al. [13] was based on an LQR control implementing
full-state feedback. Again, this leads to the necessity of having a system that is completely
observable. The authors introduced the presence of measure noises and output distur-
bances, and thus a linear quadratic Gaussian (LQG) controller associated with a sliding
mode observer has been implemented, since this architecture is capable of noise decoupling
and shows robustness properties to disturbances. Yang et al. [14] instead specified that
the LQR and LQG controllers are based on mathematical knowledge of the disturbances.
Thus, when there are some uncertainties, these strategies lose robustness. In order to take
into account the uncertainties in the design of the controller, Yang et al. [14] proposed
H∞ loop shaping, which is implemented by defining a generalized plant that encloses
all the dynamic features to be controlled, such as sensors and actuator dynamics and so
on, and introducing two different input vectors, namely the control input vector and the
exogenous input vector. Then, the disturbance–output transfer function is defined, and the
minimization problem of its infinity norm is solved. In the works of Wang et al. [15] and
Zhang et al. [16], neural networks were associated with a full-state feedback–feedforward
controller. This strategy has been studied by Bemelli-Zazzera et al. [17], too. They in-
troduced the use of dynamic neural networks that were capable of changing their own
weights through active training in order to adapt to the parameter variation during the
normal functioning of the system. In the work of Andrievsky et al. [18], simple adaptive
control (SAC) was implemented for the flutter suppression of an airfoil using an implicit
reference model (IRM) and the pacification theorem. The authors implemented an adaptive
control capable of flutter suppression in both the cases of the presence of actuator delays
and the lack thereof.

Recent works dealing with active flutter suppression, carried out in the framework of
projects financed by the European Union and the USA, have been presented. In the work
carried out by Takarics and Vanek [19], a low-order, control-oriented LPV model of the
aircraft was obtained using the bottom-up approach. The order of the nonlinear aeroser-
voelastic model subsystems is reduced, paying attention to capture accurately the flutter
modes. Then, the controller is designed considering a polytopic LPV representation. In
the work proposed by Waitman and Marcos [20], a high-fidelity, nonlinear aeroservoelastic
model of the FLEXOP aircraft was considered, and three H∞ optimal controllers were tuned
and scheduled for different true airspeed values, increasing the damping of the flutter
modes at these velocities. This approach led to a flutter boundary increase of 30%. Another
recent work carried out by Theis et al. [21] dealt with the flutter suppression of the mini
MUTT aircraft model, built at the University of Minnesota. The H∞ loop shaping method
was used in order to design a controller that presented good robustness to a wide variety
of uncertainties. Pusch [22] studied a method based on the blending of control inputs
and measurement outputs to isolate individual aeroelastic modes in order to use SISO
controllers. In Schmidt et al. [23], the authors presented a study on drone flight dynamics,
taking into account aeroelastic effects modeled by using the mean–axis formulation and
quasi-steady aerodynamics. The rigid and aeroelastic model of the drone has since been
used to study several controllers for autopiloting, considering the flutter instability as well.
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In this work, one of the objectives is to present an FEM model of a V-stack piezoelectric
actuator for the flutter suppression of an airfoil. Thus, the finite element model of the
actuator is first introduced, and the behavior of the FEM model is compared with the
experimental data in order to validate it. The second aim is to propose a heuristic method
called population decline swarm optimization for tuning a simple control strategy based
on a filtered PID controller by looking for the minimization of the integral of time absolute
error (ITAE). This approach is used to set gain scheduling of the controller parameters
in order to realize a velocity-dependent flutter suppression system and extend the flight
envelope of the airfoil.

This paper is organized as follows. In Section 2, the numerical model of a three-
degrees-of-freedom airfoil is described, and the augmented state space model for the
time domain analysis is introduced. In Section 3, the actuator is studied, introducing the
finite element formulation of the piezo stacks. Starting from the state space model, the
transfer function that relates the actuator tip’s vertical displacement to the input voltage is
computed. In Section 4, the tuning of the gain scheduling-filtered PID controller is done.
The filtered PID controller is tuned using the PDSO algorithm by minimizing the ITAE
of the error of the pitch angle. In order to set up an adaptive control in the velocity, the
gain scheduling approach is introduced, and the optimization algorithm is used to find the
optimal controllers for different velocity values. In Section 5, the open loop analysis of the
system for the identification of the flutter boundary is first carried out. Then, the validation
of the static and dynamic behavior of the actuator is done. Moreover, the convergence
results of the PDSO optimization procedure are also shown. At last, the comparison
between open-loop and closed-loop responses is presented, and some critical situations are
simulated in order to study the performance of the closed-loop system.

2. 3DOF Airfoil Model

In order to study the flutter phenomenon, a simplification was introduced by reducing
the wing to its representative mean airfoil and, as a consequence, a two-dimensional
structural model could be considered. The torsional deformability of the wing, which was
considered as a beam with a thin-walled section, was simulated by a spring of stiffness Kα

placed in the axis of elasticity (AE), which represented the constraint. The flexional stiffness
was simulated by the heave spring Ky. Due to the presence of the flap a third spring
of stiffness, Kδ was introduced in order to take into account the hinge behavior. In this
way the three-degrees-of-freedom concentrated parameters model of the wing, shown in
Figure 1, was obtained. Of course, this model had to be considered as a first approximation
of the structure, useful for the preliminary studies carried out in this work.
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Figure 1. Three-degrees-of-freedom (3DOF) airfoil concentrated parameters model. 
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generalized inertia matrix and the stiffness matrix that are reported in Appendix A, were 
defined: + =  (3)

In order to introduce the structural damping contribution, the procedure described 
by Liu and Dowell [25] was followed, and the damping factors obtained experimentally 
were treated in the numerical model as modal damping factors. The structural damping 
matrix was written as 

Figure 1. Three-degrees-of-freedom (3DOF) airfoil concentrated parameters model.

In order to obtain the equations of motion of the three-degrees-of-freedom (3DOF)
airfoil, the balance between the inertial, elastic and aerodynamic forces was imposed,
writing the system in Equation (1) [24]. The nonlinear stiffness term Kα3 was also considered
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in order to take into account that nonlinear effects could arise for large displacements,
introducing the limit cycle oscillation phenomenon:

Iα
..
α + [Iδ + b(c− a)Sδ]

..
δ + Sα

..
y + Kαα + Kα3α3 = M

[Iδ + b(c− a)Sδ]
..
α + Iδ

..
δ + Sδ

..
y + Kδδ = M′

Sα
..
α + Sδ

..
δ + mtot

..
y + Kyy = L

(1)

where α and δ are the pitch and flap rotation angles, respectively, while y is the plunge
displacement, Iα and Iδ are the inertia moments, Sα and Sδ are the static moments, mtot is
the total mass of the wing and the support blocks, L is the lift force and M and M′ are the
aerodynamic moments acting on the airfoil and on the flap, respectively.

In order to carry out the stability analysis of the airfoil, it could be useful to take into
account the nondimensional equations of motion. Thus, the first and the second equations
of the system in (1) were divided by the term mb2, while the third equation was divided by
the term mb, obtaining the following system:

r2
α

..
α +

[
r2

δ + (c− a)xδ

] ..
δ + xα

..
y + r2

αω2
αα
(
1 + γα2) = M

mb2[
r2

δ + (c− a)xδ

] ..
α + r2

δ

..
δ + xδ

..
y + r2

δω2
δ = M′

mb2

xα
..
α + xδ

..
δ + mtot

m
..
y + ω2

yy = L
mb

(2)

where ωα and ωδ, ωy are the uncoupled natural frequencies, rα and rδ are the gyration
radius divided by the semi-chord of the airfoil b and γ is the nonlinear stiffness coefficient,
such that Kα3 = γKα.

In order to obtain the state space model of the system, it was convenient to write
the system in matrix form at first (see Equation (3)). The generalized displacement vector
X =

[
α δ y

]T , the generalized force vector F and the matrices Ms and Ks, namely
the generalized inertia matrix and the stiffness matrix that are reported in Appendix A,
were defined:

Ms
..
X + KsX = F (3)

In order to introduce the structural damping contribution, the procedure described by
Liu and Dowell [25] was followed, and the damping factors obtained experimentally were
treated in the numerical model as modal damping factors. The structural damping matrix
was written as

Bs =
(

ΛT
)−1

BmodΛ−1 (4)

where Λ is the modal matrix, while the modal damping matrix was defined as

Bmod =

 2m1ω1ζ1 0 0

0 2m2ω2ζ2 0

0 0 2m3ω3ζ3

 (5)

where mi, ωi and ζi are the modal masses, the coupled natural frequencies and the mea-
sured damping ratios, respectively.

Once the matrices were defined, the model could be written as

Ms
..
X + Bs

.
X + KsX = F (6)

Before defining the state space representation of the analyzed problem, the aerody-
namic force model must be introduced.

2.1. Aerodynamic Model

The aerodynamic model considered in this work was the one formulated by
Theodorsen [26] for an oscillating airfoil. It was based on the potential flow theory and on
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the hypothesis that the amplitude of the oscillations is so small that they can be treated as
perturbations. According to this theory, the aerodynamic force and moments are functions
of the Lagrangian parameters and of the Theodorsen constants Ti, reported in Appendix B.
The aerodynamic loads were written as follows:

L = −ρb2
(

vπ
.
α + π

..
y− πba

..
α− vT4

.
δ− T1b

..
δ
)

−2πρvbC(K)
(

vα +
.
y + b

(
1
2 − a

) .
α + T10vδ

π + bT11
.
δ

2π

) (7)

M = −ρb2
{

π
(

1
2 − a

)
vb

.
α + πb2

(
1
8 + a2

) ..
α + (T4 + T10)v2δ

−
[

T1 − T8 − (c− a)T4 +
T11
2

]
vb

.
δ− [T7 + (c− a)T1] b2

..
δ− aπb

..
y
}

+2πρvb2
(

1
2 + a

)
C(K)

(
vα +

.
y + b

(
1
2 − a

) .
α + T10vδ

π + bT11
.
δ

2π

) (8)

M′ = −ρb2
{[
−2T9 − T1 + T4

(
a− 1

2

)]
vb

.
α + 2T13b2 ..

α + v2(T5−T4T10)δ
π

− vbT4T11
.
δ

2π − T3b2
..
δ

π − T1b
..
y
}

−ρvb2T12C(K)
(

vα +
.
y + b

(
1
2 − a

) .
α + T10vδ

π + bT11
.
δ

2π

) (9)

where it appears that the Theodorsen function of the reduced frequency K = bω
v , where v

is the airstream velocity and ω is the frequency of the motion. The Theodorsen function
was defined as a function of the Hankel function of the second kind as follows:

C(K) =
H(2)

1 (K)

H(2)
1 (K) + iH(2)

0 (K)
(10)

The structural and aerodynamic formulation discussed is suitable for the analysis of
the system in the frequency domain, from which information about the flutter boundary
can be obtained. For the aim of this work, it was convenient to introduce time domain
analysis. The Duhamel formulation [27] that allows for modeling the arbitrary motion
of the airfoil instead of the simple harmonic one was thus introduced by writing the
circulatory contribution to the aerodynamic loads as follows:

Lc = C(K)U(t) = U(0)φ(τ) +
∫ τ

0

∂U(σ)

∂σ
φ(τ − σ)dσ (11)

where U(t) = vα +
.
y + b

(
1
2 − a

) .
α + T10vδ

π + bT11
.
δ

2π and φ(τ) ≈ c0 − c1e−c2τ − c3e−c4τ have
values c1 = 0.165, c2 = 0.0455, c3 = 0.335 and c4 = 0.3 [27].

By integrating parts of Equation (11), a simplified expression of Lc was obtained:

Lc = U(τ)φ(0) +
∫ τ

0
U(σ)

∂φ(τ − σ)

∂σ
dσ (12)

In addition, using the Padè approximation, it could be written as a second-order
differential equation, where the two aerodynamic augmented states x and

.
x appear (see

Equation (13)):

Lc = (c0 − c1 − c3)U(t) + c2c4(c1 + c3)x + (c1c2 + c3c4)
.
x (13)

2.2. Augmented State Space Form

The numerical model of the 3DOF airfoil belongs to the class of parameter varying
systems, as it depends on the velocity of the airstream. Considering a fixed speed value, the
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3DOF model could be considered as a time-invariant system, and thus the augmented state
space formulation could be used for the time domain tuning of the controller, introducing
the state vector xT =

[
α δ y/b

.
α

.
δ

.
y/b x

.
x
]

and writing Equations (6)–(9) in
matrix form:

M
.
x = Nx + Tu +F ′(x) (14)

Then, the dynamic matrix A = M−1N was computed. The state input matrix B was
defined, taking into account that the input was the flap deflection u = δc. Thus, B was a
column matrix equal to the second column of the dynamic matrix. Lastly, the output state
matrix C was imposed to be the identity matrix in the hypothesis of ideal sensors for all
the variables. The augmented state space model is written as follows:{ .

x = Ax + Bu + F(x)
y = Cx

(15)

where the term F (x) = M−1F ′(x) takes into account the nonlinear stiffness contribution.
All the matrices are reported in Appendix A.

3. V-Stack Piezoelectric Actuator

In order to actuate the trailing edge flap for the flutter suppression of the airfoil, the
V-stack piezoelectric actuator shown in Figure 2 was chosen [10]. The actuator worked by
amplifying the piezoelectric stacks’ deformation induced by an electric voltage. In fact, the
two stacks were mounted in a V configuration, and this made the actuator easily installable
inside a typical wing structure. By imposing an input voltage, one stack stretched while
the other contracted, producing a vertical displacement of the actuator’s tip. The vertical
displacement was then transformed in a rotation of the flap through a slider [10].
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Figure 2. V-stack piezoelectric actuator integrated in the wing structure (adapted from [10]). 
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Figure 2. V-stack piezoelectric actuator integrated in the wing structure (adapted from [10]).

The piezoelectric stacks were made by overlapping a number n of piezoelectric el-
ements with alternate poling, having alternate positive and negative electrodes printed
on the external surfaces. When an electric voltage was imposed, the stacks stretched or
contracted along their axes, while the other deformations were negligible. The linear
electro-mechanical problem can be expressed by the equation system given by ANSI/IEEE
Standard 175-1987 (i.e., the strain charge form), written as follows:{

ε = Sσ + dTE
D = dσ + εTE

(16)

where ε is the strain, σ is the stress, S is the compliance matrix, d is the piezoelectric matrix,
E is the electric field, D is the electric displacement and ε is the dielectric constant.
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3.1. FEM Model
3.1.1. Piezoelectric Stack Finite Element Model

Taking into account the particular functioning of the piezoelectric stack, Equation (16)
can be reduced to the equilibrium equation along the poling direction 3 and, considering
the ith piezoelectric layer, it can be written as

ε33
i = S33

iσi
33 + d33

iE (17)

Then, in the hypothesis that every layer has the same thickness t, compliance S33 and
piezoelectric behavior d33, the total stack strain is

ε33
T =

∆L
L

=
∑ ε33

it
L

=
nt
L

(
S33 σ33 + d33

∆V
t

)
(18)

where L is the length of the stack and ∆V is the electric voltage imposed. Since nt = L from
Equation (18), the stress can be gained:

σ33 =
ε33

T

S33
− d33

S33t
∆V (19)

In order to obtain the element stiffness matrix and the equivalent nodal piezoelectric
force vector, the virtual work principle was introduced and, under the hypothesis of
absence of external forces, it is written as

∂L∗ =
∫

εTσdΩ = 0 (20)

where dΩ is the infinitesimal volume. Substituting Equation (19) into Equation (20) and
taking into account that the strain ε and nodal displacement δ are related (i.e., ε = Bδ,
where B is the finite element strain displacement matrix obtained by deriving the shape
function matrix with respect to the space variable), the virtual work can be expressed as

∂L∗ =
x

BT 1
S33L

BdAdL δ−
x

BT d33

S33t
∆VdAdL = 0 (21)

where A is the section of the stack.
Due to the particular operating behavior of the stack, the axial behavior was first

considered. Substituting into Equation (21) the B matrix of the linear rod finite element,
B = 1

L
[
−1 1

]
, the equilibrium equation along the axial direction was obtained:

EA
L

[
1 −1

−1 1

]
δ =

[
− d33EA

t
d33EA

t

]
∆V (22)

Thus, the element stiffness matrix k̃e =
EA
L

[
1 −1
−1 1

]
and the equivalent piezoelec-

tric stack nodal force vector F̃∆V =

[
− d33EA

t
d33EA

t

]
∆V were defined.

3.1.2. Actuator Finite Element Model

In order to obtain the finite element model of the actuator, the simplified structural
scheme shown in Figure 3a was considered, and the mesh shown in Figure 3b was in-
troduced. With the aim of taking into account the presence of the internal hinges of the
actuator, four elements of very small lengths and moments of inertia were introduced close
to points 3 and 4. In this way, equilibrium was maintained while the flexional stiffness
was reduced.
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Each finite element of the mesh was a beam and had three degrees of freedom for each
node that could be collected in the vector δT =

[
δix δiy ϕi δjx δjy ϕj

]
, with i and j

being the nodes of the beam while x and y are the local reference system variables along,
and normal to, the beam axis oriented from i to j. The element stiffness matrix was the one
computed from the Euler–Bernoulli beam. The stacks’ equivalent nodal force vector was
obtained, extending the one computed for the piezoelectric rod:

F̃∆V =
[
− d33EA

t 0 0 d33EA
t 0 0

]T
∆V (23)

In order to obtain the structural discretized model, a coordinate transformation from
the local to the global reference frame was introduced, and the structural stiffness matrix
was computed.

The structural nodal force vector is defined as follows:


F3X

F3Y

F4X

F4Y

 =



E(1−3)
stack A(1−3)

stack d(1−3)
33 cos θ(1−3)

t(1−3)

E(1−3)
stack A(1−3)

stack d(1−3)
33 senθ(1−3)

t(1−3)

E(2−4)
stack A(2−4)

stack d(2−4)
33 cos θ(2−4)

t(2−4)

E(2−4)
stack A(2−4)

stack d(2−4)
33 senθ(2−4)

t(2−4)


∆V (24)

where d(2−4)
33 = −d(1−3)

33 , since the piezoelectric stacks work anti-symmetrically, and θ is
the angle between the global X and the beam local x axes.

The finite element model KSTδ = F was obtained and, by imposing the boundary
conditions, the static behavior of the actuator could be studied, resolving the system:{

K11δu + K12δk = Fk

KT
12δu + K22δk = Fu

(25)

where the subscripts u and k stand for unknown and known, respectively.
As the study of the dynamic behavior of the actuator was in the aim of this work, the

equations of motion of the structure were written. Thus, the consistent mass matrix of the
beam was introduced:

m̃e =
ρAl
420



140 0 0 70 0 0

0 156 22l 0 54 −13l

0 22l 4l2 0 13l −3l2

70 0 0 140 0 0

0 54 13l 0 156 −22l

0 −13l −3l2 0 −22l 4l2


(26)
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With this, the structural mass matrix MST was computed.
The structure equations of motion were written in line with the findings of Paz and

Kim [28]:
MST

..
δ + KSTδ = F (27)

In order to take into account the structural damping contribution, the damping matrix
was computed. For the piezo stacks’ damping contribution, the dielectric loss factor tan δ
was taken into account as it is related to the quality factor Q by the relation tan δ = 1

Q , and
with the damping factor being ζ = 1

2Q , it could be obtained that [29]

ζ =
tan δ

2
(28)

The equations of motion of the stacks in the local frame are

m̃e

..
δ̃ + C̃stack

.
δ̃ + k̃stack δ̃ = F̃∆V (29)

where m̃e, C̃stack and k̃stack are the mass, damping and stiffness matrices in the local frame,
respectively. It can be seen that there was an analogy between Equation (29) and the classic
mass-spring-damper equation of motion. Therefore, the following equality can be imposed:

m̃−1
e C̃stack = 2ζωn (30)

In addition, the damping matrix is computed as

C̃stack = tan δωnm̃e (31)

where ωn is the natural frequency of the actuator modes, though only the first is retained
in this work.

The damping of the steel elements of the actuator was instead introduced using the
Rayleigh model:

C = aM + bK (32)

where a and b are arbitrary coefficients, computed in this work using a population decline
swarm optimization PDSO algorithm, described in Appendix C. The PDSO algorithm
was implemented for the identification of the actuator experimental frequency response,
presented by [10], choosing as an objective function the percentage error %EMr between
the experimental resonance peak Mr = 3.95× 10−2 mm

V and the one computed from the
finite element model. The optimization problem is written as

min%EMr

s.t.

amin ≤ a ≤ amax

bmin ≤ b ≤ bmax

(33)

Each particle had two coordinates Pi
λ =

[
ai bi ]

λ
that could assume only the values

inside the research space (1E−5 ≤ a ≤ 1E−3, 1E−5 ≤ b ≤ 1E−3). The research space limits
were chosen by a trial and error approach, looking for minimization of the percentage
error. The algorithm parameters were chosen as follows: cc = cs = 2.025, µmin = 0.4,
µmax = 0.9, Λ = 40, ζ = 0.5 and ∆ = 10. The minimum value of the objective function
min%EMr = 0.0055% was already obtained for an initial maximum number of particles
equal to 20, and the minimum point had the coordinates a = 1.5E−4, bmin = 1.7E−5.

By introducing the damping contribution and imposing the boundary conditions, the
equations of motion of the actuator are written as

M11
..
δu + C11

.
δu + K11δu = Fk (34)
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In order to obtain the theoretical frequency response, the transfer function of the
actuator was computed. The state space model was introduced, defining the state vector
xT =

[
δi

.
δi

]
and the following matrices:

A =

[
0(nxn) I(nxn)

−M11
−1K11 −M11

−1C11

]
; B =

[
0(nx1)

M11
−1Fn

]
; D = 0(nx1);

where n is the degree of freedom of the actuator. The C matrix was defined in such a way
that the model returned as an output the vertical displacement of point 6 (i.e., the tip of the
actuator). The transfer function is computed as

Gv6 = C(sI − A)−1B + D (35)

Lastly, it must be pointed out that to model the internal hinges of the actuator, four
finite elements having a length equal to 1% of the membership elements were introduced.
The fictitious finite element moments of inertia were obtained by dividing the membership
element ones by a factor f, chosen in such a way that the minimum error on the static
and dynamic behavior was obtained. For the sake of clarity, looking at Figure 3b, the
membership element of the fictitious hinge finite element 10–3 is the finite element 1–10.
Figure 4 shows the percentage errors computed between the FE model and the experimental
results of the piezoelectric V-stack actuator stroke, namely δ6Y, of its blocked force F6Y and
of the resonance frequency as a function of the fictitious hinge factor f. Looking at Figure 4,
it appears that the optimal dividing factor choice was f = 106.
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4. Gain-Scheduled Filtered PID Active Controller

The control architecture chosen in this work and shown in Figure 5 was based on
an output feedback scheme based on a filtered Proportional-Integral-Derivative fPID
controller that presented some benefits. This type of controller presented a simplicity in
implementation and installation and, moreover, it only requested one output measure,
thus asking for the implementation of only one sensor device and allowing us to avoid
the complication of the controller scheme introduced by, for instance, state observers.
These are some of the reasons that currently still motivate the use of PID controllers in the
industry [30]. Moreover, the PID controller had a fixed structure, and the problem reduced
to the tuning of its parameters, which were made in this work using a population decline
swarm optimization PDSO algorithm. The principal issue of choosing a PID controller is
that it is not adaptive with the system’s change of parameters. In this work, in order to
make the controller adaptive in velocity, a gain scheduling (GS) approach was used.



Vibration 2021, 4 380

Vibration 2021, 4, 24  380 
 

 

   
(a) Stroke (b) Blocked force (c) Resonance frequency 

Figure 4. Influence of the fictitious finite element factor f. 

4. Gain-Scheduled Filtered PID Active Controller 
The control architecture chosen in this work and shown in Figure 5 was based on an 

output feedback scheme based on a filtered Proportional-Integral-Derivative fPID 
controller that presented some benefits. This type of controller presented a simplicity in 
implementation and installation and, moreover, it only requested one output measure, 
thus asking for the implementation of only one sensor device and allowing us to avoid 
the complication of the controller scheme introduced by, for instance, state observers. 
These are some of the reasons that currently still motivate the use of PID controllers in the 
industry [30]. Moreover, the PID controller had a fixed structure, and the problem 
reduced to the tuning of its parameters, which were made in this work using a 
population decline swarm optimization  algorithm. The principal issue of choosing 
a PID controller is that it is not adaptive with the system’s change of parameters. In this 
work, in order to make the controller adaptive in velocity, a gain scheduling (GS) 
approach was used. 

 
Figure 5. Closed-loop system. 

The filtered PID controller acted by minimizing the error function ( ) = ( ) −( ), being ( ) = 0 , because the aim was to stabilize the system. The reference 
signal sent to the actuator was the voltage input, and it was computed as the sum of three 
terms: one proportional to the current error, one proportional to the time integral of the 
error, ensuring the system reached the desired setpoint, and the last term proportional to 
the filtered error time derivative [30]: Δ ( ) = ( ) + 1 ( ) + ( )  (36)

where ( ) is the solution of the following first-order differential equation: + =  (37)

The choice of a controller with all three components was related to the peculiarities 
of each term. In fact, a proportional-only controller could not make the system able to 
reach the setpoint. By increasing the proportional gain, the difference between the actual 
and desired values could be reduced, but the system would encounter more oscillations 

102 104 106 108

f

0.14

0.15

0.16

0.17

0.18

0.19

%
Er

ro
r o

n 
th

e 
str

ok
e

102 104 106 108

f

0

0.2

0.4

0.6

0.8

1

%
Er

ro
r o

n 
th

e 
bl

oc
ke

d 
fo

rc
e

102 104 106

f

300

400

500

600

700

800

r [H
z]

Figure 5. Closed-loop system.

The filtered PID controller acted by minimizing the error function e(t) = αre f (t)− α(t),
being αre f (t) = 0rad, because the aim was to stabilize the system. The reference signal sent
to the actuator was the voltage input, and it was computed as the sum of three terms: one
proportional to the current error, one proportional to the time integral of the error, ensuring
the system reached the desired setpoint, and the last term proportional to the filtered error
time derivative [30]:

∆V(t) = Kp

[
e(t) +

1
τi

∫ t

0
e(τ)dτ + eD(t)

]
(36)

where eD(t) is the solution of the following first-order differential equation:

τDF
.
eD + eD = τD

.
e (37)

The choice of a controller with all three components was related to the peculiarities of
each term. In fact, a proportional-only controller could not make the system able to reach
the setpoint. By increasing the proportional gain, the difference between the actual and
desired values could be reduced, but the system would encounter more oscillations for the
rapid transient; thus, the integral contribution was added. At least, the derivative terms
allowed the system to tackle the rapid transient easily, as the derivative gave information
on the evolution of the error. Thus, the controller was able to forecast and fill the eventual
delays, leading to a reduction of the oscillation amplitude.

The controller parameters, namely Kp, τi, τD and τDF, had to be tuned in such a way
that no instabilities due to the control were introduced, and the flap displacement had to
be able to stabilize the airfoil in the shortest time. In order to obtain the PID controller at
the flutter speed, a PDSO algorithm was used, and the fitness function to be minimized
was chosen to be the integral of time absolute error (ITAE).

It is worth noting that that, strictly speaking, heuristic optimizers did not find the
actual optimum, but their solution was always the best parameter configuration among
all the other configurations that were tested. This means that the controller might be
suboptimal because it is just the best among the tested ones. This is particularly true when
a flat region of the performance index is found. Thus, considering that the PID tuning was
gained via a numeric metaheuristic approach, the obtained controller was to be considered
as a suboptimal one. With regard to the objective function, it should be noted that the
ITAE was chosen because it had the ability to highlight the divergence error that occurred
when incorrect controller parameters were used and the flutter vibration started increasing
slowly. The mathematical expression of the fitness function is the following:

ITAE =
∫ Tw

t0

|e(t)|tdt (38)

where t0 is the instant of perturbation and Tw is the time window chosen for the computa-
tion of the function, being large enough to include the entire transient response, but not
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too much to affect the computational cost of the algorithm. In this study, it was imposed to
be t0 = 0 s and Tw = 1 s.

Each particle Pi at each iteration λ was defined in the algorithm by four coordinates
Pi

λ =
[

Ki
p τi

i τi
D τi

DF

]
λ

, and the minimization problem was expressed as follows:

minITAE
(

Pi
λ

)
s.t.

local stability

Kpmin ≤ Kp ≤ Kpmax

τimin ≤ τi ≤ τimax

τDmin ≤ τD ≤ τDmax

τDFmin ≤ τDF ≤ τDFmax

(39)

where the research space limits were chosen by a preliminary trial and error approach.
As the speed can vary, the 3DOF airfoil model is a parameter varying system, and

for this family of dynamic systems, the simplest method to obtain adaptive controllers is
the gain scheduling (GS) method. The GS method was implemented by defining a set of
controllers tuned for different working conditions of the system, which were identified
by an appropriate scheduling variable, in this case the airstream speed. However, each
controller guaranteed the desired performance only locally, and thus an interpolation of the
controller parameters had to be introduced [31]. The gain scheduling control architecture
used is shown in Figure 6.
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Figure 6. Gain scheduling control architecture.

In order to compute the scheduling table, the PDSO algorithm was used for different
velocity values, and the optimal PID controller for each one was found. A set of linear,
time-invariant sub-optimal controller parameters was obtained, and a linear interpolation
of the PID parameters was introduced to obtain a parameter-varying controller.

5. Numerical Results

In this section, the numerical results of the aeroelastic model and the FEM actuator
model are analyzed. First, the open-loop analysis of the 3DOF airfoil is carried out, and
then the validation of the FEM model of the actuator is done. Lastly, some critical case
studies for the closed-loop system are analyzed.

5.1. Open-Loop Analysis of the Aeroelastic System

The experimental model considered in this work was the one studied by Arde-
lean et al. [4] at Duke University, and its parameters are listed in Table 1. In order to
study the stability of the airfoil, the eigenvalue problem det(λI − A) = 0 was solved, and
the root locus, shown in Figure 7, was obtained, varying the airstream velocity. It can be
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seen that the system had three pairs of complex eigenvalues and a pair of real eigenvalues.
Instability was reached when the real part of one complex eigenvalues pair became positive
in value.

Table 1. 3DOF airfoil data.

Parameter Value Parameter Value Parameter Value

b (m) 0.18 a −0.5 c 0.5

xα 0.3211 xδ 0.0217 ρ (Kg/m3) 1.225

rα 0.6407 rδ 0.0818 γ 3

Kα (Nm/rad) 32.28 Kδ (Nm/rad) 13.06 Ky (N/m) 1055.12

ζ1 0.1 ζ2 0.05 ζ3 0.45

mtot () 2.61 mwing (Kg) 2.258 m f lap
(
Kg
)

0.352
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In order to determine the flutter speed, the damping ratio variation with the airstream
velocity was studied, obtaining the diagram shown in Figure 8, where it can be seen that
the damping ratio related to the unstable eigenvalue became negative in value for a speed
equal to v f lutter = 19 m

s while the flutter frequency was ω f lutter = 4.2 Hz. These results are
in accordance with the ones presented by Ardelean et al. [32].
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When the flutter speed was exceeded, the limit cycle oscillation (LCO) phenomenon
arose. Thus, the oscillations presented a growing amplitude with the velocity. In Figure 9,
the LCO amplitudes on α with the airstream velocity are shown.
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Figure 9. Limit cycle oscillation (LCO) amplitude variation with velocity. 

5.2. Actuator Validation 
The curves of the tip’s vertical displacement and blocked force versus the electric 

voltage obtained from Equation (25) were compared with the theoretical ones presented 
by Ardelean et al. [10]. This is shown in Figure 10, where it can be seen that the FEM and 
theoretical curves almost overlapped. In fact, errors of 0.15% for the stroke and 0.055% 
for the blocked force were obtained. The actuator’s data are listed in Table 2. 

 
(a) Stroke 

 
(b) Blocked force 

Figure 10. Actuator static behavior. 

0 50 100 150 200 250
Voltage [V]

0

0.2

0.4

0.6

0.8

1

1.2

St
ro

ke
 [m

m
]

FEM
Theoretical

0 50 100 150 200 250
Voltage [V]

0

100

200

300

400

500

600

Bl
oc

ke
d 

Fo
rc

e 
[N

]

FEM
Theoretical

Figure 9. Limit cycle oscillation (LCO) amplitude variation with velocity.

5.2. Actuator Validation

The curves of the tip’s vertical displacement and blocked force versus the electric
voltage obtained from Equation (25) were compared with the theoretical ones presented
by Ardelean et al. [10]. This is shown in Figure 10, where it can be seen that the FEM and
theoretical curves almost overlapped. In fact, errors of 0.15% for the stroke and 0.055% for
the blocked force were obtained. The actuator’s data are listed in Table 2.
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Table 2. Actuator FEM model data.

Data Value Data Value

L (mm) 80 Astack
(
mm2) 10× 10

R (mm) 110 Alever
(
mm2) 342.8

B (mm) 12 Atip (mm2) 194

b (mm) 5.5 A3−4
(
mm2) 100

Ilever (mm4) 608.5 Itip
(
mm4) 38

I3−4 (mm4) 3330 Estack (Pa) 4.5× 1010

Esteel (Pa) 2.1× 1011 d33 (m/V) 425× 10−12

ρstack (Kg/m3) 7700 d∗33 (1/V) 5.97× 10−6

ρsteel (Kg/m3) 7700

In order to validate the dynamic behavior of the actuator, the bode diagram of the
transfer function computed in Equation (35) was compared with the experimental frequency
response of the actuator presented by Ardelean et al. [10]. From Figure 11, it can be seen
that in the bandwidth region extending up to 200 Hz, the two curves overlapped, while
some differences appeared beyond the first natural frequency of the actuator. These
differences were due to the actuator’s parameters’ uncertainty and the difference between
the theorical and real values of the materials’ constants. However, it is worth noting that
such a discrepancy would not affect the closed-loop system, while the flutter frequency of
the airfoil fell in the bandwidth region. Therefore, the FEM model was acceptable for the
frequency range of interest.
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5.3. GS-fPID Controller Tuning

The minimization problem defined in Equation (39) was solved using the PDSO
algorithm. First of all, the research space limits were defined as 0.10 V

deg ≤ Kp ≤ 2E4 V
deg ,

1 s ≤ τi ≤ 1E4 s, 1E−4 s ≤ τD ≤ 1 s e 1E−4 s ≤ τDF ≤ 3 s. For a larger research space, a
higher number of particles was needed to achieve the convergence and the computational
cost of the procedure’s increases. The algorithm parameters were chosen as was done before
for the damping contribution in the FEM model of the actuator, and four optimizations
were done with different maximum numbers of particles Pmax =

[
5 10 20 50

]
in

order to study the convergence of the procedure. For each optimization, the algorithm
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was run 10 times, and the final values of the objective function were analyzed to compute
the minimum, maximum, median and standard deviation. These convergence indexes are
shown in Table 1, while in Figure 12, the ITAE trends for any initial swarm size are shown.
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From the results shown in Table 1, it can be seen that the minimum objective function
value was ITAEmin = 4.51E−5rad ∗ s, and it was already obtained for a maximum number
of particles Pmax = 20. The coordinates of the point of minimum were Kp = 7.8E3 V

deg ;

τi = 1E4 s; τD = 0.255 s; τDF = 1 s. The values of the time constants were the same for each
initial swarm size, so they are not reported in Table 3. It can be seen that, by increasing the
initial swarm size, the possibility to lock into local minima reduced (see Figure 12), and
the values of the convergence indexes reduced because of the higher research capability.
However, the CPU time increased, as expected.

Table 3. PDSO convergence results.

PDSO Pmax 5 10 20 50

ITAEmin 4.55× 10−5 4.53× 10−5 4.51× 10−5 4.51× 10−5

ITAEmax 6.39× 10−5 6.55× 10−5 4.57× 10−5 4.55× 10−5

Median(ITAE) 4.6× 10−5 4.56× 10−5 4.55× 10−5 4.52× 10−5

σITAE 5.7× 10−6 6.26× 10−6 2.24× 10−7 1.4× 10−7

Kp

[
V

deg

]
7860 7840 7800 7800

tCPU (s) 153 350 690 1350

In order to tune the gain scheduling adaptive controller, the PDSO algorithm was used
for each speed value of the vector v =

[
15 18 18.5 19.5 20 25 28

]
, obtaining the

scheduling table reported in Table 4. From the results reported in Table 4, it can be seen that
in the speed range higher than 19 m/s, τi assumed the research space upper limit value. It
has been noted that, by increasing the upper limit, τi tended to always assume its higher
value, while the other parameters remained unchanged. This behavior indicates that, in
such a range of velocities, the integral contribution to the controller was negligible when
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compared with the proportional and derivative ones. Thus, the heuristic tuning procedure
suggests that a PD scheme would be more suitable in such speed range. Moreover, looking
at Table 4, it can also be noted that τD and τDF reached, in some cases, the limiting values of
their research spaces. By carrying out numerical tests, it was noted that if a wider research
space was selected for τD and τDF, several pairs of τD and τDF values would give the
same minimum value of the objective function. This indicates a flat region of the objective
function with respect to these variables.

Table 4. Scheduling table.

Pmax = 20

v
(m

s
)

15 18 18.5 19.5 20 25 28

Kp

(
V

deg

)
6754.4 6789.3 6981.3 8028.5 3665.2 1459.1 1239.2

τi (s) 3981 7657 4036 10, 000 10, 000 10, 000 10, 000

τD (s) 1 1 1 0.121 0.121 1.26 0.0001

τDF (s) 2.14 2.3 2.3 1 1 1 3

Moreover, regarding the tendencies of the obtained scheduling values, it must be noted
that the heuristic approaches were useful because they allowed for finding good solutions
despite the complexity of the objective function. Moreover, they also allowed for finding a
good solution even when the shape of the objective function was not known. This was the
case when a performance index, such as the ITAE, was selected as an objective function. The
physical meaning of the performance index must, of course, be clear, but its behavior with
respect to both the tuning parameters (such as the PID gains in the present work) and the
system’s parameters (such the velocity) is generally unknown or hard to obtain analytically
(particularly when nonlinearities are also present). The metaheuristic algorithms allow for
treating such optimization problems in an easy way, but to know the reason why some
solutions are obtained using the metaheuristic optimization is hard, and this is what it takes.
The designer just has to ensure that the obtained solution is meaningful from physical and
technological points of view. In particular, one of the points to be addressed is the stability
of the controlled plant. In this work, by means of an engineering approach, it was verified
by carrying out numerical simulations of the nonlinear closed-loop system and looking for
PID parameter sets that ensure the local linearized plant stability (aware of the fact that
the local stability may not be straightforward in ensuring the stability of the time-varying
systems that can ask for ad hoc adaptive approaches).

Figure 13 shows the damping ratio and the natural frequencies of the closed-loop
system as a function of the advancing velocity. The modes associated with the structural
V-stack mechanism were omitted for the sake of clarity of the diagram. In particular, when
looking at the closed-loop modal damping ratio trend, it can be seen that a pair of conjugate
poles became unstable for velocities higher than 32 m

s . It is worth noting that to obtain the
modal characteristics shown in Figure 13, the closed-loop system was linearized. However,
when the actuator saturation was taken into account, the controller was no longer able
to stabilize the system for speed values higher than 28 m

s , as will be shown in the next
numerical studies. Thus, the flutter boundary of the closed loop system was 28 m

s .
In Figure 14, the pole map of the PID transfer function is shown. The PID transfer

function had two poles; one pole was always equal to zero, while the other changed with
the airstream velocity, according to the change of the PID parameters. In fact, starting from
a speed of 15 m

s , the normalized frequency of the real non-zero pole assumed a value of
ωn = 0.074 Hz, and when the open-loop flutter boundary was reached, it assumed the
value ωn = 0.159 Hz, which was maintained until a speed of 25 m

s . This stemmed from
the absence of poles that were too fast, allowing its implementation into a flight computer
which could have a sampling of 5 ms (see, for instance, Waitman and Marcos [20]).
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5.4. Closed-Loop Analysis

The PID parameters obtained from the optimization done in Section 5.3 were then
used to run a simulation of the closed-loop system at the flutter speed. The initial state
vector for the simulation was xT

0 =
[

0.05 0.025 0 0 0 0 0 0
]
, and the responses

shown in Figure 15 were obtained. It can be seen that the system was able to suppress
the flutter oscillations on α in less than 0.1 seconds without any overshoot, while for the
plunge displacement and the flap deflection, the maximum values were ymax = 0.0011 m
and δmax = 14.9◦, respectively.
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As in the first case study for the closed-loop system with a gain-scheduling adaptive
controller, a linear variation of the speed, starting from 15 m

s and with a 2 m
s2 slope, was

considered, and the responses shown in Figures 16 and 17 were obtained. It can be seen
that the initial perturbation was rapidly suppressed, as clearly shown in Figure 17, where
the time window was limited to one second of analysis. Then, at the time instant t = 2 s,
the flutter boundary of the open-loop system was reached. Thus, it started oscillating, with
increasing LCOs as the speed increased. On the other hand, the closed-loop system did
not show oscillations until the time instant t = 6.5 s, when flap-unstable oscillations arose,
suggesting that the closed-loop flutter boundary was exceeded. Looking at the velocity
diagram in Figure 16, the closed loop-flutter boundary is represented by the speed of 28 m

s ,
as previously stated. It can be said that the adaptive controller was able to stabilize the
system in the new flight envelope assigned.
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Figure 17. Magnification of the transient responses to the linear velocity variation.

Looking at Figure 8, it can be noted that the instability arose after an abrupt variation
of the damping ratio, starting from the velocity value v = 15 m

s . Thus, it was useful to
study the controller performance in such a critical speed range. The controller stress case
was chosen to be a speed ramp from 15 m

s to 28 m
s with different acceleration values, while

a constant disturbance on the flap deflection equal to 5◦ occurred. From the responses
shown in Figure 18, it can be seen that the transient response was almost equal for all
the accelerations studied, and the unstable oscillations that occurred after reaching the
closed-loop flutter boundary had the same amplitudes. Therefore, the controller reaction
was considered good for both the considered velocity variation and the disturbance.
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Figure 18. Controller stress case.

As in the last closed loop case study, a sinusoidal velocity variation within the range
v ∈

[
15 m

s 28 m
s
]

was imposed, while a random disturbance on the flap deflection
δd ∈

[
−5◦ 5◦

]
occurred. From the responses shown in Figure 19, it can be seen that the

controller was able to face up to the simultaneous variation of speed and the disturbances,
avoiding instability conditions and maintaining the state variable peaks at acceptable
values from a mechanical point of view. In fact, it can be seen that during the transient
response, the rotation of the airfoil assumed the maximum value αmax = −1.1◦, the flap
deflection was limited to δmax = 15◦, and the plunge displacement presented a pick equal
to ymax = −10−3m. In addition, all three responses were stabilized to the equilibrium point
in almost 0.7 seconds, presenting slight fluctuations due to the presence of the disturbance.
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6. Conclusions

In this paper, the numerical model of a three-degrees-of-freedom airfoil was studied
in order to predict the flutter boundary of the system. With the aim of taking into account
the piezoelectric V-stack actuator, a finite element model was introduced. The validation
of the static and dynamic behavior of the actuator with the experimental data given in
the literature was carried out. A heuristic swarm method named PDSO was employed
for the tuning of a gain-scheduling adaptive controller based on a filtered PID controller.
An increase of the flutter boundary of the system of about 47% was obtained. Lastly, in
order to study the performance of the closed-loop system, several simulations were carried
out, considering critical values of acceleration and speed and taking into account the
presence of disturbances. The actuator FEM model computed in this work can represent a
starting point for the study of the influence of materials and geometric configurations in
the V-stack actuator flutter suppression capability. Moreover, the airfoil flutter suppression
PDSO tuning approach presented in this work could be used, for instance, as a reference
approach for a less simple model or hardware in the loop control tuning of an aerodynamic
surface, using the local sensors’ output time histories to define the objective function to
be minimized.
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Appendix A

3DOF Airfoil Matrices

In accordance with Li et al. [27], the matrices of the 3DOF airfoil structural model
reported here.

For the nondimensional equations of motion from Equation (3), the following matrices
are defined:

Ms =

 r2
α r2

δ + (c− a)xδ xα

r2
δ + (c− a)xδ r2

δ xδ

xα xδ
mtot

m



Ks =

 r2
αω2

α 0 0

0 r2
δω2

δ 0

0 0 ω2
y


For the state space model in Equation (15), the following matrices are defined, where

the subscripts s and nc stand for structural and non-circulatory, respectively:

Mnc = −
ρ

m


πb2

(
1
8 + a2

)
−[T7 + (c− a)T1]b2 −πab2

2T13b2 − T3b2

π −T1b2

−πab2 −T1b2 πb2



Knc = −
ρ

m


0 (T4 + T10)v2 0

0 (T5−T4T10)v2

π 0

0 0 0
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Bnc = − ρ
m


π
(

1
2 − a

)
vb

[
T1 − T8 − (c− a)T4 +

T11
2

]
vb 0[

−2T9 − T1 + T4

(
a− 1

2

)]
vb − T4T11vb

2π 0

πvb −vT4b 0


RT =

[
2πρv(a+ 1

2 )
m − ρvT12

m − 2πρv
m

]
S1 =

[
v T10v

π 0
]

S2 =
[

b
(

1
2 − a

)
bT11
2π b

]
S3 =

[
c2c4(c1+c3)v

b (c1c2 + c3c4)v
]

Mt = Ms −Mnc

K′ = Ks − Knc − 1
2 RS1

B′ = Bs − Bnc − 1
2 RS2

D = RS3

E1 =

[
0 0 0
v
b

vT10
πb 0

]

E2 =

 0 0 0(
1
2 − a

)
T11
2π 1


E3 =

 0 1

−c2c4

(
v2

b

)
− (c2+c4)v

b


M =

 I 0 0

0 Mt 0

0 0 I


N =

 0 I 0

−K′ −B′ D

E1 E2 E3


Appendix B

Theodorsen Constants

The constants Ti that appear in the aerodynamic load expressions in Equations (7)–(9)
are reported here in accordance with NACA report n.496 [26]:

T1 = carccos(c)− 1
3
(
2 + c2)√1− c2

T2 = c
(
1− c2)− (1 + c2)√1− c2arccos(c) + c2arccos2(c)

T3 = 1
4 c
(
7 + 2c2)√1− c2arccos(c)−

(
1
8 + c2

)
arccos2(c)− 1

8
(
1− c2)(5c2 + 4

)
T4 = c

√
1− c2 − arccos(c)

T5 = 2c
√

1− c2 − arccos(c)− arccos2(c) + c2 − 1

T6 = T2

T7 = 1
8 c
(
2c2 + 7

)√
1− c2 −

(
1
8 + c2

)
arccos(c)

T8 = carccos(c)− 1
3
(
2c2 + 1

)√
1− c2

T9 = 1
2

[
1
3

√
(1− c2)

3 + aT4

]
T10 =

√
1− c2 + arccos(c)

T11 = (1− 2c)arccos(c) + (2− c)
√

1− c2

T12 = (2 + c)
√

1− c2 − (2c + 1)arccos(c)

T13 = − 1
2 [T7 + (c− a)T1]
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Appendix C

Population Decline Swarm Optimization: PDSO

The PDSO is a variant of particle swarm optimization (PSO). It is a stochastic opti-
mization procedure based on a social model for which a swarm of particles is defined, and
for each one, a set of variables is assigned. The aim of the algorithm is to find the values
of the parameters associated with the minimum point of the objective function [30]. At
the first iteration step, a set of coordinates inside the research space are defined, and a set
of random directional velocity values are assigned to each particle. Then, the objective
function is computed for each particle and it is assigned as an individual best value, while
the minimum objective function value among all the particles is searched for to define the
global minimum. At the end of the iteration, the new coordinates and velocities of the
particles are computed in order to make them follow the best solution. During successive
iterations, it is verified that the new coordinates fall in the research space defined, and the
individual and global best solutions are updated. The algorithm stops when a convergence
condition is achieved or when the maximum iterations Λ are reached. The flowchart of the
algorithm is shown in Figure A1.

The PDSO is a PSO algorithm, where the reduction of the number of particles is
considered during its evolution. In fact, a decline factor ζ < 1 is defined, and when a
certain number of iterations ∆ is reached, the population is reduced (P = ζPmax). While a
higher maximum number of particles is related to greater research capability and a lower
probability of the local minimum lock problem, it leads to a higher computational cost
of the procedure. A proper setting of parameters allows for a best compromise between
the initial global search capability and final faster exploitation ability of the swarm. A
reinitialization of some particle coordinates and velocities can be introduced together
with the population reduction. In this way, new trajectories of the particles are explored,
reducing the local minimum lock events.

The mathematical formulation of the algorithm is explained in the following. First of
all, a number n of parameters ξ is assigned to each particle.
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Pi
λ =

[
ξ1 ξ2 . . . ξn

]
(A1)

where λ = 1, 2, . . . , Λ is the actual iteration step. Thus, after the objective function is
computed for each particle, their positions are updated:

Pi
λ+1 = Pi

λ + vi
λ+1 (A2)

where vi
λ+1 is the updated velocity, defined as

vi
λ+1 = χ

[
µλvi

λ + ccr1

(
Pi

b − Pi
λ

)
+ csr2

(
PG

b − Pi
λ

)]
(A3)

where cc and cs are the cognitive and social acceleration coefficients, respectively; r1 and r2
are random coefficients inside the range

[
0 1

]
; and µλ is the inertia factor introduced to

balance the local and global searches, varying linearly with the iterations according to the
following relation:

µλ = µmax

(
1− λ

Λ

)
+ µmin

λ

Λ
(A4)

At last, χ is the constriction factor introduced to avoid the explosion of the swarm,
computed as

χ =
2∣∣∣2− φ−
√

φ2 − 4φ
(A5)

where φ = cc + cs > 4 is imposed in order to ensure the stability of the algorithm [33].
The population reduction model is defined as suggested by Orlando and Alaimo [30]:

Pλ =


Pmax seλ = 1

Pλζ se λ
∆ = λ

∆

Pλ−1 otherwise

(A6)

where the notation x stands for the integer part of x, such that x = −− x.
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