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Preface

In this thesis, a computational framework for microstructural modelling of
transverse behaviour of heterogeneous materials is presented. The context
of this research is part of the broad and active field of Computational Mi-
cromechanics, which has emerged as an effective tool both to understand the
influence of complex microstructure on the macro-mechanical response of en-
gineering materials and to tailor-design innovative materials for specific ap-
plications through a proper modification of their microstructure.

While the classical continuum approximation does not account for mi-
crostructural details within the material, computational micromechanics al-
lows detailed modelling of a heterogeneous material’s internal structural ar-
rangement by treating each constituent as a continuum. Such an approach
requires modelling a certain material microstructure by considering most of
the microstructure’s morphological features.

The most common numerical technique used in computational microme-
chanics analysis is the Finite Element Method (FEM). Its use has been driven
by the development of mesh generation programs, which lead to the quasi-
automatic discretisation of the artificial microstructure domain and the pos-
sibility of implementing appropriate constitutive equations for the different
phases and their interfaces. In FEM’s applications to computational microme-
chanics, the phase arrangements are discretised using continuum elements.
The mesh is created so that element boundaries and, wherever required, spe-
cial interface elements are located at all interfaces between material’s con-
stituents. This approach can be effective in modelling many microstructures,
and it is readily available in commercial codes. However, the need to accu-
rately resolve the kinematic and stress fields related to complex material be-
haviours may lead to very large models that may need prohibitive processing
time despite the increasing modern computers’ performance. When rather
complex microstructure’s morphologies are considered, the quasi-automatic
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discretisation process stated before might fail to generate high-quality meshes.
Time-consuming mesh regularisation techniques, both automatic and operator-
driven, may be needed to obtain accurate numeric results. Indeed, the prepa-
ration of high-quality meshes is today one of the steps requiring more atten-
tion, and time, from the analyst. In this respect, the development of computa-
tional techniques to deal with complex and evolving geometries and meshes
with accuracy, effectiveness, and robustness attracts relevant interest.

The computational framework presented in this thesis is based on the Vir-
tual Element Method (VEM), a recently developed numerical technique that
has proven to provide robust numerical results even with highly-distorted
mesh. These peculiar features have been exploited to analyse two-dimensional
representations of heterogeneous materials’ microstructures. Ad-hoc polyg-
onal multi-domain meshing strategies have been developed and tested to
exploit the discretisation freedom that VEM allows. To further simplify the
preprocessing stage of the analysis and reduce the total computational cost,
a novel hybrid formulation for analysing multi-domain problems has been
developed by combining the Virtual Element Method with the well-known
Boundary Element Method (BEM). The hybrid approach has been used to
study both composite material’s transverse behaviour in the presence of in-
clusions with complex geometries and damage and crack propagation in the
matrix phase. Numerical results are presented that demonstrate the potential
of the developed framework.
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Chapter 1

Introduction

Modern advanced structural components’ behaviour strongly relies on the tai-
lored behaviour of their constituent material. Since the properties of a mate-
rial at a certain scale depend on the features of and mutual interactions among
the material constituents at lower scales [136], an effective way to obtain a
desired macroscopically response is to enhance a base material’s properties
by altering its microstructure. Therefore, materials with highly complex mi-
crostructures are frequently developed for many modern engineering struc-
tures.

Concurrently, the design of structures for advanced engineering applica-
tions requires a full understanding of a component response to different oper-
ational and environmental conditions. Usually, the knowledge of their failure
mechanisms is of paramount importance. Component level phenomenologi-
cal models may not always predict complex materials behaviours, especially
if damage initiation and evolution are of concern. Today, it is widely recog-
nised that these aspects may be better understood if the material microstruc-
ture features are considered and brought into the modelling framework. The
link between microstructure and material macroscopic properties is techno-
logically interesting as it may provide valuable information for the design of
enhanced materials. The ability to understand, explain and predict macro-
scopic material properties from a suitable description of the micro-scale is of
relevant technological interest, especially in connection with the contempo-
rary availability of manufacturing technologies offering a tighter control on
the microstructure of the material.

In the ambitious paradigm known as materials-by-design, the much sought-
after capability of modelling materials ab initio, i.e. starting from the smallest
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2 Introduction

nano-scales, exploiting first principles, such as quantum mechanics, should
enable the design of materials with properties tailored to specific applications.

In the last few decades, remarkable developments in experimental mate-
rials characterisation have contributed to the development of the materials by
design paradigm [5], which aims at developing novel and sustainable materi-
als with desired optimal features by combining elementary constituents in a
bottom-up approach using a variety of production techniques.

A pillar of such a paradigm is provided by the capability of multi-scale
materials characterisation and modelling [167] that, by embodying deeper and
richer layers of information about the materials hierarchical organisation, of-
ten spanning several different scales, contribute to the understanding of com-
plex material/structural behaviours and to the design of novel high-performance
applications, with apparent technological benefits. In such a context, the pos-
sibility of modelling, with acceptable fidelity, the microstructure of a consid-
ered material, and the complex interactions between its building blocks, plays
a fundamental role. However, the inclusion of deeper layers of fidelity re-
quires the ability to robustly address several kinds of modelling complexities,
including those arising, for example, from the need to represent involved ma-
terial morphological details, which may also present statistical variability.

To reduce the costs of experimental characterisation techniques, predic-
tion of new material’s behaviour can be performed by numerical simulation,
with the primary goal being to accelerate trial and error experimental test-
ing [186]. The recent substantial increase in computational power available
for mathematical modelling and simulation raises the possibility that mod-
ern numerical methods can play a significant role in analysing heterogeneous
microstructures with enhanced efficiency.

1.1 Numerical methods in micromechanics

Computational micromechanics has emerged as a consistent framework sup-
porting the understanding of the link between the material microstructure
and its macroscopic properties, i.e. the structure-property relationship. The field
has enormously benefited from the rapid advancements of experimental tech-
niques for materials microscopic characterisation and reconstruction, able to
provide a wealth of useful processable information, and from the increased
affordability of high-performance computing (HPC), which provide the com-
plementary ability to combine and to process such information towards a bet-
ter understanding, prediction and manipulation raising the possibility that
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modern numerical methods can play a significant role in analysing heteroge-
neous microstructures with enhanced efficiency. In this respect, the develop-
ment of computational techniques to deal with complex and evolving geome-
tries and meshes with accuracy, effectiveness, and robustness attracts relevant
interest.

The Finite Element Method (FEM) is the most popular technique used in
computational micromechanics analysis and has been extensively used to in-
vestigate several kinds of materials, including polycrystalline [23, 72, 101, 154]
and composite materials [91, 130, 131]. Its extensive use has been driven
by the development of mesh generation programs, which lead to the quasi-
automatic discretisation of the artificial microstructure domain.

In FEM’s applications to computational micromechanics, the phase ar-
rangements are discretised using continuum elements and the mesh is created
so that element boundaries and, wherever required, special interface elements
are located at all interfaces between material’s constituents. This approach
can be effective in modelling many microgeometries, and it is available in
commercial codes.

FEM is also popular because of its capabilities in nonlinear analyses where
its flexibility and capability of supporting a wide range of constitutive de-
scriptions for the constituents and the interfaces between can be exploited
trough the possibility of implementing appropriate constitutive equations for
the different phases and their interfaces. Constitutive models for constituents
used in FEM-based micromechanics have included a wide range of elasto-
plastic, viscoelastic, viscoelastoplastic and continuum damage mechanics de-
scriptions as well as crystal plasticity models [127], and nonlocal models [25].
Besides, FEM has supported a range of modelling options for interfaces be-
tween phases.

However, the need to accurately resolve the kinematic and stress fields re-
lated to complex material behaviours with a conformal discretisation of the
domain that retains proper topological features may lead to very large mod-
els that may need prohibitive processing time despite the increasing modern
computers’ performance.

1.2 A key issue in computational micromechanics

One of the key aspects in the effective modelling of materials micromechanics
is the availability of a suitable representation of the material micromorphol-
ogy. This can be based either the computer reconstruction of real microstruc-
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tures or on the generation of artificial models embodying the relevant sta-
tistical features of the microstructural aggregate, which may exhibit involved
shapes. The potential presence of complex morphological features has a direct
effect on the complexity of the numerical grid, or mesh, used to discretise the
considered boundary value problem. Examples of actual complex morpholo-
gies for two types of composite materials are shown in Fig.(1.1) and Fig.(1.2).
The quality of the mesh, in turn, may have an important effect on the accuracy
of the numerical reconstruction of the mechanical fields.

Figure 1.1: Cross section micrograph of a UD AS4/8552 composite [88].

When rather complex microstructure’s morphologies are considered, the
quasi-automatic discretisation process described before might fail to generate
high-quality meshes. Time-consuming mesh regularisation techniques, both
automatic and operator-driven, may be needed to obtain accurate numeric
results. Indeed, the preparation of high-quality meshes is today one of the
steps requiring more attention, and time, from the analyst [149, 150].

Besides FEM, many numerical techniques have been employed for con-
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Figure 1.2: Microstructure of a A359/SiCp metal–matrix composite (MMC)
[66].

tinuum micromechanical studies of discrete microstructures, including Finite
Difference (FD) [2] and Finite Volume algorithms [22, 147] and spring lat-
tice models [141]. FEM derived techniques such the extended finite element
method (X-FEM) [164, 163] and the scaled boundary finite element method
(SBFEM)[38] have also been employed. Other popular numerical approaches
rely on the use of meshfree methods [67, 176] and the Boundary Element
Method. The latter has been extensively used for micromechanical studies on
composite materials [1, 69, 113, 114] and polycrystalline materials [79, 84, 49,
47] because it allows reducing the problem dimensionality as a direct conse-
quence of the underlying integral formulation, with the consequent reduction
in the number of degrees of freedom required in the analysis simplification
and such a feature may result particularly appealing when materials mor-
phologies with high statistical variability have to be automatically generated,
meshed and analysed [46].
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Given the considerations outlined above, the development of computa-
tional techniques capable of dealing with complex and evolving geometries
and meshes with accuracy, effectiveness, efficiency, and robustness is still of
relevant interest.

The computational framework presented in this thesis is based on the Vir-
tual Element Method (VEM), a recently developed numerical technique which
has already proven to provide robust numerical results even with highly-
distorted mesh.

In this thesis, attention is focused on continuum micromechanics, i.e. on the
study of materials whose basic building blocks, e.g. individual crystals, fibres
or matrix, can be modelled resorting to the continuum idealisation. In par-
ticular, the research focus is on polycrystalline materials and fibre-reinforced
composites that are two classes of materials widely employed in engineer-
ing applications. In polycrystalline materials, the availability of information
about the grains’ mechanical properties and their inter-granular interfaces,
their crystallographic orientation and size distribution can be conveniently
exploited to predict the aggregate’s properties and suggest potential manufac-
turing pathways for material optimisation [48]. Analogously, the knowledge
of the properties of carbon fibres, epoxy matrix and the characterisation of the
fibre-matrix interface can be used to investigate the effectiveness of different
fibre arrangements on composite laminates’ structural performances [85, 129].
Both materials present morphologies that may become challenging to model
given the microstructure’s representation’s complex shapes.

The hypothesis that VEM’s peculiar features could be exploited to analyse
two-dimensional representations of heterogeneous materials’ microstructures
efficiently forms the basis of this research work. To further simplify the pre-
processing stage of the analysis and reduce the total computational cost, a
novel hybrid formulation for analysing multi-domain problems is developed
and employed by combining the Virtual Element Method with the Boundary
Element Method. The hybrid approach will be used to study both composite
material’s transverse behaviour in the presence of inclusions with complex
geometries and damage and crack propagation in the matrix phase.

1.3 Content of the thesis

The following Chapters of this thesis are organised as follows.
Chapter (2) introduces the main features of the Virtual Element Method

(VEM). VEM’s lowest-order formulation in the context of two-dimensional
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linear elasticity is reviewed, setting the framework of this thesis’s ensuing
developments. Insights of the in-house developed code are given while dis-
cussing some specific implementation aspects of the VEM formulation previ-
ously introduced.

Chapter (3) presents an application of the Virtual Element Method for
computational homogenisation of composite and heterogeneous materials.
The reported applications are focused on modelling the transverse mechani-
cal behaviour of polycrystalline and unidirectional fibre-reinforced composite
materials exploiting VEM’s flexibility in the analysis of randomly generated
and meshed microstructures.

In Chapter (4), a novel two-dimensional hybrid virtual-boundary element
formulation is presented. Numerical tests are performed to assess its accuracy
using a representative test case. The application of such a novel formulation
to the computational homogenisation problem of a composite material with
randomly distributed inclusions of complex shape is also reported.

Chapter (5) is meant to introduce further applications of the hybrid VEM-
BEM formulation for modelling damage phenomena in composite materials.

Eventually, the last Chapter summarises and discusses the research work
outcome, providing suggestions for future work on the topic.
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Chapter 2

The Virtual Element Method

The present Chapter is intended to introduce the displacement-based lowest-
order VEM formulation for two-dimensional linear elasticity problems, set-
ting the framework of this thesis’s ensuing developments. Section 2.1 is de-
voted to introduce the core idea of the method and its peculiar features. A
selected list of references is also provided to the interested reader that com-
prise both the method’s fundamentals and its most prominent scientific ap-
plication to date. Section 2.2 recalls both the strong and weak form of the
governing equations for two-dimensional linear elasticity. Section 2.3 recalls
the lowest-order displacement-based VEM formulation for two-dimensional
linear elasticity problems and details the construction of all the VEM approxi-
mation scheme components. Section 2.4 introduces VESTA, the virtual element
program that has been developed and used to perform all the analysis of the
present thesis. In Section 2.5 some aspects of the implementation of the VEM
formulation are discussed. Eventually, Section 2.6 presents a numerical ex-
ample used to assess VEM’s accuracy in reproducing an exact linear solution
even with heavily distorted mesh.

2.1 Introduction

The Virtual Element Method (VEM) [31] is a numerical technique used to find
approximate solutions to problems described by partial differential equations.
VEM can be considered as a generalisation of the Finite Element Method
(FEM), a powerful and well established numerical technique that is used in
a large number of engineering applications.

9



10 The Virtual Element Method

FEM’s common approach involves discretising a continuous domain into
a set of discrete sub-domains that is usually referred to as a mesh. In the case of
two and three-dimensional domains, the mesh is usually constructed with tri-
angular or tetrahedral and quadrilateral or hexahedral elements while the use
of general polygonal and polyhedral meshes is rather uncommon in indus-
trial applications. Nevertheless, there are some advantages in using polygo-
nal/polyhedral meshes over the simpler ones, the most important of which
are a significant simplification of the partitioning of the domain even for very
complex geometries and a reduction of the complexity of adaptive mesh re-
finement and coarsening algorithms as no special treatment of hanging nodes
are required to maintain the conformity of the mesh.

While the use of polygonal and polyhedral meshes for the approximate so-
lution of boundary value problems is well established in the literature [165] it
turns out that extending FEM to general polygonal/polyhedral meshes leads
to very complex and computationally expensive schemes. This is because the
construction of the basis functions on elements with a very general shape is a
non-trivial and complex task [36].

VEM most appealing feature is its capability to use polytopal mesh (poly-
gons in two dimensions or polyhedra in three dimensions). An example of a
VEM two-dimensional polygonal discretisation is shown in Fig.(2.2). Despite,
its rather recent introduction, VEM has already proven to be able to provide
accurate results in several class of engineering problems even in the presence
of severe mesh distortions. At the same time, as will be shown later in this
Chapter, VEM allows treating irregularly shaped elements with relative sim-
plicity and efficiency.

The possibility of using meshes with elements of arbitrary shape is cer-
tainly one of the most evident features of VEM. This features allows VEM to
manage meshes which in the standard FEM are considered non-conformal.
An example of non-conformal mesh is shown in Fig.(2.1). These meshes are
often generated during adaptive refining and may include the presence of so-
called hanging-nodes (red nodes in the figure). VEM straightforwardly treats
hanging nodes introduced by the refinement of a neighbouring element as
new element nodes since the VEM formulation admits adjacent co-planar el-
ement interfaces. The adaptive process results, in fact, in a VEM-conforming
mesh. A mesh adaptivity process could also involve a coarsening process, fre-
quent in the numerical solution of evolution PDEs where it is standard prac-
tice to efficiently track evolving fronts and singularities. Adaptive coarsening
could be interpreted as the opposite process of mesh refining and could be
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exemplified by reading Fig.(2.1) from right to left. In such a context, VEM
allows a rather straightforward and inexpensive implementation as node re-
moval does not necessitate any further local mesh modification. In general,
VEM’s mesh flexibility may have the potential to provide complexity reduc-
tion with respect to standard FEM.

Figure 2.1: Example of an adaptive mesh refinement process that involve the
generation of hanging nodes (marked in red).

The VEM has been first introduced as an evolution of the Mimetic Fi-
nite Difference (MFD) method [57, 111], inheriting the capability of obtain-
ing robust approximate solutions of boundary value problems even on un-
structured meshes whose elements may have very general geometries. By
exploiting the aforementioned intrinsic capabilities, the VEM has been suc-
cessfully applied to general linear elasticity [34, 76, 13], inelastic materials at
small strains [37, 14], hyper-elastic materials at finite strains [178, 62], contact
mechanics [179], topology optimization [75, 11], magneto-static problems [32,
33], geomechanical simulations of reservoir models [9], damage and fracture
analysis [68, 6, 52, 138, 93, 17] and plate bending problems [58, 182, 183, 133,
30]. The possibility of using virtual elements of general shape, also highly dis-
torted, makes VEM particularly interesting for applications where the meshed
domain may undergo large deformations [174].

Another interesting application of VEM is to micromechanics problems
where the occurrence of problematic morphological features, likely sources
of mesh irregularities, may not be a priori excluded: a typical example is
provided by problems of statistical homogenisation, where a relevant num-
ber of random unit cells is generated and analysed with the aim of inferring
the emerging material properties through volume averaging techniques. The
application of VEM to micromechanics problems are rather recent [12, 16,
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177, 124] and represent the core research work reported in the present thesis
[116, 117, 118].

Figure 2.2: An example of a two-dimensional polygonal discretization of a
rectangular plate with a circular hole.

2.2 Governing equations for 2D linear elasticity

2.2.1 Strong form

Let continuous body occupying Ω ∈ R2 a two-dimensional region bounded
by the curve Γ ≡ ∂Ω in a reference system (x, y).
The strong formulation of the small strains elastic problem is based on the use
of the strain-displacement equations

ε ij(u) =
1
2
(
ui,j + uj,i

)
, (2.1)

of the linear elastic constitutive laws

σij = Cijkl εkl , (2.2)

and of the indefinite equilibrium equations

σij,j + fi = 0, (2.3)
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where u =
{

ux, uy
}⊺ represents the displacement vector field, ε ij are the com-

ponents of the strain tensor, σij are the components of the stress tensor, Cijkl
are the stiffness tensor components and fi are the components of volume dis-
tributes loads. Eventually, suitable boundary conditions are enforced on the
boundary Γ of the the considered body, so that

∀i = 1, 2

{
ui = ūi on Γui

ti = t̄i on Γti

(2.4)

and Γui ∩ Γtj ≡ ∅ if i = j and Γui ∪ Γti ≡ Γ for i = x, y.
It may sometimes be convenient, for the sake of expressivity and compact-

ness, to employ the Voigt notation and express the above sets of equations in
matrix form, so that the strain and stress tensor are expressed as the vectors

ε = {ε1 = εxx, ε2 = εyy, ε6 = 2εxy}⊺, (2.5)

σ = {σ1 = σxx, σ2 = σyy, σ6 = σxy}⊺, (2.6)

and the strain-displacements relationships, the constitutive equations and the
equilibrium equations read respectively

ε = Du, (2.7)

σ = Cε, (2.8)

D⊺σ + f = 0, (2.9)

with the associated boundary conditions{
u = ū on Γu

t = D⊺
n σ = t̄ on Γt

(2.10)

where

D =

∂x 0
0 ∂y
∂y ∂x

 , (2.11)

denotes the small-strains linear differential matrix operator, ∂x = ∂(·)/∂x and
∂y = ∂(·)/∂y, and

Dn =

nx 0
0 ny
ny nx

 , (2.12)

is the matrix operator built with the components nx and ny of the boundary
unit normal n.
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2.2.2 Weak form

The weak form for the boundary value problem is provided by the principle
of virtual displacements, which states that the solution field is given by the dis-
placements u(x) ∈ V satisfying the equality∫

Ω
ε(v)⊺C ε(u) dΩ =

∫
Ω

v⊺ f dΩ ∀v(x) ∈ V , (2.13)

where V :=
[
H1

0(Ω)
]2 is the space of kinematically admissible displacements

and H1
0(Ω) denotes the first order Sobolev space on Ω, consisting of func-

tions vanishing on Γ and square integrable over Ω together with their first
order derivatives. With the sole aim of simplifying the formal introduction of
the method, in Eq.(2.13) it has been assumed that the displacements u vanish
along the boundary Γ of the analysed domain. As it will be recalled later in
this Section, this assumption does not affect the generality of the formulation:
indeed, due to the choice of the element-wise virtual space of admissible dis-
placements, see Section 2.3.2, either non-homogeneous Dirichlet or Neumann
boundary conditions can be implemented following the same procedure as in
the standard finite element method [13].

Defining integral operators

L (u, v) :=
∫

Ω
ε(v)⊺C ε(u) dΩ, (2.14)

which identifies the virtual strain energy symmetric bilinear form and

G (v) :=
∫

Ω
v⊺ f dΩ, (2.15)

which identifies the loads’ virtual work linear functional, Eq.(2.13) can be
written in the compact form

L (u, v) = G (v) ∀v ∈ V , (2.16)

useful in subsequent developments.

2.3 VEM formulation

The VEM core idea is rooted in the assumption that the trial and test functions
over each mesh element belong to a space containing all the polynomials up
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to a certain previously selected order k plus other additional functions that,
in general, are not polynomials and are solutions, within the element, of a
suitably defined boundary value problem. Such additional functions are ex-
plicitly known only over the element edges while, within each element, they
are not explicitly known and never computed, which justifies the adjective
virtual referred to the method. The implicit definition of virtual functions
does not allow the computation of their values or their gradients’ values in
any element interior point. VEM resorts to a projection operator to obtain an
approximate polynomial expression of the strains associated with the virtual
functions, thus obtaining a computable approximation of the internal virtual
work. Through a particular choice of the element degrees of freedom, such
projection is exactly computed as a function of the degrees of freedom them-
selves, without actually solving the local boundary value problem. In the
particular case of the VEM lowest-order formulation, as it will be shown later
in this Chapter, the aforementioned VEM approach results in a computational
cost that, in terms of generation of the problem’s system of equations, is faster
than FEM’s standard quadrilateral isoparametric elements and it is compara-
ble to FEM’s simplicial elements.

2.3.1 Domain partition and discrete weak form

This Section introduces the discrete form of the problem and the notations
used throughout this thesis when referring to a generic polygonal virtual el-
ement. As in standard FEM procedures, the weak form in Eq.(2.16) is em-
ployed to build an approximate solution to the elastic boundary-value prob-
lem. For this purpose, the domain Ω is sub-divided into a set Ωh of finite non-
overlapping elements E ∈ Ωh, mutually interconnected at the nodal points
lying on their edges. The superscript h refers to the association to a discretiza-
tion of the domain Ω, which is parametrized by a characteristic length scale
h.

Once the discretisation Ωh is identified, a function space V h ⊂ V consti-
tuting a finite-dimensional approximation of V can be associated to it. The
Galerkin approximation of the problem is provided by uh ∈ V h such that

L (uh, vh) = G (vh) ∀vh ∈ V h, (2.17)

where the integral operators can be split into elemental contributions LE(·, ·)
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and GE(·) as

L (uh, vh) = ∑
E∈Ωh

LE(uh, vh) = ∑
E∈Ωh

∫
E

ε(vh)⊺C ε(uh) dE, (2.18)

and
G (vh) = ∑

E∈Ωh

GE(vh) = ∑
E∈Ωh

∫
E

vh ⊺ f dE. (2.19)

An admissible VEM discretization of a two-dimensional domain is allowed
to comprise polygonal elements with very general shapes: in particular poly-
gons with an arbitrary number of edges are allowed and even the requirement of con-
vexity may be waived. Moreover, two consecutive edges of an element are al-
lowed to form a straight angle.

In the following, for a generic element E, |E| will denote the area of the el-
ement, hE its diameter, ∂E the element boundary and nE =

[
nx ny

]T the unit
normal vector to ∂E. The counter-clockwise ordered vertices vi, i = 1, 2..., m,
have coordinates xi = {xi, yi} and their local scaled coordinates are defined by

ξi =
xi − xE

hE
, ηi =

yi − yE

hE
. (2.20)

The symbol ei, i = 1, 2..., m will refer to the edge having vi as its first vertex,
see Fig.(2.3).

2.3.2 Virtual space and degrees of freedom

This Section introduces the local and global space for the vector valued test
VEM functions and the associated degrees of freedom for the general VEM
formulation of order k. The local discrete virtual space of order k of the admis-
sible displacements is defined for the generic element E as [34]

V h(E) := {vh ∈
[

H1(E)
]2

: ∆vh ∈ [Pk−2(E)]2 , vh
|e ∈ [Pk(e)]

2 ∀e ∈ ∂E} (2.21)

Expression (2.21) uses the following notations:

• H1(E) is the first order Sobolev space;

• ∆ denotes the component-wise Laplace operator;

• k ∈ N is the degree of accuracy of the method;
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Figure 2.3: Example of a generic VEM element.

• [Pk(•)]2 denotes the space of vector polynomials of degree up to k de-
fined on (•), with the convention that P−1 = {0}.

The definition (2.21) states that a function vh ∈ V h(E) has the following prop-
erties:

• vh is a vector valued continuous functions on E;

• vh is a vector polynomial of degree ≤ k on each edge e of E;

• ∆vh is a vector polynomial of degree k − 2 in E when k > 1 and it is
equal to zero when k = 1.

According to the definition in Eq.(2.21), the local space contains all polyno-
mials of degree up to k plus other functions that are well defined but are not
explicitly known inside the element but only on the element boundary. The
name virtual for the space V h(E) comes from the fact that, differently from
standard FE method, the above definition of the local displacement approxi-
mation is not fully explicit.

The global virtual element space can be defined based on the local space as

V h := {v ∈ V : vh
|E ∈ V h(E) ∀E ∈ Ωh}. (2.22)
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Any function vh ∈ V h is univocally defined by the following set of degrees
of freedom

• the values of vh at the m vertexes of the polygon E;

• for k ≥ 2, the values of vh at k − 1 internal points on every edge e ∈ ∂E,
this points can be chosen according to the Gauss-Lobatto quadrature
rule with k + 1 points.

• for k ≥ 2, the moments 1
|E|
∫

E p · vhdE ∀p ∈ [Pk−2(E)]2.

In the lowest-order VEM formulation (k = 1), V h(E) is a space of harmonic
vector valued functions that are piecewise linear (edge by edge) and continu-
ous on the boundary of the element and the associated degrees of freedom are
the the values of vh at the m vertexes of the polygon E and, since vh ∈ V h(E)
is linear on each edge, the value of vh at every point along the boundary ∂E
can be determined.

2.3.3 Projection operator

This Section introduces the definition and describe the computational imple-
mentation of the projection operator that plays a fundamental role in the Vir-
tual Element Method.

In the previous section it has been shown that the functions of the local
virtual space V h(E) are not explicitly known inside the generic element E.
Consequently, the local discrete bilinear form LE(·, ·) cannot be computed by
standard numerical integration, as usually done in FEM.

For this purpose, the virtual element approximation employs a polyno-
mial projector operator Π, defined on E, ∀vh ∈ V h(E) by the orthogonality
condition ∫

E
p⊺
[
Π(vh)− ε(vh)

]
dE = 0 ∀p ∈ [P0(E)]3 , (2.23)

which identifies Π(vh) as a polynomial approximation of the strains field asso-
ciated to the unknown displacements vh, so that the error with respect to the
approximated strain field ε(vh) has no components along the space of poly-
nomial of order k − 1 over E. Having p constant components when k = 1,
Eq.(2.23) simplifies to

Π(vh) =
1
|E|

∫
E

ε(vh) dE. (2.24)



2.3 VEM formulation 19

In the following Section it will be shown how to compute the right-hand side
of Eq.(2.24).

Projector operator matrix

To be effectively employed, the projector operator must be computed in a
discrete form. To do so, each function vh ∈ Vh(E), whose explicit expression
is unknown, can be thought as

vh = N ṽ, (2.25)

where
ṽ =

[
ṽx1 ṽy1 . . . . . . ṽxm ṽym

]⊺ , (2.26)

collects the point-wise values of vh associated with the element vertices. The
matrix N ∈ R2×2m collects the virtual shape functions Ni, associated with each
vertex i of the element E. It has the following structure

N =

[
N1 0 N2 0 . . . . . . Nm 0
0 N1 0 N2 . . . . . . 0 Nm

]
, (2.27)

which remarks its analogy to the shape function matrix operator of a stan-
dard displacement-based finite element formulation. It’s worth noting that
the functional entries of the matrix N are never analytically known at the in-
terior points of the generic element; only their restriction to the element edges
is explicitly known, due to the features of the space V h(E) defined in Section
2.3.2. Moreover, each virtual shape function Ni associated to a vertex vi is en-
dowed with the usual Kronecker delta property of having value 1 at vertex
vi and 0 at any other vertex. Here, along the lines of Ref.[13], the expression
in Eq.(2.25) is introduced to allow a formal presentation of the method more
suited to readers with an engineering background, thus familiar with the con-
cept of shape functions.

Employing Eq.(2.25) in Eq.(2.24), and considering the strain-displacement
relationship in Eq.(2.7), yields

Π(vh) =
1
|E|

∫
E

D (Nṽ) dE =
1
|E|

(∫
∂E

Dn · N d∂E
)

ṽ = Π ṽ, (2.28)

where the boundary integral appearing in the third term has been obtained
applying the Green’s theorem to the domain integral and the operator Dn has
been defined in Eq.(2.12).
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Eq.(2.28) defines the discrete projector operator Π ∈ R3×2m as

Π =
1
|E|

∫
∂E

Dn · N d∂E =
1
|E|

m

∑
k=1

∫
ek

Dn · N ds, (2.29)

From Eq.(2.29), it follows that the discrete projector operator has the following
explicit matrix form

Π =

π1x 0 π2x 0 . . . . . . πmx 0
0 π1y 0 π2y . . . . . . 0 πmy

π1y π1x π2y π2x . . . . . . πmy πmx

 , (2.30)

where the generic coefficient πix can be expressed as

πix =
1
|E|

m

∑
i=1

ni
x

∫
ei

Nids. (2.31)

A similar expression can be used for the generic coefficient πiy

πiy =
1
|E|

m

∑
i=1

ni
y

∫
ei

Nids, (2.32)

ni
x and ni

y are the components of the unit outward normal vector to the edge ei.
Recalling the Kronecker delta property of the virtual shape functions, accord-
ing to which the integral of the generic virtual shape function Ni is not null
only on the edges adjacent to vertex i, the sum of the edge integrals appear-
ing in Eqs.(2.31) and (2.32) can be further simplified leading to the following
expressions for the coefficients of the projection operator matrix Π

πix =
1
|E|

[
ni−1

x

∫
ei−1

Nids + ni
x

∫
ei

Nids
]

=
1

2|E|

[
ni−1

x |ei−1|+ ni
x|ei|

]
,

(2.33)

πiy =
1
|E|

[
ni−1

y

∫
ei−1

Nids + ni
y

∫
ei

Nids
]

=
1

2|E|

[
ni−1

y |ei−1|+ ni
y|ei|

]
,

(2.34)

where |ei| is the length of the i-th edge. It’s worth highlighting that Eqs.(2.33)
and (2.34) allow the explicit computation of the discrete projector operator Π

directly from geometric considerations.
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2.3.4 Virtual element stiffness matrix

The construction of the virtual element approximation of the local symmetric
bilinear form LE(·, ·) appearing in Eq.(2.18) is based on the following local
decomposition [31]

L h
E

(
uh, vh

)
=
∫

E
Π(vh)⊺C Π(uh) dE + sE

(
uh, vh

)
, (2.35)

defined ∀E ∈ Ωh and ∀ uh, vh ∈ V h(E). Eq.(2.35) is the sum of two terms,
respectively related to the consistency and stability property of the method and
in Ref.[31, 34]) it has been demonstrated that such decomposition guarantees
the convergence of the virtual element method.

The first term on the right-hand side of Eq.(2.35) is the bilinear form as-
sociated to the linear displacements and constant strain modes that ensures
consistency. The approximation L h

E (·, ·) is said to be linear consistent if the
exact bilinear form LE (·, ·) is recovered when the first entry is a linear poly-
nomial [37]

L h
E

(
p, vh

)
= LE

(
p, vh

)
∀p ∈ [P1(E)]2 , ∀vh ∈ V h(E), (2.36)

In other words, if the solution of the original problem is globally a linear poly-
nomial, then the discrete solution and the exact solution coincide. Thus, the
consistency matrix ensures that a virtual element is capable of exactly repre-
senting a constant strain state (linear displacement field), passing the linear
patch test [26].

The consistency term uses the local projector defined in Eq.(2.24) and leads
to the definition of the element consistency stiffness matrix Kc

E ∈ R2m×2m. In
fact, using Eq.(2.28), such a term can be approximated as∫

E
Π(vh)⊺C Π(uh) dE = ṽ⊺

(∫
E

Π⊺ C Π dE
)

ũ = ṽ⊺ Kc
E ũ, (2.37)

which, being the integrand constant over E, readily gives the consistency stiff-
ness matrix

Kc
E = |E|Π⊺C Π. (2.38)

The second term on the right-hand side of Eq.(2.35) is the bilinear form as-
sociated to the non-polynomial terms or higher-order terms and leads to the
definition of the element stability stiffness matrix Ks

E ∈ R2m×2m. The stabil-
ity term is necessary for the virtual element approximation scheme since the
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consistency term alone cannot suppress the development of hourglass modes,
nonphysical, zero-energy modes of deformation that produce zero strain and
no stress and usually develop in under-integrated finite elements [40].

An algebraic interpretation of the hourglass modes’ appearing may be
given by considering the structure of the consistency stiffness matrix Kc. For
a generic virtual element with m vertices, a system of 2m equations has to be
solved for the 2m unknowns given by the vertex values of the displacement
components. By using the constitutive equations once per element, 3 inde-
pendent relations can be supplemented. Thus, the stiffness matrix has 2m − 3
equations that are not independent. By fixing the 3 zero-energy modes corre-
sponding to the 3 rigid body modes (two translations and one rotation), other
3 independent relations can be supplemented leaving with 2m − 6 equations
that are not independent. When the considered polygonal virtual element is a
triangle, the total number of equations is 2m = 6, the consistency matrix has
proper rank and no hourglass instability can arise. However, when consider-
ing polygonal virtual elements with 4 or more vertices, 2m = 6 zero-energy
modes can develop, thus requiring a stabilization term that ensures proper
rank of the virtual element stiffness matrix.

Within VEM’s literature, there exist different approaches to construct the
stability term. Whatever the approach adopted, the stability term must correct
the consistency term in such a way that (a) the resulting bilinear form is stable,
(b) consistency is not affected, (c) the correction is computable using only the
degrees of freedom.

In this thesis, the approach introduced in Ref.[34] has been used. The
approximated constant strain field computed trough the projector operator
matrix using Eq.(2.28) is not compatible with the boundary piece-wise linear
approximation of the virtual displacement field unless the number of element
vertices m is equal to 3. In fact, such a displacement field could generate de-
formation modes of a higher order than the constant ones. Those modes are
neglected by the consistent term of the virtual approximation of the bilinear
form. However, the approximate strain field Π(vh) obtained from the projec-
tion operation is compatible with a linear displacement field uc that can be
expressed as

uc = P (ξ, η) a, (2.39)

where

P (ξ, η) =

[
1 0 ξ 0 η 0
0 1 0 ξ 0 η

]
, (2.40)
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is a matrix of polynomial basis functions, ξ and η are the local scaled coordi-
nates defined in Eq.(2.20) and

a =
[
a1 a2 a3 a4 a5 a6

]⊺ , (2.41)

is a vector of constant coefficients. The compatible displacements uc can be
evaluated at the i-th vertex of a generic virtual element E as

uc
i = P (ξi, ηi) a, (2.42)

The components of the compatible displacements at all the element vertices
can be collected in the vector

ũc = D a. (2.43)

where D ∈ R2m×6 is the matrix obtained assembling the matrices P (ξi, ηi) and
whose explicit expression is

D =


1 0 ξ1 0 η1 0
0 1 0 ξ1 0 η1
...

...
...

...
...

...
1 0 ξm 0 ηm 0
0 1 0 ξm 0 ηm

 . (2.44)

The unknown coefficients a can be estimated by solving, in the least squares
sense,

min
a

{||ũ − Da||}, (2.45)

where the objective function

||ũ − Da|| = (ũ − Da)⊺ (ũ − Da) , (2.46)

represents the Euclidean distance between the vectors ũ and ũc. The mini-
mization problem stated in Eq.(2.45) is equivalent to the linear system

D⊺Da = D⊺ũ, (2.47)

whose solution, gives
a = (D⊺D)−1 D⊺ũ. (2.48)

Substituting Eq.(2.48) in Eq.(2.43) it is possible to obtain an approximation of
the nodal values of the compatible displacements in terms of the nodal values
of the virtual displacements

ũc = Πsũ, (2.49)
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where Πs ∈ R2m×2m is the matrix projector operator

Πs = D (D⊺D)−1 D⊺. (2.50)

To reintroduce the amount of the deformation energy neglected by the
consistency term, the energy associated to the displacement difference ũ − ũc

is taken in account by defining the following expression of the stabilization
term

sE(uh, vh) = [ṽ − ũc]⊺ µ [ũ − ũc]

= [ṽ − Πsṽ]⊺ µ [ũ − Πsũ]
= [(I − Πs) ṽ]⊺ µ [(I − Πs) ũ]
= ṽ⊺ (I − Πs)⊺ µ (I − Πs) ũ
= ṽ⊺ Ks

E ũ,

(2.51)

where I ∈ R2m×2m is the identity matrix, and

Ks
E = (I − Πs)⊺ µ (I − Πs) , (2.52)

is the virtual element stabilization matrix Ks
E ∈ R2m×2m. The constant param-

eter µ is used to ensure the correct scaling of the stability term with respect
to the element size and material constants. For linear elasticity problems, fol-
lowing Ref.[34], this parameter can be expressed as

µ = τ tr (Kc
E) , (2.53)

where tr (Kc
E) is the trace of the consistency matrix Kc

E and the factor τ > 0
can be selected as τ = 1 or τ = 0.5 [13]. However, other choices can be found
in the literature [77].

Eventually, the stiffness matrix KE for a generic virtual element E can be
computed as the sum of the consistency and stability matrices

KE = Kc
E + Ks

E. (2.54)

It is also worth noting that if the generic virtual element is a triangle, the
approximated constant strain field computed trough the projector operator
matrix is compatible with the boundary piece-wise linear approximation of
the displacement field, the difference between the displacement vectors ũc

and ũ is null and so is the virtual element stabilization matrix Ks
E.
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2.3.5 Loading vectors

For the lowest-order VEM, following Ref.[31] the local contribution GE(·) to
the virtual work of the volume load f appearing at the right-hand side of
Eq.(2.17), if existing, can be approximated as

GE(vh) ≈ G h
E (v

h) =
∫

E
v̄h · f h dE, (2.55)

where

v̄h =
1
m

m

∑
i=1

vh(x̃i) =
1
m

m

∑
i=1

N(x̃i)ṽ, (2.56)

denotes the average value of vh at the vertices of E and

f h = Π0 ( f ) :=
1
|E|

∫
E

f dE, (2.57)

is the L2(E) projection onto constants of the load f .
The virtual work of distributed tractions t̄, acting along a part of the el-

ement boundary denoted with ∂Et of the generic virtual element E can be
expressed as

TE(vh) =
∫

∂Et

vh · t̄ ds =
m

∑
i=1

∫
ei∈∂Et

vh · t̄ ds. (2.58)

Analogously to standard FEM, the knowledge of the explicit expression of the
restrictions of the shape functions Ni to the element edges allows the compu-
tation of the virtual work of tractions and the convenient definition of nodal
forces ft in terms of nodal values of tractions.

Eventually, it is worth noting that, since the shape functions Ni are ex-
plicitly known on the element edges, non-homogeneous boundary conditions
over the virtual elements can be enforced exactly as in standard FEM.

2.3.6 Assembly of global system

Denoting with f̃E the nodal forces, which in general include volume end
edge contributions, and considering the definition of stiffness matrix given
in Eq.(2.54), it is possible to write the elemental equilibrium equations of elas-
ticity within the framework of the lowest-order VEM as

KE ũ = f̃E. (2.59)
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Once the elemental stiffness matrices and load vectors are computed, they
are assembled into global stiffness matrix K and load vector F by employing
standard FE numbering and procedures, which motivates the appeal of VEM
as a versatile method requiring minimum re-coding in existing software pack-
ages. Eventually, a system of equation for the overall discrete domain can be
written as

KU = F, (2.60)

where U is the global vector of degrees of freedom. After prescribing ap-
propriate boundary conditions, Eq.(2.60) can be solved using common finite
element solution methods.

2.3.7 Strains and Stresses

Once the global system in Eq.(2.60) is solved and the values of the displace-
ment components at every node of the mesh are known, strains can be com-
puted element-wise using the projector operator matrix Π and the vector of
the local nodal values of the displacement components ũ

εΠ = Π ũ, (2.61)

where superscript Π is used to remark that, since the displacement field is vir-
tual in the interior of the element, the actual local strain field is approximated
by its projection on the constant polynomial space.

Using Eq.(2.61), stresses can be computed element-wise using the consti-
tutive law in Eq.(2.8)

σ = C εΠ. (2.62)

As previously highlighted, in the lowest-order VEM formulation, the defor-
mation field inside the generic element, obtained through the projector’s ma-
trix expression, is a constant approximation of the actual strain field. Instead,
the displacement field is assumed linear on the edges of the element while in-
side the element it is represented by functions whose Laplacian is zero. There-
fore, for a virtual element with three sides, the lowest-order VEM formulation
coincides with the standard FEM formulation of the linear triangular element,
commonly known as CST (Constant Strain Triangle). In the case of polygo-
nal virtual elements with more than three sides, the degrees of freedom that
uniquely define the displacement field could give rise to a deformation field
of higher order than the constant one. In this case, some loss of informa-
tion might be expected when using Eq.(2.62) for calculating the stress field,
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especially in the case of polygonal elements with many sides. Although in
literature there are studies of convergence of the VEM which show that this
intrinsic loss of information of the method is negligible [132], it is worth not-
ing that it is possible to extend to VEM [15] some stress-recovery techniques
already widely used in FEM [4].

2.4 VESTA - A Virtual Element toolbox

The purpose of this Section is to introduce VESTA, the virtual element program
that has been developed and used to perform all the analysis of the present
thesis. VESTA is an acronym for Virtual Element for STructural Analysis, and
it is a framework for the implementation of the Virtual Element Method for
the solution of two-dimensional elasticity problems in plane strain or plane
stress. MATLAB is the scripting language that has been chosen to write all the
functions that are part of the current VESTA software library. The program is
written using a proper mix of Object-oriented programming (OOP) and func-
tional programming, using the former for core functions and organising and
managing data structures and functional features where this makes coding
more concise and flexible.

VESTA is essentially a finite element program and, in this respect, its struc-
ture is similar to other research-oriented finite element codes. The program
features a ”core and applications” approach where a set of core tools are avail-
able as building blocks in developing new applications that focus on the so-
lution of particular problems of interest.
The program includes an integrated set of functions used to perform the fol-
lowing tasks:

• Generate, visualize and store the input data describing a finite element
model;

• Solve a specific application trough appropriate solution algorithms;

• Return graphical and numerical output of analysis results and save them
to file.

The program’s main block includes a MATLAB class object that contains all
the input of data describing the structural analysis model for the specific anal-
ysis. It stores all the relevant data on the analysis type, mesh structure, mate-
rial properties, applied loads and boundary conditions. This function allows
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to save the analysis information to a text input file or to load a previously
saved analysis model.

The current version of VESTA contains an element library with different
types of elements. Each element type has a specific MATLAB class object that
contains all the functions needed for computation of element matrices, ele-
ment force vectors and output strains and stresses associated with each ele-
ment. A separate function is used to project these quantities to nodes allow-
ing graphical outputs of results. The main element type used by the program
is the general polygonal VEM element with the first-order formulation. For
accuracy comparison and testing purposes, the element library has been ex-
panded to include first-order (linear) interpolation triangular standard finite
elements and fully integrated, two-dimensional, linear and quadratic inter-
polation quadrilateral elements. Another relevant class object of this group
is dedicated to the Boundary Element Method (BEM). The BEM class object
contains all the functions to perform a stand-alone boundary element analy-
sis with linear interpolation elements in the framework of linear elasticity. It
also contains the functions needed to construct the equivalent stiffness matrix
and the nodal force vectors for a BEM super-element. As shown later in this
thesis, these functions are used to interface a BEM subdomain with another
subdomain discretised with VEM elements.

A separate assembly function performs the task of assembling the global
stiffness matrix and the global force vector. This function accesses a material
model library used to compute the constitutive equations. The current im-
plemented material models are linear elastic material and isotropic damage
model material.

Mesh generation and manipulation are performed using both third-part
and in-house developed codes. For the generation of a triangular mesh, two
different third part codes are used. For relatively simple domains whose ge-
ometries can be specified by signed distance functions VESTA relies on DistMesh

[145], a MATLAB code for generation of unstructured triangular and tetrahe-
dral meshes that uses the Delaunay triangulation routine in MATLAB and opti-
mizes the node locations by a force-based smoothing procedure. To generate
triangular meshes on domains with more complex geometries, the software
used is MESH2D [70], a MATLAB-based Delaunay mesh-generator designed to
generate high-quality constrained Delaunay triangulations for general polyg-
onal regions in the plane. MESH2D provides an effective implementations of
”Delaunay-refinement” and ”Frontal-Delaunay” triangulation techniques, in
additional to ”hill-climbing” type mesh-optimisation. It also provides sup-
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port for user-defined ”mesh-spacing” functions and ”multi-part” geometry
definitions, allowing varying levels of mesh-resolution to be specified within
complex domains.

To exploit the capabilities of the Virtual Element Method, a polygonal
mesh generator is required. For simple analysis on geometric domain with-
out internal partitions, VESTA relies on Polymesher [168], a simple and robust
MATLAB code for polygonal mesh generation that relies on an implicit descrip-
tion of the domain geometry. An example of a polygonal mesh generated
with Polymesher is shown in Fig.(2.2). To perform more complex polygonal
mesh generation tasks, like the ones involved in the automatic discretisation
of random generated composite microstructures, where the analysis domain
consists of multiple subdomains, an in-house mesh generation code has been
implemented. It is based on an initial conforming triangular discretisation of
the domain and a subsequent generation of a bounded Voronoi tessellation
generated using the centroids of the triangular mesh elements as seed points.
More details and examples about this process will be given in the following
Chapters.

2.5 VEM implementation aspects

As highlighted before, there are a few similarities between VEM and standard
FEM that allow the use of virtual elements within existing software packages
with minimum re-coding. The purpose of this Section is to summarize the
main similarities and differences between the two methods concerning mesh
generation and management, global system assembly procedure and related
computational cost.

Regarding the management of the discretization input, it is evident that
the main difference between the standard FEM and the VEM lies in the ar-
bitrariness of the mesh elements’ geometry. While in the standard FEM, in
the two-dimensional case, the elements allowed are exclusively triangles or
quadrilaterals, in the VEM generic polygonal elements are allowed. The arbi-
trary number of sides that the VEM admits for a generic element of the mesh
requires appropriate input management. The latter consideration implies that
the data structure used to store information on the mesh topology in a FEM
code may not be directly applicable to a VEM-based code. A proposed way
of approaching this issue [132] is to set a separate data structure for the VEM
discretization that uses an associative array (map) where the key is the num-
ber of polygon nodes, and the value is the corresponding connectivity array
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(element freedom table). The approach followed in VESTA relies instead on
considering all the mesh entries in the connectivity table as polygonal ele-
ments and associate with each element of the table an ”element type” key to
sort FEM elements from VEM elements. This approach is particularly useful
when, as will be seen later in this thesis, the computation domain discretiza-
tion includes BEM super-elements, i.e. polygonal elements discretised on the
boundary with multiple BEM elements but considered, for the analysis, as
single elements.

As already mentioned, the computational cost for generating the global
system of equation for VEM’s lowest-order formulation is comparable to FEM’s
for linear triangular elements. The main difference between the two formula-
tions resides in the additional computation of the stabilization term of a VEM
element stiffness matrix which requires the computation of a matrix inversion
once per element.

Once an efficient scheme for polygonal mesh management has been set-
up, VEM’s assembling of the global system of equation proceeds in a similar
fashion to standard FEM’s one, actually, the same functions that would be
used for a FEM program can be employed with minor modification for a VEM
code when first- or second-order formulation are employed.

2.6 Linear patch test

This Section presents a numerical example used to assess the ability of the
lowest-order VEM formulation to pass a polygonal element version [13] of
the two-dimensional plane stress linear patch test [26]. The tests have been
performed using the in-house developed VESTA program.

The analysis domain is a square whose side has length L = 1. The mate-
rial properties are Young’s modulus E = 70000 and Poisson’s ratio ν = 0.3.
Geometry and boundary conditions are shown in Fig.(2.4). Two cases are con-
sidered: in case (a) a normal traction q = 1000 applied on the right edge of
the square domain induces a constant normal stress; in case (b) a tangential
traction t = −400 applied on the all the edge of the square domain induces a
constant shear stress state. Both cases are analysed under plane stress using
two different polygonal discretisation: mesh (1) shown in Fig.(2.5) and mesh
(2) shown in Fig.(2.6). Node coordinates of both meshes are reported in Ta-
ble (2.1).
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The exact solution for case (a) is

u =
q
E

x, v = −νq
E

y, σxx = q, σyy = τxy = 0. (2.63)

The exact solution for case (b) is

u = 0, v =
t
G

x, σxxσyy = 0, τxy = t, (2.64)

where G is the shear modulus.
The error estimator for the displacement field is defined as

eu =

[
∑N

i ||uh
i − ui||2

∑N
i ||ui||2

] 1
2

, (2.65)

where i refers to the index of the i-th node and N is the total number of mesh
nodes.
The error estimator for the stress field is defined as

eσ =

[
∑E
∫

E ||σ(u
h)− σ(u)||2dE

∑E
∫

E ||σ(u)||2dE

] 1
2

, (2.66)

where E denotes a generic virtual element of the mesh.
Results, reported in Tables (2.2)) and (2.3) shows that the lowest order VEM
formulation is capable to recover the exact solution up to machine precision.
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(a) (b)

Figure 2.4: Linear patch test: geometry and boundary conditions for (a) nor-
mal and (b) shear constant stress states.
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Figure 2.5: Linear patch test: mesh (1).
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Figure 2.6: Linear patch test: mesh (2).

Node x y
1 0.000 0.000
2 1.000 0.000
3 1.000 1.000
4 0.000 1.000
5 0.562 0.272
6 0.728 0.562
7 0.438 0.728
8 0.272 0.438
9 0.562 0.465

10 0.535 0.562
11 0.438 0.535
12 0.465 0.438

Table 2.1: Linear patch test. Node coordinates for mesh (1), nodes 1 through 8
and mesh (2), nodes 1 through 12.
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Mesh (1) Mesh (2)
eu 1.10e-15 2.44e-15
eσ 7.80e-16 1.68e-15

Table 2.2: Linear patch test. Case (a). Displacement error eu and stress error
eσ.

Mesh (1) Mesh (2)
eu 1.27e-15 5.39e-15
eσ 1.56e-15 4.54e-15

Table 2.3: Linear patch test. Case (b). Displacement error eu and stress error
eσ.



Chapter 3

Computational homogenization
of composite and heterogeneous
materials

3.1 Introduction

In Chapter (2), the VEM ability to deal with mesh elements of very general
polygonal/polyhedral shape and to naturally address the presence of hang-
ing nodes, providing accurate and consistent analysis results even with heav-
ily distorted meshes, have been highlighted. Such flexibility makes the VEM
an ideal candidate tool for computational homogenization studies, where the
structure-property link is investigated homogenising the micro-fields over
several statistical realisations of the material microstructure. In other words,
being computational homogenization based on the analysis carried out over
many micro representative volume elements, often generated and meshed au-
tomatically, the possibility to relieve the need of carefully assessing the quality
of each mesh makes the VEM a suitable method for such analysis.

The present Chapter is intended to present the Virtual Element Method’s
application to the computational homogenization of polycrystalline and fibre-
reinforced materials. The study has been conducted using the lowest-order
VEM formulation presented in Chapter (2) for linear two-dimensional elas-
tic problems. Emphasis is given to the method’s flexibility in the analysis of
randomly generated and meshed microstructures.

This Chapter is organised as follows. Section 3.2 details the computational

35
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aspects implemented to deal with generic polycrystalline and fibre-reinforced
micro-morphologies and their meshing, describing the suitability of the vir-
tual element method in dealing with specific features. Section 3.3 illustrates
the application of the method to the computational homogenization of the
considered materials and concludes the study.

3.2 Multi-domain implementation

In this Section, the multi-region implementation for computational material
homogenization is described with reference to two classes of materials: poly-
crystalline and unidirectional fibre-reinforced composites, widely employed
in engineering applications.

Some VEM applications to material homogenization of composites [12,
16, 148] and polycrystalline materials [124] have very recently appeared in
the literature. Refs.[12, 16] consider unit cells with a single circular or ellip-
tical inclusion, considered as the basic building block of composite materials
with regular fibres distributions. Ref.[148] considers domains with a statisti-
cal distribution of fibres, but a single polygonal VEM element is used to model
the individual fibres. Ref.[124] uses single polygonal or polyhedral VEM el-
ements to model individual crystals in 2D and 3D, for homogenization pur-
poses. In the present study, the focus is slightly different. Multi-domain mi-
crostructures obtained from random processes are considered, and no a priori
assumption is made about the number of VEM elements used to model in-
dividual fibres or crystals. Emphasis is given to the flexibility offered by the
features of VEM in meshing such general morphologies, which make it a con-
venient method for the analysis of complex random material microstructures.

The first step toward materials computational micro-mechanics is the adop-
tion of an accurate representation of the material microstructure. This can be
based either on the experimental reconstruction of real microstructures or on
the computer generation of artificial models embodying the microstructural
aggregate’s relevant statistical features. Experimental techniques provide es-
sential information, but they require suitable and generally expensive equip-
ment and complicated and time-consuming post-processing. On the other
hand, the use of reliable computer models offers the opportunity of simulat-
ing large numbers of microstructures, helping reduce the cost of the experi-
mental effort [186].

In the context of the analysis of heterogeneous materials, the concepts of
Representative Volume Element (RVE ) and Statistical Volume Element (SVE)
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are notions of primary importance, see, e.g. Refs.[89, 87, 142, 81]. If a sin-
gle microstructural realization is considered, it is crucial to determine the unit
cell’s minimum size needed to attain material representativity. The term real-
ization is herein used to denote the specific morphology associated with a set
of randomly scattered seed points, which can identify the centroids of poly-
crystals generated through Voronoi tessellations or the position of the fibres in
fibre-reinforced composites; in this sense, the specific morphology has a role
analogous to the value assumed by a random variable. For polycrystalline
materials, the size of the RVE can be expressed in terms of the number of
grains Ng contained in the artificial microstructure. For unidirectional (UD)
fibre-reinforced composites, the size of the RVE is measured by the parameter
δ, defined as the ratio between the length L of the side of a square unit cell
and the radius r of the inclusion, typically a fibre, i.e.

δ =
L
r

. (3.1)

A definition of RVE can also be provided considering not only volume aver-
ages over individual realizations of different sizes but also ensemble averages
over a set of realizations of the same size, provided that a sufficient number of
samples is considered [102], which suggests the concept of SVE. With this ap-
proach, the estimation of the effective properties is obtained by computing the
ensemble average of the apparent properties over a collection of realizations
having the same size.

In the subsequent sections, the multi-region VEM strategy adopted for
computational homogenization of heterogeneous materials is described, high-
lighting the VEM features that result particularly convenient for the mesh-
ing of irregular geometries, namely the VEM ability of naturally dealing with
hanging nodes and non-convex or heavily distorted mesh elements. The method
has been implemented for both polycrystalline and unidirectional (UD) fibre-
reinforced composite materials, treated separately in the following sections to
highlight the specific modelling requirements and the adopted solutions.

3.2.1 Polycrystalline materials

The modelling strategy employed for the analysis of polycrystalline materi-
als at the micro-scale is described in this section, starting from the method
adopted to construct the artificial microstructure.
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Generation of artificial polycrystalline micro-morphologies

A reliable computer representation of the polycrystalline microstructure must
retain the main topological, morphological and crystallographic features of
the aggregate such as the number of vertices, edges and faces per grain, grain
size distribution, grain shape and crystallographic orientation. Voronoi tessel-
lations, which are analytically well defined and relatively simple to generate,
have been successfully used to reproduce the main statistical features of real
polycrystalline morphologies [23, 72, 150, 45], see Fig.(3.1).

Figure 3.1: Example of a two-dimensional Voronoi tessellation on a square
domain.

Given a bounded domain Ω ∈ R2, its Voronoi tessellation is constructed
starting from a set of n seed points S = {xi ∈ Ω : i ∈ In}, with In =
{1, 2, ..., n}. A Voronoi cell Gi having the seed xi as its generator is defined
as the set of points which are closer to xi than to any other seed point, i.e.

Gi = {x : ∥x − xi∥ < ∥x − xj∥ ∀j ̸= i, j ∈ In}. (3.2)

Each seed is the generator of its Voronoi cell, and all cells form a Voronoi
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diagram, which divides the two-dimensional space into the union of convex,
non-overlapping polygons with straight edges.

The tessellation’s topology and morphology depend on the distribution of
the seeds within the domain Ω. It has been shown that a Voronoi tessellation,
built on a set of randomly distributed seeds, referred to as Poisson-Voronoi
tessellation, possesses statistical features that make it topologically close to
real polycrystalline aggregates [106]. However, randomly distributed seed
points tend to generate Voronoi tessellations with a high number of highly ir-
regular or excessively distorted grains, particularly challenging from the point
of view of mesh preparation for subsequent numerical analysis. Various tech-
niques have been used to produce tessellations with non-pathological grain
shapes or edges, e.g. enforcing a hardcore condition on the initial distribution
of seed points or by employing more sophisticated regularization procedures,
addressed at avoiding an excessively refined mesh induced by the presence
of small edges in the mathematically exact built tessellation [83, 150].

In the present study, two-dimensional Voronoi tessellations are employed
to generate artificial polycrystalline microstructures, where each Voronoi cell
represents an individual grain. To demonstrate the ability of the Virtual El-
ement Method to deal with mesh elements of very general polygonal shape,
also generated over irregular geometries, no regularization scheme is adopted,
and instead, a pure Poisson-Voronoi tessellation, with uniform random grain
distribution and size, is used.

The tessellations have been generated using the Qhull [24] algorithm in-
cluded in MATLAB to generate a uniform distribution inside the square domain
representing the boundary of the unit cell. Since the edge length of the square
domain is fixed, the only input required is the number of seed points equal to
the number of grains. Fig.(3.2) shows different microstructural morphologies
corresponding to different numbers of grains Ng.

Micro-mechanical polycrystalline modelling

A linear elastic orthotropic model is used to describe the mechanical behaviour
of individual crystals. The orthotropic material hypothesis is not restrictive
since most single-crystal metallic and ceramic materials present a general or-
thotropic behaviour. For an orthotropic material in a three-dimensional frame-
work, the linear elastic constitutive laws introduced in Eq.(2.2) may be written
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(a) (b) (c) (d)

Figure 3.2: Polycrystalline morphologies with different numbers of grains: a)
Ng = 10; b) Ng = 50; c) Ng = 100; d) Ng = 200.

as 

σ11
σ22
σ33
σ23
σ13
σ12

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11
ε22
ε33
γ23
γ13
γ12

 , (3.3)

where γij = 2ε ij for i = 1, ...3 and i ̸= j.
Each grain of the microstructure is assumed to have random spatial orien-

tation of the principal material directions {1, 2, 3}. Although two-dimensional
problems are considered in the present study, the possibility of investigating
the effect of the randomness of each grain’s spatial orientation on the over-
all behaviour of the microstructure is preserved, as explained next. Following
[72], each generated grain has, randomly, one of three principal material direc-
tions that coincides with the z-axis (normal to the analysis plane). Moreover,
for each grain, the angle θ ∈ [0, 2π) between the global axes x and y and the
axes of the two principal material directions lying in the plane x − y is also
randomly generated, Fig.(3.3).

The artificial polycrystalline morphology generated according to the pro-
cedure explained in Section 3.2.1 can be considered a multi-domain prob-
lem, in which different elastic properties and orientations are assigned to
each grain. In the context of the FEM, several strategies have been used, in
the literature, for the automatic generation of meshes for polycrystalline mi-
crostructures, and both structured and unstructured meshes have been used
[150, 80, 74].

Structured meshes are generally unable to resolve the grain boundaries,
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Figure 3.3: Example distribution of the principal material directions within
each grain. The three different colours specify which principal direction coin-
cides with the global z-axis. The orientations in the x − y plane of the other
two principal material directions is represented by two black vectors.

while unstructured meshes overcome this issue. However, given the mor-
phological properties of random Voronoi tessellations, the generation of high
quality conforming meshes requires a high degree of refinement that signifi-
cantly increases the number of degrees of freedom.

In the present study, a multi-domain conforming meshing strategy is adopted,
which takes advantage of the particular capability of the VEM of dealing with
polygonal mesh elements with an arbitrary number of edges as well as with
hanging nodes. Each grain of the microstructure has been independently
meshed using a Centroidal Voronoi Tessellation (CVT; not to be confused with
the tessellation used to generate the morphology), which allows subdividing
the often very irregular grain geometry into quite regular polygonal elements,
see Fig.(3.4). For this purpose, a modified version of Polymesher [168] is used;
Polymesher is a mesh generator for polygonal elements written in MATLAB.
The number of elements per grain is given as input, defined as the ratio be-
tween the grain area and the requested global mesh size.

Once all the grains have been independently meshed, in general, at the grain
boundaries, there will be sets of collinear nodes belonging to different grains,
which would induce a non-conformal mesh of the microstructure. However,
since the VEM can deal with general polygonal elements, also presenting
consecutive aligned edges, the creation of conformal meshes is conceptually
straightforward, and it can be attained by just adding nodes on edges shared
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(a) (b) (c) (d)

Figure 3.4: Polygonal meshes of different polycrystalline aggregates with in-
creasing numbers of grains: a) Ng = 10; b) Ng = 50; c) Ng = 100; d) Ng = 200.

between different grains. Fig.(3.5) shows the creation of conforming meshes
between adjacent grains: the presence of nodes initially hanging between con-
tiguous grains is dealt with by transforming such nodes into vertices shared
between the contiguous elements belonging to two adjacent grains. For the
generic boundary polygonal element, such vertices are located between con-
secutive aligned edges, which are naturally dealt with by the VEM. In other
words, the nodes that would be hanging in standard FEM implementations,
are here treated as regular nodes, leveraging on the ability of the VEM of deal-
ing with polygonal elements with an arbitrary number of edges and also with
collinear consecutive edges.

Polycrystalline microstructures generated using the described strategies
have been used to perform the computational material homogenization re-
ported in Section (3.3).

3.2.2 Unidirectional fibre-reinforced composite materials

The modelling methodology adopted for the homogenization of composite
fibre-reinforced materials is described in this Section. In general, reinforcing
fibres may be randomly distributed within the matrix, which can induce ir-
regular and complex meshes. The VEM’s versatility in dealing with general
polygonal elements, including non-convex or distorted elements, allows no-
ticeable simplification of the pre-processing effort.
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Figure 3.5: Creation of conforming meshes between adjacent grains: the nodes
initially hanging between contiguous grains are transformed into vertices
shared between the contiguous elements belonging to two adjacent grains.

Generation of artificial composite micro-morphologies

Several algorithms have been proposed in the literature to generate microstruc-
tures of UD fibre-reinforced composite materials, see, e.g. [128, 59, 144] and
references therein. In the present study, artificial periodic microstructures of
fibre-reinforced composites are generated as square unit cells with random
circular disk-shaped inclusions representing the fibres’ transversal sections.
An individual morphology is generated starting from two input parameters:
the target volume fraction Vf and the size parameter δ, see Eq.(3.1). The num-
ber of fibre inclusions N f in the unit cell is given by

N f =
Vf δ2

π
. (3.4)

A non-overlapping condition is enforced by setting a minimum allowed dis-
tance d between the centres of the circular disk-shaped inclusions, with d >
2r, where r is given by Eq.(3.1). In order to generate a valid periodic mi-
crostructure with random fibre distribution, the following iterative procedure
is adopted:

1. A random uniform set of N f seed points is initially scattered within the
squared bounding box representing the boundary of the unit cell;
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2. To attain microstructural periodicity, the set of seed points is replicated
within eight copies of the original box created around the original unit
cell; each one of the surrounding boxes has the same size as that of the
original one so that a total of 9N f points are created overall (the process
is similar to the one adopted, e.g. in Ref.[41]);

3. A Delaunay triangulation of the extended domain is generated starting
from the 9N f points;

4. For each edge of the triangulation, the distance between the end vertices
is computed; if such length is ≤ 2r, the vertices are moved apart along
the direction identified by the edge itself of distance proportional to the
original edge length;

5. The new coordinates of the original N f points are extracted. If in step
3, any point has been translated, the set of N f points with the new co-
ordinates is sent to step 2 for a new iteration; otherwise, the process is
terminated.

Once a set of points respecting the non-overlapping condition is obtained,
a disk-shaped inclusion can be associated to each seed; the desired periodic
microstructure is then extracted by trimming the original bounding box, with
circular inclusions, out of the extended domain. Some realizations obtained
for different values of δ and Vf = 0.29 are shown in Fig.(3.6).

(a) (b) (c) (d)

Figure 3.6: Different realizations of fibre-reinforced composite unit cells for
Vf = 0.29 and different values of the parameter δ = L/r: a) δ = 10; b) δ = 20;
c) δ = 35; d) δ = 50.



3.2 Multi-domain implementation 45

Micro-mechanical composites modelling

Unidirectional fibre-reinforced composites can be macroscopically considered
transversely isotropic materials, whose properties emerge from the features
and interplay of their constituents, i.e. from the properties of fibres, matrix,
fibre-matrix interface and the ratio Vf between the volume of fibres and the
total volume of the composite.

For representing the composite microstructure, a multi-domain meshing
strategy is adopted that is slightly different from the one used for the poly-
crystalline microstructure. Still, the ability of VEM to handle elements of very
general shape is exploited. The adopted meshing strategy is based on the
three following steps:

1. A conforming triangular mesh of the considered artificial micro-morphology
is generated using the software DistMesh [145];

2. A polygonal mesh is built from the bounded Voronoi diagram generated
using the centroids of the triangular mesh elements as seed points;

3. The polygonal element of the mesh obtained which intersect the fibre
inclusions boundaries are trimmed so to conform to such boundaries.

The above process allows the generation of a regular polygonal discretiza-
tion over the whole computational domain except for the areas close to the
fibre boundaries, where the ability of VEM to handle elements of arbitrary
shapes, including non-convex shapes, is exploited. Fig.(3.7) shows an exam-
ple of polygonal mesh generated for a composite unit cell sample, and the
detail in the inset on the right shows how irregular polygonal elements may
appear in proximity of the inclusions boundaries; the capability of the VEM to
address irregular, distorted or non-convex elements allows to retain meshes
that would require regularization or further treatment otherwise.

Indeed, the use of VEM may also simplify the implementation of straight-
forward regularization schemes. An example is provided in Fig.(3.8): the
meshing of a fibre-reinforced composite through the operations summarised
above may induce the presence of polygonal elements of size comparatively
too small with respect to the average mesh size, represented as the blue ele-
ments in Fig.(3.8a); in this case, it may be useful to absorb such small entities
within contiguous elements, the red ones in Fig.(3.8a-3.8b). While such ”ab-
sorption” operation would require nodes/edges shifting in standard FEM, it
can be performed using VEM by just retaining the external polygonal edges of
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Figure 3.7: Generation of a polygonal mesh for a composite unit cell morphol-
ogy with Vf = 0.44 and δ = 40 (left).

the absorbing/absorbed element couples, as shown in Fig.(3.8b). This simple
strategy, discussed here as an example of the VEM’s flexibility in dealing with
meshing, noticeably reduces the number of small elements in general com-
posite unit cells, also reducing the possibility of artefacts in the local fields.
However, the subsequent computational analysis cost is generally little af-
fected unless very large numbers of such small elements are present.

3.3 Computational homogenization tests

This section describes the numerical tests performed to validate the devel-
oped homogenization procedure and the Virtual Element Method’s reliability
with respect to such application. The numerical tests’ purpose is to estimate
the effective transverse elastic properties of polycrystalline and unidirectional
fibre-reinforced composite materials. The obtained numerical results are com-
pared with available analytical bounds.

For each microstructural sample, assuming plane strain conditions, the ap-
parent transverse elastic properties are calculated from the solution of three
different boundary value problems, differing only in the prescribed set of
boundary conditions. Kinematic uniform boundary conditions, i.e. linear dis-
placements boundary conditions, are enforced at all external nodes of the con-
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sidered microstructure. Such enforced boundary displacements correspond to
a macro-strain Γ̄. More specifically, if a reference system x − y with the axes
aligned with the external edges of the unit cell is adopted, the three different
sets of displacement boundary conditions correspond to: a) a uniaxial direct
macro-strain along the x direction; b) a uniaxial direct macro-strain along the y
direction; c) a pure shear macro-strain acting to modify the angle between the
axes xy. The enforced displacement micro-BCs are related to the macroscopic
strain by the relation

ūi = Γ̄ijxj ∀x ∈ ∂Ω. (3.5)

The relation between macro-stress and macro-strain is given by:

Σij = Ĉijkl Γ̄kl , (3.6)

where Ĉ is the apparent macroscopic fourth-order elastic tensor, while Σij
are the components of the macroscopic stress tensor, which can be computed
upon the solution of the micro boundary value problem by the volume aver-
age of the local micro stress tensor over the domain of the RVE, i.e.

Σij =
1
|Ω|

∫
Ω

σij(x)dΩ. (3.7)

In Voigt notation, the apparent macroscopic elastic tensor Ĉ is expressed through
the apparent stiffness matrix Ĉ whose components can be determined column-
wise from the solution of the three linearly independent boundary value prob-
lems mentioned above. Once an estimate of the apparent stiffness matrix is
available, the apparent elastic modula can be readily estimated.

3.3.1 Computational homogenization of FCC polycrystals

The determination of the macroscopic properties of materials presenting mi-
croscopic cubic symmetry has been previously addressed in the literature,
see, e.g. Ref.[46]. Numerical simulations are performed in order to estimate
the effective transverse elastic properties, namely the macroscopic isotropic
Young’s modulus Ê and shear modulus Ĝ, for three different polycrystalline
materials presenting cubic symmetry at crystal level: copper, gold and nickel.
In the case of materials with cubic symmetry, such as FCC (Face Centred
Cubic) metals, the specification about the grains’ orientation, as mentioned
in Section 3.2.1, is unnecessary, and the three principal axes are equivalent.
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Grains with cubic symmetry present only three distinct elastic constants C11,
C12 and C44 and the reduced stiffness matrix for plain strain C reads

C =

C11 C12 0
C12 C11 0
0 0 C44

 . (3.8)

The elastic constants for the three selected materials are summarized in Ta-
ble (3.1), as taken from Ref.[46].

For each material, aggregates with Ng = 10, 20, 50, 100, 200 grains have
been tested. For given material and number of grains, 50 different realisations
have been generated and analysed. Each realisation differs from the others in
terms of both geometry and grains orientation. Table (3.2) reports the mini-
mum, the average and the maximum number of degrees of freedoms, related
to the number of grains in the analysed polycrystalline microstructures.

The homogenization is performed following the procedure employed in
Ref.[46]. For a macroscopically isotropic aggregate, the range of the Young
and shear effective moduli is bounded by a lower (Reuss) bound and an upper
(Voigt) bound. Such limits are also referred to in the literature as first-order
bounds. The Reuss [152] lower bound is obtained by assuming that all the
grains undergo uniform stress, while the Voigt [175] upper bound is obtained
assuming that all the grains undergo uniform strain. Since a two-dimensional
model is being considered, the bounds are computed by averaging the single-
crystal plain strain reduced stiffness matrix over all possible orientations of
the random angle θ formed between the material direction 1 and the lower
horizontal edge of the square unit cell, as shown, e.g. in Ref.[135].

The obtained numerical results, in terms of the effective Young’s mod-
ulus Ê and shear modulus Ĝ, are shown in Fig.(3.9). The Reuss and Voigt
bounds are also shown for comparison purpose. The effective properties
are estimated as the ensemble average over realizations containing the same

C11 C12 C44
Copper 168 121 75
Gold 185 158 40
Nickel 251 150 124

Table 3.1: Single crystal elastic constants used for the analysed materials from
Ref.[46]; the values are given in [GPa].
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Ng 10 20 50 100 200

ndo f

Min 9982 9976 9966 9938 9886
Average 9995 9994 9988 9975 9942
Max 10006 10012 10020 10022 9986

Table 3.2: Minimum, average and maximum number of DOFs for the ana-
lyzed polycrystalline aggregates.

number of grains. It is noticed how, as the number of grains per realization
increases, the scatter of the apparent properties reduces. When realizations
with Ng = 200 are considered, the apparent moduli always fall within the
first-order bounds.

3.3.2 Computational homogenization of fibre-reinforced composites

Two of the unidirectional fibre-reinforced composite materials considered in
Ref.[159] are selected for the numerical tests on composite unit cells. The first
composite, here labelled COMP1, is made of AS4 carbon fibres embedded
in 3501 − 6 epoxy matrix. The second composite, here labelled COMP2, is
made of Silenka E-glass 1200 tex fibres embedded in MY750/HY917/DY063
epoxy matrix. The fibre volume fractions considered in the performed tests
are Vf = 0.22, Vf = 0.29, Vf = 0.36 and Vf = 0.44.

The axis (1) is parallel to the fibres, and it is normal to the (2-3) plane,
in which the 2D unit cell lies. The mechanical properties of the constituents,
themselves isotropic in the (2-3) plane, are given in Table (3.3) in terms of
transverse Young’s modulus E22 and transverse shear modulus G23.

Table 3.3: Mechanical properties for the matrix and fibres of COMP1 and
COMP2, as taken from Ref.[159].

Mechanical Properties E22 [GPa] G23 [GPa]
AS4 carbon fibres 15 7

3501-6 epoxy matrix 4.2 1.567
Silenka E-Glass 1200 tex fibres 74 30.8

MY750/HY917/DY063 epoxy matrix 3.35 1.24

A unidirectional fibre-reinforced composite lamina is macroscopically trans-
versely isotropic so that only two elastic modula are needed to completely
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characterize the transverse behaviour in the plane of isotropy (2-3). In this
study, the numerical tests results are given in terms of the plain strain bulk
modulus K23 and the shear modulus G23.

The minimal RVE size for unidirectional fibre-reinforced composites sim-
ilar to those considered here has been investigated in Ref.[172], where it was
found that, when the purpose of the analysis is the estimation of the effective
properties, a minimum size parameter of δ ≥ 30 is required. The effective
properties’ convergence is assessed in the range 10 ≤ δ ≤ 50.

Figs.(3.10-3.11) show, for both composite materials and for each consid-
ered value of the volume fraction Vf , the average and the scatter range of the
computed elastic properties as a function of the unit cell size, as expressed by
δ. The average is computed over ensembles of 50 realizations for each value of
δ. It can be observed that, for both considered materials and for δ ≥ 30, there
is no appreciable variation in the values of either the average elastic modula
or the scatter, which confirms convergence of the effective properties (please
note the tight scale used in the graphs).

Figs.(3.12-3.13) show the numerical predictions about the computed trans-
verse mechanical properties K23 and G23 versus the fibre-volume fraction Vf at
δ = 50. The Voigt and Reuss bounds and the Hashin-Hill bounds [89, 86] for
the effective elastic modula are also shown for comparison purpose. The ob-
tained numerical estimates are in agreement with the theoretical predictions.

Table (3.4) shows the minimum, average and maximum number of de-
grees of freedoms, in the analysed composite microstructures, for Vf = 0.22
and at different values of the size parameter δ.

3.4 Discussion

In this Chapter, a lowest-order Virtual Element framework for computational
materials homogenisation has been developed, and it has been applied to both

Table 3.4: Minimum, average and maximum number of DOFs for the analysed
composite microstructures for Vf = 0.22.

Ng 10 15 20 25 30 35 40 45 50

ndo f

Min 1836 3700 6604 10328 14670 19750 25828 32438 39842
Average 1932 3772 6711 10349 14838 19906 26018 32651 40117
Max 1984 3856 6810 10470 15022 20098 26174 32868 40354
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polycrystalline materials and unidirectional fibre-reinforced composites.
General polycrystalline Voronoi microstructures have been analysed, ad-

dressing the occurrence of hanging nodes at the interface between indepen-
dently meshed contiguous grains through the ability of VEM of dealing with
elements with aligned edges. The ability of VEM of addressing non-convex
polygonal element, on the other hand, has been employed in the analysis of
general composite fibre-reinforced morphologies obtained from the random
scattering of fibres with circular sections.

This study has shown how the VEM’s capability to deal with very gen-
eral polygonal mesh elements, including non-convex and highly distorted
elements, can be profitably exploited to relax the requirements on the mesh
quality that may hinder the automatic analysis of micro-morphologies pre-
senting complex or highly statistically varying features, commonly met in
computational materials micro-mechanics and homogenisation, where mate-
rials microstructures are often generated resorting to stochastic algorithms.
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(a) (b)

(c) (d)

Figure 3.8: A simple VEM-based regularization scheme: a) elements consid-
erably smaller than the average mesh size may be present in the mesh of the
composite fibre-reinforced unit cell (blue in the online version of the paper);
b) the small elements can be absorbed within contiguous elements of larger
size (red in the online version of the manuscript); with VEM such operation
is performed by simply creating larger polygonal elements bounded by the
external edges of the absorbing/absorbed element couple. In unit cells with
large numbers of fibres, e.g. the one shown in (c) with 477 fibres, δ = 50 and
Vf = 0.44, the regularization scheme noticeably reduces the presence of small
elements, as shown by the histogram in (d).
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(a) (b)

(c) (d)

(e) (f )

Figure 3.9: Computed effective Young’s modulus E and shear modulus G for
polycrystalline aggregates of copper (a-b), gold (c-d), nickel (e-f ).
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Figure 3.10: Computed effective transverse elastic properties as a function
of δ for different values of Vf for COMP1: Vf = 0.22 (a-b); Vf = 0.29 (c-d);
Vf = 0.36 (e-f ); Vf = 0.44 (g-h).
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Figure 3.11: Computed effective transverse elastic properties as a function
of δ for different values of Vf for COMP2: Vf = 0.22 (a-b); Vf = 0.29 (c-d);
Vf = 0.36 (e-f ); Vf = 0.44 (g-h).
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(a) (b)

Figure 3.12: Computed transverse elastic properties and Hashin-Hill bounds
as a function of the volume fraction Vf for COMP1 and δ = 50.

(a) (b)

Figure 3.13: Computed transverse elastic properties and Hashin-Hill bounds
as a function of the volume fraction Vf for COMP2 and δ = 50.



Chapter 4

A hybrid virtual-boundary
element formulation

In this Chapter, a hybrid formulation based on the conjoined use of the re-
cently developed Virtual Element Method (VEM) and the Boundary Element
Method (BEM) is proposed for the effective computational analysis of multi-
region domains. VEM allows the straightforward employment of elements
of general polygonal shape, maintaining a high level of accuracy. For its in-
herent features, it allows the use of meshes of general topology, including
non-convex elements. BEM is an effective technique for the numerical solu-
tion of sets of boundary integral equations, employed as the original model of
the represented physical problem. For several classes of problems, BEM offers
some advantages over more popular techniques, namely the reduction of the
dimensionality of the problem, with associated computational savings. The
inherent advantages of the VEM and the BEM are simultaneously employed
to facilitate the study of heterogeneous material microstructures.

4.1 Introduction

VEM has been presented in Chapter 2 as a rapidly emerging generalisation of
the Finite Element Method (FEM). In Chapter 3 it has been shown how VEM
can provide accurate results when applied to mesh whose elements can have
very general shape, such in the case of polygonal elements with an arbitrary
number of edges non-convex and highly distorted elements.

The Boundary Element Method has been developed over the last four

57
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decades as a powerful numerical tool for the analysis and solution of many
physical and engineering problems [21, 55, 180] and today, it represents a vi-
able alternative to other numerical approaches in many fields of engineering
analysis [7].

BEM is based on the use and the numerical solution of integral equa-
tions, i.e. equations where the unknown functions appear under the inte-
gral sign. The use of integral equations for the analysis of potential field
problem appeared in the pioneering classical work of Fredholm [73]. The
Boundary Integral Equation (BIE) method for the analysis of elastic problems
was introduced by Betti [53] and Somigliana [161]. Starting from these pi-
oneering works, many authors have contributed to developing the method
[125, 153, 65]. Among such contributions, the work of Lachat and Watson
[108] was particularly influential for the development of a general numer-
ical treatment of boundary-value equation problems. They introduced an
isoparametric formulation, analogous to the one used for FEM analysis, and
described the numerical integration procedure in detail, thus demonstrating
the possibility of addressing complex three-dimensional elastic problems.

The first step for the boundary element analysis of any problem is describ-
ing the problem itself through a boundary integral equation. There are many
ways to obtain such representation, but a particularly attractive approach for
solids mechanics problems uses classical reciprocity theorems, such as Betti’s
theorem for elasticity, and special solutions of an auxiliary problem called fun-
damental solutions. The use of fundamental solutions, which represent the so-
lution to the problem governing equations for some special cases, is the main
difference between BEM and other numerical methods. Such solutions are
used as weighting functions and allow to reduce the discretisation require-
ments, incorporating in the formulation some knowledge about the govern-
ing equation solution itself. However, they must be known in advance for the
method to be effectively viable. This point often has constituted a hindrance
for the application of BEM to some fields of application. However, today the
fundamental solutions are known for many engineering problems.

The main advantage of boundary element techniques is reducing the de-
grees of freedom needed to model a given physical system. Such reduc-
tion is allowed by the underlying boundary integral formulation, which re-
quires only the discretisation of the boundary of the analysed domain for
its numerical solution. Consequently, the analysis of a two-dimensional do-
main requires the discretion of its one-dimensional boundary, while for three-
dimensional bodies, only their boundary surfaces have to be discretised. More-
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over, due to the boundary only nature of the computational grid, stress con-
centrations areas can be modelled more effectively by increasing the mesh
density locally around the area of interest without affecting the mesh’s quality
elsewhere. As a result, BEM can capture high-stress gradients with very good
accuracy and a limited pre-processing effort. Another aspect of noticeable in-
terest is the capability to represent interior point displacements and stresses
continuously, without making the analysis heavier. The interior points quan-
tities are computed as a post-processing task without increasing the solving
system’s size.
Besides the computational cost savings, the reduction of the model dimen-
sionality generally induces a pre-processing simplification, thanks to the need
of discretising curves instead of surfaces, in the two-dimensional case, or sur-
faces instead of volumes, in the three-dimensional case. Such a feature may
result particularly appealing when materials morphologies with high statisti-
cal variability have to be automatically generated, meshed and analysed [46].
BEM produces a linear system of equations whose coefficient matrix is neither
symmetric nor definite. Moreover, it results fully populated. Such features
make the system solution generally more demanding in memory storage and
computational time with respect to FEM systems with the same number of
degrees of freedom. This aspect becomes particularly relevant for large scale
systems, as discussed in-depth in the next Chapter. Despite the last consid-
eration, the above mentioned general advantages make BEM particularly at-
tractive in some fields of investigations, such as Computational Mechanics,
where the internal domain meshing can present some difficulty. BEM has
been successfully employed to the solution of several classes of problems in
fluids [180] and solids [7] mechanics and, more recently, in multi-scale mate-
rials modelling [156, 83, 42, 48, 79, 47, 50].

In the present Chapter, a hybrid computational technique, based on the
simultaneous use of the Virtual Element Method and the Boundary Element
Method is proposed with the idea that the conjoined use of VEM and BEM
might provide some benefits in the modelling of heterogeneous materials with
complex microstructures [3, 61]. Unit cells with stiff inclusions embedded
within a more compliant matrix, representative e.g. of the transverse section
fibre-reinforced composites are considered. BEM is employed to model the
material inclusions, while VEM is used to represent the matrix. This choice
could be further motivated by the assumption that, under progressive load-
ing, the stiffer inclusions would remain in the linear behaviour range, while
the matrix might undergo complex non-linear phenomena, e.g. hardening,
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damaging or fracturing processes, which could be modelled with the frame-
work of VEM, taking advantage of the generality inherited by FEM and its
peculiar ability to deal with elements of very general shapes.

This Chapter is organised as follows. Section 4.2 addresses the genera-
tion and meshing strategy for illustrative artificial morphologies. The BEM
formulation for two-dimensional linear elastic problems is recalled in Sec-
tion 4.3.4. In Section 4.4, the formulation of the hybrid virtual-boundary el-
ement method is described introducing the VEM-BEM coupling procedure.
Section 4.5 discusses the application of the hybrid procedure to a case study
represented by a matrix with complex-shaped inclusions, assessing the accu-
racy in terms of displacements and stresses. Section 4.6 the advantages of the
hybrid VEM-BEM approach are exploited by applying the proposed method
to the computational homogenization of unidirectional fibre-reinforced com-
posites. Eventually, Section 4.7 recalls the key features of the proposed nu-
merical technique.

4.2 Reference morphology

In this Section, the procedures adopted for generating and meshing the arti-
ficial representation of the considered material microstructures are described.
As it will be shown in Section 4.4, the present formulation is based on a multi–
region approach, in which different phases are modelled using either a virtual
or a boundary element approach, depending on several considerations, includ-
ing the phase physics, as discussed in Section 4.7. An example is provided
by the unit cell representative of a fibre–reinforced polymer composite, for
which a certain number of inclusions, modelled, e.g. with the boundary el-
ement method, may represent the transverse section of the fibres, while the
surrounding domain, modelled with the virtual element method, may repre-
sent the polymer matrix.

In general, the considered two-dimensional unit cell may contain NV re-
gions modelled with the virtual element method and NB domains modelled
with the boundary element method, so that the overall domain Ω is given by

Ω =

(
NV⋃
k=1

ΩV
k

)
∪
(

NB⋃
k=1

ΩB
k

)
= ΩV ∪ ΩB, (4.1)

where the superscripts V and B refer to virtual and boundary element regions
respectively. The overall domain is bounded by the contour Γ = ∂Ω, while
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the k–th subdomain ΩB
k is bounded by the contour ΓB

k = ∂ΩB
k and the k–th

subdomain ΩV
k is bounded by the contour ΓV

k = ∂ΩV
k .

The virtual element regions can be meshed with generic polygonal ele-
ments, which ensures certain meshing flexibility, as discussed, e.g. in Ref.[116].
On the other hand, the boundary element regions only require consistent
meshes of their contours Sk and do not need any internal mesh, at least when
they do not experience any non-linear material process (e.g. plasticity and/or
damage). The meshing procedure must then interface the polygonal virtual
element mesh with the one-dimensional boundary element mesh. Due to
the inherent features of the virtual element method, which allows the natu-
ral treatment of generic polygonal elements and hanging nodes, the meshing
can be implemented without resorting to complex pre–processing algorithms.

The simple example geometry shown in Fig.(4.1), consisting of a square
unit cell with an inclusion of arbitrary shape, is considered to describe the
implemented procedures. In this case, Ω = ΩV ∪ ΩB and ΓB = ∂ΩB is the
interface between the two regions. Once the morphology of the unit cell is

Figure 4.1: A microstructure consisting of an arbitrary shaped inclusion
within a surrounding matrix as an example two-dimensional heterogeneous
unit cell. Boundary conditions are enforced on the boundary Γ = ∂Ω of the
microstructure; ΓB is the interface between ΩV and ΩB.

geometrically reconstructed, the meshing procedure is based on the genera-
tion of a Voronoi tessellation [19] of the overall domain and the subsequent
clipping of the internal inclusions to be modelled with BEM.
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The workflow of the overall procedure can be summarised as follows:

a) The micro–morphology is created as a two-dimensional geometric en-
tity;

b) A conformal triangular mesh of the overall domain is generated;

c) A non-conformal polygonal mesh is generated as the Voronoi dual of
the triangular discretisation;

d) The Voronoi cells falling within the inclusion domain are removed;

e) The Voronoi cells intersecting the contour ΓB are clipped using the nodes
and edges of the conformal triangular mesh, thus providing the sought
conformal polygonal mesh.

The adjective conformal used above refers to the circumstance that the ver-
tices of the initial triangular mesh and those of the target polygonal one lie on
the interface S between the two regions, thus identifying the interface mesh
nodes, where suitable continuity conditions will be enforced to retrieve the
integrity of the domain.

The above procedure, schematically represented in Fig.(4.2), has been im-
plemented in MATLAB. The geometry is represented as a collection of points
and curves identifying each subdomain, which forms the input for generat-
ing the first conformal triangular mesh of the overall domain. This task has
been performed using an unstructured mesh-generator for two-dimensional
geometries [70]. The target polygonal mesh is generated from the triangular
mesh output using an in–house developed code that performs the following
sequence of operations: a) retrieves the triangular mesh data structure; b) con-
structs a two-dimensional Voronoi diagram from the given triangulation; c)
clips the polygonal mesh elements intersecting the interface ΓB, providing the
target conformal polygonal mesh of the domain.

4.3 Boundary integral formulation

In this Section, the boundary element formulation for two-dimensional linear
elasticity problems is reviewed, starting from classical reciprocity principles.
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(a) (b) (c)

Figure 4.2: Generation of the polygonal mesh of the artificial multi–region
morphologies: a) initial conformal triangular mesh of the overall domain; b)
two-dimensional Voronoi diagram associated with the previous triangulation;
c) target conformal polygonal mesh obtained by removing the Voronoi cells
within the inclusion domain and clipping those intersecting the sub–domains
interface.

4.3.1 Somigliana identity

The Betti reciprocity work theorem states that if two linear elastic self equi-
librated systems (ui, ti, bi) and (u∗

i , t∗i , b∗i ) exist in a domain ΩB having ΓB as
its boundary, then the work done by the forces of the first system on the dis-
placements of the second is equal to the work done by the forces of the second
system on the displacements of the first∫

ΩB
b∗j uj dΩ +

∫
ΓB

t∗j uj dΓ =
∫

ΩB
u∗

j bj dΩ +
∫

ΓB
u∗

j tj dΓ. (4.2)

Let the second system represent the solution to the case of a unit point load
acting on a point x0 of an infinite elastic domain

b∗j = δijδ(x − x0), (4.3)

where δij is the Kronecker delta

δij =

{
1 when i = j
0 when i ̸= j

(4.4)

representing the j-th component of the i-th unit vector of the two-dimensional
standard basis, and δ(x − x0) is the two-dimensional Dirac’s delta. Under
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such assumption and also assuming that the body forces bi can be neglected,
Eq.(4.2) can be rewritten in the form

ui(x0) +
∫

ΓB
H∗

ij(x0, x)uj(x) dΓ(x) =
∫

ΓB
G∗

ij(x0, x)tj(x) dΓ(x). (4.5)

The notation G∗
ij and H∗

ij has been introduced to denote the components of
displacements and tractions corresponding to a unit point load. More specifi-
cally G∗

ij(x0, x) and H∗
ij(x0, x) represent respectively the displacement and trac-

tion component along the direction j at the point x when a unit point load
is applied at the point x0 along the direction i. Eq.(4.5) is the well known
Somigliana identity, which expresses the displacement at an interior point
x0 ∈ ΩB in terms of the displacements and tractions at the boundary ΓB.

4.3.2 Kelvin fundamental solutions

The knowledge of the kernels G∗
ij and H∗

ij plays a fundamental role in the
formulation of any boundary element model. These functions are the Kelvin
fundamental solutions and express displacements and tractions at the field point
x due to the application of a unit point load at the source point x0.
Under plane strain assumptions, the components of the Kelvin fundamental
displacements are given by

G∗
ij(x0, x) = C1

(
C2 δij ln r − r,i r,j

)
, (4.6)

while the components of the Kelvin fundamental tractions have the form

H∗
ij(x0, x) =

C3

r
[
nk r,k

(
C4 δij + 2 r,i r,j

)
− C4

(
r,i nj − r,j ni

)]
. (4.7)

In the previous expressions r = ||x − x0|| is the Euclidean distance between
points x0 and x, the index notation f,i = ∂ f /∂xi is adopted to denote differen-
tiation, ni are components of the outward unit normal vector to the boundary
ΓB at the generic smooth point x. The coefficients C1, C2, C3 and C4 are given



4.3 Boundary integral formulation 65

by

C1 = − 1 + ν

4π(1 − ν)E
, (4.8)

C2 = 3 − 4ν, (4.9)

C3 = − 1
4π(1 − ν)

, (4.10)

C4 = 1 − 2ν, (4.11)

with E and ν denoting respectively the Young’s modulus and the Poisson’s
ratio of the isotropic material of the domain ΩB.

4.3.3 Displacement Boundary Integral Equation

Eq.(4.5) allows to express the displacements at an internal point x0 once dis-
placements and tractions at the boundary ΓB are known. Its use alone, how-
ever, does not allow to solve the elastic problem. The solution of the elastic
problem can be found by writing Eq.(4.5) for points belonging to the bound-
ary itself. However, since the kernels of the boundary integral representa-
tion present a singularity when r = ∥x − x0∥ → 0, the collocation on the
boundary requires some attention. The boundary collocation can be accom-
plished through a limiting process involving an augmented domain ΓB ′ =
ΓB − ΓB

ε + ΓB ′
ε , (see Fig.4.3). Eq.(4.5) can then be written

ui(x0) + lim
ε→0

∫
ΓB ′

H∗
ij(x0, x)uj(x) dΓ(x) = lim

ε→0

∫
ΓB ′

G∗
ij(x0, x)tj(x) dΓ(x). (4.12)

Figure 4.3: Limiting process for collocation on the boundary.
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It is easy to realize that when ε → 0 then ΓB ′ → ΓB. In calculating the two
limiting expressions, attention should be paid to the order of the kernels’ sin-
gularity. The limit involving the fundamental displacements can be written

lim
ε→0

∫
ΓB ′

ε

G∗
ij(x0, x)tj(x) dΓ(x) + lim

ε→0

∫
ΓB−ΓB

ε

G∗
ij(x0, x)tj(x) dΓ(x). (4.13)

Considering that G∗
ij is of order O(ln r), it can be shown that the first integral

goes to zero, while the second one can be evaluated as an improper integral.
On the other end, for the traction fundamental solutions, considering that H∗

ij

contains a strong singularity of order O(r−1), the integral over Γ ′
ε gives rise to

a jump term, which can be computed by expanding the displacements about
the source point x0 in a Taylor series. It follows

lim
ε→0

∫
ΓB ′

ε

H∗
ij(x0, x)uj(x) dΓ(x) = αij(x0)uj(x0). (4.14)

The other contribution is treated in a Cauchy principal value sense

lim
ε→0

∫
ΓB−ΓB

ε

H∗
ij(x0, x)uj(x) dΓ(x) = −

∫
ΓB

H∗
ij(x0, x)uj(x) dΓ, (4.15)

where the symbol −
∫

stands for Cauchy principal value.
Eq.(4.12) can then be written

[δij + αij(x0)]uj(x0) +−
∫

ΓB
H∗

ij(x0, x)uj(x) dΓ(x) =
∫

ΓB
G∗

ij(x0, x)tj(x) dΓ(x)

(4.16)
It can be shown that for smooth boundary points x0, where the unit outward
vector n(x0) is uniquely defined, the jump term αij = − 1

2 δij. It follows then,
for smooth boundary points

cij(x0)uj(x0) +−
∫

ΓB
H∗

ij(x0, x)uj(x) dΓ =
∫

ΓB
G∗

ij(x0, x)tj(x) dΓ (4.17)

with cij(x0) = 1/2δij. Eq.(4.17) represents the Displacement Boundary In-
tegral Equation (DBIE) and it is the starting point for the construction of a
boundary element model for two.dimensional elasticity.
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4.3.4 The Boundary Element Method

The numerical solution of Eq.(4.17) is based on the discretisation of ΓB and the
subsequent approximation of the boundary displacement and traction com-
ponents in terms of shape functions and nodal values. More specifically, ΓB

is subdivided into m straight segments sk, and two nodes are associated with
each segment’s ends. In plane problems, each node carries two components
of displacements and two components of tractions. Assuming ΓB as smooth,
it follows that a tangent can be associated to any x ∈ ΓB, so that the existence
of a unique value of traction at the node is ensured; corner points are not con-
sidered in the present formulation, although these could be treated resorting
to known boundary element techniques [7].

Displacement and traction components are here assumed to be globally
continuous over ΓB and to vary linearly over each boundary element sk ac-
cording to

u (ζ) = N (ζ) ũk, (4.18)

t (ζ) = N (ζ) t̃k, (4.19)

where the vectors u (ζ) and t (ζ) collect the components of displacements and
points belonging to the segment sk, the matrix N (ζ) ∈ R2×4 collects the one-
dimensional linear shape functions for the boundary segment sk, expressed
as function of the natural coordinate ζ and ũk, t̃k ∈ R4×1 collect the nodal
components of displacements and tractions associated with the two ends of
the boundary element sk.

It is worth noting that the shape functions N (ζ), used for the boundary
element modelling of the inclusions, could be seen as restrictions over the el-
ement edges of the shape functions N (ξ, η) appearing in Eq.(2.25), used in
the approximation of the virtual elements fields. Indeed, in the lowest or-
der VEM, the restriction of the shape functions over the edges of a polygonal
virtual element is linear, which ensures consistency at the interface between
matrix (VEM) and inclusions (BEM).

Writing Eq.(4.17) for the generic boundary node p and i = 1, 2 in matrix
form gives

c ũp +
m

∑
q=1

[∫
sq

Hpq(ζ)N(ζ)J(ζ) dζ

]
ũq =

m

∑
q=1

[∫
sq

Gpq(ζ)N(ζ)J(ζ) dζ

]
t̃q

(4.20)
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where c ∈ R2×2 depends on the geometry of the boundary at the considered
collocation point p, smooth in this case, ũp ∈ R2×1 collects the components
of displacements at the node p, Hpq(ζ), Gpq(ζ) collect the components of the
fundamental solution, when the integral equations are collocated at the node
p and integrated over the element q, ũq, t̃q ∈ R4×1 collect the nodal displace-
ments and tractions associated with the ends of the generic boundary element
sq, according to Eq.(4.18), and J(ζ) is the Jacobian of the transformation be-
tween segment local and natural coordinates. After numerical integration 1,
Eq.(4.20) may be rewritten in compact form as

HpUB = GpTB (4.21)

where Hp, Gp ∈ R2×2m denote the rectangular matrices obtained by collocat-
ing at the node p and integrating over the whole boundary ΓB, while UB, TB ∈
R2m×1 collect the components of displacements and tractions for all the nodes
identified on ΓB, with the superscript B introduced to highlight that such
quantities are associated with the BEM domain. Writing Eq.(4.21) ∀p ∈ [1, ..., m]
produces the set of linear algebraic equations

H UB = G TB, (4.22)

where H, G ∈ R2m×2m collect matrix blocks of the form appearing in Eq.(4.21).
It is worth noting that, when the BEM domain identifies an inclusion in the
analysed domain, both UB and TB are unknown quantities that must be de-
termined by interfacing Eq.(4.22) with the equations produced by the model
employed for the matrix domain.

4.3.5 Displacements and stresses within BEM domains

Once the displacements and tractions at the boundary of the inclusions mod-
elled with BEM are known, the value of displacements and stresses at points
within the inclusions may be computed in post-processing.

Interior points displacements may be computed employing the boundary
integral representation

uj (x0) +
∫

ΓB
Hij (x0, x) uj (x) dΓ(x) =

∫
ΓB

Gij (x0, x) tj (x) dΓ(x), (4.23)

1The numerical integration over the boundary is not a trivial process. The reader interested
to the details of the numerical integration of kernels is referred to Ref.[7] and the references
therein.
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which differs from Eq.(4.17) for the absence of the coefficients cij (x0), arising
from the limiting boundary collocation process.

Internal stresses, on the other hand, can be computed from the boundary
integral representation

σij (x0) +
∫

ΓB
Sijk (x0, x) uk (x) dΓ(x) =

∫
ΓB

Dijk (x0, x) tk (x) dΓ(x), (4.24)

obtained by differentiating Eq.(4.23), to obtain the integral representation of
strains at the considered interior point, and then using the constitutive equa-
tions, see, e.g. Refs.[20, 7].

Eqs.(4.23-4.24) express displacements and stresses at internal points as a
function of known displacements and tractions at points along the bound-
ary of the inclusion. The numerical integration of such equations is generally
straightforward, except for internal points whose distance from the boundary
is less than the employed boundary elements’ size. In such cases, the integrals
appearing in Eqs.(4.23-4.24) become nearly singular, as the distance r (x0, x)
between the collocation and integration points appears at the denominator of
the kernels Hij, Gij, Sijk, Dijk. In such cases, specific integration schemes may
be employed to enhance the accuracy of the integration, see e.g. Refs.[99, 181].
In the present work, a simple technique has been implemented: i) internal
points are selected so that their distance from the boundary is no less than
half the boundary element length; ii) the Gauss quadrature order over the el-
ements closer to the selected point is increased with respect to the order of
integration employed for the far elements. The method’s accuracy has been
assessed in simple benchmark tests, and the absence of artefacts has been ver-
ified in the analysed test cases. However, the technique is not general, and the
use of specific schemes for nearly singular integrals should be considered in
general implementations [7, 99, 181].

For further details about the use of Eqs.(4.23-4.24) and their numerical
treatments, the interested readers are referred to Refs.[20, 7].

4.4 VEM-BEM coupling

The coupling between boundary and finite elements has been achieved in
the literature using various approaches [185, 56, 90, 39, 64]. The approach
herein adopted to couple the virtual and the boundary element equations
consist in treating the BEM subdomains as macro-finite elements and in trans-
forming the traction-displacement equations associated with them into force-



70 A hybrid virtual-boundary element formulation

displacement equations that will eventually be assembled with the VEM equi-
librium equations, already expressed in terms of nodal forces and displace-
ments.

In Chapter 1 the equilibrium equation for the overall virtual element do-
main have been obtained. Here they are recalled for convenience

KVUV = FV , (4.25)

where the superscript V is employed to identify terms stemming from the
virtual element model and differentiate them from those associated with the
boundary element model of the inclusions.

The vectors UV and FV appearing in Eq.(4.25) collect the nodal components
of displacements and forces of all the VEM nodes in the considered domain.
Since only some of such nodes belong to the interface ΓB between boundary
and virtual elements, it is possible to partition the vectors as

UV =

[
UV

Γ
UV

Ω

]
, FV =

[
FV

Γ
FV

Ω

]
, (4.26)

where UV
Γ and FV

Γ identify components related to nodes belonging to ΓB. In
lieu of the decomposition in Eq.(4.26), the equilibrium equation (4.25) for the
VEM subdomain can be rewritten as[

KV
ΓΓ KV

ΓΩ
KV

ΩΓ KV
ΩΩ

] [
UV

Γ
UV

Ω

]
=

[
FV

Γ
FV

Ω

]
, (4.27)

Along the interface ΓB between the two subdomains, the nodal displace-
ments and forces must satisfy the compatibility conditions for displacements

UB = UV
Γ , (4.28)

and equilibrium conditions
FB + FV

Γ = 0, (4.29)

which have been written considering that no external nodal forces act on the
nodes belonging to ΓB. The displacement continuity equations can be readily
written, as the displacement components appearing in the VEM system (4.27)
and in the BEM system (4.22) carry the same physical meaning.

On the contrary, while nodal forces appear in Eq.(4.27), related to the VEM
subdomain, nodal components of tractions appear in Eq.(4.22), related to the
BEM subdomain, so that it is necessary to retrieve a consistent expression of
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the nodal forces associated to the BEM tractions, before writing the equilib-
rium equations appearing in Eq.(4.29).

For a generic boundary element node, this can be accomplished by resort-
ing to appropriate energy considerations. In the scheme adopted in this work,
since two-node piecewise linear continuous boundary elements are used, a
generic node always lies at the conjunction between two contiguous boundary
elements. It is here recalled that, in the considered two-dimensional back-
ground, boundary elements are one-dimensional segments, which are inter-
faced with the edges of the polygonal virtual elements. If the generic node i lies
between the boundary elements sk and sk+1, then, for a virtual displacement
δũ (xi) ≡ δũi of the node i, the unknown nodal force F̃B

i will perform some
work that has to be equivalent to the work performed by the tractions acting
on the two contiguous boundary elements. Thus, the following equivalence
holds

δu⊺
i F̃B

i =
k+1

∑
j=k

∫
sj

δu⊺(ζ) t(ζ) J(ζ) dζ, (4.30)

which, recalling the interpolation expressed in Eq.(4.18), may be written as

δu⊺
i F̃B

i =
k+1

∑
j=k

δũj⊺
[∫

sj

N(ζ)⊺ N(ζ) J(ζ) dζ

]
t̃ j =

k+1

∑
j=k

δũj⊺Mj t̃ j, (4.31)

where the matrices Mj ∈ R4×4 stem from the integration over the considered
elements of the shape functions matrices, while the vectors δũj, t̃ j ∈ R4×1

collect the components of displacements at the two end nodes belonging to
the element j, so that

δũk =

[
δũi−1
δũi

]
=

[
0

δũi

]
, δũk+1 =

[
δũi
δũi+1

]
=

[
δũi
0

]
. (4.32)

Taking into account Eqs.(4.32), Eq.(4.31) may be rewritten

δũ⊺
i F̃B

i = δũ⊺
i

k+1

∑
j=k

Mj
i t̃ j ⇒ F̃B

i =
k+1

∑
j=k

Mj
i t̃ j, (4.33)

where Mj
i ∈ R2×4 is the sub-matrix extracted from Mj selecting the appropri-

ate rows corresponding to the displacements associated with the node i. It is
important to realise that Eq.(4.33) allows expressing F̃B

i in terms of the trac-
tion components associated with the two elements containing the node i; for
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two-node linear boundary elements such expression could be written as

F̃B
i =

i+1

∑
k=i−1

Mk t̃k, (4.34)

where t̃k collects the components of tractions associated with the node k and
Mi ∈ R2×2. Once Eq.(4.34) is written for all the boundary element nodes
belonging to ΓB, the nodal forces FB appearing in Eq.(4.29) can be expressed
in terms of the boundary tractions TB appearing in Eq.(4.22) as

FB = M TB, (4.35)

where FB, TB ∈ R2m×1 and M ∈ R2m×2m, with m expressing the total number
of boundary nodes/elements. Exploiting Eq.(4.35), Eq.(4.22) can be written in
a form to be used in conjunction with the VE equations. In particular, remem-
bering that TB = G−1 H UB, it is possible to write

FB = MTB =
(

MG−1 H
)

UB = KB UB. (4.36)

The above BEM equations can now be combined with the VEM equations in
Eq.(4.27), leading to the following system of equations valid for the whole
hybrid VEM-BEM domain[

KV
ΓΓ KV

ΓΩ
KV

ΩΓ KV
ΩΩ

] [
UV

Γ
UV

Ω

]
=

[
−KB UV

Γ
FV

Ω

]
. (4.37)

After prescribing suitable external boundary conditions, Eq.(4.37) can be solved
to obtain the problem solution.

4.5 Analysis of a microstructure with multiple inclusions

In this Section, the proposed methodology’s accuracy and robustness are tested
by solving, under the plane strain assumption, the elastic problem of a unit
cell with some inclusions of involved shape and assessing the developed method’s
reliability in reconstructing the local elastic fields.

All the numerical experiments have been performed using an in-house
developed code written in MATLAB; this software addresses all the stages of
the computations, starting from morphology generation and meshing, han-
dles FEM, VEM and BEM elements in the processing stage as well as all the
interface and post-processing subroutines.
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The geometry of the microstructure, shown in Fig.(4.4), is a two-dimensional
square box with four inclusions of involved shape. The external edges of the
square box are aligned with the global Cartesian reference system x − y.

The purpose of this numerical test is to compare the displacement and
stress fields obtained with the developed technique with a benchmark finite
element solution, obtained employing an unstructured mesh of linear triangu-
lar elements. The analysis of the microstructure is performed with three dif-
ferent sets of homogeneous displacement boundary conditions corresponding
to prescribed macro-strains ϵ̄ij: two uniaxial macro-strains acting along the x
and y directions (BCx, BCy) and a pure shear macro-strain acting to modify
the angle between the axes x − y (BCxy). The values of the displacement com-
ponents, enforced over all the nodes belonging to the external boundary Γ of
the computational domain, is given by

ui = ϵ̄ij xj ∀x ∈ Γ. (4.38)

Additionally, a parametric analysis is also performed by varying the contrast
of material properties between matrix and inclusions. Both phases are as-
sumed to be linear elastic and isotropic in the plane of the analysis, and their
relevant mechanical properties are given in Table 4.1 in terms of Poisson’s ra-
tio ν and of the ratio E f

Em
, between the Young’s modulus of the inclusions E f

and the matrix Em.

Table 4.1: Mechanical properties for the matrix and the inclusions.

Material Code E f /Em ν

M10 10 0.3
M100 100 0.3
M1000 1000 0.3

4.5.1 Benchmark finite element solutions

Before assessing the proposed hybrid VE-BE scheme’s convergence, some
benchmark finite element solutions are selected by performing a h-convergence
analysis on triangular meshes. The elastic problem is solved for each set of
boundary conditions and for each material. When passing from a coarser to a
finer mesh with a smaller average element size, and then a higher number of
associated degrees of freedom Ndo f , the distance between the two related FE
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Figure 4.4: Morphology of the considered unit cell.

solutions is assessed employing a relative error measure for the displacement
field eu defined as

eu =

∑
Np
p=1 ||ua(xp)− ub(xp)||2

∑
Np
p=1 ||ub(xp)||2

 1
2

, (4.39)

computed with reference to a fixed set of Np sampling points p. In Eq.(4.39),
ua(xp) and ub(xp) are the point-wise interpolated displacement vectors, com-
puted at points having coordinates xp, for two different meshes a and b, where
ha > hb and Ndo f ,a < Ndo f ,b. Fig.(4.5) shows an example of triangular FE
mesh and highlights the Np fixed grid points selected for the computation of
the measure given in Eq.(4.39). The evaluation points are selected to suitably
sample the considered morphology and remain fixed as different meshes are
considered; they will also be used to assess the accuracy of the hybrid virtual-
boundary element scheme with respect to the benchmark solution. An analo-
gous relative error measure can be introduced for the stress field as

eσ =

∑
Np
p=1 ||σa(xp)− σb(xp)||2

∑
Np
p=1 ||σb(xp)||2

 1
2

, (4.40)

Table 4.2 reports information about the size and corresponding number of
degrees of freedom for the considered FE meshes.
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(a) (b)

Figure 4.5: a) Example of a FE triangular mesh for the considered unit cell; b)
Sampling points selected for the convergence analysis; their position remains
fixed as the FE mesh is refined and the same sampling points will be employed
to assess the performance of the VE-BE scheme.

Table 4.2: Features of the finite element meshes considered in the convergence
analysis.

F1 F2 F3 F4 F5 F6 F7 F8

Ndo f 3574 10712 23612 36520 93104 144034 256142 575836
Nel 3483 10442 23210 36018 92302 143032 254804 573834

Table 4.3 reports the convergence data obtained by using the considered
FE meshes. The generic column eu f i reports, for the boundary condition and
materials combination identified by the considered rows, the relative error
defined in Eq.(4.39) obtained by considering the coarser mesh Fi and the finer
mesh Fi+1. Such results are graphically shown in Fig.(4.6). It is possible to
note that, for all the considered Young’s modulus ratios and for all the sets
of boundary conditions, convergence may be considered achieved with the
mesh F5. The results obtained for this mesh are taken as a benchmark for any
further comparison.

The artificial linear sample shown in Fig.(4.4) has also been analysed by
employing a pure boundary element approach for both the matrix and the
inclusions. The adopted boundary element mesh is built starting from the
nodes lying over the external boundary and the matrix/inclusion interfaces
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Table 4.3: Convergence analysis for the considered FE solutions: eu f i repre-
sents the relative error between the displacement field computed with the
mesh i + 1 (finer) and that computed with the mesh i (coarser) at the selected
sampling points.

eu f 1 eu f 2 eu f 3 eu f 4 eu f 5 eu f 6 eu f 7
M10 9.94e−4 4.01e−4 1.63e−4 8.75e−5 4.03e−5 3.27e−5 2.17e−5

BCx M100 1.34e−3 5.67e−4 2.24e−4 2.06e−4 5.58e−5 4.63e−5 3.10e−5
M1000 1.38e−3 5.89e−4 2.32e−4 2.13e−4 5.79e−5 4.80e−5 3.21e−5
M10 1.15e−3 4.82e−4 1.82e−4 1.64e−4 4.77e−5 3.96e−5 2.63e−5

BCy M100 1.61e−3 7.17e−4 2.61e−4 2.44e−4 6.99e−5 5.74e−5 3.84e−5
M1000 1.68e−3 7.47e−4 2.71e−4 2.53e−4 7.29e−5 5.95e−5 3.97e−5
M10 6.95e−4 3.07e−4 1.24e−4 1.07e−4 2.94e−5 2.45e−5 1.83e−5

BCxy M100 9.05e−4 4.32e−4 1.72e−4 1.50e−4 4.03e−5 3.40e−5 2.55e−5
M1000 9.32e−4 4.46e−4 1.79e−4 1.54e−4 4.17e−5 3.51e−5 2.63e−5

in the benchmark finite element mesh and consists of discontinuous linear
elements for a total of 2788 nodes. The relative displacement error eub with re-
spect to the benchmark FEM solutions (mesh F5) for the three sets of boundary
conditions and for each material considered is reported in Table 4.4.

Table 4.4: Relative displacement error eub of the BE solutions with respect to
the benchmark FEM solutions.

BCx BCy BCxy
M10 9.30e−5 1.23e−4 7.12e−5
M100 1.34e−4 1.81e−4 1.02e−4
M1000 1.39e−4 1.87e−4 1.05e−4

4.5.2 Virtual element solutions

In this Section, the morphology shown in Fig.(4.4) is analysed by employing a
pure virtual element approach. Fig.(4.7a) shows an example polygonal mesh
of the considered morphology, built by using the meshing strategy described
in Section 4.2. Table 4.5 summarises the features of the five polygonal mesh
refinements used to assess the convergence of the virtual element scheme with
respect to the benchmark finite element solution. In particular euvi represents
the relative error for displacements, with respect to the reference FE solution,
of the virtual element solution obtained by the i-th virtual element mesh Vi,
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Figure 4.6: Convergence of the FE solutions: displacements relative error eu
for (a) BCx, (b) BCy, (c) BCxy.

computed using Eq.(4.39). Analogously, Table 4.7 reports a global measure of
relative error for the stress vector computed by the virtual element method,
with respect to the stresses provided by the reference FE solution.

Table 4.5: Features of the polygonal mesh refinements used for the virtual
element analysis of the considered morphology.

V1 V2 V3 V4 V5

Ndo f 16516 30616 60388 98140 132844
Nel 4128 7653 15096 24534 33210
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(a) (b)

Figure 4.7: a) Example polygonal mesh for the virtual element analysis; b)
Example mesh for the hybrid virtual element - boundary element analysis.

Table 4.6: Relative displacement error eu with respect to the benchmark FEM
solutions of the VE solutions obtained by using the considered progressive
polygonal mesh refinements.

euv1 euv2 euv3 euv4 euv5

M10 6.30e−4 3.70e−4 1.63e−4 8.58e−5 6.57e−5
BCx M100 9.19e−4 5.41e−4 2.37e−4 1.28e−4 9.45e−5

M1000 9.58e−4 5.63e−4 2.48e−4 1.35e−4 9.98e−5
M10 8.89e−4 4.92e−4 2.06e−4 1.11e−4 8.21e−5

BCy M100 1.37e−3 7.55e−4 3.21e−4 1.78e−4 1.25e−4
M1000 1.43e−3 7.91e−4 3.39e−4 1.90e−4 1.34e−4
M10 5.14e−4 2.67e−4 1.22e−4 6.43e−5 4.50e−5

BCxy M100 7.02e−4 3.72e−4 1.76e−4 9.17e−5 6.33e−5
M1000 7.46e−4 3.86e−4 1.85e−4 9.60e−5 6.65e−5

4.5.3 Hybrid virtual-boundary element solutions

In this Section, the developed hybrid virtual-boundary element scheme is em-
ployed to analyse the reference morphology in Fig.(4.4). Fig.(4.7b) shows an
example discretisation of the considered morphology employed for the hy-
brid analysis, built by using the strategy described in Section 4.2. Table 4.8
reports some features of the mesh employed for the hybrid analysis, high-
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Table 4.7: Relative stress error eσ with respect to the benchmark FEM solutions
of the VE solutions obtained by using the considered progressive polygonal
mesh refinements.

eσv1 eσv2 eσv3 eσv4 eσv5

M10 2.74e−2 2.65e−2 2.09e−2 1.98e−2 1.94e−2
BCx M100 4.15e−2 4.13e−2 3.18e−2 3.16e−2 3.05e−2

M1000 4.40e−2 4.41e−2 3.38e−2 3.39e−2 3.27e−2
M10 2.96e−2 2.98e−2 2.34e−2 2.30e−2 2.19e−2

BCy M100 4.61e−2 4.82e−2 3.69e−2 3.79e−2 3.61e−2
M1000 4.90e−2 5.16e−2 3.93e−2 4.07e−2 3.88e−2
M10 6.71e−2 5.89e−2 5.12e−2 4.21e−2 3.92e−2

BCxy M100 9.28e−2 7.77e−2 7.29e−2 5.69e−2 5.41e−2
M1000 9.68e−2 8.05e−2 7.64e−2 5.92e−2 5.63e−2

lighting the number of both 2D polygonal virtual elements and 1D linear con-
tinuous boundary elements employed in the analyses. Table 4.9 show the
error, computed using Eq.(4.39), of the displacements field reconstructed us-
ing the hybrid strategy with respect to the FE benchmark solution, while Ta-
ble 4.10 reports data about the measure of the relative error in the stress field
computed using Eq.(4.40).

Table 4.8: Features of the hybrid virtual-boundary element mesh refinements
employed in the comparative analysis. The total number of degrees of free-
dom Ndo f , the number of virtual elements NVEs and the number of boundary
elements NBEs are reported.

H1 H2 H3 H4 H5 H6

Ndo f 11060 20496 39960 64656 87424 124248
NVEs 2614 4903 9703 15841 21459 30561
NBEs 584 864 1128 1272 1568 1984

Figs.(4.8-4.9) compare graphically the convergence of the hybrid virtual-
boundary element solution with that of the pure virtual element solution. For
both techniques, the accuracy of the solution is measured with respect to the
assumed benchmark solution for all the investigated combinations of bound-
ary conditions and materials. Specifically, the plots report the relative error
measures of displacement and stress versus the number of degrees of free-
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Table 4.9: Relative displacement error eu with respect to the benchmark FEM
solutions of the hybrid VE-BE solutions obtained by using the considered pro-
gressive mesh refinements.

euh1 euh2 euh3 euh4 euh5 euh6
M10 5.93e−4 3.33e−4 1.51e−4 8.39e−5 6.97e−5 6.35e−5

BCx M100 8.99e−4 5.23e−4 2.31e−4 1.23e−4 9.19e−5 7.29e−5
M1000 9.55e−4 5.61e−4 2.47e−4 1.34e−4 9.92e−5 7.50e−5
M10 8.08e−4 4.29e−4 1.91e−4 1.09e−4 9.01e−5 8.43e−5

BCy M100 1.32e−3 7.21e−4 3.09e−4 1.69e−4 1.21e−4 9.79e−5
M1000 1.43e−3 7.86e−4 3.37e−4 1.88e−4 1.33e−4 1.01e−4
M10 4.61e−4 2.40e−4 1.08e−4 6.13e−5 4.99e−5 4.76e−5

BCxy M100 6.97e−4 3.61e−4 1.69e−4 8.73e−5 6.20e−5 5.38e−5
M1000 7.44e−4 3.85e−4 1.84e−4 9.55e−5 6.63e−5 5.52e−5

Table 4.10: Relative stress error eσ with respect to the benchmark FEM solu-
tions of the hybrid VE-BE solutions obtained by using the considered progres-
sive mesh refinements.

eσh1 eσh2 eσh3 eσh4 eσh5 eσh6
M10 2.06e−2 1.87e−2 1.69e−2 1.58e−2 1.59e−2 1.54e−2

BCx M100 2.92e−2 2.69e−2 2.47e−2 2.36e−2 2.37e−2 2.33e−2
M1000 3.09e−2 2.85e−2 2.62e−2 2.52e−2 2.52e−2 2.48e−2
M10 2.29e−2 2.09e−2 1.89e−2 1.78e−2 1.73e−2 1.76e−2

BCy M100 3.37e−2 3.13e−2 2.88e−2 2.77e−2 2.73e−2 2.74e−2
M1000 3.58e−2 3.33e−2 3.07e−2 2.96e−2 2.92e−2 2.93e−2
M10 4.59e−2 4.15e−2 3.47e−2 3.33e−2 3.20e−2 3.21e−2

BCxy M100 5.68e−2 5.19e−2 4.57e−2 4.42e−2 4.31e−2 4.32e−2
M1000 5.86e−2 5.36e−2 4.75e−2 4.60e−2 4.49e−2 4.50e−2

dom per unit area employed in the analysis.
It is observed that, in this sense, the convergence of the hybrid solution is
quicker with respect to the convergence of the pure virtual element scheme,
both for the displacement and the stress fields. However, while for the dis-
placement field the two techniques show closer convergence rates, it emerges
that, for the stress field, the hybrid VE-BE technique approaches convergence
noticeably more rapidly than the pure virtual element scheme, at least when
measured with respect to the number of degrees of freedom per unit area. The
reason for such behaviour is twofold: i) in the hybrid technique, the nodes



4.6 Computational homogenization of fibre-reinforced composites via the
hybrid VEM-BEM approach 81

within the inclusions are removed due to the employment of the boundary
integral formulation, which contributes to the reduction in the number of de-
grees of freedom per unit area, this explaining the convergence patterns ob-
served for the displacement field; ii) in the hybrid scheme, the stresses within
the inclusion are computed by employing, in post-processing, the boundary
integral representation given in Eq.(4.24), which generally ensures higher ac-
curacy, with respect to standard FE methods, in the reconstruction of the in-
ternal stresses. The interplay between the reduction in the number of degrees
of freedom associated with nodes within the inclusions and better rendering
of the stresses due to the employment of the boundary integral representation
of stresses explains the convergence patterns shown in Fig.(4.9).

Eventually Fig.(4.10) shows the plot of stress components σxx, σyy and σxy,
corresponding to an enforced uniaxial strain ϵ̄xx = 0.05, computed with the fi-
nite element benchmark scheme, the virtual element implementation and the
hybrid strategy, highlighting satisfying agreement among the three schemes.

4.6 Computational homogenization of fibre-reinforced
composites via the hybrid VEM-BEM approach

This Section describes the application of the proposed hybrid VEM-BEM method
to the computational homogenization of unidirectional fibre-reinforced com-
posites. In computational homogenization, the macroscopic material proper-
ties are computed by simulating the micro-scale response of properly selected
material domains referred to as unit cells, and then averaging, over such do-
mains, the fields of interest, to identify macroscopic links between such aver-
aged quantities. Unit cells become representative volume elements (RVEs) when
they can be considered representative of the material’s mechanical behaviour
at the macro-scale. Interested readers are referred to Ref.[137] for an in-depth
treatment of materials homogenization.

This test case is presented in this study for the following reason. One
of the strategies employed for the computational homogenization of hetero-
geneous materials is based on the generation of a certain number of artifi-
cial digital samples of the considered material, with random features, and on
the computation of the ensemble averages, over the set of considered speci-
mens, of suitable volume-averaged quantities, either stresses of strains, see,
e.g. Refs.[102, 74, 46]. In this procedure, it is essential to ensure a suitable
mesh quality for all the generated random microstructures, which may result
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in a particularly challenging task. It is believed that the inherent features of
VEM may benefit the meshing procedures in this kind of problems, i.e. when
a certain number of morphologies with statistical features need to be consid-
ered.

The unit cells for the present test lie in the plane x2 − x3, normal to the
fibres’ axes, which are parallel to the axis x1. They are generated by randomly
scattering a given number of arbitrarily shaped inclusions in a rectangular do-
main through an algorithm avoiding pathological superposition of the inclu-
sions. The inclusions considered here present the transversal section shown
in Fig.(4.11), are all of the same size and have and random orientation θ with
respect to the x2 axis. The average number of inclusions is determined by
the parameter δ = L/r, where L is the unit cell’s side length and r is the ra-
dius of the circle that circumscribes the fibre inclusion. Fig.(4.12) shows two
example geometries for a random microstructure and the subsequent VE-BE
discretisations for δ = 20 and δ = 45.

The material constants of the composite constituents, isotropic in the x2 −
x3 plane, are given in Table 4.11, in terms of transverse Young modulus E22
and transverse shear modulus G23. Assuming a Poisson random distribu-
tion of fibres within the unit cell and considering the constituents’ in-plane
isotropy, the composite will be isotropic in the plane (x2 − x3) at the macro-
scopic level. Its transverse behaviour is then completely defined by two elastic
modula. In this study, the plane strain bulk modulus K̄23 and the transverse
shear modulus Ḡ23 are considered.

Table 4.11: Material properties for epoxy matrix and carbon fibres in trans-
verse direction, as taken from Ref.[160].

Mechanical Properties E22 [GPa] G23 [GPa]
AS4 carbon fibres 15 7

3501-6 epoxy matrix 4.2 1.567

The problem of determining the appropriate size of the unit cell, or the
appropriate number of inclusions within it, so to identify an RVE has been
extensively investigated in the literature [170, 102, 166, 173? , 120, 104]. In
general, given a random microstructural sample subjected to a suitable set of
boundary conditions, see, e.g. [102], the link between homogenized stresses
and strains is provided by apparent properties, which may not be represen-
tative of the macro-material if the microstructural sample, or unit cell, is too
small. As the unit cell size or the number of inclusions within it increase,
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the unit cell becomes more representative of the macro-material, and the ap-
parent properties approach the effective properties. Besides considering the
behaviour of the averaged properties versus the size or number of inclusions
of the unit cell, the homogenization procedure can be enriched by consider-
ing ensemble averages of the volume homogenized properties over a set of
unit cells with the same size and number of inclusions, but different spatial
distribution of the inclusions themselves. The procedure generally produces
an estimate of the effective properties with unit cells smaller with respect to
the case in which only individual microstructures are considered, see, e.g.
Ref.[102] for a detailed discussion. In the present study, this homogenization
procedure is used. The interested readers are referred to Refs.[74, 46] for fur-
ther examples about the application of the methodology.

For the considered composite, sets of unit cells at varying values of the
parameter δ are considered, while the fibre volume fraction is kept constant
at Vf = 0.25. For each value of δ, Ns = 50 different random sample micro-
morphologies have been generated and analysed using the proposed hybrid
approach. Each unit cell Um, comprising several randomly located and ori-
entated inclusions as in Fig.(4.12), has been discretised using arbitrary polyg-
onal virtual elements for the matrix and a single boundary element domain
for each inclusion. Each Um is the subjected to three linearly independent sets
of displacement boundary conditions, corresponding to three sets of enforced
macro-strains expressed in Voigt notation as ϵ̄ = {ϵ̄22, ϵ̄33, 2ϵ̄23}. More specif-
ically, the unit cells are loaded through displacements given by Eq.(4.38),
where the following three sets of macro-strains

ϵ̄ a = {1, 0, 0} , ϵ̄ b = {0, 1, 0} , ϵ̄ c = {0, 0, 1} , (4.41)

are considered. Once a prescribed boundary condition is enforced, the micro-
structural problem is solved employing the proposed hybrid scheme, thus
providing the micro displacement, strain and stress fields within the microstruc-
ture. The averaged stresses σ̄ = {σ̄22, σ̄33, σ̄23} are then computed as volume
averages of the local micro-stress tensor over the domain of the unit cells, as

σ̄ij =
1
Ω

∫
Ω

σij (x) dΩ =
1
Ω

(∫
ΩV

σij (x) dΩ +
∫

ΩB
σij (x) dΩ

)
, (4.42)

where the domain integral is subdivided into contributions coming separately
from the VE and BE regions. The integral over the BE regions can be further
expressed as a sum of integrals over each BE modelled inclusion ΩB

k , and it
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may be demonstrated that∫
ΩB

σij (x) dΩ = ∑
i

∫
ΩB

k

σij (x) dΩ = ∑
i

∫
Γk

ti nj dΓ, (4.43)

which implies that the integration of stresses over the BE inclusions only re-
quire the computation of integrals along the boundary ΓB

k of the inclusion of
the traction components ti, which are readily available from the BE solution,
thus avoiding the more expensive use of Eq.(4.24). The use of Eq.(4.43) into
Eq.(4.42) allows remarkable computational savings in computational homog-
enization problems and constitutes a benefit of the presented technique.

For a given unit cell Um, the computation of the averaged stresses corre-
sponding to the three considered sets of boundary conditions given in Eq.(4.41)
allows populating the columns of the apparent elastic matrix C̄m, which links
averaged stresses and strains according to

σ̄ = C̄m ϵ̄. (4.44)

For each value of the parameter δ, once the components of C̄m are computed
for all the Ns = 50 generated random unit cells, a macroscopic apparent consti-
tutive matrix ⟨C̄⟩ is computed from the ensemble average of the components
of C̄m over the Ns samples, i.e.

⟨C̄⟩ = 1
Ns

Ns

∑
m=1

C̄m. (4.45)

The apparent transverse elastic properties K̄23 and Ḡ23 associated to the con-
sidered value of δ are eventually obtained from the ensemble averaged matrix
⟨C̄⟩.

Fig.(4.13) shows the values of K̄23 and Ḡ23 versus δ in plain strains, report-
ing both the values corresponding to individual samples Um and the ensemble
averaged values. In general, the scatter of the individual values decreases as
δ increases as the unit cells approach the RVE by including a higher number
of fibres. In the literature, several theoretical models have been introduced to
provide rigorous bounds for heterogeneous materials’ effective macroscopic
properties. In the present study, the computed effective material properties
are compared with the Hashin-Hill bounds [89, 86], identified in Fig.(4.13) by
the boundaries of the grey region: it is observed that the values computed
through the developed technique fall within such bounds, confirming its use-
fulness in computational homogenization applications.
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4.7 Key features of the hybrid VEM-BEM formulation

In this Chapter, a hybrid computational technique has been developed to
analyse multi-region two-dimensional elastic problems for computational mi-
cromechanics applications. The method suggests the simultaneous use of the
recently emerged virtual element method and the highly accurate boundary
element method. Each of the two techniques offers some definite advantages.

The use of VEM in addressing complex mesh morphologies and problems
inducing high mesh distortion has been demonstrated in the literature, as re-
viewed in Section 4.1, and in Chapter 3 when dealing with materials micro-
mechanics problems. In the present framework, the advantages offered by
VEM are twofold: i) in general, the method offers a powerful tool for meshing
morphologically complex domains, as those often encountered in statistical
homogenization procedures, see, e.g. Fig.(4.12), in which the regularity of the
regions related to the different phases cannot be a-priori assumed; ii) thanks
to the possibility of extending to VEM the features of FEM, in particular its
generality in dealing with non-linear constitutive behaviours, in the proposed
framework, the method can be employed for meshing phases likely to exhibit,
in the loading process, non-linear behaviours such as plasticity, viscosity or
damage [61]. This is the case of composite materials subjected to loadings
that can initiate visco-plastic flows and/or damage in the matrix.

On the other hand, the Boundary Element Method has proven effective in
the accurate reconstruction of the elastic fields through a discretisation pro-
cedure involving only the boundary of the analysed domains, thanks to the
underlying integral formulation, alternative to methods based on the weak
formulation of the considered boundary value problems. In particular, BEM
is known for providing accurate solutions at reduced computational costs [7].
The method can be used for analysing non-linear problems, although its em-
ployment in linear problems is more widespread and straightforward. An
important caveat about the use of BEM is related to the fact that the method in-
duces non-symmetric and non-definite fully populated solving matrices, see,
e.g. Ref.[20]. As long as the number of elements used for modelling each
inclusion is limited, this does not require additional consideration, and the
potential of BEM in reducing the computational burden is preserved. How-
ever, should an inclusion need several hundred boundary elements, the pres-
ence of fully populated blocks in the solving systems could reduce the com-
putation’s effectiveness and increase the computational costs. These aspects
could be mitigated and effectively addressed by using fast iterative solvers



86 A hybrid virtual-boundary element formulation

in conjunction with special matrix representations, e.g. fast multipoles [112],
or hierarchical matrices [29, 43, 51, 44]. In the proposed framework, BEM
is proposed for modelling microstructural phases not expected to develop
non-linear constitutive behaviour. This use is beneficial for two reasons, as
already mentioned in the previous Section: i) it allows to reduce the num-
ber of degrees of freedom needed for modelling the inclusions, thus reducing
the computational burden of the analysis; ii) it generally provides a more ac-
curate representation of stresses within the inclusions, thus inducing a faster
convergence in the stress fields, as shown in Figs.(4.8-4.9).
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Figure 4.8: Comparison between the convergence of the VE solutions and that
of the hybrid VE-BE solution in terms of displacements. The rows of the plots
grid correspond to the different considered boundary conditions, namely BCx
(a,b,c), BCy (d,e,f ), BCxy (g,h,i). The columns correspond to the different mate-
rials, i.e. M10 (a,d,g), M100 (b,e,h), M1000 (c,f,i).
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Figure 4.9: Comparison between the convergence of the VE solutions and
that of the hybrid VE-BE solution in terms of stresses. The rows of the plots
grid correspond to the different considered boundary conditions, namely BCx
(a,b,c), BCy (d,e,f ), BCxy (g,h,i). The columns correspond to the different mate-
rials, i.e. M10 (a,d,g), M100 (b,e,h), M1000 (c,f,i).
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4.10: From left to right, plot of stress components σxx, σyy and σxy [GPa]
corresponding to an enforced uniaxial strain ϵ̄xx = 0.05 computed by using
(a,b,c) FEM, (d,e,f ) VEM and (g,h,i) the hybrid VEM-BEM scheme. The mate-
rial considered is M1000. The comparison highlights remarkable agreement
among the three different solutions.
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Figure 4.11: Geometry of the transversal section of the inclusions randomly
placed within the analysed unit cells.
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(a) (b)

(c) (d)

Figure 4.12: Examples of unit cells employed in the computational homoge-
nization tests: random geometries obtained by setting Vf = 0.25 and a) δ = 20
c) δ = 45; b,d) meshes employed for the VE-BE analyses.
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(a) (b)

Figure 4.13: Apparent transverse elastic properties K̄23 and Ḡ23 as a function
of δ for Vf = 0.25 as computed using the hybrid virtual-boundary element
technique. The Hashin-Hill bounds for the considered composite are identi-
fied by the grey area.



Chapter 5

Damage and fracture damage in
heterogeneous materials via the
hybrid VEM-BEM approach

Common advanced structures are expected to undergo quasi-static and dy-
namic operating loading during their service life. Such load conditions are
likely to induce a loss of the structure’s mechanical performance that might
ultimately end with its failure. Thus, the structure’s effectiveness widely de-
pends on the capability to predict damage initiation and propagation up to
the point where the structure is no longer able to sustain its design loads and
adequately perform its intended function. Such knowledge is essential during
both the initial material selection and the detailed engineering design stage of
a structure.

Most failure phenomena in engineering material are due to the propa-
gation and coalescence of microscopic defects. These microstructure modi-
fications lead to irreversible material degradation, characterized by a loss of
stiffness observed at the macroscopic scale. In the last decades, the scientific
community has put extensive and remarkable efforts into developing numer-
ical techniques to simulate the damage and failure process at the microscopic
scale with increasing computational efficiency and accuracy. The nowadays
broad use of heterogeneous materials like fibre-reinforced composite in the
most advanced structures broaden the design spectrum and add complexity
to the simulation process due to some composite materials’ peculiar features,
such as the inherent complexity of both their microscopic structure and their

93
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failure process.
This Chapter aims to present further applications of the hybrid VEM-BEM

formulation introduced in Chapter (4) by exploiting its peculiar features for
modelling damage phenomena in heterogeneous materials [115, 118]. This
Chapter is organised as follows: in Section 5.1 a crack propagation study in
the matrix phase of fibre-reinforced composite materials is performed within
the framework of Linear-Elastic Fracture Mechanics (LEFM). In Section 5.2
the proposed hybrid formulation is extended to a non-linear framework by
adopting a constitutive law based on an isotropic damage model for the VEM
subdomain. Several applications are discussed, including the analysis of ma-
trix degradation in a fibre-reinforced composite unit cell under progressive
loading by implementing a damage model combined with a non-local inte-
gral regularisation technique for the matrix phase modelled with VEM.

5.1 Crack propagation in FRC

Fibre-reinforced composites (FRC) materials may experience different types of
damage mechanisms that strongly influence a structural component’s overall
behaviour. Many of these damage mechanisms often occur at the microscopic
level, with the initiation and propagation of cracks. Analysis of such dam-
age mechanisms is often performed via computational methods, and many
numerical techniques such as FEM, BEM [103, 18, 155, 8, 94], XFEM [184, 95],
among others, have been employed to model crack propagation processes .

The need for an accurate description of the evolution of micro-defect may
lead to simulations requiring heavy computational effort. In this Section,
crack propagation analysis in the matrix phase of fibre-reinforced composite
materials is performed, taking advantage of the hybrid VEM-BEM formula-
tion features developed in Chapter (4).

5.1.1 Modelling approach

With finite element techniques, crack propagation is modelled explicitly by
consecutively adapting the domain’s spatial discretization. The simplest method
to simulate crack propagation is the nodal release technique, where a crack is
extended by a certain increment along the element edge up to the next node.
However, such a method restricts the crack propagation along the element
edges, introducing a dependence of the computed crack path on the mesh
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topology. More powerful but complex methods may combine element modi-
fication techniques, such element splitting, with advanced re-meshing strate-
gies, in which the overall mesh is progressively updated starting from a finer
mesh in the proximity of the crack tip region. Such a continuous mesh refine-
ment/coarsening process may generally affect large regions of the analysis
domain, due to the need of preserving a conform transition between the re-
meshed propagation region and the surrounding areas, and it is thus a com-
putationally intensive operation [107].

On the other hand, VEM can handle polygonal elements of arbitrary shapes.
This distinctive feature allows a substantial simplification of the re-meshing
procedure following the propagation of a crack. Indeed, using VEM elements
allows avoiding mesh dependency of the crack propagation direction, as any
computed crack path can be represented by modifying the topology of the
virtual element over which the crack propagation is occurring, including the
crack edges as new element edges, without the need of further re-meshing.

The algorithm that governs crack path generation and tracking for the pro-
posed methodology may be broken down into two steps: (i) linear static anal-
ysis and crack path computation; (ii) cracking and mesh modification.

Initiation of the fracturing process is assumed to start from a node of a
boundary element and the same procedure can be employed either when the
computed crack length increment is large enough to split an element com-
pletely or when it splits this element only partially. In both the aforemen-
tioned cases, the resulting element topology is valid from the VEM’s stand-
point and does not need any further mesh modification. Moreover, to im-
prove numerical accuracy near the crack tip, a local mesh refinement can be
introduced by subdividing one or more of the local elements in any number
of elements of arbitrary shape, without necessarily affecting large portions of
the analysed domain. This can be achieved by exploiting another peculiar
VEM feature, namely its capability to naturally handle hanging nodes since a
VEM element can be a polygon with an arbitrary number of aligned vertices.
A schematic of the VEM’s modelling benefits in crack propagation modelling
is shown in Fig.(5.1).

Summarising, using VEM for crack propagation modelling allows to: a)
avoid any crack path mesh-dependency, thanks to the possibility of capturing
the crack propagation direction by modifying the topology of few elements
in the proximity of the crack tip; b) improve the accuracy of the fields recon-
struction in the proximity of the propagation region, thanks to the possibility
of performing local mesh-refinements at low computational costs, without the
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(a) (b) (c)

Figure 5.1: Schematic of crack propagation modelling with VEM elements: (a)
computed crack path; (b) elements splitting; (c) local mesh refining.

need to update and optimize the mesh in large regions of the computational
domain.

5.1.2 Numerical example

In this Section, the hybrid technique based on the simultaneous use of BEM
and VEM is applied to the analysis of crack propagation in fibre reinforced
composite materials with the analysis of the growth of kinked cracks originat-
ing from the partial fibre-matrix debonding in a unit cell of a fibre-reinforced
composite material subjected to a transverse load [122].

BEM is used to model the fibres, which are not expected to develop non-
linear behaviours, while the VEM is employed to model the matrix, which
may experience crack initiation and propagation. The inherent flexibility of
the VEM with respect to the admissible elements shapes is fully exploited to
avoid mesh-dependency in the crack propagation modelling, through a mesh
topology modification restricted only to the elements containing the crack tip
node. Such hybrid usage should in principle provide a reduction of the cost of
the analysis and flexibility in the study of the matrix cracking. In this work we
present some preliminary results and establish a workflow for future in-depth
investigations.

The problem domain is the multi-region two-dimensional domain Ω ⊂ R2

with external boundary Γ = ∂Ω, shown in Fig.(5.2). It is assumed that no
body forces act within Ω, but either displacements or tractions can be enforced
on the boundary Γ. Ω is the union of two sub-domains, namely ΩBEM and
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ΩVEM, which represent, respectively, the transverse section of a fibre and the
the surrounding polymer matrix in a polymer fibre-reinforced composite. The
two sub-domains share the interface S. ΩVEM is partitioned into a number of
polygons of general shape, while the boundary S = ∂ΩBEM is divided into a
number of straight segments, which form the edges of the polygonal elements
in ΩVEM lying in proximity of the interface between the two sub-domains.

Figure 5.2: Geometry of the analysis domain: the BEM is employed to model
the inclusion while the VEM models the surrounding matrix.

The test case, shown in Fig.(5.3), represents the transverse section of a com-
posite material unit cell consisting of a single fibre and the surrounding ma-
trix, subjected to a tensile load σ̄ acting parallel to the x axis. It is supposed
that a crack has first grown along the interface, partially debonding the fibre
from the matrix [143]. The extension of the debonded zone is identified by the
angle θd = 65◦. Outside the debonded zone, the inclusion is perfectly bonded
to the matrix. Two kinked cracks start from both ends of the debonded zone.
The growth of the kinked cracks takes place only in the matrix material. The
external boundary of the matrix domain is a square whose side has length
L = 1 mm. The inclusion is represented by a circle of diameter D = 0.15 mm.
The centre of the circle coincides with the centre of the square. The initial
crack length is a = D/10. The initial kinked crack runs parallel to the y-axis.
The model is symmetric with respect to the x-axis.

A carbon fibre/epoxy matrix composite is considered. Both the fibre and
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Figure 5.3: Schematic of the unit cell containing a single fibre partially
debonded from the matrix.

the matrix materials are treated as linear elastic under plane strain assump-
tions. The materials of matrix and fibre, respectively, are considered as isotropic
and transversely isotropic in the analysis plane. Transverse elastic properties
are: Young’s modulus EF = 13.5 GPa and Poisson’s ratio νF = 0.25 for the
fibre and EM = 2.79 GPa, νM = 0.33 for the matrix.

Overall, 96 linear boundary elements are employed to model the fibre and
12034 polygonal virtual elements to model the matrix, giving a total of 48306
degrees of freedoms.

In this example, Linear-Elastic Fracture Mechanics (LEFM) is applied, i.e.
geometrical and material non-linearities are excluded. For isotropic linear-
elastic material behaviour the stress field near the crack tip of the mixed Mode
I-II can be expressed, in polar coordinates, as [10]
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(

3θ

2

)]
+

− KII√
2πr

sin
(

θ

2

) [
2 + cos

(
θ

2

)
cos

(
3θ

2

)]
, (5.1)
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σ22 =
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+
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τ12 = 2ν

[
KI√
2πr

cos
(

θ

2

)
− KII√

2πr
sin
(

θ

2

)]
, (5.3)

where KI and KI I are, respectively, the Mode I and Mode II stress intensity
factors (SIF), and r and θ are the coordinates of the local crack-front polar
coordinate system centred at the crack tip as shown in Fig.(5.4).

Figure 5.4: Local crack-front coordinate system.

There are several approaches for numerically evaluating the SIFs. The
stress interpretation method (SIM) is one of the simplest techniques and it is
based on the evaluation of the local normal stress σ22 and shear stress τ12 on
the ligament in front the crack (θ = 0). From the near field solutions SIFs can
be computed as:

KI = lim
r→0

σ22
√

2πr, (5.4)

KI I = lim
r→0

τ12
√

2πr. (5.5)

The maximum circumferential stress criterion (MCSC) [71] has been used
to predict the angle −π < θc < π by which, for each crack growth increment,
the new crack surface deviates from the original crack tip direction. θc is given
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by

θc = 2 arctan

1
4

KI

KI I
− 1

4

√(
KI

KI I

)2

+ 8

. (5.6)

A new crack tip is added at a distance ∆a in the direction identified by the
crack growth direction θc. The magnitude of increment ∆a can be set arbi-
trarily in quasi-static loading conditions. Smaller values of the increment lead
to more accurate, stable and time-consuming simulations. A constant value
∆a = D/10 has been used.

The computed crack propagation path for the unstable growth of the two
kinked cracks is shown in Fig.(5.5). The obtained results agree well with pre-
vious results in [143] and, due to the relative orientation of the kinked cracks
with respect to the applied load, the crack growth is, as expected, dominated
by Mode I.

Figure 5.5: Simulated crack propagation in the considered test case.
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5.2 Applications of an isotropic damage model

In this Section, an extension of the hybrid virtual-boundary element formula-
tion presented in Chapter (4) for modelling regions exhibiting isotropic dam-
age is described. Within the continuum damage context, some recent appli-
cations of BEM can be found, for instance, in Refs. [123, 121], while VEM has
been recently applied in its lowest-order VEM formulation for modelling the
strain-softening response of concrete-like materials as reported in the litera-
ture [68]. The present application, albeit being of general application, is ulti-
mately aimed to model the degradation of the matrix phase of unidirectional
fibre-reinforced composite material.

5.2.1 VEM for domains exhibiting isotropic damage

Continuum damage mechanics [100, 151, 92] describes the progressive loss
of material integrity due to the propagation and coalescence of microscopic
defects. These microstructure changes lead to irreversible material degrada-
tion, characterized by a loss of stiffness observed on the macroscopic scale.
Different approaches have been proposed to model the growth and effects of
distributed microscopic defects at the macroscopic scale.

Isotropic damage models [109, 157, 158, 60] are the simplest damage mechan-
ics models. They are based on the simplifying assumption that the loss of
integrity of the material is caused by an equal degradation of the bulk and
shear moduli, governed by a single internal scalar damage variable, ω. This
variable is used to track and measure the loss of the material’s stiffness and
grows monotonically within its admissible range 0 ≤ ω ≤ 1 where 0 repre-
sents the undamaged material and 1 a fully degraded material. Under such
assumptions, the constitutive equations for an isotropic damage model are
defined by [110]

σ = (1 − ω)C0 ε = (1 − ω)σ̃, (5.7)

where, in Voigt notation, σ and ε collect, respectively, the stress and strain
components, C0 is the elasticity matrix for the pristine elastic material, and σ̃
represents the stress components that would be associated to the strains ε in
the undamaged material.

The evolution of damage is triggered upon fulfilment of the activation
threshold condition

F (ε) = τ (ε)− r = 0, r = max
λ∈H

{τ(λ)} , (5.8)
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where τ (ε) is a suitably chosen norm of the strains, used to determine if the
considered stress state belongs to the elastic domain, when F (ε) < 0, or if
it induces damage initiation or evolution, F (ε) = 0, and the monotonically
increasing internal variable r represents the damage threshold at the current
loading step λ and it is a function of the loading history H.

Different choices for the threshold function τ (ε) are available in the liter-
ature, defining different shapes of the elastic domain in the strains space. An
expression proposed by Mazars [126] and frequently used in the modelling of
quasi-brittle materials, e.g. concrete, defines τ (ε) as

τ (ε) =

√√√√ 3

∑
i
⟨ε i⟩2, (5.9)

where ε i are the principal strains and ⟨·⟩ are the Macaulay brackets such that
⟨ε i⟩ = (ε i + |ε i|) /2.
To model the damage onset and progress of materials having different degra-
dation behaviours in tension and compression, different expressions for the
threshold function are used, such as the one introduced in Refs.[119, 140],
which reads

τ (ε) = β
√

2Ψ0(ε), (5.10)

where
Ψ0(ε) =

1
2

εT σ̃, (5.11)

is the initial elastic stored energy function of the undamaged material. The pa-
rameter β in Eq.5.10 allows modelling materials having different degradation
behaviours in tension and compression and is given as

β = m +
1 − m

n
, (5.12)

where n = fc
ft

is the ratio between the compressive strength fc and the tensile
strength ft of the material and θ is a weighting factor defined as

m =
∑3

i=1⟨s̃i⟩
∑3

i=1 |s̃i|
, (5.13)

where s̃i are the components of the effective principal stress tensor and ⟨·⟩ are
the Macaulay brackets. The values of the weighting factor are in the range
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0 ≤ m ≤ 1, where 0 represents a state of triaxial compression (0 ≥ s̃1 ≥ s̃2 ≥
s̃3) and 1 represents a state of triaxial tension (s̃1 ≥ s̃2 ≥ s̃3 ≥ 0).
Epoxy resins, often used as the matrix in fibre-reinforced composite materials,
exhibit different tension and compression behaviour. To model the onset and
evolution of damage in such materials, Melro et al.[130] proposed the follow-
ing law

τ (ε) =
3 J̃2

Xc
mXt

m
+

Ĩ1(Xc
m − Xt

m)

Xc
mXt

m
, (5.14)

where Xt
m and Xc

m are, respectively, the tensile and compressive strengths of
the epoxy resin and Ĩ1 and J̃2 are, respectively, the first stress invariant and the
second deviatoric stress invariant; both quantities are defined using the effec-
tive stress components σ̃ that would be active in the undamaged material.

The evolution of damage is governed by the Kuhn-Tucker flow rules, which
read

F ≤ 0, ṙ ≥ 0, ṙ F = 0, (5.15)

and allow distinguishing between loading and unloading conditions. Un-
loading occurs when τ̇ ≤ 0; otherwise, damage evolves, and the following
consistency condition must be satisfied

Ḟ = τ̇ − ṙ = 0. (5.16)

While the chosen definition for the threshold function defines the shape of
the elastic domain in the strain space, the shape of the stress-strain diagram
after damage onset is guided by damage evolution law that expresses the de-
pendence of the damage variable ω on the internal variable r.
Different choices can be found in the literature for the function ω(r). A rather
simple one is the linear softening law which reads

ω(r) =
[

r f

r f − r0

(
1 − r0

r

)]
· H (r − r0) , r = max

λ∈H

{
τ(λ), r f

}
, (5.17)

where H (·) denotes the Heaviside step function, the parameter r0 identifies
the damage initiation condition and r f limits the maximum admissible value
of the state variable r. The value of the damage threshold r0 can be inferred
from the stress-strain diagram under uniaxial tension and depends on the
expression chosen for the threshold function.
An exponential softening can be instead modelled by adopting a damage law



104
Damage and fracture damage in heterogeneous materials via the hybrid

VEM-BEM approach

defined as in Ref.[97] as

ω(r) =
[

1 − r0

r
exp

(
− r − r0

r f − r0

)]
· H (r − r0) , r = max

λ∈H
{τ(λ)} , (5.18)

where r f controls the exponential softening response behaviour.
Under uniaxial tension, the stress-strain relation has the form

σ(ε) =

{
Eε if r ≤ ε0

[1 − ω(r)] Eε if r > ε0
(5.19)

which is valid for all the previously defined damage laws, if the threshold
function is defined according to Eq.(5.9), thus leading to the equivalence r0 =
ε0 and r f = ε f . A graphical representation of the elastic and damage be-
haviour for the simple case of a bar under uniaxial tension with linear (Eq.(5.17))
and exponential (Eq.(5.18)) softening, is shown in Fig.5.6.

0 ε0 ε f

·10−4

0

0.5

1

Strain

D
am

ag
e

0 ε0 ε f

·10−4

0

ft

Strain

St
re

ss

Figure 5.6: Damage-strain diagram (left) and tress-strain diagram (right) for
the case of a bar under uniaxial tension. Blue curves refer to the linear damage
law in Eq.(5.17); red curves refer to the exponential damage law in Eq.(5.18).

The VEM formulation described in Section 2.3 can be readily extended
to problems involving non-linear material behaviours such as degradation
and damage evolution, as described in Refs.[37, 14]. As in non-linear finite
element formulations, the non-linear constitutive laws appearing in Eq.(5.7)
can be treated using standard incremental-iterative algorithms. The stress at



5.2 Applications of an isotropic damage model 105

a generic point x and at a generic loading step λ is given by the expression

σ = σ(λ, x, εΠ,H), (5.20)

where εΠ is the approximated virtual strain computed as in Eq.(2.61), using
the matrix projector operator Π. The tangent material stiffness matrix Ctan is
consistently computed from the constitutive law in Eq.(5.20) as

Ctan(t, x, εΠ,H) =
∂σ

∂εΠ
. (5.21)

5.2.2 Regularisation techniques

In the previous Section, the essential components of isotropic damage models
have been presented. Although these models are relatively simple to imple-
ment, their numerical application may lead to physically unrealistic results
because the damage process localises in a zone of the discretisation whose
size depends on the mesh elements’ size. As a consequence, the computed
force-displacement curves are mesh-dependent. Thus, damage models re-
quire regularisation techniques to correct localised zones’ thickness and avoid
the numerical results’ sensitivity to the mesh size. Two alternative regulari-
sation techniques are commonly used, namely, the so-called crack band theory
[28, 139, 140] and the integral-type non-local damage models [146, 96, 27, 54, 98].
In this Section, the formulations of both regularisation approaches are re-
viewed.

Crack band theory

In numerical simulation involving a numerical discretisation of the analysis
domain, the damage growth localises into a band of width hb whose value
depends on the size, shape and orientation of finite elements. To overcome
this mesh-dependency issue, local regularisation methods based on the crack
band theory introduce an explicit dependence of specific parameters regulat-
ing the damage-related softening process depending on the mesh elements’
size.

Considering the uniaxial stress-diagram in Fig.(5.6) and assuming the lin-
ear softening damage law in Eq.(5.17), the area under the stress-strain dia-
gram represents the energy dissipated per unit volume, defined as

g f =
∫ ∞

0
σ(ε) dε =

1
2

ft ε f (5.22)
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If the damage localises into a band of size hb, the energy dissipated per unit
area at complete failure is g f hb. This quantity must be equal to the fracture
energy G f , which is a material property, so that

g f =
G f

hb
(5.23)

Accordingly, to Eq.(5.23), the stress-strain diagram is no longer considered a
unique curve characterising the material response but must be adjusted ac-
cording to the size of the localised damage band hb, which in turn depends
on the finite element mesh. Since the tensile strength of the material must re-
main independent of the finite element discretisation, to verify Eq.(5.23) for
every value of hb, the only parameter that can be adjusted is ε f . Substitution
of Eq.(5.22) in Eq.(5.23), one obtains

ε f =
2G f

hb ft
(5.24)

Eq.(5.24) states that the value of the parameter ε f increases with decreasing
size of the local mesh elements’ size and, in turn, of the localised damage band
hb, leading to a more ductile behaviour of the stress-strain curve. Conversely,
as the local mesh elements’ size increases, the value of ε f must decrease. A
condition on the minimum value of ε f , motivated by physical evidence of the
damage process, prescribes that ε f must not be smaller than the limit elastic
strain under uniaxial tension ε0. This condition leads to a restriction on the
maximum size of the localised damage band which can be stated as

hb ≤ hb,max =
2G f

ε0 ft
(5.25)

In a two-dimensional modelling framework, the crack band size can be es-
timated as the element area’s square root. However, this approach can induce
significant errors when the crack band is not aligned with the mesh or when
elongated, or more generally, distorted mesh elements are used. For mesh el-
ements of arbitrary shape, a more general approach consists in estimating the
crack band size by projecting the element onto the direction perpendicular to
the assumed crack band direction [98].

As noted in Ref.[98], the advantage of such an approach is that the algo-
rithmic structure of the finite element code requires only minor modifications,
limited to the part of the code responsible for the evaluation of the state vari-
ables corresponding to a given strain increment.
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Integral-type non-local damage model

Non-local damage models assume that damage parameters at a point do not
depend only on the strain state at the point under consideration. In gen-
eral, the integral-type non-local approach consists in replacing the value of
a certain variable at a certain material point with its non-local counterpart
obtained by weighted averaging over a spatial neighbourhood of each point
under consideration. Given some local field f (x) defined in a domain V, the
corresponding non-local field is defined as

f̄ (x) =
∫

V
α(x, ξ) f (ξ) dV, (5.26)

where x is a certain material point, ξ is one of its neighbour points and α(x, ξ)
is a given non-local weight function that depends on the relative position be-
tween the two points.

Different integral-type non-local regularisation models are known in the
literature [96] which differ on the variable on which the non-local regularisa-
tion is based. The non-local approach herein used consists in replacing the
local value of the equivalent strain τ(x) with its weighted average τ̄(x) over
a region surrounding each material point xp

τ̄(xp) =
∫

Ω
α(xp, xq)τ(xq) dΩ

(
xq
)

, (5.27)

where Ω is the analysis domain. Eq.(5.27) embodies the assumption that
strains (and stresses) at a certain point depend not only on the state variables
at that point but also on the distribution of the state variables over the whole
body or over a finite neighbourhood of the point under consideration. A re-
quired property of the non-local operator α consists of not altering a uniform
field, which means that the weighting function must satisfy the normalizing
condition: ∫

Ω
α(xp, xq) dΩ

(
xq
)
= 1 ∀xp ∈ Ω. (5.28)

This is achieved by adopting the following scaled expression for the non-local
weight function

α(xp, xq) =
α0 (d)∫

Ω α0 (d) dΩ
(
xq
) , (5.29)

where α0 (d) is a non-negative weight function of the distance d = ||xp − xq||
between two considered material points, monotonically decreasing for d ≥ 0.
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The weight function α0 is often chosen as the Gauss distribution function

α0 (d) = exp
(
− d2

2l2
c

)
, (5.30)

where lc is known as the internal length or characteristic length of the non-local
continuum, a parameter that depends on the heterogeneous material proper-
ties. Another common choice is the truncated quadratic polynomial function

α0 (d) =
〈

1 − d2

R2

〉2

, (5.31)

where R is known as the interaction radius [96] and it is a parameter related to
the characteristic length lc.

The implementation of the non-local damage model based on averaging
of equivalent strain requires the computation of the point-wise values of the
non-local equivalent strain. Afterwards, before damage is evaluated, the local
equivalent strains are replaced by their non-local counterpart. The integral
defined in Eq.(5.27) is evaluated numerically at each point xp as

τ̄(xp) = ∑
q

wq αpq τ(xq), (5.32)

where xq are the coordinates of the integration points, wq are coefficients rep-
resenting the weights of the chosen integration rule and αpq are the non-local
interaction weights between points p and q, defined as

αpq =
α0(dpq)

∑d wd α0(dpr)
. (5.33)

When a weight function α0 with a bounded support is chosen, as in Eq.(5.31),
αpq vanishes when the distance dpq between points p and q is greater than the
interaction radius R.

It is worth noting that in order for the non-local model to be effective, the
mesh elements’ size within the zone where the damage process occurs must
be smaller than the interaction radius R. In the lowest-order VEM formula-
tion, the computed strain field is constant over a generic mesh element, and
no integration weight actually exist. The approach herein adopted consist in
considering the centroid of each element as the evaluation point p (resp. q).
The corresponding weight is taken as the product of the area of the element p
(resp. q) and its thickness.
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Depending on the number of elements in the finite element model, the pro-
cess of searching neighbour integration points within the interaction domain
centred at a certain integration point, and subsequent computation of the non-
local interaction weights might be a computationally demanding task.

In order to decrease the computational cost, an efficient numerical imple-
mentation for non-local averaging can be built according to the following pro-
cedure whose steps are executed once for all points p:

• Find all points q whose distance from point p is smaller than R, and for
each of them evaluate apq = wpq α0(dpq);

• Compute the sum ap = ∑q apq;

• Divide each apq by ap and store the results āpq in a table where its posi-
tion is associated with points p and q.

The procedure outlined above is performed only once as a part of the ini-
tialization tasks before the beginning of the incremental-iterative solution of
the non-linear problem.

At each iteration, the non-local equivalent strain at a generic point p can
be straightforwardly computed as

τ̄(xp) = ∑
q

τ(xq) āpq (5.34)

where τ(xq) is the local equivalent strain at a generic point q within the inter-
action radius R and āpq is the corresponding entry in the non-local averaging
table.

5.2.3 Numerical examples

In this Section, the developed hybrid VE-BE formulation is assessed in the
non-linear framework of damage modelling. Three numerical applications
are considered. The first application consists in the so-called tension specimen
test [139] and aims to validate the non-linear virtual element formulation by
adopting the local regularisation technique recalled in Section 5.2.2.

In the second application, where a three-point bending test involving a
quasi-brittle concrete notched beam is considered, is meant to assess the accu-
racy of the non-linear virtual element formulation against cases available in
the literature by implementing an isotropic damage and the non-local regu-
larisation approach recalled in Section 5.2.2. The last application validates the
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same damage model by employing the hybrid VE-BE formulation. This test
considers a unit cell consisting of a circular elastic fibre in epoxy matrix where
partial debonding between fibre and matrix triggers damage onset and evolu-
tion. All the numerical experiments have been performed using an in-house
developed MATLAB code which addresses all the stages of the computations, as
well as pre- and post-processing tasks.

Tension specimen test

This numerical example simulates a case where a localisation is generated
by a non-uniform stress field. The specimen, whose geometry and boundary
conditions are shown in Fig.(5.7), has a central neck inducing localisation in
the zone with minor cross-section. The thickness of the specimen is t = 20
cm. Material parameters are Young’s modulus E = 20000 kp/cm2, Poisson’s
ratio ν = 0.2, tensile strength ft = 10 kp/cm2 and fracture energy per unit
area G f = 0.125 kp/cm. The threshold function τ is computed following
the definition in Eq.(5.10). The adopted damage law is the linear softening
law defined in Eq.(5.17). The initial damage threshold is set as r0 = ft

E and
the maximum admissible value r f is obtained, depending on the mesh size,
accordingly to Eq.(5.24), where hb is computed considering the projection of
mesh elements’ geometry on the horizontal axis.

Figure 5.7: Geometry and boundary conditions of the tension specimen test.

Numerical tests have been performed with different meshes to determine
convergence with mesh refinement and the regular/irregular mesh element
shapes’ influence. Specifically, two types of mesh are adopted. The first mesh
type consists of 8-node convex polygonal virtual element discretisations with
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different refinement levels, referred to as mesh C1, C2, C3 and C4. The second
mesh type, referred to as mesh NC4, consists of non-convex 8-node polygonal
virtual elements obtained by randomly perturbing the position of the nodes
of mesh C4. Both types of meshes are shown in Fig.(5.8).

(a) (b)

(c) (d)

(e)

Figure 5.8: Convex meshes of 8-nodes VEM elements for the three-point bend-
ing test. (a) mesh C1, (b) mesh C2, (c) mesh C3, (d) mesh C4 and (e) NC4.

Results are observed in terms of horizontal imposed displacements and
reaction forces. As reported in Fig.(5.9), convergence for progressive mesh-
refining is achieved for both types of meshes and both the original results
in Ref.[139] and more recent results in Ref.[68] are correctly replicated. As
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reported in Ref.[139], damage localises within the first rows of elements that
are closer to the central neck, as shown in Fig.(5.10) for mesh C4 and mesh
NC4.

0 0.01 0.02 0.03
·10−2

0

2500

5000

7500

Displacement [cm]

Fo
rc

e
[k

p]

C1
C2
C3
C4
NC4

Figure 5.9: Force-displacement diagram for the tension specimen test.

Three-point bending test

The three-point bending (TPB) test is considered a benchmark to validate
the implemented VEM for isotropic damage combined with an integral-type,
non-local regularisation technique. This numerical example investigates dam-
age initiation and evolution up to a notched concrete beam’s failure, where the
damage growth is dominated by mode I loading.

Geometry and boundary conditions for this problem are shown in Fig.(5.11).
The beam has square cross-section of side H = 100 mm and spans W =
450 mm. The notch is A = 5 mm wide and extends up to one half of the
beam height. These dimensions correspond to the experiments performed in
Ref.[105]. The material’s Young’s modulus is E = 20 000 MPa and the Pois-
son’s ratio is ν = 0.2. The law with exponential softening defined in Eq.(5.18)
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(a)

(b)

Figure 5.10: Damage profile of the tension specimen test: (a) mesh C4; (b)
mesh NC4.

is adopted to model damage evolution. The damage parameters are chosen
as in Ref.[97] as r0 = 9.0e−5 and r f = 7.0e−3. The threshold function τ is
computed following the definition of Mazars in Eq.(5.9) and the non-local in-
teraction radius is set to R = 4 mm. The tests have been performed, under
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plane strain assumptions, using three different meshes of polygonal elements
to determine convergence with mesh refinement. The two coarser meshes,
referred to as V1 and V2, contains 6072 and 8493 elements and are shown in
Fig.5.12. A further finer mesh, referred to as V3, is considered an over-kill
discretisation, and it contains 18546 polygonal elements.

Figure 5.11: Geometry and boundary conditions of the three-point bending
test.

The simulations are performed in displacement control using a Newton-
Raphson scheme. Results are observed in terms of force versus displacement
at the point where the vertical displacement is applied and compared with
experimental results from Ref.[105] and with numerical results from Ref.[97].
The computed force-displacement curves, the reference numerical solution
from Ref.[97] and the experimental bounds from Ref.[105] are depicted in
Fig.(5.13). They reveal good agreement with the experimental bounds for the
most part of the force-displacement diagram for all the considered discretisa-
tions. Comparison with the reference numerical solution obtained with full
integrated 4-node bilinear isoparametric elements and mesh size of 1.67 mm,
shows a better reproduction of the experimental data in the first part of the
softening branch. A slight underestimation of the computed load can be no-
ticed in the last part of the curve’s softening branch. This difference, already
noted in Ref.[68], where a similar numerical test with polygonal virtual ele-
ments has been performed, is likely due to the unstructured character of the
virtual element mesh with respect to the finite element reference mesh. The
evolution of the damage profile is shown in Fig.(5.14): damage originates at
the bottom of the notch and grows in a limited zone along the structure’s ver-
tical axis of symmetry.

The presented results validate the implemented VE isotropic damage model,
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which will be used in the next computational test.

(a)

(b)

Figure 5.12: Polygonal meshes used in the numerical simulation of the three-
point bending test: (a) mesh V1, (b) mesh V2.

Transverse failure of a composite fibre-reinforced unit cell

In the present Section, the hybrid virtual-boundary element formulation, com-
bined with an isotropic damage model for the regions modelled with virtual
elements, is used in the computational simulation of the damage evolution
under transverse tensile loading of a unit cell comprising a single fibre em-
bedded in an epoxy matrix, with initial partial debonding between fibre and
matrix. The study of such fibre-matrix system has been the subject of a con-
siderable number of studies [171, 143, 122, 169, 78].

The test case is shown in Fig.(5.15). In the initial configuration, it is as-
sumed that the circular fibre is debonded from the matrix in the interface re-
gion identified by |θd| ≤ 70◦, see Ref.[143]. Outside the debonded region, the
inclusion is perfectly bonded to the matrix. This test aims to simulate the pro-
gression into the matrix of the two kinked cracks that start from both ends of
the debonded zone, and this initial condition is assumed as no cohesive inter-
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Figure 5.13: Force-displacement diagram for the three-point bending test.
Comparison between the virtual element discretisations, the reference FEM
solution in Ref.[97] and experimental data in Ref.[105].

faces have been included so far in the model, which identifies a direction of
further development.

The fibre diameter is D = 0.025 mm, and the side length of the unit cell is
L = 0.2 mm, giving a corresponding volume fraction Vf = 0.0123. The centre
of the circle coincides with the centre of the square. The tensile loading is
applied by prescribing uniform displacements ū at the sample left and right
edges. Plane strain conditions are assumed. The fibre material is assumed
linear elastic, and it does not develop damage. The matrix material is treated
as linear elastic until the damage onset, governed by the loading function
in Eq.(5.14). The exponential damage evolution law in Eq.(5.18) is assumed,
with r0 = 1, r f = 234, according to strength and fracture toughness data
about epoxy, and R = D/3. The transverse elastic material parameters are
EF = 201 GPa and νF = 0.22 for the fibre and EM = 2.8 GPa and νM = 0.33 for
the matrix. The fracture toughness of the epoxy matrix is G f r = 0.09 N/mm.

To make the mesh consistent with the parameter assumed in the non-
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(a)

(b)

(c)

Figure 5.14: Damage profile evolution for the three-point bending test (mesh
V3).

local continuum damage model, the matrix region is discretised with 8047 2D
lowest-order virtual polygon elements, which induce 256 1D linear bound-
ary elements on the fibre-matrix interface, where conformal meshes are em-
ployed. The overall mesh is shown in Fig.(5.16). The simulations are per-
formed under displacement control using a Newton-Raphson with adaptive
load step to track the steep softening branch. The simulation is arrested at a
nominal macro-strain εx = 0.05. For each load increment, the plotted reaction
force is computed as the sum of the right edge’s nodal reaction forces.

Fig.(5.17) shows the load-displacement diagram; the identified labels cor-
respond to the damage profiles shown in Fig.(5.18). Linear elastic behaviour
is exhibited up to slightly before the point (a) in the curve, which marks the
initiation of damage at the ends of the debonded interface, where stress con-
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Figure 5.15: Geometry and boundary conditions of the composite unit cell
containing a circular fibre partially debonded from the matrix.

centration is expected. Once damage is activated, the two symmetric dam-
aged/failed region progress within the matrix, following a kinked path con-
sistent with the behaviour reported in Refs.[143, 63]. As the loading increases,
the material failure evolves, affecting regions oriented perpendicularly with
respect to the load direction up to the unit cell boundary, which causes a pro-
gressive decrease of the load-carrying capability identified by the softening
branch of the load-displacement diagram.
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Figure 5.16: The mesh adopted to simulate the transverse failure behaviour of
a composite unit cell with partial debonding.



120
Damage and fracture damage in heterogeneous materials via the hybrid

VEM-BEM approach

0 0.001 0.002 0.003 0.004 0.005
0

2

4

6

8

10

12

(a)

(b)

(c)

(d)

Displacement [mm]

Fo
rc

e
[N

]

Figure 5.17: Force-displacement diagram for the composite unit cell test under
tensile loading.
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Figure 5.18: Damage profile evolution for the composite unit cell under tensile
loading.



Conclusions

A computational framework for microstructural modelling of transverse be-
haviour of heterogeneous materials has been developed in this thesis. The
framework has been based on the lowest-order formulation of the Virtual El-
ement Method (VEM) and applied to computational homogenisation prob-
lems and failures analysis at the microscale of polycrystalline and unidirec-
tional fibre-reinforced composite materials. Several aspects of applying the
VEM formulation to microstructural material modelling have been investi-
gated and addressed in this work.

In the introductive Chapter (1), the still relevant interest within the field
of computation micromechanics for the development of computational tech-
niques capable of dealing with complex and evolving geometries and meshes
with accuracy, effectiveness, efficiency, and robustness has been reviewed in-
troducing VEM as the numerical technique chosen for this research work for
its peculiar features, the robust treatment of complex mesh features and sim-
plification of the analysis’s pre-processing stage, being among them.

The core features of VEM have been discussed in Chapter (2), where the
two-dimensional lowest order formulation for linear elasticity problems has
been reviewed. Stemming from the work performed for this thesis, some
practical aspects of VEM implementation have been discussed, highlighting
both its common feature and difference with a standard FEM implementation
with respect to mesh generation and handling and computational cost associ-
ated to the assembly of the system of equations.

In Chapter (3) an application of VEM for computational homogenisation
of composite and heterogeneous materials has been presented. The selected
applications have been focused on modelling the transverse mechanical be-
haviour of polycrystalline and unidirectional fibre-reinforced composite ma-
terials. The study has shown that VEM’s capability to deal with very gen-
eral polygonal mesh elements, including non-convex and highly distorted ele-
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ments, can be profitably exploited to relax the mesh quality requirements that
may hinder the automatic analysis of micro-morphologies presenting com-
plex or highly statistically varying features. This research activity has also
driven the development of a polygonal mesh generator for general multi-
region domains bounded with convex or non-convex boundaries, whose ro-
bustness has been proven in the discretisation of polycrystalline and compos-
ite microstructures.

In Chapter (4), a novel two-dimensional hybrid virtual-boundary element
formulation for the analysis of multi-region two-dimensional elastic problems
has been presented. The numerical tests performed on composite materials
with inclusions of complex shape have assessed the advantages of the pro-
posed formulation. The proposed method’s accuracy has been tested against
pure FEM and VEM solution of the same problem. The application of such
a novel formulation to the computational homogenisation problem of a com-
posite material with randomly distributed inclusions of complex shape is also
reported. With respect to standard FEM or VEM discretisation, beside a fur-
ther simplification pre-processing stage, the inherent reduction of the system’s
degrees of freedom has led to an appreciable decrease in the analysis’s com-
putational cost associated with the global system matrix assembly and the
system solution.

In Chapter (5), further applications of the proposed hybrid VEM-BEM for-
mulation for modelling damage phenomena in heterogeneous materials have
been presented. In the first part of this Chapter, it has been demonstrated how
the use of VEM within the framework of Linear Elastic Fracture Mechanics
can be extremely useful for simulation of crack propagation, as its inherent
flexibility concerning the shapes of the admissible elements can be fully ex-
ploited to avoid mesh-dependency of the computed crack propagation path.
Simultaneously, mesh topology modification can be restricted only to the el-
ements containing the crack tip node. In the second part of Chapter (5), the
proposed hybrid formulation has been extended to a non-linear framework
by adopting a constitutive law based on an isotropic damage model for the
VEM subdomain. The proposed application has concerned the analysis of
matrix degradation in a fibre-reinforced composite unit cell under progres-
sive loading by implementing a damage model combined with a non-local in-
tegral regularisation technique for the matrix phase modelled with VEM. The
FEM-like, straightforward VEM’s capability to include non-linear constitutive
models, combined with the use of BEM to model the linear elastic behaving
inclusion, has allowed an appreciable reduction of the degrees of freedom of
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the problem, thus reducing the computational cost associated with the global
system matrix assembly and the problem solution.

To conclude, it is worth highlighting some further investigation directions
that may be identified for the proposed framework.

Lowest-order VEM, k = 1, has been employed in this thesis. However,
higher-order virtual element formulations have been proposed in the litera-
ture [31, 34, 35]. Higher-order formulations are based on: i) the definition of a
local virtual element space, for trial and test functions, which contains the set
of all polynomial functions up to the selected degree k plus a set of additional
functions, whose explicit knowledge is never required for the construction of
the method; ii) the selection of a suitable set of degrees of freedom, grouped
into a set boundary degrees of freedom, associated to the element vertices and
to points lying on their edges, which maintain the physical meaning of dis-
placements, plus a set of internal degrees of freedom, which represents suitably
defined integrals, or moments, over the elements, of the functions belonging
to the local virtual element space. If the virtual element space and the degrees
of freedom are properly chosen, the projection operator, the stabilization term
and, therefore, the local stiffness matrix entries can be still computed with-
out the explicit knowledge of the unknown additional functions. However, as
shown in Ref. [13], the procedure for determining the above quantities within
higher-order formulations requires the numerical evaluation of integrals of
polynomial functions that require the use of suitable quadrature rules specific
to polygons [162, 134].

As an example, a VEM of order k = 2 would imply a quadratic approxi-
mation of the displacements over the edges of the virtual elements, expressed
in terms of nodal displacements associated with the vertices and to the mid-
points of the edges, which could be readily coupled with a quadratic formula-
tion of the boundary element model of the inclusions. The coupling between
higher-order virtual elements and higher-order boundary elements could be a
direction of further research and could lead to remarkable benefits in solution
accuracy.

An important caveat about the use of BEM is related to the fact that the
method induces non-symmetric and non-definite fully populated solving ma-
trices, see, e.g. Ref.[20]. As long as the number of elements used for mod-
elling each inclusion is limited, this does not require additional considera-
tion, and the potential of BEM in reducing the computational burden is pre-
served. However, should an inclusion need several hundred boundary ele-
ments, the presence of fully populated blocks in the solving systems could
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reduce the computation’s effectiveness and increase the computational costs.
These aspects could be mitigated and effectively addressed by using fast it-
erative solvers in conjunction with special matrix representations, e.g. fast
multipoles [112], or hierarchical matrices [29, 43, 51, 44].

Another aspect that needs to be addressed in the framework of BEM and
its coupling with VEM is the inclusions with sharp corners. The consideration
of such geometrical entities is generally known to be problematic in BEM due
to the non-unique definition of the normal at the corners. Some strategies to
address such an issue have been proposed in the literature [7, 82], consisting
in the employment of semi-discontinuous elements or hyper-singular traction
boundary integral equations, and their inclusion in the present framework
could be investigated in future studies.

Eventually, it is worth noting that the present technique has been hith-
erto developed only for two-dimensional problems. Although the considered
test cases allow highlighting the potential benefits of the proposed method,
2D models generally present strong limitations in the computation of the ef-
fective properties of real materials, as they often neglect important inherent
three-dimensional morphological or physical material features. In fact, while
in this work the scheme has been successfully employed to compute the trans-
verse elastic constants of composite laminae reinforced by unidirectional fi-
bres, it would not be possible to employ it to compute the in-plane properties,
or even the transverse properties, of laminates with general lay-ups, due to
the impossibility of rendering in a 2D scheme the inherent 3D morphological
features related to the mutual orientation of the fibres belonging to different
contiguous laminae.

For such reasons, an interesting direction of further research could be re-
lated to the extension of the proposed scheme to three-dimensional problems.
In the literature, three-dimensional formulations have been developed both
for VEM and BEM, see, e.g. Refs.[77, 7]. The coupling between the two tech-
niques in the 3D case could be readily applied, for example, to the computa-
tional homogenisation of polycrystalline materials, which has been success-
fully addressed separately both with VEM [124] and BEM [46, 45, 83, 48], both
in the case of linear and non-linear material behaviour. Polycrystals represent
another class of materials for which three-dimensional effects, related to the
mutual orientation of the crystallographic lattices of different grains in the 3D
space, play an essential role in determining the macroscopic effective proper-
ties.

Eventually, the extension of the present virtual-boundary element frame-
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work to the analysis of multi-phase microstructures exhibiting general non-
linear behaviours, along the lines discussed above, and the analysis of three-
dimensional micro-morphologies and a comprehensive investigation about
the computational advantages offered by the framework, can form the object
of further investigations.
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