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Università degli Studi di Palermo, and CNISM, Unità di Palermo - Palermo, Italy
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Abstract – This letter focuses on open challenges in the fields of environmental data analysis
and ecological complex systems. It highlights relations between research problems in stochastic
population dynamics, machine learning and big data research, and statistical physics. Recent and
current developments in statistical modeling of spatiotemporal data and in population dynamics
are briefly reviewed. The presentation emphasizes stochastic fluctuations, including their statisti-
cal representation, data-based estimation, prediction, and impact on the physics of the underlying
systems. Guided by the common thread of stochasticity, a deeper and improved understanding
of environmental processes and ecosystems can be achieved by forging stronger interdisciplinary
connections between statistical physics, spatiotemporal data modeling, and ecology.
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Introduction. – Current research in environmental
and ecological complex systems faces two important chal-
lenges: i) a growing need to identify and understand
general mechanisms that underlie the effects of environ-
mental noise on population dynamics [1–4]; ii) the abil-
ity to process and model a plethora of data pertaining
to various aspects of environmental, climate and ecolog-
ical processes [5–8]. Such data are being gathered by
means of ground-based stations, sensor networks, and
remote-sensing instruments. In contrast with the past
when environmental data were scarce and relatively in-
accessible, to date there is an overwhelming amount of
Earth observation data. These are characterized by com-
plex spatiotemporal (ST) dependences, high volume (large
size), high speed (time series of satellite images), high di-
mensionality (multiple sources/spectral bands, etc.), high
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uncertainty (due to measurement and registration errors),
non-repeatability (due to non-stationary evolution) [9,10].
In addition, the data often include spatial or temporal
gaps.

Modeling complex environmental data and the dynam-
ics of ecological complex systems poses new challenges.
Statistical physics can help to address these challenges
by: i) providing physically inspired tools for statistical
modeling, ii) elucidating through theoretical models the
underlying physical processes, and iii) improving our un-
derstanding of the role of environmental noise.

Stochastic components are important in environmen-
tal and ecological modeling. Stochastic signals are of-
ten referred to as “noise” in statistical physics. However,
it should be mentioned that “noise” involves correlated
(colored), in addition to uncorrelated (white) fluctua-
tions. The presence of correlations, short- or long-ranged,
contains important physical information which can be
used to characterize, simulate and predict the underlying
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processes. In addition, the combination of stochastic
fluctuations with nonlinear dynamics has significant im-
pact on the climate, the quality of the environment,
and the availability of natural resources [11–18]. Ac-
curate statistical physics models of the fluctuations and
understanding of their interplay with nonlinearity are
thus crucial for prediction/forecasting. In ecological sys-
tems the noise is generated by the continuous and inex-
orable presence of random fluctuations originating in the
environment [19–21]. Consequently, the dynamics of com-
munities, genetics, and epidemics should be described by
means of stochastic approaches with multiplicative noise
sources [1,2,22–24]. In particular, stochastic fluctuations
give rise to phenomena that cannot be explained in the
context of deterministic approaches which treat noise as
mere nuisance [25–27]. For example, in gene expression
stochasticity helps cells adapt to fluctuating environments
and respond to sudden stresses. It also contributes to
establishing population heterogeneity during cellular dif-
ferentiation and development [28–32]. Noise can also in-
duce heterogeneity in the fate of cells through adaptation
mechanisms. Indeed, the presence of noise can change
fundamentally the physics of the system. Thus, it is not
surprising that the study of noise in biological and ecolog-
ical systems has emerged as a “hot” research topic in the
last few years [33–40].

The aim of this letter is to review current research
and to draw the interest of physicists in open research
challenges originating in ecological complex systems and
environmental data modeling [17,41–51]. Such challenges
involve questions related to stochastic dynamic models for
ecological systems, and data analysis models which can
provide detailed information regarding the intrinsic fea-
tures of environmental and ecological systems. The advent
of big environmental and Earth observation data presents
many challenges and opportunities for physicists, because
the analysis of such data can benefit from physical under-
standing of the underlying processes.

The paper is organized in two sections: i) “Statistical
models for spatiotemporal data”; ii) “Stochastic model-
ing of population dynamics”. In the first section we focus
on three topics: flexible mathematical framework, regres-
sion, and physical understanding. In the second, we fo-
cus on recent advances in noisy non-equilibrium processes
useful for describing the complex dynamics of ecological
systems through three main topics: population dynam-
ics, spatially extended systems, and non-Gaussian noise
sources.

Due to lack of space the list of topics is highly biased
and the discussion is non-mathematical.

Statistical models for spatiotemporal data. – In
this section we focus on statistical models and methods in-
spired by physics which can be used to represent and ana-
lyze environmental, climate and ecological (henceforward,
environmental for brevity) data. Typical tasks of sta-
tistical modeling involve model construction, parameter

inference, model selection (if more than one model are
considered), and prediction. The latter may involve in-
terpolation (filling of spatial or temporal gaps within the
data domain), extrapolation (prediction outside the spa-
tial domain of the data), or forecasting (prediction at fu-
ture times). The probabilistic framework is ideally suited
for the development of flexible and accurate models, given
the omnipresence of stochastic fluctuations and the data
features discussed in the Introduction [6,17,52–54].

Random fields. Environmental data are distributed
over spatial domains of varying size and span different
time periods. Hence, suitable statistical models should in-
clude both space and time dependence. In addition, they
should account for the inherent uncertainty of the data
and the a priori unknown complex variability of the gen-
erating process. A space-time random field {X(s, t, ω):
s ∈ D ⊂ R

d, t ∈ T ⊂ R}, where s denotes the spatial
position in the domain D and t the time instant in the in-
terval T , is a scalar, real-valued random function defined
on a probability space (Ω, F, P); Ω is the sample space,
F is the σ-field of subspaces of Ω, and P is a probability
measure [55].

Random fields were introduced in fluid turbulence stud-
ies by Kolmogorov and his students. Due to their
flexible space-time (ST) dependence, random fields are
widely used in various disciplines including statistical field
theory, hydrology, and ST data modeling, among oth-
ers [11,15,17,52–54,56,57].

The construction of Gaussian random fields follows dif-
ferent paths in statistical physics and in statistics: in the
former the field is often formulated in the Boltzmann-
Gibbs (B-G) representation by means of a suitable energy
function, while in the latter the field is defined in terms of
its expectation (mean) and covariance function. The B-G
framework provides sparse representation and computa-
tional speed for lattice data, e.g., [58,59]. These advan-
tages stem from explicit expressions which can be obtained
for the precision (inverse covariance) matrix. On regu-
lar grids the B-G representation leads to Gauss-Markov
random fields [60–62]. On the other hand, in continuum
systems the B-G representation gives rise to Gaussian
field theories [57,63,64]. If the latter admit closed-form
solutions, they can lead to new spatial covariance func-
tions, e.g., [65,66]. However, space-time field theories
do not yield easily explicit expressions for the covariance
function [67].

Random field theory provides a powerful toolbox for the
interpolation, forecasting and simulation of complex ST
processes. The best linear unbiased predictor (BLUP), also
known as kriging, is the key tool for prediction purposes.
The predictive equations at an unobserved ST point re-
quire solving an N ×N linear system (where N is the num-
ber of data) which involves the field’s covariance function.
The computational time required for solving such sys-
tems with dense covariance matrices scales as O(N3) and
the memory storage requirements as O(N2) [17,53,68,69].
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Hence, approximations or different approaches are neces-
sary in order to handle large datasets.

Open research questions of relevance to statistical
physics include the following: 1) The development of ST
covariance functions which are not only mathematically
permissible but also physically meaningful, e.g., [54,67,
70–72]. 2) New interpolation and simulation approaches
for big datasets that reduce the computational cost, e.g.,
methods based on sparse precision matrices [42,44,59].
3) The construction of more flexible B-G random fields for
continuum and lattice spaces. 4) Novel, computationally
tractable models for non-Gaussian dependence. For ex-
ample, one possibility is offered by using the kappa expo-
nential and logarithm functions [73] to derive κ-lognormal
random (KLN) fields by transforming a latent Gaussian
random field [17]. These modified lognormal fields have a
probability density function (pdf) whose right tail is lighter
than the lognormal’s and its decay is controlled by the κ

parameter. A κ-deformed Weibull marginal pdf [74] has
been successfully applied to fit the long (power-law) tail of
earthquake recurrence times data [75] and Covid-19 mor-
tality data [76]. A joint pdf generalizing the κ-Weibull
marginal for joint “many-body” dependence correlations
would be a welcome addition. The topics outlined above
are also pertinent for machine learning (see below).

Machine learning (ML) and Gaussian processes (GPs).
ML research has captured the interest of physicists [15,69,
77,78]. ML methods can “learn” from the data almost au-
tomatically (i.e., with minimal or no interaction with the
modeler) and easily adapt (generalize) to new data. Such
features are very appealing in the era of big data. ML
methods can successfully perform complex classification
tasks, and they also provide new methods for the solu-
tion of partial differential equations that represent physi-
cal processes [78–80].

Gaussian processes generalize Gaussian random fields;
they represent functions Φ(x; ω), where x ∈ R

D is an in-
put vector in a D-dimensional space, not necessarily re-
stricted to the space-time domain. GP regression (GPR)
is an ML procedure which provides an optimal estimate
of the output variable y∗ = Φ(x∗; ω) based on a set of
input vectors and their respective outputs {xn, yn}N

n=1,
where x∗ �= xn, ∀n = 1, . . . , N . GPR predictive equa-
tions are similar to BLUP. The main difference is that
the ST covariance used in BLUP is replaced by a kernel
function in GPR; the latter measures output correlations
in terms of the distance between the input vectors. The
Bayesian framework allows including informed (non-flat)
prior guesses for GP parameters. Hence, the mathemat-
ical machinery developed for random fields carries over
nicely to GPs. Open research questions for random fields
are also pertinent for GPs. In particular, the development
of scalable GP models that can handle massive data is a
current priority [45,81–84]. Sparse GPs are approxima-
tions which can improve the computational cost of GPs
to O(N2M) and the memory requirements to O(NM),

where M < N [85,86]. A somewhat different approach
is the development of sparse GPs based on local inverse
covariance (precision) operators [17,44,66].

Neural networks (NN). NN are popular ML tools for
classification and regression tasks. NN are thus ideal can-
didates for environmental data modeling. For example, a
GP regression network applied to ground pollution data
gave improved statistical validation measures compared to
other methods [87]. Strong links exist between NN and GP
(and therefore random fields), which are little known out-
side the ML community. For example, it has been shown
that single-layer, feed-forward Bayesian NN with an infi-
nite number of hidden units (i.e., an infinitely wide NN)
and independent, identically distributed priors over the
parameters are equivalent to GPs [88]. The kernel (co-
variance function) of the equivalent GP can be obtained
in closed form in this case [17,69]. More recently, it was
also shown [43,89] that deep, infinitely wide NN are also
equivalent to GPs. A computationally efficient recipe for
computing the GP covariance corresponding to wide neu-
ral networks with a finite number of layers was formulated,
and NN accuracy was found to approach the respective
GP’s accuracy with increasing layer width. Another recent
contribution shows that the output of a (residual) convo-
lutional NN with an appropriate prior over the weights
and biases is equivalent to a GP in the limit of infinite
depth, and that the equivalent kernel can be computed
exactly [90].

ML applications in environmental data modeling will
multiply in coming years. Harnessing connections between
ML, statistical physics and statistical learning will lead to
new advances in all of these fields.

Stochastic modeling of population dynamics. –

This section focuses on non-equilibrium processes used
to describe the complex dynamics of ecological systems
through three main topics: population dynamics, spa-
tially extended systems, and non-Gaussian noise sources.
Indeed, the investigation of stochastic nonlinear effects
in various fields of life sciences [91–95], interdisciplinary
physics [96,97], and condensed matter [98,99] strongly at-
tracts the attention of researchers. The interplay between
the nonlinearity of living systems and the environmen-
tal noise can give rise to new counterintuitive phenomena
such as noise-induced phase transitions [19,100–103],
stochastic and coherence resonance [25,104], stochas-
tic resonance activation [99,105,106], noise-enhanced
stability [92,107–113], noise-induced excitability and syn-
chronization [114], transition from order to chaos [115],
noise-induced transport [116,117], and stochastic pat-
tern formation [106,118–120]. The characterization of
the resulting spatiotemporal patterns and spatial orga-
nization is key to the analysis of ecological time series
and the modeling of ecosystem dynamics [47]. Such
phenomena are also actively studied in neuron mod-
els [121]. Moreover, qualitative transformations and eco-
logical shifts caused by random fluctuations, similar to
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phase transitions, were also found in population systems
[36,46,95,119,122].

Population dynamics. Population dynamics is a spe-
cific branch of the dynamics of complex ecological systems,
which can be considered as a foundational subfield of non-
equilibrium statistical physics. Recently, population dy-
namics has become a crucial tool for investigating the
fundamental puzzle of the emergence and stabilization of
biodiversity [123]. Ecological complex systems are open,
subject to random environmental perturbations, and in-
volve nonlinear interactions between constituent parts.
These systems are very sensitive to the initial condi-
tions, deterministic external perturbations and random
fluctuations. The study of far-from-equilibrium stochas-
tic processes is crucial for modeling ecological dynamics
and understanding the mechanisms which govern the spa-
tiotemporal dynamics of ecosystems, see ref. [47]. Even
low-dimensional systems exhibit a huge variety of noise-
driven phenomena, ranging from less to more ordered sys-
tem dynamics [47,50,51,124,125].

In systems of interacting populations, even small ran-
dom disturbances can cause opposite effects, such as
extinction or explosive population growth. The identi-
fication of general laws governing such stochastic phe-
nomena and the development of constructive methods for
their mathematical modeling and analysis are important
tasks. The diverse and complex behavior of population
systems is associated with the nonlinear nature of inter-
acting biological factors: limited ecological niche, age and
gender differences, dependence of fertility on population
size, interactions with other populations, and environmen-
tal influences [126].

Random environmental fluctuations represent a major
source of risk for wild populations. Hence, identifying
general mechanisms linking global environmental changes
with population dynamics is an important topic of re-
search. In connection to this, there is an urgent need to
understand and predict the temporal and spatial autocor-
relation patterns of environmental noise.

Reference [1] shows experimentally that the environ-
mental autocorrelation has significant impact on popula-
tion dynamics and extinction rates, and the latter can be
accurately predicted if the memory of the past environ-
ment is accounted for. The experiment exposed nearly
1000 lines of the microalgae Dunaliella salina to ran-
domly fluctuating salinity, with autocorrelation ranging
from negative to strongly positive values. The authors
observed lower population growth and greater extinction
rates for the lower autocorrelation values, thus demon-
strating that non-genetic inheritance is potentially a ma-
jor driver of population dynamics in randomly fluctuating
environments.

Spatially extended systems. Stochastic population dy-
namics models in spatially extended systems demon-
strate the crucial role of noise and correlations in
biological systems [123]. Theoretical approaches typical

of non-equilibrium statistical physics capture the noisy ki-
netics of complex many-body biological systems and have
led to unexpected new and intriguing behavior in sim-
ple paradigmatic model systems. This behavior ranges
from persistent population oscillations stabilized by in-
trinsic noise and strong renormalization of the associated
kinetic parameters induced by correlations to the emer-
gence of continuous out-of-equilibrium phase transitions,
as well as the spontaneous formation of rich spatiotem-
poral patterns. The spatial degrees of freedom can dras-
tically extend extinction times through the emergence of
noise-stabilized structures, and hence promote ecological
stability and species diversity. For example, spatially ex-
tended predator-prey systems display noise-stabilized ac-
tivity fronts that generate persistent correlations, so that
the critical steady-state and non-equilibrium relaxation
dynamics at the predator extinction threshold are gov-
erned by the directed percolation universality class [123].
Ecosystems display complex spatial organization. How-
ever, spatial models still present several open problems,
thus limiting the quantitative understanding of spatial bio-
diversity and different time scales. Indeed, the connec-
tion between spatially extended ecological models and the
physics of non-equilibrium phase transitions represents an
open problem of paramount importance. In this context,
translating concepts developed in statistical physics into
language and tools applicable to population dynamics is
crucial for progress [123,127]. Moreover, changes of ex-
ternal conditions strongly influence the dynamics and the
organization of biological systems. In fact, the character-
istic timescales of environmental variations as well as their
correlations play a fundamental role in how living systems
adapt and respond to the variability of environmental pa-
rameters. Relevant questions include the stationary pop-
ulation density and the role of random fluctuations on the
extinction dynamics within an ecosystem [24].

The crucial role of random fluctuations is evident in
cell biology. It is known that the presence of noise in
intracellular processes can limit the performance of cells
by preventing optimal concentration of the cell’s molecu-
lar components. In contrast, noise can be used to create
diversity in a clonal population, providing the basis for
bet-hedging strategies in fluctuating environments. As a
result, noise optimization can lead to substantial selective
forces acting on genome evolution [128].

Non-Gaussian noise sources. Experimental popula-
tion dynamics data sampled in natural systems are in
general modeled as multiplicative white Gaussian noise
[23,129]. Aiming to provide a more realistic description
of stochastic dynamics of natural systems, some recent
works investigate intrinsically non-Gaussian noise signals,
characterized by sudden random variations [130]. In par-
ticular, the environmental fluctuations were modeled by
using the archetypical pulse noise source, i.e., a sequence
of rectangular pulses with the following properties: i) fixed
width; ii) height h distributed according to a certain
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probability function wh; iii) times t of occurrence dis-
tributed according to a certain probability function wt.
The impact of a pulse noise source, modeled as Poisson
white noise, on population dynamics was studied in [131].
More recently, the stability conditions for the dynamics
of termite populations have been investigated in the pres-
ence of a noise source with different statistical properties,
ranging from sub- to super-Poisson process, in two differ-
ent cases: i) positive-defined pulses; ii) negative-defined
pulses [130]. The effect of noise correlations has been
evaluated by means of a stochastic differential equation
with a noise source modeled as a renewal process with
suitable statistics. This work extended previous studies
(see ref. [130] and references therein), in which the sta-
bility properties of such a model were investigated in the
presence of a multiplicative, positive-defined, sub-Poisson
pulse process.

This Perspective paper poses as an urgent open problem
the development of new and effective tools for describing
and modeling the dynamics that underlie environmental
and biological data. This requires theoretical approaches
in which non-equilibrium statistical physics and stochastic
processes play a key role in the construction of realistic
and effective models, which can capture the intrinsically
nonlinear and noisy dynamics of natural systems.

Concluding remarks. – This letter highlights the in-
terdisciplinary links between the analysis of environmental
data and their modeling through statistical physics and
machine learning. These topics are linked by the com-
mon need for modeling and predicting the spatiotemporal
patterns of the inescapable stochastic fluctuations (noise).

While the focus is on environmental data, statistical
physics and theoretical ecology, the topics covered herein
are of interest to researchers who work in the fields of
population dynamics, space-time epidemiology, geogra-
phy, hydrology, and renewable energy resources.

Non-equilibrium and equilibrium statistical physics rep-
resent the main theoretical tools for modeling and fore-
casting environmental processes. They can lead to
new methods for analyzing and reproducing the dynam-
ics underlying experimental data and field observations
[132–135]. We also expect such new theoretical approaches
originating in non-equilibrium statistical physics to be-
come a driving force for new experiments. The interdisci-
plinary cross-fertilization between statistical physics and
ecology will become increasingly important in the future,
as statistical physics is a fundamental tool suitable for a
deeper understanding and quantitative description of the
organization and functioning of ecosystems.
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Mod. Phys., 79 (2007) 829.

[22] Vilar J. M. G. and Solé R. V., Phys. Rev. Lett., 80
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