Derivations of a ($n, 2,1$)-nilpotent Lie algebra. ${ }^{* \dagger \ddagger}$

C. G. Bartolone, A. Di Bartolo, G. Falcone ${ }^{\S}$

June 3, 2013

Abstract

1 Introduction

The most simple (non-abelian) Lie algebras are the generalized Heisenberg Lie algebras, defined on a $(n+1)$-dimensional vector space $\mathfrak{h}=V \oplus\langle z\rangle$ by a non-degenerate alternating form F on the n-dimensional sub-space V (n even) putting, for any $u, v \in V$, $[u, v]=F(u, v) z$.

In this case, there exist bases z of $\mathfrak{h}^{\prime}=\mathfrak{z},\left\{v_{1}, \ldots, v_{\frac{n}{2}}\right\}$ of \mathfrak{v} and $\left\{w_{1}, \ldots, w_{\frac{n}{2}}\right\}$ of \mathfrak{w} such that and, for $i, j \geq 1,\left[v_{i}, w_{j}\right]=\delta_{i j} z$.

Complex metabelian $(n+2)$-dimensional Lie algebra $\mathfrak{h}=V \oplus\left\langle z_{1}, z_{2}\right\rangle$ defined by a pair of alternating form F_{1}, F_{2} on V putting, for any $u, v \in V,[u, v]=F_{1}(u, v) z_{1}+$ $F_{2}(u, v) z_{2}$ have been classified firstly by Gauger [4], applying the canonical reduction of the pair F_{1}, F_{2}. More recently [2] Belitskii, Lipyanski and Sergeichuk showed that the case of a $(n+3)$-dimensional Lie algebra defined by a triple of alternating form F_{1}, F_{2}, F_{3} on V putting $[u, v]=F_{1}(u, v) z_{1}+F_{2}(u, v) z_{2}+F_{3}(u, v) z_{3}$, for any $u, v \in V$, is hard.

In [1] we have shown that the same argument as in [4] is effective also in the case where the centre of is one-dimensional and the commutator ideal is two-dimensional. It turns out that, while the structure of \mathfrak{h} depends on the field K if \mathfrak{h}^{\prime} is central, it is independent of K if \mathfrak{h}^{\prime} is non-central and is uniquely determined by the dimension of \mathfrak{h}.

In this case, the nilpotent Lie K-algebra \mathfrak{h} of ($n, 2,1$)-type with $n<2|K|$ and 1-dimensional centre \mathfrak{z} decomposes, as a vector space, into $\mathfrak{h}=\mathfrak{h}_{0} \oplus \mathfrak{v} \oplus \mathfrak{w}$ where

[^0]$\mathfrak{h}_{0}=\left\{\begin{array}{l}\left\langle z, v_{0}, v_{1}, w_{1}\right\rangle \text { if } n \text { is even } \\ \left\langle z, v_{0}, v_{1}, w_{1}, w_{0}\right\rangle \text { if } n \text { is odd }\end{array}, \mathfrak{v}\right.$ and \mathfrak{w} are Abelian subalgebras of \mathfrak{h}. More precisely, we have:

1) if n is odd, then there exist bases z, v_{0} of \mathfrak{h}^{\prime} with $z \in \mathfrak{z},\left\{v_{2}, \ldots, v_{\frac{n-1}{2}}\right\}$ of \mathfrak{v} and $\left\{w_{2}, \ldots, w_{\frac{n-1}{2}}\right\}$ of \mathfrak{w} such that and, for $i, j \geq 0,\left[v_{i}, w_{j}\right]=\delta_{i j} z$, excepting $\left[v_{1}, w_{0}\right]=z+v_{0}$.
2) if n is even, then there exist bases z, v_{0} of \mathfrak{h} with $z \in \mathfrak{z},\left\{v_{2}, \ldots, v_{\frac{n}{2}}\right\}$ of \mathfrak{v} and $\left\{w_{2}, \ldots, w_{\frac{n}{2}}\right\}$ of \mathfrak{w} such that $\left[v_{0}, w_{1}\right]=z$ and, for $i, j \geq 1,\left[v_{i}, w_{j}\right]=\delta_{i j} z$, excepting $\left[v_{1}, w_{1}\right]=z+v_{0}$.

In the present paper we consider the algebra of derivations ∂ of \mathfrak{h} and determine a Borel subalgebra. Since any derivation ∂ of \mathfrak{h} belongs to a Borel subalgebra, this allows us to give a classification of solvable $(n+3)$-dimensional complex Lie algebras, having \mathfrak{h} as an ideal of co-dimension one.

These fall into two classes, namely the algebraic and the non-algebraic ones. The non-algebraic Lie algebras are solvable non-nilpotent such that the outer derivation ∂ is neither semi-simple nor nilpotent.

The algebraic Lie algebras can be nilpotent or not, according to the case that we take a nilpotent derivation ∂ or a semi-simple one. In the first case, we obtain a complete classification considering the possible rank of ∂. In the second case, one has a precise description of the possible cases.

It turns out that, fon n even, the algebra of derivations can represented, with respect to the basis $\left\{z, v_{0}, v_{1}, w_{1} ; v_{2}, \ldots, v_{\frac{n}{2}} ; w_{2}, \ldots, w_{\frac{n}{2}}\right\}$ by the set of matrices of type

$$
\left(\begin{array}{cccc|c|c}
a_{33}+2 a_{44} & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{32} & a_{33}+a_{44} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{31} & a_{32} & a_{33} & 0 & \mathbf{0} & \mathbf{0} \\
a_{41} & a_{42} & a_{43} & a_{44} & \mathbf{u}_{1} & \mathbf{u}_{2} \\
\hline \mathbf{u}_{3}^{\prime} & -\mathbf{u}_{2}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & A & B \\
\hline \mathbf{u}_{4}^{\prime} & \mathbf{u}_{1}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & C & \left(a_{33}+2 a_{44}\right) I-A^{\prime}
\end{array}\right)
$$

with B, C symmetric.
The algebra of inner derivations can represented by the set of matrices of type

$$
\left(\begin{array}{cccc|c|c}
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{32} & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
0 & a_{32} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{41} & a_{42} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{u}_{3}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{u}_{4}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

hence, up to an inner derivation, a derivation can represented, by the matrix

$$
\left(\begin{array}{cccc|c|c}
a_{33}+2 a_{44} & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
0 & a_{33}+a_{44} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{31} & 0 & a_{33} & 0 & \mathbf{0} & \mathbf{0} \\
0 & 0 & a_{43} & a_{44} & \mathbf{u}_{1} & \mathbf{u}_{2} \\
\hline 0^{\prime} & -\mathbf{u}_{2}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & A & B \\
\hline 0^{\prime} & \mathbf{u}_{1}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & C & \left(a_{33}+2 a_{44}\right) I-A^{\prime}
\end{array}\right)
$$

with B, C symmetric.
Among the diagonal ones, we find matrices with mutually different eigenvalues, hence a flag of invariant subspaces for a maximal toral subalgebra containing the diagonal matrices is built by coordinate subspaces. Thus, the diagonal matrices of the above kind give a maximal toral subalgebra. It turns out that the ideal I generated by $\left\{z, v_{0}, v_{1}, v_{2}, \ldots, v_{\frac{n}{2}}\right\}$ is invariant for a Borel subalgebra containing the diagonal matrices of the above kind. In fact, let W be the $\frac{n}{2}+2$-dimensional invariant ideal in a flag of such a Borel subalgebra. If W is not the ideal I, then consider the $\frac{n}{2}+1$-dimensional invariant subspace S in the flag. The shape of a derivation shows that S cannot contain w_{i}, for any $0 \leq i \leq \frac{n}{2}$. Consequently S is contained in the ideal I. Since the ideal generated by $\left\{z, v_{0}, v_{1}\right\}$ is invariant under any derivation, we conclude anyway that I is a $\frac{n}{2}+2$-dimensional invariant ideal of a Borel subalgebra containing the diagonal matrices. Therefore we can take $B=0$, that is, a Borel subalgebra containing the maximal toral subalgebra of diagonal derivations is given by the derivations of the kind

$$
\left(\begin{array}{cccc|c|c}
a_{33}+2 a_{44} & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{32} & a_{33}+a_{44} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{31} & a_{32} & a_{33} & 0 & \mathbf{0} & \mathbf{0} \\
a_{41} & a_{42} & a_{43} & a_{44} & \mathbf{u}_{1} & \mathbf{u}_{2} \\
\hline \mathbf{u}_{3}^{\prime} & -\mathbf{u}_{2}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & A & \mathbf{0} \\
\hline \mathbf{u}_{4}^{\prime} & \mathbf{u}_{1}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & C & \left(a_{33}+2 a_{44}\right) I-A^{\prime}
\end{array}\right)
$$

with C symmetric. Since two Borel subalgebras are conjugated by an inner automorphism exp ad $y=\operatorname{Ad} \exp y$ and $\operatorname{Ad} \exp y$ acts by matrix conjugation, a Borel subalgebra can be taken in the above form.

The solvable radical is given by the set of matrices

$$
\left(\begin{array}{cccc|c|c}
a_{33}+2 a_{44} & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{32} & a_{33}+a_{44} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
a_{31} & a_{32} & a_{33} & 0 & \mathbf{0} & \mathbf{0} \\
a_{41} & a_{42} & a_{43} & a_{44} & \mathbf{u}_{1} & \mathbf{u}_{2} \\
\hline \mathbf{u}_{3}^{\prime} & -\mathbf{u}_{2}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & A & \mathbf{0} \\
\hline \mathbf{u}_{4}^{\prime} & \mathbf{u}_{1}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0} & \left(a_{33}+2 a_{44}\right) I-A^{\prime}
\end{array}\right)
$$

with A diagonal, and a Levi complement by the set of matrices

$$
\left(\begin{array}{cccc|c|c}
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & A & B \\
\hline \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & C & -A^{\prime}
\end{array}\right)
$$

with B, C symmetric, that is, the symplectic Lie algebra $\mathfrak{s p}$.
Fon n odd, the algebra of derivations can represented, with respect to the basis $\left\{z, v_{0}, v_{1}, w_{1}, w_{0} ; v_{2}, \ldots, v_{\frac{n}{2}} ; w_{2}, \ldots, w_{\frac{n}{2}}\right\}$ by the set of matrices of type
$\left(\begin{array}{ccccc|c|c}a_{44}+2 a_{55} & 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\ a_{42}-a_{53} & a_{44}+a_{55} & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \\ a_{31} & a_{32} & 2 a_{55} & 0 & 0 & \mathbf{0} & \mathbf{0} \\ a_{41} & a_{42} & a_{43} & a_{44} & 0 & \mathbf{u}_{1} & \mathbf{u}_{2} \\ a_{51} & a_{52} & a_{53} & -a_{32} & a_{55} & \mathbf{u}_{3} & \mathbf{u}_{4} \\ \hline \mathbf{u}_{5}^{\prime} & \mathbf{u}_{4}^{\prime} & -\mathbf{u}_{2}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & A & B \\ \hline \mathbf{u}_{6}^{\prime} & -\mathbf{u}_{3}^{\prime} & \mathbf{u}_{1}^{\prime} & \mathbf{0}^{\prime} & \mathbf{0}^{\prime} & C & \left(a_{44}+2 a_{55}\right) I-A^{\prime}\end{array}\right)$
with B, C symmetric. The structure of the algebra of derivations can be deduced from the case of n even.

References

[1] C. Bartolone, A. Di Bartolo, G. Falcone, Nilpotent Lie algebras with 2dimensional commutator ideals, Linear Algebra Appl. 434 (2011) 650656.
[2] G. Belitskii, R. Lipyanski, V.V. Sergeichuk, Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild, Linear Algebra Appl. 407 (2005) 249262.
[3] Di Bartolo A., Falcone G., Plaumann P., Strambach K., Algebraic groups and Lie Groups with few factors, Lecture Notes Math. 1944, Springer-Verlag (2008).
[4] M. Gauger, On the classification of metabelian Lie algebras, Trans. Amer. Math. Soc. 179 (1973) 293329.
[5] Rosenlicht M., Generalized Jacobian varieties, Ann. Math. 59, pp. 505-530, 1954.

[^0]: *Supported by IRSES and Università di Palermo, ex 60%
 ${ }^{\dagger}$ AMS MSC: 17B05, 17B30; 15A63
 ${ }^{\ddagger}$ Keywords: Nilpotent Lie algebras, Lie groups.
 ${ }^{\S}$ Corresponding author

