Derivations of a (n, 2, 1)-nilpotent Lie algebra. *^{†‡}

C. G. Bartolone, A. Di Bartolo, G. Falcone[§]

June 3, 2013

Abstract

1 Introduction

The most simple (non-abelian) Lie algebras are the generalized Heisenberg Lie algebras, defined on a (n + 1)-dimensional vector space $\mathfrak{h} = V \oplus \langle z \rangle$ by a non-degenerate alternating form F on the *n*-dimensional sub-space V (*n* even) putting, for any $u, v \in V$, [u, v] = F(u, v)z.

In this case, there exist bases z of $\mathfrak{h}' = \mathfrak{z}$, $\{v_1, \ldots, v_{\frac{n}{2}}\}$ of \mathfrak{v} and $\{w_1, \ldots, w_{\frac{n}{2}}\}$ of \mathfrak{w} such that and, for $i, j \ge 1$, $[v_i, w_j] = \delta_{ij} z$.

Complex metabelian (n + 2)-dimensional Lie algebra $\mathfrak{h} = V \oplus \langle z_1, z_2 \rangle$ defined by a pair of alternating form F_1, F_2 on V putting, for any $u, v \in V$, $[u, v] = F_1(u, v)z_1 + F_2(u, v)z_2$ have been classified firstly by Gauger [4], applying the canonical reduction of the pair F_1, F_2 . More recently [2] Belitskii, Lipyanski and Sergeichuk showed that the case of a (n + 3)-dimensional Lie algebra defined by a triple of alternating form F_1, F_2, F_3 on V putting $[u, v] = F_1(u, v)z_1 + F_2(u, v)z_2 + F_3(u, v)z_3$, for any $u, v \in V$, is hard.

In [1] we have shown that the same argument as in [4] is effective also in the case where the centre of is one-dimensional and the commutator ideal is two-dimensional. It turns out that, while the structure of \mathfrak{h} depends on the field K if \mathfrak{h}' is central, it is independent of K if \mathfrak{h}' is non-central and is uniquely determined by the dimension of \mathfrak{h} .

In this case, the nilpotent Lie K-algebra \mathfrak{h} of (n, 2, 1)-type with n < 2|K| and 1-dimensional centre \mathfrak{z} decomposes, as a vector space, into $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{v} \oplus \mathfrak{w}$ where

^{*}Supported by IRSES and Università di Palermo, ex60%

 $^{^{\}dagger}{\rm AMS}$ MSC: 17B05, 17B30; 15A63

[‡]Keywords: Nilpotent Lie algebras, Lie groups.

[§]Corresponding author

 $\mathfrak{h}_0 = \begin{cases} \langle z, v_0, v_1, w_1 \rangle \text{ if } n \text{ is even} \\ \langle z, v_0, v_1, w_1, w_0 \rangle \text{ if } n \text{ is odd} \end{cases}, \mathfrak{v} \text{ and } \mathfrak{w} \text{ are Abelian subalgebras of } \mathfrak{h}. \text{ More precisely, we have:} \end{cases}$

1) if n is odd, then there exist bases z, v_0 of \mathfrak{h}' with $z \in \mathfrak{z}, \{v_2, \ldots, v_{\frac{n-1}{2}}\}$ of \mathfrak{v} and $\{w_2, \ldots, w_{\frac{n-1}{2}}\}$ of \mathfrak{w} such that and, for $i, j \geq 0$, $[v_i, w_j] = \delta_{ij} z$, excepting $[v_1, w_0] = z + v_0$.

2) if n is even, then there exist bases z, v_0 of \mathfrak{h} with $z \in \mathfrak{z}, \{v_2, \ldots, v_{\frac{n}{2}}\}$ of \mathfrak{v} and $\{w_2, \ldots, w_{\frac{n}{2}}\}$ of \mathfrak{w} such that $[v_0, w_1] = z$ and, for $i, j \ge 1$, $[v_i, w_j] = \delta_{ij} z$, excepting $[v_1, w_1] = z + v_0$.

In the present paper we consider the algebra of derivations ∂ of \mathfrak{h} and determine a Borel subalgebra. Since any derivation ∂ of \mathfrak{h} belongs to a Borel subalgebra, this allows us to give a classification of solvable (n + 3)-dimensional complex Lie algebras, having \mathfrak{h} as an ideal of co-dimension one.

These fall into two classes, namely the algebraic and the non-algebraic ones. The non-algebraic Lie algebras are solvable non-nilpotent such that the outer derivation ∂ is neither semi-simple nor nilpotent.

The algebraic Lie algebras can be nilpotent or not, according to the case that we take a nilpotent derivation ∂ or a semi-simple one. In the first case, we obtain a complete classification considering the possible rank of ∂ . In the second case, one has a precise description of the possible cases.

It turns out that, fon *n* even, the algebra of derivations can represented, with respect to the basis $\{z, v_0, v_1, w_1; v_2, \ldots, v_{\frac{n}{2}}; w_2, \ldots, w_{\frac{n}{2}}\}$ by the set of matrices of type

($a_{33} + 2a_{44}$	0	0	0	0	0
	a_{32}	$a_{33} + a_{44}$	0	0	0	0
	a_{31}	a_{32}	a_{33}	0	0	0
	a_{41}	a_{42}	a_{43}	a_{44}	\mathbf{u}_1	\mathbf{u}_2
	\mathbf{u}_3'	$-\mathbf{u}_2'$	0′	0′	A	В
ſ	\mathbf{u}_4'	\mathbf{u}_1'	0′	0′	C	$(a_{33}+2a_{44})I-A'$

with B, C symmetric.

The algebra of inner derivations can represented by the set of matrices of type

1	0	0	0	0	0	0 \
	a_{32}	0	0	0	0	0
	0	a_{32}	0	0	0	0
	a_{41}	a_{42}	0	0	0	0
	\mathbf{u}_3'	0′	0′	0′	0	0
[\mathbf{u}_4'	0′	0′	0′	0	0/

hence, up to an inner derivation, a derivation can represented, by the matrix

$(a_{33} + 2a_{44})$	0	0	0	0	0
0	$a_{33} + a_{44}$	0	0	0	0
a_{31}	0	a_{33}	0	0	0
0	0	a_{43}	a_{44}	\mathbf{u}_1	\mathbf{u}_2
0'	$-\mathbf{u}_2'$	0′	0′	A	В
0'	\mathbf{u}_1'	0′	0′	C	$(a_{33}+2a_{44})I-A'$

with B, C symmetric.

Among the diagonal ones, we find matrices with mutually different eigenvalues, hence a flag of invariant subspaces for a maximal toral subalgebra containing the diagonal matrices is built by coordinate subspaces. Thus, the diagonal matrices of the above kind give a maximal toral subalgebra. It turns out that the ideal I generated by $\{z, v_0, v_1, v_2, \ldots, v_{\frac{n}{2}}\}$ is invariant for a Borel subalgebra containing the diagonal matrices of the above kind. In fact, let W be the $\frac{n}{2} + 2$ -dimensional invariant ideal in a flag of such a Borel subalgebra. If W is not the ideal I, then consider the $\frac{n}{2} + 1$ -dimensional invariant subspace S in the flag. The shape of a derivation shows that S cannot contain w_i , for any $0 \le i \le \frac{n}{2}$. Consequently S is contained in the ideal I. Since the ideal generated by $\{z, v_0, v_1\}$ is invariant under any derivation, we conclude anyway that Iis a $\frac{n}{2} + 2$ -dimensional invariant ideal of a Borel subalgebra containing the diagonal matrices. Therefore we can take B = 0, that is, a Borel subalgebra containing the maximal toral subalgebra of diagonal derivations is given by the derivations of the kind

($a_{33} + 2a_{44}$	0	0	0	0	0	\
	a_{32}	$a_{33} + a_{44}$	0	0	0	0	
	a_{31}	a_{32}	a_{33}	0	0	0	
	a_{41}	a_{42}	a_{43}	a_{44}	\mathbf{u}_1	\mathbf{u}_2	,
	\mathbf{u}_3'	$-\mathbf{u}_2'$	0′	0′	A	0	
Ĺ	\mathbf{u}_4'	\mathbf{u}_1'	0′	0′	C	$(a_{33}+2a_{44})I-A'$	/

with C symmetric. Since two Borel subalgebras are conjugated by an inner automorphism $\exp \operatorname{ad} y = \operatorname{Ad} \exp y$ and $\operatorname{Ad} \exp y$ acts by matrix conjugation, a Borel subalgebra can be taken in the above form.

The solvable radical is given by the set of matrices

($a_{33} + 2a_{44}$	0	0	0	0	0
	a_{32}	$a_{33} + a_{44}$	0	0	0	0
	a_{31}	a_{32}	a_{33}	0	0	0
	a_{41}	a_{42}	a_{43}	a_{44}	\mathbf{u}_1	\mathbf{u}_2
	\mathbf{u}_3'	$-\mathbf{u}_2'$	0 '	0′	A	0
ĺ	\mathbf{u}_4'	\mathbf{u}_1'	0′	0′	0	$(a_{33}+2a_{44})I-A'$

with A diagonal, and a Levi complement by the set of matrices

1	0	0	0	0	0	0 \
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
[0′	0′	0′	0′	A	B
Ĺ	0′	0 '	0′	0′	C	$\left[-A'\right]$

with B, C symmetric, that is, the symplectic Lie algebra \mathfrak{sp} .

For *n* odd, the algebra of derivations can represented, with respect to the basis $\{z, v_0, v_1, w_1, w_0; v_2, \ldots, v_{\frac{n}{2}}; w_2, \ldots, w_{\frac{n}{2}}\}$ by the set of matrices of type

1	$a_{44} + 2a_{55}$	0	0	0	0	0	0)
	$a_{42} - a_{53}$	$a_{44} + a_{55}$	0	0	0	0	0
	a_{31}	a_{32}	$2a_{55}$	0	0	0	0
	a_{41}	a_{42}	a_{43}	a_{44}	0	\mathbf{u}_1	\mathbf{u}_2
	a_{51}	a_{52}	a_{53}	$-a_{32}$	a_{55}	\mathbf{u}_3	\mathbf{u}_4
	\mathbf{u}_5'	\mathbf{u}_4'	$-\mathbf{u}_2'$	0′	0′	A	В
Ĺ	\mathbf{u}_6'	$-\mathbf{u}_3'$	\mathbf{u}_1'	0′	0′	C	$(a_{44}+2a_{55})I-A'$

with B, C symmetric. The structure of the algebra of derivations can be deduced from the case of n even.

References

- C. Bartolone, A. Di Bartolo, G. Falcone, Nilpotent Lie algebras with 2dimensional commutator ideals, Linear Algebra Appl. 434 (2011) 650656.
- [2] G. Belitskii, R. Lipyanski, V.V. Sergeichuk, Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild, Linear Algebra Appl. 407 (2005) 249262.
- [3] Di Bartolo A., Falcone G., Plaumann P., Strambach K., *Algebraic groups and Lie Groups with few factors*, Lecture Notes Math. **1944**, Springer-Verlag (2008).
- [4] M. Gauger, On the classification of metabelian Lie algebras, Trans. Amer. Math. Soc. 179 (1973) 293329.
- [5] Rosenlicht M., Generalized Jacobian varieties, Ann. Math. 59, pp. 505-530, 1954.