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Abstract: Arcobacter spp. are emerging waterborne and foodborne zoonotic pathogens responsible
for gastroenteritis in humans. In this work, we evaluated the occurrence and the antimicrobial
resistance profile of Arcobacter isolates recovered from different aquatic sources. Besides, we searched
for Arcobacter spp. in seaweeds and the corresponding seawater samples. Bacteriological and molec-
ular methods applied to 100 samples led to the isolation of 28 Arcobacter isolates from 27 samples.
The highest prevalence was detected in rivers followed by artificial ponds, streams, well waters,
and spring waters. Seaweeds contained a higher percentage of Arcobacter than the corresponding sea-
water samples. The isolates were identified as Arcobacter butzleri (96.4%) and Arcobacter cryaerophilus
(3.6%). All the isolates showed a multi-drug resistance profile, being resistant to at least three dif-
ferent classes of antibiotics. Molecular analysis of genetic determinants responsible for tetracycline
resistance in nine randomly chosen isolates revealed the presence of tetO and/or tetW. This work
confirms the occurrence and the continuous emergence of antibiotic-resistant Arcobacter strains in
environmental samples; also, the presence of quinolone-resistant Arcobacter spp. in aquatic sources
used for water supply and irrigation represents a potential risk for human health.

Keywords: Arcobacter butzleri; water samples; multiplex PCR; antibiotic susceptibility; tetO; tetW

1. Introduction

The members of the Arcobacter genus are Gram-negative, slender, spiral-shaped
rods and belong to the family Campylobacteraceae [1]: they are distinguished from
Campylobacter genus by their ability to grow in aerobic conditions and at lower tempera-
tures from 15 to 30 ◦C [2].

Arcobacter spp. are emerging entero-pathogens that can be isolated worldwide from
different aquatic matrices, such as lakes and rivers [3–6], groundwater [7,8], wastewa-
ter [9–11], drinking water [12], seawater [13,14], and food of both animal and non-animal
origin [15–18]. Thus, food and water are considered the main vehicle of the pathogen [19,20].
A. butzleri, A. cryaerophilus, and A. skirrowii have been associated with animal and human
infections and A. butzleri has been classified as a serious hazard to human health by the
International Commission on Microbiological Specifications for Foods in 2002 [21] and is
often correlated with bacteremia, gastroenteritis, and watery diarrhea in humans [22–24].
Alarming outbreak episodes of A. butzleri have been reported in a nursery and primary
school in Italy [25], associated with groundwater, which served as the drinking water source
in Idaho, USA [7], and related with the consumption of water contaminated with wastewa-
ter from sewage treatment plants [8]. The presence and the persistence of A. butzleri in the
environment could be dependent upon its ability to form biofilms that allow its survival
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in various conditions, favoring bacterial diffusion and transmission within the different
food chains [26].

A. butzleri is known to contain numerous virulence genes and to cause intestinal
and extra-intestinal infections, that are often self-limited [27,28]. A. butzleri infection can
be treated with antibiotics, i.e., β-lactams, fluoroquinolones, macrolides [28]. However,
Arcobacter species frequently display a multidrug-resistant profile, hampering the antibiotic
treatment of A. butzleri infections. Recent studies have indicated an increase of resistance
against fluoroquinolones as well as tetracycline of A. butzleri and A. cryaerophilus isolates
from food and aquatic sources [27,29,30].

The foods that usually are consumed raw, such as vegetables, have been found
to carry A. butzleri and strains isolated from these matrices have been demonstrated
to possess many virulence and antibiotic resistance genes [26]. The high prevalence of
antimicrobial resistance among bacteria may be dependent upon the use of antibiotics in
animal production and human medicine [31,32]. Aquatic environments and sea animals
are considered as reservoirs of antibiotic resistance genes [33–35] and Arcobacter spp. can be
isolated worldwide from different aquatic matrices, such as lakes and rivers [3–6]. In recent
years, an increasing number of scientific papers concerning Arcobacter focused on the
growing importance of this emerging entero-pathogen [36].

Recently, the antibiotic-resistance profile and the genomic diversity of this pathogen
were exploited by comparing 49 A. butzleri strains isolated from various environments and
samples [37]. All isolates were resistant to nalidixic acid, followed by cefotaxime, ampicillin,
levofloxacin, ciprofloxacin, and erythromycin. Comparison of the antibiotic-resistance
profile and the genome sequences revealed that A. butzleri contains many genes coding for
efflux pumps and other antibiotic resistant determinants, for example, quinolone resistance
is due to the mutation Thr-85-Ile of the gyrA gene [29].

This study aimed to detect and identify Arcobacter spp. from different environmental
water sources using bacteriological and molecular methods, to determine the antibiotic
resistance profile of the isolates and to investigate the antibiotic genetic determinants
providing tetracycline resistance.

2. Results
2.1. Isolation and Identification of Arcobacter Species

Twenty-eight Arcobacter strains were isolated out of 100 samples (28%). Specifically,
9 Arcobacter strains were found in 11 rivers (81.8%), 6 in 8 artificial ponds (75%), 2 in
5 streams (40%), 2 in 20 well waters (10%), and 1 in 17 spring waters (5.8%) used for
water supply (Table 1). All the analyzed drinking water samples were negative. However,
Arcobacter spp. was identified in a sample of non-chlorinated source water (spring water)
used for drinking.

Table 1. Prevalence and molecular identification of Arcobacter spp. in the examined samples.

Sample (Source) N. of Samples Arcobacter spp. (%) A. butzleri A. cryaerophilus

Rivers 11 9 (81.8) 9
Ponds 8 6 (75) 5 1

Streams 5 2 (40) 2
Well water 20 2 (10) 2

Spring water 17 1 (5.8) 1
Drinking water 12 0 -

Seawater 21 3 (14.2) 3
Seaweeds 6 5 (83.3) 5

Total 100 28 (28%) 27 (96.4%) 1 (3.6%)
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Furthermore, Arcobacter spp. was searched in seaweeds belonging to the genus Enteromor-
pha and in the corresponding seawater samples, collected from six independent locations of
the northern coast of Sicily. Interestingly, while 3 Arcobacter spp. were isolated from seawater
samples (50%), 5 out of 6 algal samples were positives to A. butzleri (83.3%) (Table 2).

Table 2. Arcobacter spp. in the examined seawater and seaweeds.

Sample Number Area of Origin Type of Sample Arcobacter spp.

1 Messina
Seawater ND
Seaweed A. butzleri

2 Palermo
Seawater ND
Seaweed ND

3 Palermo
Seawater A. butzleri
Seaweed A. butzleri

4 Messina
Seawater ND
Seaweed A. butzleri

5 Palermo
Seawater A. butzleri
Seaweed A. butzleri

6 Messina
Seawater A. butzleri
Seaweed A. butzleri

ND: Not Detected.

Multiplex PCR (mPCR) demonstrated that 27 out of the 28 isolates corresponded
to A. butzleri (96.4%) and only one to the A. cryaerophilus (3.8%) (Figure 1). A. butzleri
and A. cryaerophilus were co-isolated from a water sample of an artificial pond populated
by aquatic birds. A. skirrowii was not detected in any of the samples. PCR amplicons
were sequenced and BLAST alignment revealed a 98–99% identity with A. butzleri 16S
rDNA gene and 99% identity with A. cryaerophilus 23S rDNA gene. Phylogenetic tree of
the sequences of the amplification product obtained by A. butzleri (Figure 2) indicated a
well-structured clade.

Antibiotics 2021, 10, x FOR PEER REVIEW 3 of 14 
 

locations of the northern coast of Sicily. Interestingly, while 3 Arcobacter spp. were isolated 
from seawater samples (50%), 5 out of 6 algal samples were positives to A. butzleri (83.3%) 
(Table 2). 

Table 2. Arcobacter spp. in the examined seawater and seaweeds. 

Sample Number Area of Origin Type of Sample Arcobacter spp. 

1 Messina 
Seawater ND 
Seaweed A. butzleri 

2 Palermo 
Seawater ND 
Seaweed ND 

3 Palermo 
Seawater A. butzleri 
Seaweed A. butzleri 

4 Messina 
Seawater ND 
Seaweed A. butzleri 

5 Palermo 
Seawater A. butzleri 
Seaweed A. butzleri 

6 Messina 
Seawater A. butzleri 
Seaweed A. butzleri 

ND: Not Detected. 

Multiplex PCR (mPCR) demonstrated that 27 out of the 28 isolates corresponded to 
A. butzleri (96.4%) and only one to the A. cryaerophilus (3.8%) (Figure 1). A. butzleri and A. 
cryaerophilus were co-isolated from a water sample of an artificial pond populated by 
aquatic birds. A. skirrowii was not detected in any of the samples. PCR amplicons were 
sequenced and BLAST alignment revealed a 98–99% identity with A. butzleri 16S rDNA 
gene and 99% identity with A. cryaerophilus 23S rDNA gene. Phylogenetic tree of the se-
quences of the amplification product obtained by A. butzleri (Figure 2) indicated a well-
structured clade. 

 
Figure 1. Multiplex PCR results of ten Arcobacter isolates. Lanes 1–6: A. butzleri; lane 7: A. cryaer-
ophilus; lanes 8–10: A. butzleri; lane 11: negative control; lane 12: positive control (A. butzleri, NCTC 
12481); lane 13: positive control (A. cryaerophilus, NCTC 11885); lane 14: positive control (A. skir-
rowii, NCTC 12713); lane M: 100 bp DNA Ladder (Invitrogen). 

Figure 1. Multiplex PCR results of ten Arcobacter isolates. Lanes 1–6: A. butzleri; lane 7: A. cryaerophilus; lanes 8–10: A. butzleri;
lane 11: negative control; lane 12: positive control (A. butzleri, NCTC 12481); lane 13: positive control (A. cryaerophilus,
NCTC 11885); lane 14: positive control (A. skirrowii, NCTC 12713); lane M: 100 bp DNA Ladder (Invitrogen).

2.2. Antimicrobial Susceptibility Testing

All A. butzleri isolates were susceptible to gentamicin (CN) and streptomycin (S),
and resistant to ampicillin (AMP), cefalotin (KF), cefotaxime (CTX), nalidixic acid (NA),
and tetracycline (TE). A. butzleri strains were resistant to amoxicillin-clavulanic acid (AMC),
erythromycin (E), and ciprofloxacin (CIP) at the rate of 92.6%, 7.4%, and 3.7%, respectively
(Figure 3 and Table 3). A. cryaerophilus strain showed resistance to 9 out of the 10 tested
antibiotics and sensitivity to gentamicin (CN). Multidrug-resistance, defined as resistance to
three or more tested antibiotics, was observed in all the isolates. PCoA (Figure 4) indicated
3 distinct clusters, containing the resistant, the intermediate, and the sensitive isolates.
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Table 3. Antibiotic resistance of A. butzleri and A. cryaerophilus strains isolated from water samples and seaweeds (n = 28).

Antibiotics

Isolates from

Total
(n = 28)Rivers

(n = 9)
Streams
(n = 2)

Ponds
(n = 6) Well

Waters
(n = 2)

Spring
Waer
(n = 1)

Seawater
(n = 3)

Seaweed
(n = 5)AB

(n = 5)
AC

(n = 1)

R I S R I S R I S R I S R I S R I S R I S R I S R I S

Amoxicillin-clavulanic
acid (AMC) 7 0 2 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 26 0 2

Ampicillin (AMP) 9 0 0 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 28 0 0
Cefalotin (KF) 9 0 0 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 28 0 0

Cefotaxime (CTX) 9 0 0 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 28 0 0
Ciprofloxacin (CIP) 1 0 8 0 0 2 0 0 5 1 0 0 0 0 2 0 0 1 0 0 3 0 0 5 2 0 26
Erythromycin (E) 0 2 7 0 0 2 0 0 5 1 0 0 0 0 2 0 1 0 1 0 2 1 0 4 3 3 22
Gentamycin (CN) 0 0 9 0 0 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 28

Nalidixic acid (NA) 9 0 0 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 28 0 0
Streptomycin (S) 0 0 9 0 0 2 0 0 5 1 0 0 0 0 2 0 0 1 0 0 3 0 0 5 1 0 27
Tetracycline (TE) 9 0 0 2 0 0 5 0 0 1 0 0 2 0 0 1 0 0 3 0 0 5 0 0 28 0 0

R: resistant; I: intermediate; S: susceptible; AB: A. butzleri; AC: A. cryaerophilus; n indicates the number of isolates from each aquatic environment.
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A. butzleri. R: resistant; I: intermediate; S: susceptible.

2.3. Analysis of the Quinolone and Tetracycline Resistance Genes

The search for tetracycline resistance genes by PCR in the genome of nine randomly
chosen tetracycline-resistant isolates revealed that all carried tetW or tetO, even simulta-
neously (Table 4). No isolates contained the tetA gene. The two ciprofloxacin-resistant
isolates were tested for the presence of the resistance gene qnrS by PCR and sequencing of
the gyrA amplification product. The sequence of the gyrA gene did not show the mutation
associated with a quinolone resistance phenotype, nor the PCR of qnrS gave the amplicon
of the expected size (data not shown).

Table 4. Tetracycline resistance genes in nine strains isolated from water samples.

Sample Specie tet Resistance Genes

Seawater A. butzleri tetW− , tetO+, tetA−
River A. butzleri tetW+, tetO+, tetA−

Pond with aquatic animals A. butzleri tetW+, tetO− , tetA−
River A. butzleri tetW+, tetO+, tetA−
River A. butzleri tetW+, tetO+, tetA−

Seawater A. butzleri tetW+, tetO+, tetA−
River A. butzleri tetW+, tetO− , tetA−

Pond with turtles A. butzleri tetW+, tetO− , tetA−
Pond with aquatic animals A. cryaerophilus tetW+, tetO− , tetA−
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3. Discussion

This study enlarges the knowledge on the spread and the antibiotic resistance profile
of the emerging enteropathogen Arcobacter in water samples. Even if the Arcobacter genus is
widespread in various environments, water may play an important role in its transmission
to animals and humans. Our results showed a higher prevalence of Arcobacter in the surface
waters (streams, rivers, ponds) and a very low occurrence in waters dedicated to human
consumption (well water, spring water, and drinking water) in accordance with other
reports which correlated the presence of Arcobacter species with fecal contamination [9,38].
Specifically, in this study, A. butzleri was the predominant species and was isolated in 81.8%
of the river water samples and 75% of the artificial ponds where aquatic animals (birds, tur-
tles) lived. A. cryaerophilus was co-isolated together with A. butzleri from an artificial pond,
while A. skirrowii was never detected in any of the samples. Indeed, A. butzleri is the most
frequent species isolated from different water samples such as 23% in river water [5] and
55.1% in freshwater, seawater, and sewage samples [9]. A. butzleri was detected in the creek
(26.31%) and stream water samples (18.36%) and not isolated from ponds and drinking
water samples in the Kars region [39]. A. butzleri was also isolated from surface water sam-
ples (25.6%) and treated wastewater samples (77.9%) in southwestern Alberta, Canada [4].
Talay et al. (2016) reported a prevalence of 35.7% from various aquatic sources including
sewages, rivers, and spring waters, of which 34% were positive for A. butzleri [11]. In Sicily,
Arcobacter spp. was detected from surface waters and in estuarine waters of rivers [13,40].
Water birds (ducks, geese, etc.) can be reservoirs of Arcobacter [41,42] and this would
probably explain the higher incidence of isolation in the artificial ponds inhabited by these
animals. The waters collected, in this study, from the ponds contained Arcobacter, while the
spring water samples, did not. Besides, the samples of drinking waters here analyzed were
negative; however, A. butzleri was isolated from a sample of non-chlorinated source water
(spring water) used for human consumption, considered as drinkable water for the absence
of the fecal contamination markers, i.e., Escherichia coli and enterococci. The presence of
Arcobacter was reported in drinking water in Turkey [43] and in treated water samples in
Malaysia [44] with percentages of 3% and 11.1%, respectively. Cases of Arcobacter outbreaks
associated with contaminated water have been documented worldwide [7,12,26]. Because
Arcobacter is sensitive to chlorination [7,45], its isolation in drinking water might indicate
either ineffective chlorination or recontamination after chlorination [43]. Due to its ability
to form biofilms [2,46], chlorination could not suppress Arcobacter colonization, in fact,
biofilms of this strain were found in drinking water distribution pipes [47].

Seawater is also mentioned as a potential source of Arcobacter spp. In our study,
A. butzleri was identified in three out of 21 samples of seawater examined (14.2%). Inter-
estingly, we found that algae of the genus Enteromorpha, collected together with seawater
samples, were more frequently colonized by A. butzleri with a value of 83.3% than the
corresponding seawater samples (50%) (Table 2). Algae could represent a suitable micro-
habitat for Arcobacter and other bacteria. Previous studies reported that A. butzleri was
more abundant in seawater and plankton samples collected from the Straits of Messina,
Italy, when associated with plankton than free-living [13,36].

Although the illness caused by Arcobacter can be self-limited, antibiotics, such as
aminoglycosides, tetracyclines, and fluoroquinolones are recommended as the drugs of
choice for the treatment for Arcobacter infection in human and animals [19,48]. However,
strains resistant to these antibiotics have been detected in food and water sources [18,45–47].
The resistance of A. butzleri isolates to β-lactams is widespread in water sources as well as
in other environments [49]. The resistance of Arcobacter spp. to cephalosporins is known;
in fact, these antibiotics are commonly used for the isolation of Campylobacteraceae in
selective media [50]. Recently, the genetic determinants associated with the resistance
mechanisms have been exploited by comparing the genome sequences of 49 strains [37].

In our results, multidrug resistance was observed in all Arcobacter isolates tested. Precisely,
all Arcobacter isolates were resistant to tetracycline and nalidixic acid, and the β-lactam antibi-
otics, ampicillin, cefalotin, cefotaxime, and AMC (except two isolates). Only three A. butzleri
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isolates, collected from seawater, seaweed, and a river were erythromycin- and ciprofloxacin-
resistant and one A. butzleri isolate was ciprofloxacin-resistant; the A. cryaerophilus isolate
displayed resistance to all the tested antibiotics, except gentamycin. Šilha et al. [49] reported
that A. cryaerophilus strains collected from water sources were sensitive only to tetracycline
and gentamicin.

It is interesting to note that the majority of studies report that A. butzleri isolates are
highly susceptible to tetracycline, so that it can be used for human Arcobacter infections [50,51],
while out study demonstrated an increasing resistance of the isolates.

Tetracycline resistance is dependent upon more than 40 genes (tet genes). Our molecu-
lar analysis demonstrated that among three different genetic determinants known to be
involved in tetracycline resistance (tetA, tetO, and tetW) results, all the tetracycline-resistant
isolates carried tetO and tetW, even together, while no isolates contained tetA.

The tetO and tetW genes are found more frequently than other tet-genes (e.g., tetA) in
commensal bacteria isolated from fecal and water samples [52]. The fact that four out of
nine isolates contained two genetic determinants is worrying. tetO and tetW genes confer
ribosomal protection from the inhibiting effect of tetracycline [53–55], and they appear to
be promiscuous in environmental organisms through different transfer mechanisms [56,57].
All isolates were resistant to nalidixic acid and two to ciprofloxacin. The search for qnrS and
the sequencing of the gyrA gene did not explain the resistance to ciprofloxacin. To the best
of our knowledge, the quinolone-resistance of A. butzleri is due to the mutation Thr-85-Ile
of the gyrA gene [37]. Thus, further investigation is necessary to understand the molecular
basis of quinolone resistance in these isolates.

The results obtained in this work show that aquatic sources can be a vehicle of potential
pathogenic Arcobacter spp. Water is a likely key component to Arcobacter transmission,
particularly, in intensive farming operations where water is consumed by the animals
or in processing plant [58] or used for vegetable products [59] and water contamination
could be due to feces of livestock animals [60] and farm effluents [9,61]. These bacteria can
adapt and survive promptly in environmental waters, such as rivers, canals, and irrigation
water; indeed, Arcobacter may survive in environmental waters, replicate at refrigeration
temperatures [2], and develop the viable nonculturable state, thus representing a potential
risk for human health [62,63].

To better assess the risks for human health, it is important to deepen these investiga-
tions and to search Arcobacter strains in non-chlorinated water that can be used for water
supply and for irrigation of raw consumed vegetables.

4. Materials and Methods
4.1. Sampling

One hundred samples (Table 1) including rivers (n = 11), streams (n = 5), artificial
ponds (n = 8), well waters (n = 20), spring waters (n = 17), drinking waters (n = 12),
and seawater (n = 21), were collected between February and December 2017 in all around
Sicily; in addition, seaweed samples (n = 6) were taken in consideration.

All the water samples, collected in 1 L sterile flasks, were transported under cold
storage temperature (4 ◦C) to the laboratory and analyzed within 24 h.

4.2. Isolation of Arcobacter

For the isolation of Arcobacter spp. from water samples, the protocol reported in Col-
lado et al. 2008 [9] was followed. Specifically, 200 mL of water were filtered using a 0.45 µm
nitrocellulose membrane filter (Sartorius). For Arcobacter isolation from seaweeds, 10 g were
weighed. Filters or seaweeds were placed into sterile bags containing 30 or 90 mL, respec-
tively, of Arcobacter enrichment broth (Oxoid, UK) added with cefoperazone, amphotericin
B, and teicoplanin (CAT) selective supplement (SR0174, Oxoid, UK) and incubated a 30 ◦C
for 48 h under aerobic condition. After incubation, 200 µL of the broth were then dropped
onto the surface of 0.45 µm nitrocellulose membrane filter (Sartorius), placed onto two
selective agar plates: trypticase soy agar (TSA) plus 5% Laked Horse blood (Oxoid) with
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CAT and modified charcoal cefoperazone deoxycholate agar (mCCDA) supplemented with
CAT. Plates were incubated at room temperature for 30 min and after removal of the filters,
incubated at 30 ◦C for 48 h to 72 h under aerobic conditions [16]. Subsequently, suspected
colonies grown within the filter area with a diameter between 0.5 and 2 mm, were picked,
subcultured onto blood agar, and incubated at 30◦ C for 48 h [6]. Presumptive identification
tests (Gram staining, catalase, oxidase, urease tests, and motility) were performed on at
least five suspected colonies. The isolates referable as Arcobacter genus (Gram negative,
spiral- shaped, motile, oxidase and catalase positive, urease negative), were stored in 20%
(v/v) nutrient broth–glycerol at −80 ◦C, for subsequent molecular identification.

4.3. Identification of Arcobacter Species by Multiplex PCR

DNA was extracted by using the protocol previously reported [15] and utilized as
template in a multiplex PCR assay to amplify the 16S and 23S rRNA genes in order to obtain
a specific and simultaneous identification of A. butzleri, A. cryaerophilus, and A. skirrowii [64].
The selected primers amplified a 401-bp fragment from A. butzleri, a 257-bp fragment
from A. cryaerophilus, and a 641-bp fragment from A. skirrowii. The amplification products
were then separated by electrophoresis on 1.5% agarose gels, stained by SYBR Safe DNA
gel stain, at 100 V for 40 min, and the bands were visualized under UV transilluminator
(GelDoc-It, UVP Cambridge, UK). DNA from reference strains A. butzleri (NCTC 12481),
A. cryaerophilus (NCTC 11885) and A. skirrowii (NCTC 12713) were used as positive controls
and sterile distilled water was used as negative control.

4.4. Identification of Arcobacter Species by Sequence Analysis

The PCR products of Arcobacter spp. were purified using Illustra GFX PCR DNA and
Gel Band Purification kit (GE Healthcare) following the manufacturer’s instructions for
sequencing analysis. The purified products were sent to Macrogen Company (Amsterdam,
Holland) for Sanger sequencing. The identification was performed by the alignment of the
sequences against a reference database (GenBank). Novel sequences are available online in
the GenBank™ database under the accession numbers MW678780, MW683239, MW678840,
MW678844, MW678845, MW683240. The software packages MrBayes v. 3.2.7) [65] and
MEGAX [66] were used for inferring phylogenetic relationships through Bayesian inference
of phylogeny (BI) and maximum likelihood analysis (ML). As support measures for the
nodes, bootstrap values were calculated with 1000 replicates in the ML trees, whereas in
the BI tree, the posterior probability values were reported. PartitionFinder v. 1.0.1 [67] was
used to choose the best evolutionary model following the Akaike information criterion
(AIC). For the 16S rDNA fragment, the general time-reversible model of evolution with
gamma-distributed rate variation among sites (GTR+Γ; nst = 6) was used for both the BI
and ML analyses. Six sequences were used as representatives.

4.5. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing of the Arcobacter isolates against 10 antibiotics
was performed on Mueller-Hinton agar (Oxoid) by disk diffusion method according to
the guidelines of the Clinical and Laboratory Standard Institute (CLSI) for Campylobacter
jejuni/coli. Amoxicillin-clavulanic acid (AMC, 30 µg), ampicillin (AMP, 10 µg), cefalotin
(KF 30 µg), cefotaxime (CTX, 30 µg), ciprofloxacin (CIP, 5 µg), erythromycin (E, 10 µg),
gentamicin (CN, 10 µg), nalidixic acid (NA 30 µg), streptomycin (S, 10 µg), tetracycline
(TE, 30 µg) disks (OXOID, UK) were used. Fluoroquinolone ciprofloxacin, tetracyclines,
and aminoglycosides, such as gentamicin, kanamycin, and streptomycin, represent the
most common antimicrobial agents for treatment of Arcobacter infections, because of high
frequency of susceptibility towards them. The isolates were sub-cultured on blood agar
base (Oxoid) and after incubation at 37 ◦C in aerobic condition for 24 h, a 0.5 MacFarland
bacterial suspension was prepared in saline solution and spread on Mueller-Hinton agar.
The plates were incubated at 37 ◦C for 24 h under aerobic condition. Then, the diameters of
inhibition zones were measured and the isolates were classified as resistant (R), susceptible
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(S), or intermediate (I). The experiments were performed in duplicate. The A. butzleri LMG
10828T (RM4018) strain was used for comparison purposes. Principal coordinate analysis
(PCoA) was performed using the software package PRIMER 6 [68]. The analyses were
based on Bray–Curtis distance matrix.

4.6. Analysis of the Quinolone and Tetracycline Resistance Genes

DNA was extracted from 9 samples and utilized as template to amplify the genes
coding for products responsible for the resistance to tetracycline (tetA, tetO, and tetW) and
to quinolones (qnrS and gyrA) using the primer pairs reported in Table 5. Amplicons were
detected using a 6% polyacrylamide non denaturing gel in TBE 0.5X, except gyrA amplicon
that was detected using a 1.5% agarose gel. The presence of the expected amplification
product was considered as a positive sample. All the PCR products were sequenced.

Table 5. List of the primers used in this study.

Target Name Primer Sequence (5′-3′) Amplicon Size (bp) Reference

16s rDNA
cggtgaatacgttcycgg

142 [63]gghtaccttgttacgactt

tetA
gctacatcctgcttgccttc

210 [64]catagatcgccgtgaagagg

tetW
acatcattgatactccaggtcacg

120 [51]tttcactttgtggttgaacccctc

tetO
ggaggggttcaaccacaaag

88 [51]ctatgtaaataaaatggatag

gyrA tggattaaagccagttcatagaag
344 [29]tcatmgwatcatcataatttggwac

qnrS gacgtgctaacttgcgtgat
118 [59]tggcattgttggaaacttg

butz cctggacttgacatagtaagaatga
401 [64]arco cgtattcaccgtagcatagc

skir ggcgatttactggaacaca
641 [64]arco cgtattcaccgtagcatagc

cry1 tgctggagcggatagaagta
257 [64]cry2 aacaacctacgtccttcgac

5. Conclusions

In the present study, we evaluated the presence of Arcobacter species in different
environmental water sources. Our results showed the spread of this important zoonotic
agent in the environment, which can be considered a potential risk for food safety. The de-
termination of Arcobacter in water sources might be important to better understand the
epidemiology and the ecology of these bacteria.

All the Arcobacter isolates displayed an alarming multi-drug resistance. Molecular anal-
ysis of genetic determinants responsible for tetracycline resistance in nine randomly chosen
isolates revealed the presence of tetO and/or tetW. This work confirms the occurrence
and the continuous emergence of antibiotic-resistant Arcobacter strains in environmental
samples; besides, the presence of antibiotic-resistant Arcobacter spp. in aquatic sources used
for water supply and irrigation represents a potential risk for human health.
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