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Abstract: The molecular pathways which promote lung cancer cell features have been broadly ex-
plored, leading to significant improvement in prognostic and diagnostic strategies. Epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have dramatically altered the treatment
approach for patients with metastatic non-small cell lung cancer (NSCLC). Latest investigations by
using next-generation sequencing (NGS) have shown that other oncogenic driver mutations, believed
mutually exclusive for decades, could coexist in EGFR-mutated NSCLC patients. However, the
exact clinical and pathological role of concomitant genomic aberrations needs to be investigated. In
this systematic review, we aimed to summarize the recent data on the oncogenic role of concurrent
genomic alterations, by specifically evaluating the characteristics, the pathological significance, and
their potential impact on the treatment approach.

Keywords: NSCLC; NGS; EGFR; concurrent genomic alterations; systematic review

1. Introduction

Lung cancer is the most predominant cancer type and is one of the driving causes
of cancer-related death worldwide [1]. Non-small cell lung cancer (NSCLC) accounts
for roughly 85–90% of overall cases of lung malignancies and includes different histo-
logical subtypes [2–4]. Recently, the treatment landscape of NSCLC has been terrifically
changed by the discovery of Epidermal Growth Factor Receptor (EGFR) mutations and
their response to the EGFR tyrosine kinase inhibitors (TKIs) [5–7]. EGFR gene aberrations
have been defined as oncogenic driver mutations which occurred in 5–17% of lung ade-
nocarcinomas among Caucasian patients, while in approximately 45–55% of the Asian
population [8,9]. Nowadays, EGFR-TKIs are the standard of care for patients affected by
advanced EGFR-mutated NSCLC considering their established prolonged progression-free
survival (PFS) in comparison to the standard chemotherapy approach [10,11]. However,
TKIs clinical efficacy remains restricted due to the development of resistance, which has
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been hardly clarified. The recent technological breakthrough and the advent of next-
generation sequencing (NGS) platforms have enabled comprehensive profiling of the
genome, providing novel evidence of co-existing multiple driver alterations. In fact, NGS
allows to examine both DNA- and RNA-based aberrations, thus concurrently analyzing
significant gene pathogenic variants [12–14]. Additionally, despite oncogenic driver al-
terations were considered to be mutually exclusive, current findings have called higher
attention to the presence of coexisting genomic alterations in EGFR-positive NSCLC pa-
tients [15]. The clinical and pathological significance of co-existing driver genomic variants
has not been yet elucidated, raising several questions on therapeutic options for these
particular subsets of patients. In the current systematic review, we aimed to highlight
the updated data on the oncogenic role of concurrent genomic alterations, by specifically
evaluating the clinical characteristics, the pathological significance and their potential
impact on the treatment approach.

2. Materials and Methods

The systematic review was performed conforming to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses guidelines (PRISMA) (Supplementary Figure
S1) [16]. In March 2021, a MEDLINE and Cochrane database systematic literature search
was conducted using the following search words “EGFR” OR “ErbB 1 Receptor” AND
“concurrent” OR “concomitant” OR “coexisting” AND (“lung” OR “Non-Small-Cell Lung”).
We used the terms “EGFR” AND “concurrent” for the significant abstracts published on
the American Society of Clinical Oncology (ASCO) and the European Society of Medical
Oncology (ESMO) and ClinicalTrials.gov databases. The literature search involved the
cited bibliography of the reviewed articles too. The entire search strategy can be found
in the supplementary material (Supplementary Figure S2). We searched for clinical trials
evaluating patients with histological diagnosis of unresectable or advanced EGFR-positive
NSCLC and concurrent genetic alterations, including non-randomized, cohort, cross-
sectional, retrospective and case-control studies. Furthermore, we also excluded other
reviews (systematic or not) and meta-analyses. Moreover, non-peer-reviewed publications,
like abstracts displayed in conferences and meetings were taken into consideration. We
excluded research trials conducted on animals, preclinical trials, as well as phase 1 and
2 trials. We reported demographics and clinical information about the included studies,
such as concurrent genomic alteration, race of the study population, detection method,
sample, variant allele frequency (VAF), treatments, clinical outcomes. The language of the
data collected was limited to English. All data collected with the above-mentioned search
strategy were reviewed by two authors (M.L.M. and V.G.), who independently screened
and selected abstracts and titles according to the aforementioned exclusion and inclusion
criteria. Disagreements were discussed and finally solved with a third author (A.G.).

3. Results

The systematic literature search identified a total of 827 records. The literature data
collected through the systematic databases search underwent two exclusion steps: The
first being based on title and abstract, whereas the second being subject to an exhaustive
read-through. Additionally, in the case that an article did not conform to the inclusion and
exclusion criteria, it was discarded. Thus, 11 records were excluded because of duplicates,
while 56 records were finally ruled out being reviews, letters, commentaries, editorials, or
protocols. Moreover, five full text papers were not available in English, thence excluded.
After this process, 634 data met the eligibility criteria, whereas 600 were excluded since
no data of interest were reported (Figure 1). Finally, a total of 36 studies met our inclusion
and exclusion criteria; thus, they were included in the systematic research of the literature
(see Table 1). Namely, a total of 11 case reports, two abstracts and 23 original research
articles considered have examined concurrent EGFR mutations and their potential impact
on NSCLC patients. Particularly, a total of 1313 patients harbored a double concomitant
EGFR genomic alteration. Principally, the co-existing mutations identified are on-target
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EGFR gene alterations, TP53, PIK3CA, PTEN, RB1 and CDKN2A; whereas concomitant
actionable driver aberrations, within anaplastic lymphoma kinase (ALK), c-ros oncogene-1
(ROS-1), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), mesenchymal epithelial
transition (MET), Rearranged during transfection (RET) and Kirsten rat sarcoma viral
oncogene homolog (KRAS) genes, are less comprehensively represented (Figure 2). Indeed,
regarding complex EGFR mutation, we found two case reports and eight original articles
reporting complex EGFR mutation in the study population. Concurrent TP53 and EGFR
mutations were described in 12 articles and two abstracts, and PI3KCA/EGFR co-alterations
were reported in 11 articles, one abstract and a single case report, whereas only three
research articles and one abstract included patient harboring co-existing PTEN/EGFR aber-
rations, two papers presented original data on CDKN2A/EGFR concomitant alterations,
and two articles evaluated RB1/EGFR co-existing genomic alterations. Moreover, the
systematic review of the literature identified only a single article including a concurrent
BRAF/EGFR mutant patient, two works reporting MET concurrent EGFR alterations, a
single case report and an original research article evaluating EGFR/RET concurrent al-
terations, and three papers evaluating ROS-1/EGFR concomitant alterations. Finally, six
original research articles and five case reports were conducted on concurrent oncogenic
driver ALK and EGFR aberrations, while two reports and five original articles evaluated
concomitant EGFR/KRAS mutations. Tables 1 and 2 summarize the demographic char-
acteristics and reported treatment outcomes of patients with NSCLC and double genetic
alterations, respectively.

Table 1. Summary of reported demographic characteristics of EGFR-positive NSCLC patients with concomitant genomic alterations.

Study Study Type Race No. of
Pts

Concurrent
Genomic Alteration Detection Method Sample VAF

Belardinilli
et al. [17] Case Report Caucasian 1 EGFR complex NGS tumor tissue

40.30%
41.30%
67.50%

Benesova et al. [18] Case Series Caucasian 4 EGFR+KRAS
EGFR complex Sanger tumor tissue N/A

Fan et al. [19] Case Report Asian 1 EGFR+ALK NGS tumor tissue EGFR 15.58%
ALK 6.42%

Lammers et al. [20] Case Report Caucasian 1 EGFR+PIK3CA SNapShot PCR tumor tissue N/A

Lee et al. [21] Case Series Asian 12 EGFR+KRAS
EGFR+ALK

Sanger; Real Time
PCR after PNA;
FISH and IHC

tumor tissue N/A

Miyanaga et al. [22] Case Report Asian 1 EGFR+ALK
PNA-LNA PCR
clamp method,
FISH and IHC

tumor tissue N/A

Sweis et al. [23] Case Series Caucasian 4 EGFR+ALK N/A N/A N/A

Thumallapally
et al. [24] Case Report Caucasian 1 EGFR+ALK FISH, direct

sequencing tumor tissue N/A

Zhu et al. [25] Case Report Asian 1 EGFR+ROS-1 NGS, PCR and
FISH tumor tissue N/A

Yang et al. [26] Case Series Asian 13 EGFR+ALK

IHC, FISH, Sanger,
RT-PCR and
RACE-PCR
sequencing

tumor tissue N/A

Hou et al. [27] Retrospective Asian 59 EGFR+TP53
EGFR+RB1 NGS tumor tissue N/A

Zhu et al. [28] Retrospective Asian 2 EGFR+ALK FISH, RT-PCR tumor tissue N/A

Li et al. [29] Retrospective Asian 149

EGFR+ PIK3CA
EGFR complex
EGFR+KRAS
EGFR+BRAF

SurPlex®-
xTAG70plex-EGFR

liquidchip
tumor tissue N/A



J. Mol. Pathol. 2021, 2 176

Table 1. Cont.

Study Study Type Race No. of
Pts

Concurrent
Genomic Alteration Detection Method Sample VAF

Liang et al. [30] Retrospective Asian 403 EGFR complex NGS tumor tissue
+ plasma N/A

Liu et al. [31] Retrospective Asian 21 EGFR+ALK NGS tumor tissue
+ plasma N/A

Nardo et al. [32] Retrospective Caucasian 3 EGFR+KRAS ddPCR tumor tissue
+ plasma KRAS <0.2

Rachiglio et al. [33] Retrospective Caucasian 38

EGFR+KRAS
EGFR+BRAF
EGFR+MET
EGFR+TP53

EGFR+PIK3CA

NGS, ddPCR tumor tissue
+ plasma

KRAS 2–38%
EGFR ≥ 2%

Sato et al. [34] Retrospective Asian 43
EGFR complex

EGFR+TP53
EGFR+RB1

NGS tumor tissue N/A

VanderLaan
et al. [35] Retrospective Caucasian 19

EGFR+TP53
EGFR+PIK3CA
EGFR+PTEN

NGS, Sanger tumor tissue N/A

Wu et al. [36] Retrospective Asian 12 EGFR+PIK3CA Sanger, RT-PCR tumor tissue N/A

Zheng et al. [37] Retrospective Asian 11 EGFR+TP53 NGS tumor tissue N/A

Zhuang et al. [38] Retrospective Asian 43

EGFR+ALK
EGFR+ROS-1
EGFR+KRAS
EGFR+BRAF

ARMS tumor tissue N/A

Huang et al. [39] Prospective Asian 18 EGFR+TP53/PTEN
EGFR+PIK3CA N/A N/A N/A

Zhang et al. [40] Prospective Asian N/A EGFR+TP53 NGS N/A N/A

Canale et al. [41] Retrospective Caucasian 136 EGFR+TP53 Sanger,
MassARRAY, NGS tumor tissue N/A

Chang et al. [42] Retrospective Asian 26

EGFR+ALK
EGFR+TP53

EGFR+PIK3CA
EGFR+CDKN2A

NGS, CNV tumor tissue N/A

Chen et al. [43] Retrospective Asian 16

EGFR complex
EGFR+ALK

EGFR+KRAS
EGFR+PIK3CA

EGFR+TP53

NGS tumor tissue
+ plasma N/A

De Marchi
et al. [44] Retrospective Caucasian 47

EGFR complex
EGFR+KRAS

EGFR+PIK3CA

NGS, Sanger, SNP
array tumor tissue N/A

Eng et al. [45] Retrospective Caucasian 13 EGFR+PIK3CA

mutation hotspot
testing, FISH,

multiplex sizing
assays

tumor tissue N/A

Chevallier
et al. [46] Retrospective Caucasian 20

EGFR+TP53
EGFR+MET
EGFR+KRAS

EGFR+PIK3CA
EGFR+PTEN

NGS tumor tissue N/A

Hu et al. [47] Retrospective Asian 21

EGFR+ALK
EGFR+PIK3CA
EGFR+KRAS
EGFR+ROS-1
EGFR+RET

EGFR+HER2

ARMS; adx-RT,
mutation detection

kit; fusion gene
detection kit

tumor tissue N/A
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Table 1. Cont.

Study Study Type Race No. of
Pts

Concurrent
Genomic Alteration Detection Method Sample VAF

Chen et al. [48] Retrospective Asian 71

EGFR complex
EGFR+TP53
EGFR+ALK

EGFR+BRAF
EGFR+MET

NGS, ARMS tumor tissue
+ plasma N/A

Lee et al. [49] Retrospective Asian 7

EGFR+ALK
EGFR+MET
EGFR+TP53

EGFR complex

FISH, NGS, Sanger tumor tissue N/A

Zhang et al. [50] Retrospective Asian 9
EGFR complex
EGFR+KRAS

EGFR+PIK3CA

FISH, liquid chip
platform tumor tissue N/A

Wang et al. [51] Retrospective Asian 17 EGFR+PIK3CA Sanger, FISH, IHC tumor tissue N/A

Klempner et al.
[52] Case report Asian 2 EGFR+RET NGS tumor tissue

53%
54%
62%
18%

Abbreviations: No, number; Pts, patients; VAF, variant allele frequency; NGS, next generation sequencing; N/A, not applicable; FISH,
fluorescent in situ hybridization; IHC, immunohistochemistry; PCR, polymerase chain reaction; ARMS, amplification refractory mutation
system; CNV, copy number variation; SNP, single nucleotide polymorphism; RT-PCR, real time-PCR; ddPCR, digital droplet PCR;
RACE-PCR, rapid amplification cDNA ends PCR; PNA-LNA PCR, peptide nucleic acid-locked nucleic acid PCR.

Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart diagram.
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Figure 2. Distribution of the different concurrent EGFR mutations pathways.

Table 2. Summary of reported treatment outcomes of NSCLC patients with double concurrent genetic alterations.

Study Concurrent Genomic Alteration TKI mPFS (mo.) mOS (mo.) Best Response

Belardinilli et al. [17] EGFR complex Afatinib 8 N/A PR

Benesova et al. [18] EGFR+KRAS
EGFR complex

Gefitinib
Erlotinib 6–12 5-23 3 PR

1 CR

Fan et al. [19] EGFR+ALK Gefitinib
Crizotinib 18 N/A PR/SD

Lammers et al. [20] EGFR+PIK3CA
Erlotinib
Afatinib

PI3K inhibitor
1–4 N/A SD/PR

Lee et al. [21] EGFR+KRAS
EGFR+ALK

Gefitinib
Erlotinib

Crizotinib
4–29 N/A SD/PR

Miyanaga et al. [22] EGFR+ALK
Gefitinib
Erlotinib

Crizotinib
2–7 N/A SD

Sweis et al. [23] EGFR+ALK Erlotinib
Crizotinib 2–12 N/A PR/PD

Thumallapally et al. [24] EGFR+ALK Crizotinib N/A 3 wk N/A

Zhu et al. [25] EGFR+ROS-1 Adj CT N/A N/A N/A

Yang et al. [26] EGFR+ALK

Gefitinib
Erlotinib

Crizotinib
Afatinib

12–27.4 N/A SD/PR/PD

Hou et al. [27] EGFR+TP53
EGFR+RB1

Erlotinib
Gefitinib
Icotinib

4–11 10–59 N/A

Zhu et al. [28] EGFR+ALK N/A N/A N/A N/A
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Table 2. Cont.

Study Concurrent Genomic Alteration TKI mPFS (mo.) mOS (mo.) Best Response

Li et al. [29]

EGFR+PIK3CA
EGFR complex
EGFR+KRAS
EGFR+BRAF

N/A N/A N/A N/A

Liang et al. [30] EGFR Complex N/A N/A N/A N/A

Liu et al. [31] EGFR+ALK
Osimertinib
Crizotinib
Afatinib

6–15 N/A N/A

Nardo et al. [32] EGFR+KRAS
Erlotinib
Gefitinib
Afatinib

5 6 PR

Rachiglio et al. [33]

EGFR+KRAS
EGFR+BRAF
EGFR+MET
EGFR+TP53

EGFR+PIK3CA

Erlotinib
Gefitinib
Afatinib

7 15.5 N/A

Sato et al. [34]
EGFR complex

EGFR+TP53
EGFR+RB1

Gefitinib
Erlotinib N/A N/A PR

VanderLaan et al. [35]
EGFR+TP53

EGFR+PIK3CA
EGFR+PTEN

Erlotinib
Gefitinib
Afatinib

6.5 15.5 N/A

Wu et al. [36] EGFR+PIK3CA
Erlotinib
Gefitinib
Afatinib

12 5.1 PR

Zheng et al. [37] EGFR+TP53 N/A N/A 23.9 N/A

Zhuang et al. [38]

EGFR+ALK
EGFR+ROS-1
EGFR+KRAS
EGFR+BRAF

Gefitinib
Erlotinib
Afatinib
Icotinib

Crizotinib
Alectinib

9.6 N/A PR

Huang et al. [39] EGFR+TP53/PTEN
EGFR+PIK3CA

Anlotinib
Icotinib N/A N/A PR

Zhang et al. [40] EGFR+TP53 Gefitinib
Afatinib N/A N/A N/A

Canale et al. [41] EGFR+TP53
Erlotinib
Gefitinib
Afatinib

5.8–12.9 29.7–19.5 CR

Chang et al. [42]

EGFR+ALK
EGFR+TP53

EGFR+PIK3CA
EGFR+CDKN2A

Erlotinib
Gefitinib
Afatinib

1–24.2 5.4–57.6 N/A

Chen et al. [43]

EGFR complex
EGFR+ALK

EGFR+KRAS
EGFR+PIK3CA

EGFR+TP53

Erlotinib
Gefitinib
Afatinib

Osimertinib

18.7 N/A CR

De Marchi et al. [44]
EGFR complex
EGFR+KRAS

EGFR+PIK3CA
N/A N/A N/A N/A
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Table 2. Cont.

Study Concurrent Genomic Alteration TKI mPFS (mo.) mOS (mo.) Best Response

Eng et al. [45] EGFR+PIK3CA Gefitinib 7.8 18 PR

Chevallier et al. [46]

EGFR+TP53
EGFR+MET
EGFR+KRAS

EGFR+PIK3CA
EGFR+PTEN

Erlotinib
Gefitinib
Afatinib

Osimertinib

6.8–11.6 7.7–16.8 N/A

Hu et al. [47]

EGFR+ALK
EGFR+PIK3CA
EGFR+KRAS
EGFR+ROS-1
EGFR+RET

EGFR+HER2

Erlotinib
Gefitinib

Crizotinib
Icotinib

1–24 10–43 PR/PD

Chen et al. [48]

EGFR complex
EGFR+TP53
EGFR+ALK

EGFR+BRAF
EGFR+MET

Erlotinib
Gefitinib
Icotinib

6–24 N/A N/A

Lee et al. [49]

EGFR+ALK
EGFR+MET
EGFR+TP53

EGFR complex

Erlotinib
Gefitinib

Crizotinib
1–2.1 1–21.8 N/A

Zhang et al. [50]
EGFR complex
EGFR+KRAS

EGFR+PIK3CA
N/A N/A N/A N/A

Wang et al. [51] EGFR+PIK3CA Gefitinib N/A N/A PR

Klempner et al. [52] EGFR+RET Erlotinib N/A N/A PR/PD

Abbreviations: TKI, tyrosine kinase inhibitor; mPFS, median progression-free survival; mOS, median overall survival; PR, partial response;
CR, complete response; SD, stable disease; PD, progressive disease; N/A, not applicable; Adj CT, adjuvant chemotherapy; mo., months;
wk, weeks.

3.1. Complex EGFR Mutations

Of note, almost 45% of EGFR gene aberrations are in-frame deletion alterations in
exon 19 (19Del) and the p.L858R within exon 21 [8,17]. These activating mutations enhance
a better outcome in patients, granting a complete blockade of the EGFR signaling pathway
by EGFR-TKIs. Otherwise, EGFR mutations occurring in exons 18 and 20 are correlated
with resistance to standard treatments. Uncommonly, complex EGFR alterations could
be detected in a single tumor specimen harboring two or more various intra-EGFR muta-
tions [53]. Complex EGFR mutations occur almost in 3–7% of EGFR-mutant patients [54].
Belardinilli et al. described a single clinical case of an NSCLC patient harboring three
coexisting aberrations on the EGFR gene, two of which presented on the same allele [17].
In fact, through the use of NGS, the authors detected the simultaneous presence of three
missense mutations, a p.L858R and p.L861R both in exon 21 with an allele frequency close
to 41%, and a p.R776H in exon 20 with an allele frequency of 67.5%, respectively. Besides,
upon therapy with the second-generation EGFR-TKI afatinib, the patient showed a partial
response on the target lung lesion with a PFS of eight months. Moreover, a clinical trial
conducted by Lee et al. investigated molecular backgrounds of primary resistance to EGFR-
TKIs in NSCLC patients harboring sensitive EGFR alterations [49]. The study population
included a cohort of 197 patients, out of whom nine individuals had two co-existing EGFR
mutations. Additionally, among 11 patients exhibiting de novo resistance to TKI treatment
only one patient had a coexisting EGFR complex mutation, particularly p.T790M mutation
and 19Del. The authors reported that this patient displayed immediate disease progression
involving symptomatic metastasis to the central nervous system (CNS) while receiving
EGFR-TKI treatment. Furthermore, a recent analysis by Liang et al. evaluated concomitant



J. Mol. Pathol. 2021, 2 181

alterations in EGFR 19Del/L858R mutation and their correlation with EGFR-TKIs response
in a total of 403 NSCLC patients [30]. This trial included two cohorts and comprehensively
analyzed the concomitant mutational profiles of EGFR 19Del and p.L858R in TKI naïve
patients. The authors assessed that the existence of somatic p.T790M at baseline was
similar in 19Del (120, 73.4%) and p.L858R (160, 72.4%) mutations. Furthermore, Zhang et al.
screened 187 patients with complex EGFR mutations out of 5898 EGFR-positive NSCLC
patients. Fifty-one of these patients were under first-line treatment with first-generation
EGFR-TKIs [54]. Namely, 58 patients were found to carry a concurrent alteration in EGFR
exon 20 and 21, while 45 patients harbored a concomitant mutation in exon 19 and 21.
Considering the genetic aberrations, simultaneous p.T790M and p.L858R were the most
common, followed by 19Del and p.L858R. The median PFS was 9.5 months. The overall
response rate (ORR) was 52.2% (95% CI 37.2–67.2%), and the disease control rate (DCR) was
71.7% (95% CI, 58.2–85.3%). Additionally, the authors subdivided patients into four groups:
A) patients with 19Del and p.L858R; B) patients harboring a 19Del or p.L858R and atypical
mutations; C) double atypical mutations; and D) complex mutations with a primary drug-
resistant pattern, such as a primary p.T790M mutation or an exon 20 insertion. As reported
by the authors, NSCLC patients with exon 19Del and p.L858R exhibited the best ORR and
PFS, 75% and 18.2 months, respectively. On the other hand, patients included in group D
displaying complex mutations with a primary drug-resistant pattern, such as a primary
p.T790M mutation or an exon 20 insertion, have the worst clinical outcomes. Notably, some
of these patients carried a sensitizing EGFR alteration (i.e., 19Del/p.L858R/p.L861Q) plus
a p.T790M de novo or an exon 20 insertion. Thus, the worst clinical outcomes achieved
by these patients could be explained by the fact that they were treated with first and
second-generation EGFR-TKIs. Moreover, Benesova et al. described a single case of a
patient with complex EGFR alteration [18]. Of note, the patient exhibited partial response
under treatment with gefitinib. Otherwise, Sato et al. reported that 6 patients with double
EGFR alterations showed a poorer response to gefitinib treatment [34]. De Marchi et al.
found 33 patients with double EGFR genomic aberrations in a cohort of 1006 lung cancer
patients, with no data being unfortunately available on their clinical outcomes [44]. Li et al.
detected 58/5125 EGFR double mutations, with the highest incidence rate of p.T790M
and p.L858R [29]. Chen et al. presented 4/36 patients harboring concurrent 19del and
p.L858R with a worse response after TKI treatment [43]. Additionally, Chen et al. reported
concurrent EGFR complex genomic alterations in 20 patients with the worst outcome in
terms of OS [48].

3.2. Actionable Concomitant Oncogenic Driver Mutations

Although actionable oncogenic gene driver mutations in NSCLC were historically
considered mutually exclusive, the recent advent of comprehensive genomic profiling
in clinical specimens was able to identify a notable number of concurrent alterations in
EGFR-mutated NSCLC. Recently, various original research articles and case reports were
conducted on this topic, suggesting that some EGFR-mutant NSCLC patients may carry
concomitant genetic aberrations in different oncogenic driver genes.

3.2.1. ALK

ALK is a component of the insulin receptor protein-tyrosine kinase superfamily, for-
merly reported as a nucleophosmin (NPM)-ALK fusion pattern in cell lines of anaplastic
large cell lymphoma (ALCL) [55]. In 2007 ALK fusion was described in lung adenocarci-
noma for the first time in a limited cohort of Asian individuals [56]. The most common
aberration is an inter-chromosomal inversion in the short arm of chromosome 2, which
generates a fusion between the echinoderm microtubule-associated protein like-4 (EML4) gene
and the ALK gene [57]. Consequently, the fusion EML4-ALK with tyrosine kinase function
stimulates proliferation and cell survival [57]. Chromosomal rearrangements in the ALK
gene are detected in approximately 5% of NSCLC patients [58]. Moreover, this driver
fusion is predominantly estimated mutually exclusive with other genetic mutations, such
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as EGFR [59]. Notwithstanding, with the advent of novel and powerful technologies like
NGS the detection rate of concomitant genetic alterations in EGFR and ALK is systemati-
cally increased [59,60]. Liu et al. evaluated the efficacy of TKI treatments on 21 co-altered
EGFR and ALK patients with advanced NSCLC [60]. Three out of 21 patients received dual
blockade TKI treatment with EGFR- and ALK-TKIs, reaching a PFS of 5.2 months with
the combination therapy. Furthermore, analyzing the clinical-pathological features of the
concomitant mutation patients the authors found that the double genetic alteration was
more likely to occur in young females than in males. Additionally, Hu et al. examined
the frequency of concurrent genetic alterations in EGFR-positive patients, evaluating the
efficacy of EGFR-TKIs treatment in this setting [47]. Out of 320 patients including in the
study population, six patients were found harboring a co-alteration in ALK gene and they
achieved a mPFS of five months, shorter compared to those with a single EGFR mutation
(mPFS 10.9 months). Namely, four out of six patients with concomitant ALK rearrangement
were treated with the first-generation ALK-TKI crizotinib and three obtained partial re-
sponse according to RECIST criteria. Considering the particular subset of patients, a recent
report by Zhuang et al. determined that ALK-TKI therapy for the treatment of 20 patients
with a co-alteration in ALK fusion was more active as first-line treatment than in later lines
of treatment [38]. Yang et al. assessed that 13/977 NSCLC patients screened harbored a
concomitant genetic aberration in EGFR and ALK genes [26]. Out of 13 patients, 10 naïve
patients received EGFR-TKIs reaching an ORR of 80% and a mPFS of 11.2 months (95%CI
5.6–16.8). Four patients were treated with crizotinib, and three of them in a second-line
setting. Considering the clinical outcomes, two patients appeared to respond to EGFR-TKI,
yet not to ALK-TKI; whereas one was sensitive to crizotinib. The only patient who received
crizotinib as first-line displayed 15.1 months of PFS, still not show response to consecu-
tive EGFR-TKI treatment. Patients with EGFR and ALK coexisting aberrations seemed
to better respond to EGFR-TKIs in the first-line setting. Of note, in order to explain the
great heterogeneity of clinical outcomes, the authors suggested that different sensitivities to
therapies might be correlated with different levels of EGFR or ALK protein phosphorylation.
Fan et al. described a single case of a patient harboring EGFR/ALK alteration, who had
partial response under ALK-TKI [19]. Besides, Lee et al. described 12 patients with double
EGFR/ALK alteration, 11 of which with a partial response to treatments based on gefitinib,
erlotinib or crizotinib [21]. Notably, Miyanaga et al. described a single case where the
patient showed response both to first-generation EGFR-TKIs and crizotinib [22]. Sweis et al.
presented a case series including four patients treated with erlotinib and crizotinib, achiev-
ing a stable disease as the best response [23]. Thumallapally et al. reported a single case
harboring an ALK translocation together with an EGFR p.L861Q mutation treated with
crizotinib reaching a PFS of 3 weeks [24]. In their exploratory study, Lee et al. found
two out of 197 EGFR-positive NSCLC patients with a concurrent genomic alteration in
ALK [49]. Notably, the patients were treated with gefitinib and consequently with crizotinib,
achieving a partial response. Chang et al. did not report the clinical outcome of their single
case [42], as well as Zhu et al. who described two patients out of 139 [28]. Chen et al.
described a single case of double EGFR/ALK alteration with poor outcomes [48].

3.2.2. KRAS

KRAS alterations are frequently represented by missense mutations occurring in lung
adenocarcinomas [61]. Molecular evaluation of KRAS is crucial to predict clinical outcomes
and to choose the best therapeutic option, as KRAS-mutant tumors exhibit primary re-
sistance to EGFR-TKIs [61]. Moreover, almost 6–35% of EGFR positive patients harbor
a concomitant genetic aberration in the KRAS gene [62]. P.G12C, p.G12V, and p.G12D
mutation are the most frequent alteration detected [63]. Several cases have been reported
for EGFR and KRAS concurrent alterations. Benesova et al. presented three cases of pa-
tients with EGFR mutations combined with KRAS mutation [18]. Despite an initial positive
response to EGFR-TKI, the real activity did not last long showing a PFS of three, five, and
seven months, respectively. Opposing this report, Zhuang et al. reported a retrospective
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study involving 3774 patients with concurrent genetic alterations [38]. Namely, 11 patients
of the cohort showed a co-alteration in EGFR/KRAS and they were treated EGFR-TKI
therapy as first-line treatment, displaying an ORR of 62.5% (5/8). Interestingly, the PFS
comparisons between patients with an EGFR/KRAS co-mutation and those carrying a single
EGFR mutation were not statistically significant. Ranchiglio et al. identified 14 patients
with concurrent EGFR and KRAS mutations, among six with a dominant VAF [33]. No-
tably, their PFS was significantly shorter compared to EGFR mutations (2.42 months vs.
11.09 months; p = 0.0081), and also the ORR was poorer (16.7% vs. 57.1%). Additionally,
Nardo et al. analyzed the prevalence of concurrent KRAS mutations on 106 patients with
EGFR-mutant NSCLC focusing on their impact on clinical outcome [32]. Indeed, KRAS
co-alterations were detected in 3 patients with a VAF of less than 0.2%, which showed
poor clinical outcome to first-line EGFR-TKI, in terms of time to treatment failure (TTF),
OS and PFS (five, six and five months, respectively). Lee et al. described six patients with
EGFR/KRAS aberration, not reporting their clinical outcomes [21], as Li et al. who reported
30 patients with double alterations out of a cohort of 5125 individuals [29]. Chevallier et al.
described a single case [46], as De Marchi et al. [44]. Moreover, Zhang et al. found two
out of 120 patients with double concurrent genomic aberrations [54]. Whereas Hu et al.
described a single case of EGFR/KRAS out of a cohort including 320 individuals [47], of
note the patient showed progression after treatment with erlotinib. Finally, in the trial by
Chen et al. [48], seven out of 36 patients displayed a concurrent alteration in EGFR and
ALK with poorer PFS after EGFR-TKI treatment.

3.2.3. ROS-1

ROS-1 rearrangements has been detected in almost 1–2% of lung adenocarcinoma [25].
The ALK-TKI crizotinib is highly active in ROS1-rearranged patients [64]. Patients har-
boring a concomitant mutation in EGFR/ROS-1 are very rare, thus we found little data
in the current literature. Zhu et al. described a case of a single patient with concurrent
EGFR/ROS-1 alteration [25]. Moreover, in the above-mentioned article by Zhuang et al., two
out of 3774 patients harbored a co-alteration in EGFR/KRAS/ROS-1. Namely, one patient
showed a progression after second-line treatment with crizotinib and partial response
to icotinib as third-line treatment (PFS of 27.5 months), while the second patient had a
partial response after first-line treatment with gefitinib (PFS of 12.7 months) [38]. Hu et al.
reported one out of 320 patients with double ROS-1/EGFR genomic alteration and a partial
response after erlotinib as first-line treatment [43].

3.2.4. MET

Mesenchymal–epithelial transition (MET) encodes a transmembrane tyrosine kinase,
which activates downstream signaling pathways by binding to the hepatocyte growth
factor. Thusly, it has a crucial role in cell proliferation and survival [65]. MET alterations are
emerging as important driver aberrations for NSCLCs, particularly MET gene amplification
and exon 14 skipping mutations are found with a frequency of 1–11% and up to 4% in lung
adenocarcinoma [66]. MET amplification is a well-known resistance mechanism against
EGFR-TKIs, including the third-generation osimertinib [67,68]. Indeed, MET amplification
is accountable for almost 5–22% of secondary resistance to EGFR-TKIs. Particularly, MET
amplification induces ErbB3 phosphorylation, hence activating the PI3K/AKT pathway [66].
In line with these data, the treatment combination of EGFR-TKIs and MET-inhibitors
has been evaluated in different clinical trials, such as INSIGHT 1 and TATTON [69,70].
Namely, in the phase 1b/2 clinical trial INSIGHT 1, Wu et al. and colleagues evaluated
the efficacy of the combination tepotinib/gefitinib in EGFR-mutant patients with MET
amplification and secondary resistance to EGFR-TKIs, reporting better mPFS and mOS
in this particular subset of patients (16.6 vs. 4.2, HR 0.13; 37.3 vs. 13.1 HR 0.08, respec-
tively) [69]. Additionally, Oxnard et al. examined the safety of osimertinib in combination
with selumetinib/savolitinib/durvalumab [68]. Indeed, only three patients harbored MET
amplification and p.T790M and they were treated with selumetinib displaying partial
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response [68]. However, osimertinib combination with savolitinib in patients with MET-
driven secondary resistance to EGFR-TKIs is under current evaluation in the ongoing
trials SAVANNAH (NCT03778229) and ORCHARD (NCT03944772). Whereas MET exon
14 skipping/EGFR mutations are very rare and poorly explored. In preclinical models
MET ex14 decrease sensitivity to EGFR-TKIs [70]. As results of our systematic review of
the literature, we found only three papers presenting interesting data on this particular
setting. In fact, Chevallier et al. reported 15 patients with EGFR/MET alteration known to
be non-pathogenic according to international database [46]. Lee et al. described a single
patient with MET amplification >15 gene copies in 17% of tumor cells [49]. Chen et al.
reported a single case including in the short PFS group (10% vs. 33% p = 0.018) [48]. Finally,
there is a strong rationale for the use of combination of EGFR-TKIs and MET inhibitors in
this setting, thus larger studies are warranted.

3.2.5. BRAF

BRAF mutations, both p.V600E and non-p.V600E, are detected in 6–8% of NSCLC
cases, inducing downstream activation of the MAPK signaling pathway [71]. Over the
decades, several BRAF inhibitors have been developed and the combination of trametinib
and dabrafenib was the first treatment approved for advanced BRAF p.V600E-mutant
NSCLC [72,73]. Concomitant EGFR/BRAF aberrations are found in approximately 11%
of EGFR-positive NSCLC patients, with the BRAF p.V600E mutation most frequently
identified [74,75]. Chen et al. retrospectively screened 423 NSCLC patients harboring EGFR
19Del or p.L858R mutations reporting only one patient with concurrent BRAF p.V600E [48].
Of note, the patient showed a poor PFS. Furthermore, Li et al. assessed a comprehensive
mutation profiling from 5125 Chinese cohorts and they reported 160 concurrent mutations
including two EGFR/BRAF concomitant mutations [29]. Moreover, Rachiglio et al. found
hotspot mutation in several genes, including BRAF in 14 patients (21.8%) of their cohort [33].
Zhuang et al. described two cases of concomitant EGFR/BRAF alteration, showing better
outcomes with EGFR-TKI than with standard chemotherapy [38].

3.2.6. RET

Rearranged during transfection (RET) gene rearrangements are detected in almost 1%
of NSCLC patients [76,77]. Recently, FDA has granted accelerated approval to pralsetinib
and selpercatinib for lung cancer patients harboring RET fusion based on ARROW and
LIBRETTO-001 clinical trials results [78,79]. In up to 10% of NSCLC patients under os-
imertinib treatment, oncogenic fusions of RET gene have been considered responsible for
acquired resistance [78,80]. Taking into account this, the open-label, multicenter, biomarker-
guided, phase 2 clinical trial ORCHARD (NCT03944772) is still recruiting NSCLC patients
progressed on 1-L osimertinib therapy, and one cohort includes RET rearranged patients
which will receive osimertinib in combination with selpercatinib (LOXO-292) [81,82]. Al-
beit, the co-presence of EGFR mutation and RET rearrangement is rare, we found a single
case report and a research article presenting original data on this particular subset of
patients. Hu et al. detected one patient with concurrent EGFR and RET genomic alteration
out of a cohort including 320 EGFR positive patients [47]. Particularly, the patient was an
Asian young female with lung adenocarcinoma with no history of smoking, treated with
gefitinib displaying poor OS and PFS (10.2 and 2.2 months, respectively) and PD as best
response. Moreover, Klempner et al. and colleagues reported two patients with secondary
acquired RET fusion in Asian EGFR-mutant NSCLC patients, both presenting short sur-
vival [52]. Of note, none of the patients reported underwent a combination treatment with
EGFR-TKIs and RET-inhibitors. These data available from the literature confirmed the fact
that RET fusion is a resistance mechanism in EGFR mutated patients and larger clinical
trials are warranted in order to evaluate the potential activity of the combo EGFR-TKIs and
RET-inhibitors.
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3.3. TP53, PTEN, PIK3CA, CDKN2A and RB1

TP53 gene mutations are identified in 35–55% of NSCLC cases, especially in squamous
cell carcinoma (SCC) and in smokers or former smokers [83–85]. Inactivating mutations
of the TP53 gene affect the normal transcriptional p53 activity leading to tumor suscepti-
bility and hinder patients’ response to chemotherapy treatments [86,87]. Moreover, TP53
alterations might be related to a poor prognosis in NSCLC patients [88]. Almost 55–65% of
EGFR-positive NSCLC patients harbor a TP53 coexisting mutation [49,89,90]. Preclinical
models have already demonstrated a correlation between TP53 mutation and response to
EGFR-TKIs therapy [90–92]; namely apoptosis induced by gefitinib is decreased in p53
mutated cells. Mutation in TP53 gene have been divided into disruptive mutations and
non-disruptive ones considering the loss of function of p53 protein. Specifically, disruptive
mutations produce a complete loss of function of p53, while non-disruptive alterations
result in conservative mutations or non-conservative mutations (excepting stop codons)
outside the L2–L3 region [91,93–95]. Comprehensively, the systematic literature review
identified a total of 11 reports evaluating the TP53 status in EGFR-mutant patients with lung
adenocarcinoma. Namely, Canale et al. conducted an independent retrospective cohort
study on a total of 136 EGFR-mutated NSCLC patients under treatment with first or second-
generation TKIs as a first line therapy, in order to assess the role of TP53 gene alterations as
predictor of survival and response to EGFR-TKIs therapy [41]. Endpoints of the clinical
study were DCR, ORR, PFS and OS. TP53 mutations were detected in 42 (30.9%) out of the
136 patients, indeed according to the classification of TP53 aberrations into disruptive and
non-disruptive mutations, the authors observed 11 patients harboring a disruptive TP53
mutation, while most of the patients carried a non-disruptive alteration [95,96]. Thusly, the
authors found that TP53 mutations in exon 8 are related to a worse PFS regardless to the
EGFR-TKIs treatment. Moreover, after a combined analysis the authors confirmed that the
worse clinical outcome was independent from the subtype of EGFR mutations reported. Of
note, further analysis was conducted on a sub-cohort of lung adenocarcinoma patients who
developed a p.T790M resistance mutation and treated with osimertinib. This broadened
analysis confirmed worse PFS and OS. These data were consistent with a previous report
by Hou et al. [27]. In fact, this clinical trial examined the impact of TP53 gene alterations
on the clinical outcomes in a Chinese cohort of 163 patients with NSCLC. By using NGS
to establish the mutational status of EGFR and TP53, 43 EGFR-positive patients were
found harboring a concurrent TP53 gene alteration. Considering the treatment outcomes,
this subset of patients showed shorter median PFS (6.5 vs. 14.0 months) and median OS
(28.0 vs. 52.0 months). Notably, differences in outcomes were particularly meaningful
in the subset of patients harboring TP53 gene non-missense mutations, non-disruptive
mutations, mutations in exon 6 and in exon 7 and mutations in the non-DNA Binding
Domain (DBD) region among all TP53 mutations. Interestingly, these data are consistent
with the report by VanderLaan et al. [35] who described 10 patients with TP53 concurrent
mutation and worse clinical outcomes. Of note, the authors demonstrated a decreased
rate of acquired p.T790M mutation as a mechanism of resistance to gefitinib, erlotinib
and afatinib in lung adenocarcinomas with concomitant TP53 mutations. This could be
explained as genomic complex tumors might trigger different pathways bypassing EGFR as
a target. Additionally, an intriguing retrospective research was reported by Chen et al., who
validate the number of concurrent mutation and Tumor Mutational Burden (TMB) in 71
patients with EGFR mutation and under treatment with EGFR-TKIs stratified for PSF [48].
Namely, TMB was defined as somatic, coding, base substitution, and indel mutations per
megabase of genome analyzed. No significant differences were assessed between the two
groups, yet the shorter PFS subgroup revealed a TMB higher than eight. One could guess
that an increased TMB is correlated with the existence of resistance pathways, as previous
reports suggested [94]. Furthermore, among overall clinical studies, EGFR-TKIs appeared
to have less activity in 67 patients harboring concomitant TP53 gene mutations. A novel
treatment option for this particular subset of patients is represented by the combination of
EGFR-TKIs and antiangiogenic agents. Indeed, the combination of anlotinib plus icotinib
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displayed promising activity in the ALTER-L004 clinical trial for EGFR-positive NSCLC
patients. Namely, the intention to treat population (ITT) included 14 patients carrying
concomitant TP53 alterations, which showed ORR of 78.5% and DCR of 100% [39]. Addi-
tionally, in the ACTIVE study, Zhang et al. reported better PFS in the apatinib plus gefitinib
group in naïve patients with EGFR mutations and patients harboring TP53 exon 8 muta-
tions showed significant benefit from the dual blockade (HR 0.24 95%CI 0.06–0.91) [40,97].
Rachiglio et al. described 23 EGFR/TP53 mutant cases, exhibiting a mPFS of 12.3 months
and mOS of 18.9 months under EGFR-TKI treatment [33]. Interestingly, Sato et al. reported
12 patients (28%) with EGFR/TP53 alteration [34]. Moreover, Zheng et al. demonstrated
that 11 patients with co-existing EGFR and TP53 genomic alteration might have a worse
prognosis comparing to EGFR-mutant patients [37]. Lee et al. described three cases out of
197 patients [49]. Chevallier et al. reported 15 cases of double mutation, with no difference
of survival [46]. Chang et al. found that TP53 was the most common concomitant alteration
detected (10/31 patients) [42], as Chen et al. reported in their study [48].

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor sup-
pressor gene and one of the most important negative regulator of the PI3K/AKT signaling
pathway [98,99]. PTEN is deleted in several types of cancers, such as prostate, endometrial,
glioblastoma, breast, melanoma and colon [100–102]. Lung cancers are malignant tumors
where PTEN deregulation plays a crucial role in tumor cell proliferation, metastasis process,
and resistance to treatments. Beyond 40% of NSCLC, cases express loss of PTEN and it is re-
lated to poor prognosis, especially for EGFR-positive patients treated with EGFR-TKIs [103].
Various preclinical models have disclosed that PTEN inactivation could alter the pattern of
response to EGFR-TKIs [46,104], namely Chevallier et al. reported a retrospective cohort
trial of the influence of concurrent mutations on patients with advanced NSCLC treated
with TKIs [46]. The authors found five patients harboring a resistance pathogen mutation
in PTEN, who showed poor mPFS of 6.8 months. These finding are consistent with a recent
report from Huang et al. [39]. Finally, VanderLaan et al. reported 5% (1/19 patients) of
PTEN/EGFR altered patients [35].

It has been already proved that the downstream signaling pathway of the HER fam-
ily phosphatidylinositol-3-kinase (PI3K) is related to carcinogenesis in lung cancer [43].
PIK3CA mutations are detected in almost 3–7% of patients with lung adenocarcinomas and
commonly they are located in exons 9 and 20 [105]. These genetic aberrations generate
constitutive activation of PI3K, AKT phosphorylation, and mTORC1 downstream which
have a crucial role in cell survival and proliferation. In contrast to the mutual exclusivity
of various oncogenic aberrations in NSCLCs, the coexistence of PIK3CA mutations with
other oncogenic alterations is well established [105,106]. Actually, approximately 3.5%
of EGFR-mutant patients harbor PI3KCA gene alterations and this seems to blunt the re-
sponse to TKIs treatment. In vitro data suggest that EGFR-TKI sensitivity in EGFR-positive
NSCLC cell lines has been related to downregulation of the PI3K pathway, and as a matter
of fact increased resistance to gefitinib was confirmed after the introduction of the PIK3CA
p.E545K mutation into a gefitinib-sensitive lung adenocarcinoma cell line [45]. Eng et al.
analyzed the prognostic impact of a concurrent PIK3CA mutation in 13 EGFR-mutant
NSCLC patients, finding poor ORR (62% vs. 83%; p = 0.80) and shorter median Time
To Progression (TTP) (7.8 vs. 11.1 months; p = 0.84) to EGFR-TKIs [45]. Moreover, Wu
et al. examined the significance and the effect of PIK3CA mutations on treatment outcomes
to EGFR-TKIs of lung adenocarcinoma [69]. The study population included six PIK3CA
mutation-positive patients. In contrast to the analysis by Eng et al., the authors reported
similar response (ORR, 66.7 vs. 78.7%; p = 0.476) to EGFR-TKIs as wild-type patients.
Notably, PIK3CA-mutant patients displayed a trend toward better PFS (12.0 vs. 8.8 months)
and OS (25.1 vs. 21.4 months), still the variations were not statistically significant. Accord-
ingly, Wang et al. investigated a cohort of 1117 NSCLC patients, out of which 17 patients
harbored simultaneously a mutation in EGFR and PIK3CA [51]. They found that survival
for patients with single PIK3CA mutation was poorer than patients harboring a concurrent
double alteration in PIK3CA and EGFR (p = 0.004). Chevallier et al. reported two patients
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with double EGFR/PIK3CA alteration and poor survival [46]. De Marchi et al. detected
10/1208 individuals concurrent mutated in EGFR and PIK3CA [44], while Rachiglio et al.
identified nine patients with double mutations displaying a mPFS of 5.5 months under
EGFR-TKIs treatments [33]. Zhang et al. presented four patients harboring concurrent
EGFR/PIK3CA genomic alteration [50], whereas Li et al. reported 64 (3.3%) of their 5125 pa-
tients [29]. Additionally, Hu et al. described nine out of 320 patients and of note they
reported the longest PFS of 7.6 months, while Chen et al. found three out of 36 patients
describing lower ORR (43.75% vs. 80.0%; p = 0.024) comparing to the population with
a single EGFR alteration [43]. Lammers et al. reported three cases among their study
population with poor response to erlotinib treatment [20], whereas Huang et al. recently
reported better ORR of 72% among the 18 patients harboring double concurrent genomic
alteration under icotinib and anlotinib treatment.

CDKN2A gene encodes p16, a tumor suppressor which promotes a cell cycle arrest
in G1 phase by inhibiting Rb phosphorylation. In NSCLC patients, the inactivation of
CDKN2A is one of the most common genomic alterations detected [101], especially through
the mechanisms of homozygous deletions (HDs), presented in up to 29–59% of lung
adenocarcinomas regardless of the concurrent EGFR mutation [102]. Jiang et al. studied
127 EGFR-positive patients with NSCLC, identifying 31 out of 127 (24.4%) patients with
HDs in CDKN2A, who displayed poor ORR to EGFR-TKIs and shorter mPFS. Of note,
these results might justify the use of the combo EGFR-TKI and CDK4/6 inhibitors in this
particular subset of patients [104]. Moreover, Chang et al. analyzed 31 NSCLC patients with
EGFR alteration revealing copy number variation (CNV) loss in CDKN2A gene in seven
patients (22.6%) [42]. Notably, four out of seven patients had an intermediate response (six
to 12 months of PFS), while the other three patients presented a poor response (<six months).
Finally, Skoulidis et al. and colleagues showed 24.6% of CDKN2A alterations in their cohort,
concluding that co-alterations in EGFR and CDKN2A were related to EGFR TKIs acquired
resistance [107].

RB1 gene is a regulator of cell cycle and is phosphorylated by CDK4/6 to S-phase
entry [108]. The alterations in RB1 pathway have been associated to worse prognosis in
NSCLC patients [107]. In their article, Sato et al. and colleagues investigated 43 patients
with EGFR mutations revealing 16% (7/43) of RB1 co-alterations [34]. Of note, these patients
showed a poor prognosis. Hou et al. examined 71 NSCLC patients with EGFR mutations,
of whom seven patients (9.9%) with a concomitant RB1 alteration [109]. Moreover, it is
well-established that RB1 loss is a primary event correlated with transformation to Small-
Cell Lung Cancer (SCLC) and consequently EGFR-TKIs treatment resistance [110,111].
Additionally, Yu et al. and Kim et al. reported RB1 as one of the most common gene
co-altered in NSCLC patients [90]. Particularly, Kim et al. and colleagues identified
co-alteration in RB1 as predictor of fast progression to TKI treatment [112].

3.4. Methods of Detection

The mutational analysis should be performed on tissue specimens and the most
common methods for EGFR mutation detection with concomitant genomic alterations are
reported in Table 1. Generally, the biological material available does not provide an amount
of neoplastic cell percentage allowing the use of a Sanger Sequencing method. Conversely,
high-sensitivity platforms as digital droplet PCR (ddPCR) (0.1%) [113], or Amplification
Refractory Mutation System (ARMS) with a specificity up to 1% [111] should be able to
cleverly detect these pathogenetic variants with a specificity running up to wild-type
DNA [111]. Nevertheless, the recent development of NGS accomplishes massive parallel
gene mutation analysis and requires low amount of tissue, favoring the identification of
several targetable molecular alterations until of 5% of VAF [113].

4. Discussion

Over the last decades, our treatment approach to lung cancer patients has been dramat-
ically changed as a result of the development and clinical implementation of an essential
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tool as NGS. EGFR mutations represent a molecular target in this particular population.
In this context, oncogenic driver mutations in NSCLC were historically considered mutu-
ally exclusive, thus the potential association of two or more oncogenic driver aberrations
has been poorly explored. Moreover, the advent of comprehensive genomic profiling in
clinical samples enabled the detection of a significant number of concurrent alterations in
EGFR-mutated NSCLC. Consequently, we perform a systematic review of the literature
on concurrent genomic alterations and their oncogenic role to provide a deeper insight
into the molecular heterogeneity of EGFR-mutated NSCLCs. Finally, the results of our
systematic review of the literature seemed to indicate that EGFR-mutant NSCLC is not
a single oncogene driven entity. Most of the results of our systematic review consisted
in articles and reports on Asian population. This is consistent with the major prevalence
of EGFR genomic alteration in NSCLC Asian patients [114,115]. Notable, Asian patients
appeared to display better response comparing to Caucasian cohorts (see Table 2); this
finding shows racial differences in genetic pathways and prompts further studies on this
field of research.

Notably, the presence of coexisting genetic alteration might likely justify resistance
to TKIs treatment [116]. Particularly, different clinical trials assessed that the concurrent
presence of mutation provides a worse prognosis in EGFR-positive NSCLC patients treated
with first-, second-, and third-generation TKIs. Indeed, these recent findings highlighted
that EGFR-mutated tumors have notable intratumor heterogeneity with concomitant evi-
dence of significant oncogenic gene aberrations [54,117]. In fact, through the use of NGS,
Belardinilli et al. detected similar VAF of the pair of mutations located in exon 21, likely
indicating a co-occurrence within the same tumor cells [17]. Accordingly, it is intriguing
to speculate that the above-mentioned particular oncogenetic pattern identified in this
lung cancer patient could explain the increased response to TKI treatment with afatinib,
generally not found in NSCLC patients harboring complex EGFR alterations. Moreover,
this interesting analysis pointed out the urgent need of further investigations in order to
clarify the mechanism of differential responses to TKIs. In the study by Zhang et al. [54], pa-
tients with a sensitive EGFR alteration such as 19Del/p.L858R/p.L861Q, plus a p.T790M de
novo or an exon 20 insertion exhibited the worst clinical outcomes [116], [118]. This could
be clarified as they were treated with first- and second-generation EGFR-TKIs. It would
have been intriguing evaluating patient’s response after a third-generation EGFR-TKI
treatment, like osimertinib. Indeed, based on the results of the FLAURA trial, osimertinib
is considered the current standard of care for EGFR p.T790M positive patients. However,
NSCLC patients with EGFR exon 20 insertion designate still a crucial unmet need. Recent
preliminary data presented on March 2021 at ESMO Targeted Anticancer Therapies (TAT)
Virtual Congress by Sacher et al. demonstrated that poziotinib, initially conceived as a
HER2-inhibitor, has significant clinical activity on this particular subset of patients [119]. Al-
though further evaluations are warranted, one could speculate that EGFR-positive patients
harboring a complex mutation, alike an exon 20 insertion and a sensitive genetic alteration
(19Del/p.L858R/p.L861Q) might benefit from a treatment with a potent irreversible TKI,
such as poziotinib. Collectively, it is challenging to estimate the efficacy of EGFR-TKIs in
NSCLC patients harboring uncommon complex EGFR genetic alterations due to the great
heterogeneity of the mutations detected [119,120]. Previous clinical trials have evaluated
that first-generation EGFR-TKIs showed poor efficacy for uncommon mutations (alone or
plus a compound mutation) [121]. Consequently, afatinib and osimertinib should be taken
into consideration for treatment of these patients. In fact, based on the durable responses
demonstrated in the multicenter randomized clinical trials LUX-Lung 2, LUX-Lung 3,
and LUX-Lung 6, on January 2018, the Food and Drug Administration (FDA) granted
approval to afatinib as a first-line treatment option for patients carrying an uncommon
mutation [69,122–125]. Additionally, osimertinib confirmed favorable activity in patients
with NSCLC harboring uncommon EGFR mutations, as reported by Cho et al. [126,127].
Therefore, a treatment with afatinib or osimertinib seems to be a better strategy for this
particular subset of patients; however, because of the high molecular heterogeneity and
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low prevalence of this mutational pattern further clinical trials with larger sample size are
warranted. Notwithstanding, with the advent of novel and powerful technologies like NGS
the detection rate of concomitant genetic alterations in EGFR and ALK is systematically
increased [25,44,65]. Zhuang et al. found that ALK-TKI therapy was more active as a
first-line treatment than in later lines [39], while Yang et al. detected that patients appeared
to better respond to EGFR-TKIs as a first-line setting. The great heterogeneity of clinical
outcomes might be correlated with different levels of EGFR or ALK protein phosphory-
lation. The responses to EGFR- and/or ALK-TKIs appeared to be conflicting, thus it is
recommended to fully evaluate by using high-sensitivity molecular techniques and detect
the VAF in order to reconstruct the clonal architecture and heterogeneity. Despite further
investigations are warranted, a combination of EGFR- and ALK-TKI might be considered a
reasoned treatment strategy. Moreover, several cases have been reported EGFR and KRAS
concurrent alterations. Given the potential impact of multiclonal characters of NSCLC on
treatments, VAF quantitative estimation of both genetic mutations appears to be the best
method able to determine who would benefit most from EGFR-TKI treatment. Interestingly,
based on our findings, one could speculate that the coexistence of EGFR/ROS-1 alteration
is consistent with tumor tissue heterogeneity. Overall, due to the limited data available
further larger studies remain mandatory in order to assess the treatment outcomes of
patients harboring an EGFR/ROS1 concurrent alteration. The impact of EGFR/MET co-
alterations in NSCLC patients still represents an area of active investigation, yet larger
clinical trials using uniform criteria to evaluate MET status are required [66]. Methods
universally standardized in order to detect MET gene alteration are fluorescence in situ
hybridization (FISH), immunohistochemistry (IHC), NGS, and real-time PCR, however
the latter technique is not selective for cancel cells [123]. Consequently, the conflicting
results in MET positivity detection might be attributed to the lack of data harmonization
platform as well as of systematic criteria. Two commonly used scoring systems for assess-
ing MET amplification are the Cappuzzo scoring system and the PathVysion [127–130].
It is well-established that activation of the MET pathway is one of the main acquired
resistance mechanisms in EGFR-mutant patients, hence it is conceivable that a combination
of EGFR- and MET-TKIs might have some activity in this particular subset of patients [48].
Moreover, several clinical trials have reported a secondary BRAF p.V600E mutation as a
potential resistance mechanism to osimertinib treatment in EGFR-mutant patients. Meng
et al. reported two patients with a p.T790 M mutation both treated with osimertinib who
acquired a BRAF p.V600E mutation at PD [74]. Interestingly, a combination of dabrafenib
and trametinib plus osimertinib was administered. One patient showed PR with a PFS of
14 months, whereas the second patient discontinued treatment due to severe pneumonitis.
However, combined treatment with dabrafenib, trametinib and osimertinib appeared to be
effective. Since literature data on the activity of these combined approaches are limited,
further investigation represents an important issue. Furthermore, the worse prognosis of
concurrent EGFR/TP53 positive patients could be explained as genomic complex tumors
might trigger different pathways bypassing EGFR as a target. Furthermore, among overall
clinical studies, EGFR-TKIs appeared to have less activity in patients harboring concomi-
tant TP53 gene mutations. A novel treatment option for this particular subset of patients is
represented by the combination of EGFR-TKIs and antiangiogenic agents, as suggested by
several trials [39,40,99]. Beyond 40% of NSCLC, cases express loss of PTEN and it is related
to poor prognosis, especially for EGFR-positive patients treated with EGFR-TKIs [131].
Collectively, the concurrence of genetic aberrations in different genes might be responsible
for the sub clonal heterogeneity, thence it could justify the primary resistance to EGFR-TKI
treatments in this particular subset of patients. Based on our findings, the impact of PIK3CA
mutations on survival in EGFR-mutant patients is still under debate. On March 2021, Lage
et al. presented a retrospective analysis of 1745 NSCLC patients receiving treatment from
2011 to 2020. Out of 1745 patients, 479 patients underwent NGS and 61 (12.7%) patients
were identified as having an alteration in the PI3K pathway [132]. Patients harboring
a co-altered EGFR was 8% of the study population. The authors concluded that PI3K
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pathway alteration was more common in smoker male patients with NSCLC. Notably,
this genetic aberration was not mutually exclusive to other mutations, thusly highlights
the relationship between molecular pathways. Basically, given the potential importance
of PIK3CA concomitant mutations molecular tumor boards are mandatory allowing for
individualized therapy in this specific subset of patients. In summary, the limited sample
size of these studies prevents us from drawing definitive conclusions. Larger studies with
long term follow-up are warranted in order to clarify these controversial results.

5. Conclusions

While for decades NSCLC was considered to be a single disease, it is nowadays
becoming more convenient to consider NSCLC as a combination of disease subtypes
according to the driver genetic aberration. Concurrence of multiple driver alterations
should be considered in order to comprehensively understand tumor mechanisms and
therapeutic strategies. Currently, it is possible to identify a larger number of concomitant
mutated cancers by using more sensitive and powerful techniques. Considering that
the use of large panels of genes might induce to the identification of multiple targeted
molecular drivers, multidisciplinary molecular tumor boards (MTBs) are mandatory in
order to provide the best treatment strategies in cases of concurrent somatic genomic
alterations [130–133]. On the other hand, the determination of the VAF, taking into account
the number of cancer cells harboring concomitant genetic aberrations, might be used
as a tool to select the correct therapeutic options for this particular subset of patients.
In conclusion, co-existing driver gene alterations characterize a small group of NSCLC
patients. However, further prospective studies are warranted to examinate the treatment
outcomes of patients harboring double EGFR mutations.
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