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1. Introduction

Samet et al. [20] introduced the notion of α-ψ-contractive mapping and established some fixed point results in the setting of

complete metric spaces. Thereafter, based on the ideas in [20], many authors established a variety of results and applied these

results in solving different practical situations involving differential equations and other mathematical problems [1, 9, 10, 15, 16].

Thus, from a theoretical point of view, the usefulness of the new fixed point theorems is recognized. On the other hand, over

the last decades, the study of convergence of fixed point iterative methods has received an increasing attention, due to their

performance as tools for solving numerical problems. As a consequence of this fact, the reader can access to a wide literature

on iterative schemes involving different types of mappings and operators, see for example [4, 5] and the references therein. We

point out that fixed point iterative approximation methods have been largely applied in dealing with stability and convergence

problems. In particular, we refer to various control and optimization questions arising in pure and applied sciences involving

dynamical systems, where the problem in study can be easily arranged as a fixed point problem. Let N be the set of natural

numbers starting from 1. We recall that, given a non-empty set X and a mapping T : K → X, with K ⊂ X, solving a fixed point

problem means to get a point x ∈ K such that x = Tx . Also, at the basis of the proof of metric theorems for existence and

uniqueness of fixed point there is an iterative scheme, known as Picard iteration at starting point x0, which constructs a sequence

{xn} of successive approximations of above point x , by assuming xn+1 = Txn for n ∈ N ∪ {0}, with given x0. Then, under suitable

hypotheses on mapping T and space X, it is possible to prove interesting results on convergence, stability and give a priori and a

posteriori estimation errors, see [4, 5, 17]. Here, we merge the potentiality of the ideas in [20] with the constructive development

of iterative schemes to obtain new theoretical results. More precisely, this study is based on the recent papers [20] (concerning

fixed point theory) and [2] (concerning iterative schemes). Throughout the paper, standard notations and terminologies in

nonlinear analysis are used. Also, we follow the general organization of Berinde in [2]. Then, after necessary preliminaries, we

prove some convergence theorems for α-ψ-pseudocontractive operators in real Hilbert spaces. Precisely, by using the concept

of admissible perturbations of α-ψ-pseudocontractive operators in Hilbert spaces, we prove results for Krasnoselskij type fixed

point iterative schemes. Our theorems complement, generalize and unify some existing results, see for instance [2, 3, 4].
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2. Preliminaries

2.1. Fixed point theory

We consider the framework of complete metric spaces and recall some useful notions on mappings.

Definition 1 ([20]) Let T : X → X and α : X ×X → R. We say that T is α-admissible if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, T y) ≥ 1.

Denote by Ψ the family of non-decreasing functions ψ : [0,+∞[→ [0,+∞[ such that ψ(t) > 0 and lim
n→+∞

ψn(t) = 0 for each

t > 0, where ψn is the n-th iterate of ψ.

Lemma 1 ([20]) For every function ψ ∈ Ψ, we have ψ(t) < t for each t > 0.

Definition 2 ([20]) Let (X, d) be a metric space and T : X → X be a given mapping. We say that T is an α-ψ-contractive

mapping if there exist two functions α : X × X → R and ψ ∈ Ψ such that

d(Tx, T y) ≤ ψ(d(x, y)),

for all x, y ∈ X with α(x, y) ≥ 1.

Also, we consider the following properties of regularity, see also [11]. Let (X, d) be a metric space and α : X × X → R be a

function. Then

(i) X is α-regular if for each sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x , we have that α(xn, x) ≥ 1

for all n ∈ N,

(ii) X has the property (C) with respect to α if for each sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 for all n ∈ N, there

exists n0 ∈ N such that α(xm, xn) ≥ 1 for all n > m ≥ n0.

In the sequel, we will use the following theorem, with and without continuity hypothesis on mapping T , see [11, 20].

Theorem 1 Let (X, d) be a complete metric space and T : X → X be an α-ψ-contractive mapping satisfying the following

conditions:

(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iii) X has the property (C) with respect to α;

(iv) T is continuous or X is α-regular.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that x∗ = Tx∗.

Now, we get some additional conditions and notions for a pair of mappings.

Definition 3 Let S, T : X → X and α : X ×X → R. We say that S is α-T -admissible if

x ∈ X, α(x, Sx) ≥ 1 =⇒ α(Sx, TSx) ≥ 1 and α(TSx, STSx) ≥ 1.

Definition 4 Let (X, d) be a metric space and S, T : X → X be two given mappings. We say that (S, T ) is an α-ψ-contractive

pair of mappings if there exist two functions α : X ×X → R and ψ ∈ Ψ such that

d(Tx, Sy) ≤ ψ(d(x, y)),

for all x, y ∈ X with max{α(x, y), α(y, x)} ≥ 1.

Then, we prove the following theorem, with and without continuity hypothesis on mappings S and T , see also [14].

Theorem 2 Let (X, d) be a complete metric space and S, T : X → X be such that (S, T ) is an α-ψ-contractive pair of mappings

satisfying the following conditions:

(i) S is α-T -admissible;

(ii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iii) X has the property (C) with respect to α;

(iv) S and T are continuous or X is α-regular.

Then, S and T have a common fixed point, that is, there exists x∗ ∈ X such that x∗ = Tx∗ = Sx∗.
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Proof Let x0 be an arbitrary point in X satisfying condition (ii). If x0 = Sx0, then d(Tx0, SSx0) ≤ ψ(d(x0, Sx0)) = 0 and

hence d(Tx0, SSx0) = d(Tx0, x0) = 0 so that the proof is finished. Thus, we assume that x0 6= Sx0. Then, we define a sequence

{xn} ⊆ X as

x2n+1 = Sx2n and x2n+2 = Tx2n+1, for all n ∈ N ∪ {0}.

Since S is α-T -admissible, by using condition (ii), we inductively obtain α(xn, xn+1) ≥ 1 for all n ∈ N. Now, we suppose that the

successive terms of sequence {xn} are distinct; otherwise the proof is finished. Next, from α(x2n−1, x2n) ≥ 1, we obtain

d(x2n, x2n+1) = d(Tx2n−1, Sx2n) ≤ ψ(d(x2n−1, x2n)).

Also, from α(x2n, x2n+1) ≥ 1, we get

d(x2n+1, x2n+2) = d(x2n+2, x2n+1)

= d(Tx2n+1, Sx2n)

≤ ψ(d(x2n+1, x2n))

= ψ(d(x2n, x2n+1)).

From above inequalities, we have

d(x2n, x2n+1) ≤ ψ(d(x2n−1, x2n)) ≤ · · · ≤ ψ2n(d(x0, x1))

and

d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+1)) ≤ · · · ≤ ψ2n+1(d(x0, x1)).

Consequently, we write

d(xn, xn+1) ≤ ψn(d(x0, x1)), for all n ∈ N,

and hence we conclude that d(xn, xn+1)→ 0 as n → +∞. Now, we prove that {xn} is a Cauchy sequence. Given ε > 0, there

exists n(ε) > 0 such that

max{d(x2m, x2m+1), d(x2m, x2m+2)} < ε− ψ2(ε), for all m ≥ n(ε),

where ε− ψ2(ε) > 0 by Lemma 1. We claim that d(x2m, x2n+1) < ε for all n ≥ m ≥ n(ε). If n = m the statement is obvious.

We can assume that for some n ≥ m, we have d(x2m, x2n+1) < ε. Then, we get

d(x2m, x2n+3) ≤ d(x2m, x2m+2) + d(x2m+2, x2n+3)

= d(x2m, x2m+2) + d(Tx2m+1, Sx2n+2)

< ε− ψ2(ε) + ψ(d(x2m+1, x2n+2))

≤ ε− ψ2(ε) + ψ(d(Tx2n+1, Sx2m))

≤ ε− ψ2(ε) + ψ(ψ(d(x2m, x2n+1)))

≤ ε− ψ2(ε) + ψ2(ε) = ε.

This ensures that {x2n} is a Cauchy sequence and so {xn} is also Cauchy.

From the completeness of (X, d), there exists z ∈ X such that xn → z as n → +∞.

If S and T are continuous, from x2n+1 = Sx2n and x2n+2 = Tx2n+1, we obtain z = Sz = Tz .

On the other hand, if X is α-regular, then α(xn, z) ≥ 1 for all n ∈ N.

From

d(z, Sz) = lim
n→+∞

d(x2n+2, Sz)

= lim
n→+∞

d(Tx2n+1, Sz)

≤ lim
n→+∞

ψ(d(x2n+1, z))

≤ lim
n→+∞

d(x2n+1, z) = 0,

we deduce that d(z, Sz) = 0.

From

d(Tz, x2n+1) = d(Tz, Sx2n)

≤ ψ(d(z, x2n)) < d(z, x2n),

passing to the limit as n → +∞, we deduce Tz = z . We conclude that S and T have a common fixed point.
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2.2. Iterative approximation schemes

Fixed point iterative methods were studied to approximate the solutions of fixed point problems involving mappings with specific

properties. Here we consider pseudocontractive type operators. Precisely, we recall the following concepts, see [12, 19, 21].

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
An operator T : K → H, with K ⊂ H, is called

(i) pseudocontractive if, for all x, y ∈ K,

‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − Ty − (x − y)‖2,

or equivalently

〈Tx − Ty, x − y〉 ≤ ‖x − y‖2.

(ii) strongly pseudocontractive if there exists a constant k ∈]0, 1[ such that, for x, y ∈ K,

〈Tx − Ty, x − y〉 ≤ k‖x − y‖2.

Successively, many researchers generalized above concepts to get classes of pseudocontractive type operators, with unifying

power over the existing ones, see for instance [3, 12]. Also, Rus [18] proposed a new approach to fixed point iterative schemes,

by giving the concept of admissible perturbation, see [5, 6, 7].

We recall three fundamental iterative schemes from existing literature [4, 5, 17]. In fact, starting from the Picard iteration scheme,

many researchers introduced various fixed point iterative methods for solving the basic fixed point problem in Introduction, under

weaker hypotheses, see again [4] and references therein.

Let E be a real vector space, x0 ∈ E be an arbitrary starting point and T : E → E be a given operator. First, we consider

Krasnoselskij iteration scheme, that is, an approximation sequence {xn} ⊂ E given by

xn+1 = (1− λ)xn + λTxn, for all n ∈ N ∪ {0}. (1)

Clearly, by putting λ = 1 in (1), we get the Picard iteration scheme.

Secondly, let {αn} ⊂ [0, 1] be a sequence of real numbers. We cite Mann iterative scheme [13], that is, an approximation

sequence {xn} ⊂ E given by

xn+1 = (1− αn)xn + αnTxn, for all n ∈ N ∪ {0}. (2)

Finally, Ishikawa iterative scheme [8] is a sequence {xn} ⊂ E given by{
xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn,
(3)

for all n ∈ N ∪ {0}, where {αn} and {βn} are sequences in [0, 1].

Obviously, for βn = 0, (3) reduces to (2), while, for αn = λ, (2) reduces to (1).

Now, according to Rus [18], we give some useful concepts.

Definition 5 ([18]) Let X be a nonempty set. A mapping G : X × X → X is called admissible if it satisfies the following two

conditions:

(i) G(x, x) = x , for all x ∈ X;

(ii) G(x, y) = x implies x = y.

Definition 6 ([18]) Let X be a nonempty set. If T : X → X is a given mapping and G : X × X → X is an admissible mapping,

then the mapping TG : X → X, defined by

TGx = G(x, T x), for all x ∈ X,

is called the admissible perturbation of T .

Remark 1 ([2]) Let F ix(T ) := {x ∈ X : x = Tx} denote the set of all fixed points of mapping T : X → X. Notice that, if

TG : X → X is the admissible perturbation of T , then TG and T have the same set of fixed points, that is, F ix(TG) = F ix(T ).

We give some significant examples from existing literature.

Example 1 ([18]) Let (V,+,R) be a real vector space, K ⊂ V a convex subset, λ ∈]0, 1[, T : K → K and G : K ×K → K be

defined by

G(x, y) = (1− λ)x + λy, x, y ∈ K.

Then G is an admissible mapping and TGx = G(x, T x) is the corresponding admissible perturbation of T . In this case, TG is also

known as Krasnoselskij perturbation of T .
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Definition 7 ([18]) Let T : K → K be a nonlinear mapping and G : K ×K → K an admissible operator. Then the iterative

scheme {xn} given by x0 ∈ K and

xn+1 = G(xn, T xn), for all n ∈ N ∪ {0},

is called the Krasnoselskij iterative scheme corresponding to G, say GK-iterative scheme for short.

Definition 8 Let G : E × E → E be an admissible operator on a normed space E. We say that G is affine Lipschitzian if there

exists a constant µ ∈ [0, 1] such that

‖G(x1, y1)− G(x2, y2)‖ ≤ ‖µ(x1 − x2) + (1− µ)(y1 − y2)‖,

for all x1, x2, y1, y2 ∈ E.

3. Convergence theorems of α-ψ-pseudcontractive operators

We build the fundamental concept of this section on the following definition.

Definition 9 ([3]) Let H be a real Hilbert space. An operator T : K ⊂ H → H is said to be strictly ψ-pseudocontractive if, for

given a, b, c ∈ [0, 1] with a + b + c = 1, there exists a function ψ ∈ Ψ such that

a‖x − y‖2 + b〈Tx − Ty, x − y〉+ c‖Tx − Ty‖2 ≤ ψ2(‖x − y‖),

holds, for all x, y ∈ K.

On this basis, we introduce the following class of α-ψ-pseudocontractions.

Definition 10 Let H be a real Hilbert space. Two operators T1, T2 : K ⊂ H → H are said to be an α-ψ-pseudocontractive pair

if, for given a, b, c ∈ [0, 1] with a + b + c = 1, there exist two functions ψ ∈ Ψ and α : K ×K → R such that

a‖x − y‖2 + b〈T1x − T2y, x − y〉+ c‖T1x − T2y‖2 ≤ ψ2(‖x − y‖),

holds, for all x, y ∈ K with max{α(x, y), α(y, x)} ≥ 1. Clearly, if T1 = T2, we get the definition of α-ψ-pseudocontractive

operator. In addition, if α(x, y) = 1 for all x, y ∈ K, then we retrieve Definition 9.

Now, we present the main result of this paper, which is a convergence theorem of GK-iterative scheme.

Theorem 3 Let K be a nonempty closed and convex subset of a real Hilbert space H, T1, T2 : K → K an α-ψ-pseudocontractive

pair of operators and G : K ×K → K an affine Lipschitzian admissible operator with constant λ ∈]0, 1[. Assume that the

following conditions hold:

(i) T1G is α-T2G -admissible;

(ii) there exists x0 ∈ K such that α(x0, T1G x0) ≥ 1;

(iii) K has the property (C) with respect to α;

(iv) T1G , T2G are continuous or K is α-regular.

Then T1 and T2 have a common fixed point in K and the GK-iterative scheme {xn}, given by x0 ∈ K and

x2n+1 = G(x2n, T1x2n) and x2n+2 = G(x2n+1, T2x2n+1), for all n ∈ N ∪ {0},

converges to a common fixed point of T1 and T2, for any x0 ∈ K such that (ii) holds.

Proof Let T1G , T2G : K → K be the admissible perturbation operators associated with operators T1 and T2, that is, T1G x =

G(x, T1x) and T2G y = G(y, T2y), for all x, y ∈ K.

Now, since G is affine Lipschitzian admissible, then there exists a constant λ ∈]0, 1[ such that

‖G(x, T1x)− G(y, T2y)‖ ≤ ‖(1− λ)(x − y) + λ(T1x − T2y)‖,

for all x, y ∈ K. From above facts, we can write

‖T1G x − T2G y‖
2 = ‖G(x, T1x)− G(y, T2y)‖2

≤ ‖(1− λ)(x − y) + λ(T1x − T2y)‖2

= (1− λ)2‖x − y‖2 + 2λ(1− λ)〈T1x − T2y, x − y〉+ λ2‖T1x − T2y‖2.
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Thus, from the last inequality, by denoting a = (1− λ)2, b = 2λ(1− λ) and c = λ2 so that a + b + c = 1 and since T1 and T2

are an α-ψ-pseudocontractive pair of operators, we deduce that there exist two functions ψ ∈ Ψ and α : K ×K → R such that

x, y ∈ K and max{α(x, y), α(y, x)} ≥ 1 imply ‖T1G x − T2G y‖
2 ≤ ψ2(‖x − y‖). Thus, we have

‖T1G x − T2G y‖ ≤ ψ(‖x − y‖),

for all x, y ∈ K, with max{α(x, y), α(y, x)} ≥ 1.

This means that the pair (T1G , T2G ) is α-ψ-contractive and hence T1G and T2G have a common fixed point, by an application of

Theorem 2. Notice that F ix(T1G ) = F ix(T1) and F ix(T2G ) = F ix(T2), therefore F ix(T1G ) ∩ F ix(T2G ) = F ix(T1) ∩ F ix(T2) 6=
∅. Thus, the conclusions of Theorem 3 hold true.

Remark 2 In solving some problems involving differential equations, it is natural to consider a partial order on the setting space.

In this context, the function α : K ×K → R defined by

α(x, y) =

{
1 if x ≤ y,
0 otherwise,

is a typical example of function suitable for Theorem 3.

We give an easy example, which shows that the function α really enlarges applicability of Theorem 3.

Example 2 Let H = R, K = [0, 1], G : K ×K → K as in Example 1 and T1, T2 : K → K be given by T1x = x2 and T2x = x3.

Take λ = 1/2 and consider the starting point x0 = 1 so that T1x0 = 1. Let α : K ×K → R be defined by

α(x, y) =

{
1 if x = y ∈ {0, 1},
0 otherwise.

Thus the conditions (i)-(iv) of Theorem 3 hold true. Clearly, G : K ×K → K is affine Lipschitzian admissible and T1, T2 : K → K

are an α-ψ-pseudocontractive pair of operators, for all a, b, c ∈ R+ with a + b + c = 1, and for each ψ ∈ Ψ. Here, we obtain

the constant GK-iterative scheme {xn} given by xn = 1 for all n ∈ N ∪ {0}. Note that F ix(T1) ∩ F ix(T2) = {0, 1}.
On the other hand, define α : K ×K → [0,+∞[ by α(x, y) = 1 for all x, y ∈ K and retaining the rest (which is equivalent to

say that we do not consider the function α in Definition 10 and Theorem 3). In this case, there do not exist a, b, c ∈ R+, with

a + b + c = 1, such that T1, T2 are an α-ψ-pseudocontractive pair of operators. Thus, Theorem 3 (without the function α)

does not apply.

Clearly, in the case of Krasnoselskij perturbation with T1 = T2 = T , we have the following result, see also Theorem 2 of [2].

Theorem 4 Let K be a nonempty closed and convex subset of a real Hilbert space H, T : K → K an α-ψ-pseudocontractive

operator and G : K ×K → K an affine Lipschitzian admissible operator with constant λ ∈]0, 1[. Assume that the following

conditions hold:

(i) TG is α-admissible;

(ii) there exists x0 ∈ K such that α(x0, TGx0) ≥ 1;

(iii) K has the property (C) with respect to α;

(iv) TG is continuous or K is α-regular.

Then T has a fixed point in K and the GK-iterative scheme {xn}, given by x0 ∈ K and

xn+1 = G(xn, T xn), for all n ∈ N ∪ {0},

converges to a fixed point of T , for any x0 ∈ K such that (ii) holds.

Example 3 Let H = l2(R), K = {x ∈ H :
∑∞

i=1 x
2
i ≤ 1}, G : K ×K → K as in Example 1 and T : K → K be given by

T (x) = T (x1, x2, · · · , xn, · · · ) =
(
−x1

2
,
x2

4
, · · · , xn

4
, · · ·

)
.

Take λ = 1/2 and consider the starting point x0 = (−1, 0, · · · , 0, · · · ) so that TGx0 = (− 1
4
, 0, · · · , 0, · · · ).

Let α : K ×K → R be defined by

α(x, y) =

{
1 if xi ≤ yi , i ∈ N \ {1},
0 otherwise.

Thus the conditions (i)-(iv) of Theorem 4 hold true. Clearly, G : K ×K → K is affine Lipschitzian admissible and T : K → K

is α-ψ-pseudocontractive, with a = b = 0, c = 1 and ψ(t) = t/2. Here, we obtain the GK-iterative scheme {xn} given by

xn = (− 1
4n
, 0, · · · , 0, · · · ) for all n ∈ N ∪ {0}, which converges to x∗ = (0, 0, · · · , 0, · · · ). Also, x∗ is a unique fixed point of T .
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Figure 1. x01 = −1, x∗1 = 0, λ = 1, tol l = 0.0001

Table 1. Comparison between different values of λ

Iteration λ = 1/2 λ = 3/4 λ = 1

0 -1 -1 -1

1 - 0.25000 0.12500 0.50000

2 - 0.06250 - 0.01563 -0.25000

3 - 0.01563 0.00195 0.12500

4 - 0.00391 - 0.00024 -0.06250

5 - 0.00098 0.00003 0.03125

6 - 0.00024 0.00000 -0.01563

7 - 0.00006 0.00000 0.00781

8 - 0.00002 0.00000 -0.00391

9 0.00000 0.00000 0.00195

10 0.00000 0.00000 0.00098

Example 4 Let H = R, K = [0, 1], G : K ×K → K as in Example 1 and T : K → K be given by Tx = x2 for all x ∈ [0, 1]. Let

α : K ×K → R be defined by

α(x, y) =

{
1 if x, y ∈ [0, 1/4] or x = y,

0 otherwise.

Clearly, T : K → K is α-ψ-pseudocontractive, with a = b = 0, c = 1 and ψ(t) = kt, with k ∈ [1/2, 1[. Take λ = 1/2 and

consider the starting point x0 = 1/4 so that TGx0 = 5/32.

Again, all the hypotheses of Theorem 4 hold true. Here, the GK-iterative scheme {xn} converges to 0, which is a fixed point of

T . Note that F ix(T ) = {0, 1}.

4. Parallel algorithm

In this section, by following the research line in Zhang and Guo [22], we study the convergence of a parallel algorithm. Precisely,

let K be a nonempty closed and convex subset of a real Hilbert space H, N ∈ N and {Ti}Ni=1 a finite family of self-operators on

K, satisfying certain properties. We consider the parallel GK-iterative scheme {xn} given by x0 ∈ K and

xn+1 = G(xn,

N∑
i=1

γiTixn), for all n ∈ N ∪ {0}. (4)

Thus, we give sufficient conditions to prove the convergence of (4) to a common fixed point x∗ of {Ti}Ni=1, that is

x∗ ∈ ∩Ni=1F ix(Ti).
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Figure 2. x0 = 1/4, x∗ = 0, λ = 1, tol l = 0.0001

Table 2. Comparison between different values of λ

Iteration λ = 1/2 λ = 3/4 λ = 1

0 0.25000 0.25000 0.25000

1 0.15625 0.10938 0.62500

2 0.09033 0.03632 0.00391

3 0.04925 0.01007 0.00002

4 0.02584 0.00259 0.00000

5 0.01325 0.00065 0.00000

6 0.00671 0.00016 0.00000

7 0.00338 0.00004 0.00000

8 0.00170 0.00001 0.00000

9 0.00085 0.00000 0.00000

10 0.00042 0.00000 0.00000

11 0.00021 0.00000 0.00000

12 0.00011 0.00000 0.00000

13 0.00005 0.00000 0.00000

Theorem 5 Let K be a nonempty closed and convex subset of a real Hilbert space H, {Ti}Ni=1 a finite family of operators such

that Ti : K → K is α-ψi -pseudocontractive, where ψi(t) = δi t with δi ∈]0, 1[. Let G : K ×K → K be an affine Lipschitzian

admissible operator with constant λ ∈]0, 1[. Denote T :=
∑N

i=1 γiTi , where {γi}Ni=1 ⊂]0,+∞[ is a finite sequence such that∑N
i=1 γi = 1, and assume that the following conditions hold:

(i) TG is α-admissible;

(ii) there exists x0 ∈ K such that α(x0, TGx0) ≥ 1;

(iii) K has the property (C) with respect to α;

(iv) TG is continuous or K is α-regular;

(v) F ix(T ) = ∩Ni=1F ix(Ti) 6= ∅.

Then the GK-iterative scheme {xn}, given by x0 ∈ K and (4), converges to a common fixed point in ∩Ni=1F ix(Ti), for any x0 ∈ K
such that (ii) holds.

Proof Since T =
∑N

i=1 γiTi and Ti : K → K is α-ψi -pseudocontractive operator, where ψi(t) = δi t with δi ∈]0, 1[, then T is

an α-ψ-pseudocontractive operator, where ψ(t) = δt with δ = maxi δi < 1.

Now, let TG : K → K be the admissible perturbation operator associated with operator T , that is, TGx = G(x, T x), for all x ∈ K.

Also, since G : K ×K → K is an affine Lipschitzian admissible operator, then there exists a constant λ ∈]0, 1[ such that

‖G(x, T x)− G(y, T y)‖ ≤ ‖(1− λ)(x − y) + λ(Tx − Ty)‖,

8 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–10
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for all x, y ∈ K. From above facts, we can write

‖TGx − TGy‖2 = ‖G(x, T x)− G(y, T y)‖2

≤ ‖(1− λ)(x − y) + λ(Tx − Ty)‖2

= (1− λ)2‖x − y‖2 + 2λ(1− λ)〈Tx − Ty, x − y〉+ λ2‖Tx − Ty‖2.

From last inequality, by denoting a = (1− λ)2, b = 2λ(1− λ) and c = λ2 so that a + b + c = 1 and since T is α-ψ-

pseudocontractive with ψ(t) = δt, we deduce that there exist δ = maxi δi and a function α : K ×K → R such that

x, y ∈ K and α(x, y) ≥ 1 imply ‖TGx − TGy‖2 ≤ δ2‖x − y‖2.

Thus, we have

‖TGx − TGy‖ ≤ δ‖x − y‖,

for all x, y ∈ K with α(x, y) ≥ 1.

This means that TG is an α-ψ-contractive operator with ψ(t) = δt, and hence by an application of Theorem 1, TG has a

fixed point. Finally, from Remark 1, we recall that F ix(TG) = F ix(T ) and hence the conclusion of Theorem 5 holds true since

F ix(T ) = ∩Ni=1F ix(Ti).

Example 5 Let H = R, K = [0,+∞[, G : K ×K → K as in Example 1 and {Ti}Ni=1 be a finite family of operators such that

Ti : K → K is given by Tix = γi x
x+1

with γi ∈]0, 1/4[ and
∑N

i=1 γi = 1. Take λ = 1/2 and consider the starting point x0 = 1/4 so

that TGx0 = 1/8 +
∑N

i=1 γi
2/10 < 1/4 for all γi ∈]0, 1/4[. Let α : K ×K → R be defined by

α(x, y) =

{
1 if x, y ∈ [0, 1

4
],

0 otherwise.

Thus the conditions (i)-(iv) of Theorem 5 hold true. Clearly, Ti : K → K is α-ψi -pseudocontractive, with a = b = 0, c = 1 and

ψ(t) = γi t, with γi ∈]0, 1/4[. Here, the GK-iterative scheme {xn} converges to 0, which is a common fixed point of {Ti}Ni=1.

Note that ∩Ni=1F ix(Ti) = {0}.

5. Conclusions

The recent literature is rich in iterative methods useful to solve numerical problems involving linear and nonlinear equations.

Thus, we gave some new convergence theorems for iterative approximation schemes, via fixed point theory. Our results use an

implicit formulation of iterative schemes and hence unify and shorten the proofs of previously existing theorems. Some examples

illustrate the new theory and show as new concepts may enlarge applicability of iterative schemes.
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15. Nieto JJ, Rodŕıguez-López R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations.

Order 2005; 22:223–239.
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