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Abstract. New results are added to the paper [4] about q-closed and
solvable sesquilinear forms. The structure of the Banach space D[|| · ||Ω]
defined on the domain D of a q-closed sesquilinear form Ω is unique
up to isomorphism, and the adjoint of a sesquilinear form has the same
property of q-closure or of solvability. The operator associated to a solv-
able sesquilinear form is the greatest which represents the form and it
is self-adjoint if, and only if, the form is symmetric.
We give more criteria of solvability for q-closed sesquilinear forms. Some
of these criteria are related to the numerical range, and we analyse in
particular the forms which are solvable with respect to inner products.
The theory of solvable sesquilinear forms generalises those of many
known sesquilinear forms in literature.
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1. Introduction

If Ω is a bounded sesquilinear form defined on a Hilbert space H, with inner
product 〈·|·〉 and norm || · ||, then, as it is well known, then there exists a
unique bounded operator T on H such that

Ω(ξ, η) = 〈Tξ|η〉 ∀ξ, η ∈ H. (1.1)

In the unbounded case we are interested in determining a representation
of type (1.1), but we confine ourselves to consider the forms defined on a
dense subspace D of H and to search a closed operator T , with dense domain
D(T ) ⊆ D in H such that

Ω(ξ, η) = 〈Tξ|η〉 ∀ξ ∈ D(T ), η ∈ D.
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One of the first results on representation of unbounded sesquilinear
forms is Kato’s Theorem [11] for densely defined closed sectorial forms. The
sectoriality is a condition on the numerical range of the form, while the closure
indicates that in the domain is defined a Hilbert space, which is continuously
embedded in H, and the sesquilinear form is bounded in it.

The hypothesis that the domainD of a sesquilinear form Ω can be turned
into a Hilbert space D[|| · ||Ω], with the previous property, occurs in other
representation theorems, as for instance, in McIntosh’s papers [12, 13, 14].
Precisely, in [13, 14] McIntosh studied sesquilinear forms, called closed, which,
up to a perturbation with scalar multiple of the inner product, are represented
in D[|| · ||Ω] with bijective operators. Instead, in [12] he assumed that the
numerical range is contained in the half-plane {λ ∈ C : <λ ≥ 0}.

Also Fleige, Hassi and de Snoo assume, in [7], indirectly such hypothesis,
since they consider a symmetric sesquilinear form which, up to a sum with a
real multiple of the inner product, determines a Krein space on the domain
of the form, and the topological structure of a Krein space is, by definition,
the one of a Hilbert space. Results that derive from the mentioned hypothesis
can be found also in [18].

In [10, 17] representation theorems are formulated for sesquilinear forms
of the type

Ω(ξ, η) = 〈HA 1
2 ξ|A 1

2 η〉 ∀ξ, η ∈ D(A
1
2 ),

where H,A are self-adjoint operators satisfying some additional properties.
In particular, H is bounded with bounded inverse and A is non-negative.

A different setting is followed by Arendt and ter Elst [3] in the framework
of the j-elliptic forms. More precisely, assume that (V, || · ||V ) is a Hilbert
space, j : V → H a bounded operator with dense range in H. Ω is a j-elliptic
sesquilinear form if it is defined and bounded on V and such that

<Ω(ξ, ξ) + ω||j(ξ)||2 ≥ µ||ξ||2V ∀ξ ∈ V,

for some ω ∈ R, µ > 0 (<Ω indicates the real part form of Ω). Theorem 2.1
of [3] provides a representation

Ω(ξ, η) = 〈Tj(ξ)|j(η)〉 ∀ξ ∈ D′, η ∈ D,

where T is a m-sectorial operator and D′ is a subspace of D.

Di Bella and Trapani in [4], instead, have studied the sesquilinear form
Ω, called q-closed, on which domain D is defined a reflexive Banach space
D[|| · ||Ω], continuously embedded in H, and such that the form is bounded
in it. Under this condition, a Banach-Gelfand triplet D ↪→ H ↪→ D× is
determined, where D× is the conjugate dual space of D[|| · ||Ω].
Their representation theorem holds for a solvable sesquilinear form, i.e. a q-
closed form which, up to a perturbation with a bounded form on H, defines
a bounded operator, with bounded inverse, acting on the triplet.
Moreover, in [4] it is shown that densely defined closed sectorial forms are
solvable and a criterion of solvability concerning the numerical range of the
form is proved.
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In this paper we give new results to the approach of [4]. In Section
2, we analyse the compatible norms with respect to a positive sesquilinear
form, which have a key role in the definition of q-closed forms and on the
properties of them. In particular, two compatible norms with respect to the
same positive sesquilinear form are equivalent if they are defined on the same
subspace which is complete with respect to these norms.

In Section 3, we give the definition of q-closed and q-closable sesquilinear
forms and some preliminary properties concerning them. We establish that a
densely defined form is q-closable if, and only if, it has a q-closed extension.
Moreover, the space D[|| · ||Ω] on the domain of a q-closed sesquilinear form
with respect to the norm || · ||Ω is unique up to isomorphism.

In Section 4, we consider solvable sesquilinear forms and the related
representation theorem, to which we add new statements. In particular, we
prove that the operator associated to a solvable sesquilinear form is the great-
est which represents the form and it is self-adjoint if, and only if, the form is
symmetric. We also show two examples of q-closed sesquilinear forms which
are not solvable.

In Section 5, we establish conditions for a q-closed sesquilinear form to
be solvable. Some of these conditions are affected by the numerical range of
the form and we generalise Theorem 5.11 of [4], considering a bounded form
which is not necessary a scalar multiple of the inner product.

In Section 6, we focus on solvable sesquilinear forms, defined on D, with
respect to an inner product 〈·|·〉Ω, and we find a connection between the
associated operator and the operator which represents the form in D[〈·|·〉Ω].
These results are applied in Section 7, where we prove that the forms studied
in many of the quoted papers are solvable sesquilinear forms. However, these
special cases do not exhaust the class of solvable sesquilinear forms.

2. Compatible norms

In this paper, if not otherwise specified, we indicate by H a Hilbert space,
with inner product 〈·|·〉 and norm || · ||, and by D a subspace of H.

Let Ω be a sesquilinear form defined on D. The adjoint Ω∗ of Ω is the form
on D given by

Ω∗(ξ, η) = Ω(η, ξ) ∀ξ, η ∈ D.

Ω is said to be symmetric if Ω = Ω∗ and, in particular, Ω is positive if
Ω(ξ, ξ) ≥ 0 for all ξ ∈ D.
The symmetric forms <Ω and =Ω, defined by

<Ω =
1

2
(Ω + Ω∗) =Ω =

1

2i
(Ω− Ω∗),

are called the real part and the imaginary part of Ω, respectively. We have
Ω = <Ω + i=Ω.
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The numerical range nΩ is the (convex) subset {Ω(ξ, ξ) : ξ ∈ D, ||ξ|| = 1} of
C. We indicate by N(Ω) the subspace of D

N(Ω) := {ξ ∈ D : Ω(ξ, η) = 0 ∀η ∈ D}.
If Ω is a positive sesquilinear form then N(Ω) = {ξ ∈ D : Ω(ξ, ξ) = 0}.
We denote by ι the sesquilinear form which corresponds to the inner product,
i.e. ι(ξ, η) = 〈ξ|η〉, with ξ, η ∈ H.
Finally, we indicate by D(T ) and Ran(T ) the domain and the range of an
operator T on H, respectively.

Definition 2.1 ([4, Definition 5.1]). Let Θ be a positive sesquilinear form on
D. A norm || · ||0 on D is compatible with Θ if

1. there exists α > 0 such that Θ(ξ, ξ) ≤ α||ξ||20 for all ξ ∈ D;
2. if {ξn} is a sequence on D such that Θ(ξn, ξn)→ 0 and ||ξn−ξm||0 → 0,

then ||ξn||0 → 0.

Note that if Θ is a positive sesquilinear form on D and || · ||0 is a
compatible norm with Θ, then N(Θ) = {0}.

Now, let Θ be a positive sesquilinear form on D such that N(Θ) = {0},
i.e., Θ is an inner product on D. To avoid confusion, we denote by 〈·|·〉Θ the
inner product, thus 〈ξ|η〉Θ = Θ(ξ, η) for all ξ, η ∈ D, while we denote by HΘ

the completion of D[〈·|·〉Θ]. Let || · ||0 be a norm on D such that the operator

I : D[|| · ||0]→ HΘ

ξ 7→ ξ

is injective and bounded. Therefore, if E denotes the completion of D[|| · ||0],
I extends by continuity to a bounded operator I : E → HΘ, with range dense
in HΘ. We have the following fact.

Theorem 2.2. I is injective if, and only if, || · ||0 is compatible with Θ.

Proof. (⇒) We only have to prove the condition 2 of Definition 2.1. Let {ξn}
be a sequence on D such that Θ(ξn, ξn)→ 0 and ||ξn − ξm||0 → 0, thus {ξn}
is a Cauchy sequence on D[|| · ||0], which converges therefore to an element
ξ ∈ E . We have Iξ = I limn→∞ ξn = limn→∞ Iξn = limn→∞ ξn = 0, since
||ξn||Θ = Θ(ξn, ξn) → 0. By the hypothesis, I is injective, then ξ = 0; i.e.,
||ξn||0 → 0.
(⇐) Suppose that Iξ = 0, with ξ ∈ E . Hence, by definition of I, there
exists a sequence {ξn} on D such that ||ξn − ξ||0 → 0, and Iξn → 0; hence,
Θ(ξn, ξn) = 〈Iξn|Iξn〉Θ → 0.
But || · ||0 is a compatible norm with Θ, thus ||ξn||0 → 0; that is, ξ = 0. �

Corollary 2.3. Let Θ be a positive sesquilinear form on D with N(Θ) = {0}
and let || · ||0 be a norm on D, such that Θ(ξ, ξ) ≤ α||ξ||20 for all ξ ∈ D, and
some constant α > 0. If D[|| · ||0] is complete, then || · ||0 is compatible with
Θ.

Now we prove a lemma similar to the statement of [19, Exercise 5.10],
in which only norms induced by inner products are considered.
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Lemma 2.4. Let E be a complex vector space which is a Banach space with
respect to two norms || · ||1 and || · ||2. Suppose that the following conditions
hold:

1. if {ξn} is a sequence on E such that ||ξn||1 → 0 and ||ξn − ξm||2 → 0,
then ||ξn||2 → 0;

2. if {ξn} is a sequence on E such that ||ξn||2 → 0 and ||ξn − ξm||1 → 0,
then ||ξn||1 → 0.

Then, the norms || · ||1 and || · ||2 are equivalent.

Proof. We consider the identity I : E[|| · ||1]→ E[|| · ||2]. I is a closable linear
operator, and hence closed, by the first condition. Conversely, I−1 is closable,
hence closed, by the second condition. By the Closed Graph Theorem, I and
I−1 are two bounded operators, and hence the norms are equivalent. �

The following theorem establishes a condition under which two compat-
ible norms are equivalent.

Theorem 2.5. Let Θ, || · || and || · ||′ be a positive sesquilinear form on D, and
two norms on D compatible with Θ, respectively, and such that D[|| · ||] and
D[|| · ||′] are Banach spaces. Then the norms || · || and || · ||′ are equivalent.

Proof. We prove, using the previous lemma, that ||·|| and ||·||′ are equivalent.
If {ξn} is a sequence in D such that ||ξn|| → 0 and ||ξn − ξm||′ → 0, then,
by the compatibility of || · || with Θ, Θ(ξn, ξn) ≤ α||ξn||2 → 0, and by the
compatibility of || · ||′ with Θ, we have ||ξn||′ → 0.
By a symmetry argument, it is also true that if {ξn} is a sequence in D such
that ||ξn||′ → 0 and ||ξn − ξm|| → 0, then ||ξn|| → 0. �

Corollary 2.6. Let Θ, || · || and || · ||′ be a positive sesquilinear form on D
with N(Θ) = {0}, and two norms on D, respectively. If D[|| · ||] and D[|| · ||′]
are Banach spaces, and there exist α, α′ > 0 such that Θ(ξ, ξ) ≤ α||ξ||2 and
Θ(ξ, ξ) ≤ α′||ξ||′2 for all ξ ∈ D, then the norms || · || and || · ||′ are equivalent.

3. Q-closed sesquilinear forms

In this section, and for all the rest of the paper, if not otherwise specified, we
assume that the subspace D is dense in H.

Definition 3.1 ([4, Definition 5.2]). Let || · ||Ω be a norm on D. A sesquilinear
form Ω on D is called q-closable with respect to || · ||Ω if || · ||Ω is compatible
with the inner product 〈·|·〉, i.e.

1. there exists α > 0 such that ||ξ|| ≤ α||ξ||Ω for all ξ ∈ D, i.e. the
embedding D[|| · ||Ω]→ H is continuous;

2. if {ξn} is a sequence in D such that ||ξn|| → 0 and ||ξn − ξm||Ω → 0,
then ||ξn||Ω → 0;

and also the following conditions hold

3. the completion EΩ of D[|| · ||Ω] is a reflexive Banach space;
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4. there exists β > 0 such that |Ω(ξ, η)| ≤ β||ξ||Ω||η||Ω for all ξ, η ∈ D, i.e.
Ω is bounded on D[|| · ||Ω].

Ω is called q-closed with respect to || · ||Ω if D[|| · ||Ω] is a reflexive Banach
space.

Actually, using Corollary 2.3 we see that in the definition of q-closed
sesquilinear form the hypothesis 2 is superfluous. Therefore, we can formulate
the following proposition.

Proposition 3.2. Let || · ||Ω be a norm on D. A sesquilinear form Ω on D is
q-closed with respect to || · ||Ω if, and only if, the following statement hold

1. there exists α > 0 such that ||ξ|| ≤ α||ξ||Ω for all ξ ∈ D;
2. D[|| · ||Ω] is a reflexive Banach space;
3. there exists β > 0 such that |Ω(ξ, η)| ≤ β||ξ||Ω||η||Ω for all ξ, η ∈ D.

We show some examples of q-closed or q-closable forms.

Example 3.3. A densely defined closed (closable) sectorial form Ω on D, with
vertex γ ∈ R, is q-closed (q-closable) with respect to the norm || · ||Ω defined

by ||ξ||Ω = (<Ω(ξ, ξ)+(1−γ)||ξ||2)
1
2 , for all ξ ∈ D (see [11, Ch. VI, Theorem

1.11]).

Example 3.4. Let T be a closed operator with domain D, and let ΩT be the
sesquilinear form on D given by ΩT (ξ, η) = 〈Tξ|η〉 for all ξ, η ∈ D.

ΩT is q-closed with respect to the graph norm of T , ||ξ||T = (||ξ||2 + ||Tξ||2)
1
2

for all ξ ∈ D.

Example 3.5. Let r : C→ C be a measurable function and Ω the sesquilinear
form with domain

D :=

{
f ∈ L2(C) :

∫
C
|r(x)||f(x)|2dx <∞

}
and given by Ω(f, g) =

∫
C
r(x)f(x)g(x)dx for all ξ, η ∈ D.

Ω is q-closed with respect the norm

||f ||Ω =

(∫
C
(1 + |r(x)|)|f(x)|2dx

) 1
2

∀f ∈ D.

Definition 3.1 of q-closable sesquilinear form, actually, is equivalent to
request that the form has a q-closed extension, as affirmed in the following
proposition.

Proposition 3.6. A densely defined sesquilinear form is q-closable if, and only
if, it admits a q-closed extension.

Proof. (⇒) This implication is given by [4, Proposition 5.3].
(⇐) Let Ω be a sesquilinear form on a dense domain D in H, and let Ω′ a
q-closed extension, with domain D′. By the hypothesis, there exists a norm
||·||Ω′ onD′, compatible with the inner product 〈·|·〉, such that EΩ′ = D′[||·||Ω′ ]
is a reflexive Banach space and Ω′ is bounded in such space.
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Since D ⊆ D′, we can consider the norm || · ||Ω on D, induced by || · ||Ω′ on
D. Clearly, Ω is q-closable with respect to || · ||Ω. �

With the aid of the Closed Graph Theorem one can prove the bound-
edness of a q-closable sesquilinear form defined in the whole space.

Proposition 3.7. Let Ω be a q-closable sesquilinear form on D with respect to
|| · ||Ω. If D = H then Ω is bounded in H.

The next result shows that, even though Definition 3.1 depends on a
norm, this norm is uniquely determined up to an equivalence.

Theorem 3.8. There exists at most one norm (up to equivalence) on D, such
that a sesquilinear form on D is q-closed with respect to it.

Proof. Let Ω be a sesquilinear form on D, which is q-closed with respect to
two norms || · ||Ω and || · ||′Ω. Then we have, in particular, that || · ||Ω and || · ||′Ω
are compatible with the inner product 〈·|·〉 on H, and the spaces D[|| · ||Ω],
D[|| · ||′Ω] are complete. The equivalence follows, hence, by Theorem 2.5. �

4. Solvable sesquilinear forms

If E and F are two Banach spaces, we will indicate by B(E ,F) the vector space
of all bounded operators from E into F , and more simply B(E) = B(E , E), if
E = F .
We recall that if E is reflexive and X ∈ B(E , E×) then, the adjoint operator

X† of X is defined by 〈X†ξ|η〉 = 〈Xη|ξ〉 for all ξ, η ∈ D, and X† ∈ B(E , E×).

Let Ω be a q-closed sesquilinear form with respect to a norm || · ||Ω on D, a
dense subspace of H. We denote by EΩ = D[|| · ||Ω] and by E×Ω = D×[|| · ||×Ω ],
the conjugate dual space of EΩ.
Note that, from the definition of q-closed sesquilinear form, a Banach-Gelfand
triplet

EΩ[|| · ||Ω] ↪→ H[|| · ||] ↪→ E×Ω [|| · ||×Ω ]

is well-defined, see [4]. This means that the arrows indicate continuous em-
beddings with dense range (the Banach-Gelfand triplets are special rigged
Hilbert spaces, see also [1, 2]). Hence, H can be identified with a dense sub-
space of E×Ω , and we will indicate the value of a conjugate linear functional
Λ in an element ξ ∈ EΩ by Λ(ξ) = 〈Λ|ξ〉. In other words, we will assume
that the form which puts EΩ and E×Ω in duality is an extension of the inner
product 〈·|·〉 of H.

We denote by P(Ω) the set of bounded sesquilinear forms Υ on H, such that

N(Ω + Υ) = {0}, (4.1)

and for all Λ ∈ E×Ω there exists ξ ∈ EΩ such that

〈Λ|η〉 = (Ω + Υ)(ξ, η) ∀η ∈ EΩ. (4.2)
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Definition 4.1. A q-closed form Ω is said to be solvable with respect to || · ||Ω
if the set P(Ω) is not empty (see [4, Definition 5.5]).

Remark 4.2. A densely defined closed sectorial form is solvable (see [4, Ex-
ample 5.8]).

Let Υ be a bounded sesquilinear form on H, we put ΩΥ := Ω + Υ. If

ξ ∈ D, we can define the conjugate linear functional ΩξΥ on EΩ by

〈ΩξΥ|η〉 = ΩΥ(ξ, η) = Ω(ξ, η) + Υ(ξ, η) ∀η ∈ EΩ,
which is bounded in EΩ, and also the operator

XΥ : EΩ → E×Ω
ξ 7→ ΩξΥ,

is bounded; i.e., XΥ ∈ B(EΩ, E×Ω ).

The next characterization of forms belonging to the set P(Ω) holds.

Lemma 4.3 ([4, Lemma 5.6]). Let Ω be a q-closed sesquilinear form on D with
respect to || · ||Ω. Then, Υ ∈ P(Ω) if, and only if, XΥ is a bijection of EΩ
onto E×Ω if, and only if, XΥ is invertible with bounded inverse.

The following is the converse of Theorem 3.8 and, as shown in the next
corollary, a relevant consequence of the norm equivalence discussed in Section
2 concerns the solvability of a q-closed sequilinear form.

Theorem 4.4. Let Ω be a q-closed sesquilinear form on D with respect to || · ||Ω
and let || · ||′Ω be a norm equivalent to || · ||Ω. Then, Ω is q-closed with respect
to || · ||′Ω. If, moreover, Ω is solvable with respect to || · ||Ω, then Ω is solvable
with respect to || · ||′Ω.

Proof. It is easy to prove that Ω is q-closed with respect to || · ||′Ω. We suppose
that Ω is solvable with respect to || · ||Ω, and denote by EΩ and E ′Ω the Banach
spaces D[|| · ||Ω] and D[|| · ||′Ω], respectively.
Then, by the hypothesis, there exists a bounded sesquilinear form Υ on H
such that the operator XΥ defined by

XΥ : EΩ → E×Ω
ξ 7→ ΩξΥ

where ΩξΥ(η) = Ω(ξ, η) + Υ(ξ, η) for all η ∈ EΩ, is bijective and continuous.
Due to the assumptions, there exists a continuous isomorphism I : E ′Ω → EΩ
of E ′Ω onto EΩ. Then, I× : E×Ω → E

′×
Ω is a continuous isomorphism between the

dual spaces E×Ω and E ′×Ω . Therefore the operator X ′Υ := I×XΥI : E ′Ω → E
′×
Ω

is an isomorphism and X ′Υξ = I×XΥIξ = I×XΥξ = I×ΩξΥ = ΩξΥ, so Ω is
solvable with respect to || · ||′Ω. �

Corollary 4.5. If Ω is a q-closed, non-solvable, sesquilinear form on D with
respect to a norm || · ||Ω, then Ω is not solvable with respect to any norm.
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Proof. Let || · ||′Ω be a norm with respect to which Ω is q-closed. By Theorem
3.8 the norms || · ||Ω and || · ||′Ω are equivalent, hence by Theorem 4.4 Ω is not
solvable with respect to || · ||′Ω. �

Now, we recall Theorem 5.9 of [4], which generalises Kato’s First Rep-
resentation Theorem, and add new properties of the operator constructed in
the proof of that theorem.

Theorem 4.6. Let Ω be a solvable sesquilinear form on D with respect to
a norm || · ||Ω. Then there exists a closed operator T , with dense domain
D(T ) ⊆ D in H, such that

Ω(ξ, η) = 〈Tξ|η〉 ∀ξ ∈ D(T ), η ∈ D. (4.3)

Moreover,

1. D(T ) is dense in D[|| · ||Ω];
2. if T ′ is an operator H with domain D(T ′) ⊆ D and

Ω(ξ, η) = 〈T ′ξ|η〉 (4.4)

for all ξ ∈ D(T ′) and η which belongs to a dense subset of D[|| · ||Ω],
then T ′ ⊆ T ;

3. if Υ ∈ P(Ω) and B ∈ B(H) is the bounded operator such that Υ(ξ, η) =
〈Bξ|η〉 for all ξ, η ∈ H, then T +B is invertible and (T +B)−1 ∈ B(H).
In particular, if Υ = −λι, with λ ∈ C, then λ ∈ ρ(T ), the resolvent set
of T ;

4. T is the unique operator satisfying (4.3) with the property that T + B
has range H.

Proof. Let EΩ = D[|| · ||Ω], Υ ∈ P(Ω), B the bounded operator associated to
Υ and XΥ as above. For the proof of the existence of T see [4]. We recall that
XΥ has a bounded inverse X−1

Υ , T = S − B, D(T ) = D(S) = X−1
Υ (H) =

{ξ ∈ D : XΥξ ∈ H}, and Sξ = XΥξ for all ξ ∈ D.
As shown in the proof of Theorem 5.9 of [4], D(T ) is dense in D[|| · ||Ω]; i.e.,
the point 1.
Now, note that the relation (4.4) extends by continuity to all η ∈ D. Let S′ be
the operator in H with domain D(S′) = D(T ′) and defined by S′ = T ′ +B.
Then

〈S′ξ|η〉 = 〈T ′ξ|η〉+ 〈Bξ|η〉 = Ω(ξ, η) + Υ(ξ, η) = (Ω + Υ)(ξ, η) = 〈XΥξ|η〉
for all ξ ∈ D(S′), η ∈ EΩ. Hence if ξ ∈ D(S′) we have XΥξ = S′ξ ∈ H, and
by definition, ξ ∈ D(S) and Sξ = XΥξ; i.e., S′ ⊆ S and T ′ ⊆ T . This proves
the point 2 of the statement.
For the third part of the statement, by the boundedness of X−1

Υ , there exists

M > 0 such that ||X−1
Υ Λ||Ω ≤M ||Λ||×Ω for all Λ ∈ E×Ω , and, since S−1 is the

restriction of X−1
Υ to H,

||S−1η|| ≤ α||S−1η||Ω ≤ αM ||η||×Ω ≤ αM ||η|| ∀η ∈ H,
i.e., S−1 is bounded in H. But, by definition, S = T +B.
Finally, if T ′ is an operator satisfying (4.3) and T ′ + B has range H. As we
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have already proved, T ′ ⊆ T ; hence S′ = T ′+B is such that S′ = S, because
S is bijective. Therefore, T ′ = T . �

Remark 4.7. The operator T constructed above does not depend on the
particular considered norm || · ||Ω, since the norm is unique up to equivalence,
and does not depend even on the particular chosen bounded form Υ ∈ P(Ω).
Indeed, if T ′ is the operator constructed in the same way as T (with domain
D(T ′)) considering another norm || · ||′Ω with respect to which Ω is q-closed
(or considering another form Υ ∈ P(Ω)), then by the previous theorem we
have

Ω(ξ, η) = 〈Tξ|η〉 ∀ξ ∈ D(T ), η ∈ D,
and

Ω(ξ, η) = 〈T ′ξ|η〉 ∀ξ ∈ D(T ′), η ∈ D.
So, applying the second statement of Theorem 4.6 two times, T = T ′.

For the characteristics of the obtained operator, we give the following
definition.

Definition 4.8. Let Ω be a solvable sesquilinear form. The operator T in
Theorem 4.6 is called the operator associated to Ω.

Remark 4.9. As we will see in the examples of the next sections, the property
of uniqueness established in the fourth statement of Theorem 4.6 is very useful
to determine the operator associated to a solvable sesquilinear form.

Corollary 4.10. Let Ω be a solvable sesquilinear form on D with respect || · ||Ω
and let T be its associated operator. If ξ ∈ D, χ ∈ H and Ω(ξ, η) = 〈χ|η〉
for all η which belongs to a dense subspace in D[|| · ||Ω], then ξ ∈ D(T ) and
Tξ = χ.

The next theorem shows that for a sesquilinear form the property of
being q-closed, or solvable, is preserved by passing to the adjoint.

Theorem 4.11. If Ω is a q-closed sesquilinear form on D with respect to a
norm ||·||Ω, then also the adjoint Ω∗ is q-closed with respect to ||·||Ω. Moreover
Υ ∈ P(Ω) if, and only if, Υ∗ ∈ P(Ω∗), and if Ω is solvable with respect to
|| · ||Ω, and with the associated operator T , then Ω∗ is solvable with respect to
|| · ||Ω, with associated operator T ∗.

Proof. The first statement is clear, while for the second part, by a symmetry
argument, it is sufficient to prove that if Υ ∈ P(Ω) then Υ∗ ∈ P(Ω∗).
Assume that Ω is solvable with respect to ||·||Ω and let Υ ∈ P(Ω). By Lemma
4.3 and, setting EΩ = D[|| · ||Ω], we have that XΥ is bijective and consequently

the adjoint X†Υ : EΩ → E×Ω is bijective. From

〈X†Υξ|η〉 = 〈XΥη|ξ〉 = Ω∗(ξ, η) + Υ∗(ξ, η) ∀ξ, η ∈ D
it follows that Ω∗ is solvable with respect to ||·||Ω and Υ∗ ∈ P(Ω∗). As proved
in the proof of Theorem 4.6, T = S−B, with S = XΥ|D(T ) the restriction to
D(T ) of XΥ, and B is the bounded operator in H such that Υ(ξ, η) = 〈Bξ|η〉
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for all ξ, η ∈ H.
Let T ′ be the associated operator to Ω∗, then we have that T ′ = S′ − B′,
with S′ = X†Υ|D(T ′) the restriction to D(T ′) of X†Υ, and B′ is the bounded

operator in H such that Υ∗(η, ξ) = 〈B′η|ξ〉 for all η, ξ ∈ H. Hence B′ = B∗,

but D(S′) = X†Υ
−1

(H) = D(S∗) and S′ = X†Υ|D(S∗) = S∗ (see the proof of

[4, Theorem 5.9]). Hence, taking into account that B is a bounded operator
in H, we conclude that

T ′ = S′ −B′ = S∗ −B∗ = (S −B)∗ = T ∗. �

An immediate consequence of the previous theorem concerns symmetric
forms.

Corollary 4.12. The operator associated to a solvable symmetric form Ω is
self-adjoint, and Υ ∈ P(Ω) if, and only if, Υ∗ ∈ P(Ω).

Using point 1 in Theorem 4.6, we prove a connection between the nu-
merical ranges of a solvable sesquilinear form and its associated operator,
which implies also the converse of Corollary 4.12.

Proposition 4.13. The numerical range of the operator associated to a solvable
sesquilinear form is a dense subset of the numerical range of the form.

Corollary 4.14. The operator associated to a solvable sesquilinear form is
self-adjoint if, and only if, the form is symmetric.

The following interesting question arises: are there two solvable sesquilin-
ear forms with the same associated operator? The answer is affirmative if the
domain of a form is contained in the one of the other form. This condition
is already considered in Proposition 3.2 of [9] (see also Theorem 3.2 of [10]).
We will come back to this problem in Section 7.

Lemma 4.15. Let Ω1 and Ω2 be two solvable sesquilinear forms with domains
D1 and D2, respectively, and with the same associated operator T . If D1 ⊆ D2

then D1 = D2 and Ω1 = Ω2.

Proof. First of all, we will prove that D1 = D2. Denote by || · ||1 a norm with
respect to which Ω1 is solvable and by || · ||2 a norm with respect to which
Ω2 is solvable. Put E1 := D1[|| · ||1] and E2 := D2[|| · ||2].
The embedding I : E1 → E2 is closed. Indeed, if {ξn} is a sequence in D1 such

that ξn
||·||1−−−→ ξ and ξn = Iξn

||·||2−−−→ ξ′, for some ξ ∈ D1, ξ
′ ∈ D2, then ξn → ξ

and ξn → ξ′ in H, and so Iξ = ξ = ξ′. By the Closed Graph Theorem, I is
bounded, i.e. there exists α > 0 such that ||ξ||2 ≤ α||ξ||1 for all ξ ∈ D1.
Let ξ ∈ D2, then the functional Λ(η) = Ω2(ξ, η), with η ∈ D1, is an element
of E×1 . Since by the hypothesis Ω1 is solvable, there exists a bounded form
Υ ∈ P(Ω), and for every ξ ∈ D2 there exists χ ∈ D1 such that

Ω2(ξ, η) = Λ(η) = (Ω1 + Υ)(χ, η) ∀η ∈ D1,

and hence
(Ω∗1 + Υ∗)(η, χ) = Ω∗2(η, ξ) ∀η ∈ D1. (4.5)



12 R. Corso and C. Trapani

By Theorem 4.11, T ∗ is the operator associated with both Ω∗1 and Ω∗2. Then,
for all η ∈ D(T ∗), we have from (4.5) that 〈(T ∗ + B∗)η|χ〉 = 〈T ∗η|ξ〉, and
therefore 〈T ∗η|χ−ξ〉 = 〈−B∗η|χ〉 = 〈η|−Bχ〉 for all η ∈ D(T ∗). By definition
of the adjoint of T ∗, χ−ξ ∈ D(T ) ⊆ D1 and T (χ−ξ) = −Bχ. Hence, ξ ∈ D1,
and D1 = D2.
The domain D(T ) of T is dense in both D[|| · ||1] and D[|| · ||2], and on D(T )
the forms coincide. By Theorem 3.8, the two norms are equivalent, hence the
equality of Ω1 and Ω2 is true, by continuity, in the whole of D. �

We end this section with an example of a solvable sesquilinear form, and
two examples of q-closed sesquilinear forms which are not solvable.

Example 4.16. As proved in [4, Example 6.1], for every sequence α := {αn}
of complex numbers, the form

Ωα({ξn}, {ηn}) =

∞∑
n=1

αnξnηn

with domain D(Ωα) = {{ξn} ∈ l2 :
∑∞
n=1 |αn||ξn|2 < ∞}, is solvable with

respect to the norm given by

||{ξn}||Ωα =

( ∞∑
n=1

|ξn|2 +

∞∑
n=1

|αn||ξn|2
) 1

2

.

In particular, we have that Υ = −λι, with λ /∈ {αn : n ∈ N}, belongs to
P(Ωα).
We will determine the operator T associated to Ωα. We denote by 〈·|·〉 the
inner product of l2, and by Mα the multiplication operator by α, with domain

D(Mα) =

{
{ξn} ∈ l2 :

∞∑
n=1

|αn|2|ξn|2 <∞

}
and given by Mα{ξn} = {αnξn}, for every {ξn} ∈ D(Mα).
If {ξn} ∈ D(Mα), then

2

∞∑
n=1

|αn||ξn|2 ≤
∞∑
n=1

|ξn|2 +

∞∑
n=1

|αn|2|ξn|2 <∞

hence {ξn} ∈ D(Ωα), and, moreover,

Ωα({ξn}, {ηn}) = 〈Mα{ξn}|{ηn}〉 ∀{ξn} ∈ D(Mα), {ηn} ∈ D(Ωα).

By Theorem 4.6 we have Mα ⊆ T .
If {ξn} ∈ D(T ) ⊆ D(Ωα) and T{ξn} = {χn}, then, in particular,

Ωα({ξn}, en) = 〈T{ξn}|en〉 ∀n ∈ N,

where {en} is the canonical basis of l2; i.e., χn = αnξn for all n ∈ N, and
therefore T{ξn} = {αnξn}. But, taking into account that {χn} ∈ l2, we have
∞∑
n=1

|αn|2|ξn|2 <∞; i.e., {ξn} ∈ D(Mα). Hence, T = Mα.
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Example 4.17 (Example 3.4). Let T be a closed operator with dense domain
D in H, and let ΩT be the sesquilinear form on D given by ΩT (ξ, η) = 〈Tξ|η〉
for all ξ, η ∈ D, which, as seen in the Example 3.4, is q-closed with respect
to the graph norm || · ||T of T .
ΩT is solvable with respect to || · ||T if, and only if, D = H and T ∈ B(H).
Indeed, if Υ ∈ P(Ω) andB ∈ B(H) such that Υ(ξ, η) = 〈Bξ|η〉 for all ξ, η ∈ D,
then for all Λ ∈ D×[|| · ||×T ] there exists ξ ∈ D such that 〈Λ|η〉 = 〈(T +B)ξ|η〉
for all η ∈ D, and since

sup
||η||=1

|〈(T +B)ξ|η〉| ≤ ||(T +B)ξ||,

we have Λ ∈ H; i.e., D× = H.
By the Closed Graph Theorem, the norms of D× and of H are equivalent,
and hence also the norms || · ||T and || · || are equivalent. It follows that T is
bounded and, since it is closed, it has domain D = D = H; i.e., T ∈ B(H).
The form ΩT , with T unbounded, is therefore q-closed and non-solvable with
respect to || · ||T , and by Corollary 4.5, it is not solvable with respect to any
norm.
Instead, if D = H and T ∈ B(H) then ΩT is a bounded sesquilinear form in
H with domain H. So, in particular, it is a sectorial form and then solvable.

Note that this example depends strongly on the fact that the domain D
of ΩT is exactly the domain of T and on the choice of the norm || · ||T , which
makes ΩT q-closed. Although ΩT is not solvable (if T is unbounded), it may
admit a solvable extension. Indeed, for example, if T is a sectorial operator
defined on a dense domain D in H then, from [11, Ch. V, Theorem 1.27],
ΩT is closable, hence it is q-closable with respect to a certain norm (which
is not, in general, a norm equivalent to || · ||T ), and its closure ΩT (which, in
general, is defined on a bigger domain than D) is a solvable form.

Unlike the previous example, in the next one we consider a norm which
is not induced by an inner product.

Example 4.18. Let H = L2([0, 1]), with the usual inner product 〈·|·〉2 and the
norm || · ||2, and let p > 2. The reflexive Banach space Lp([0, 1]), hence, is
continuously embedded in H, and we denote by D the (dense) subspace of H
which corresponds to the range of this embedding. We consider a measurable

function w ∈ L
p
p−2 ([0, 1]). Then the sesquilinear form Ω on D given by

Ω(f, g) =

∫ 1

0

wfgdx ∀f, g ∈ D,

is well-defined. Indeed, by the Hölder inequality, for all f, g ∈ Lp([0, 1]) one
has ∫ 1

0

|wfg|dx ≤ ||w|| p
p−2
||f ||p||g||p <∞,

where || · || p
p−2

and || · ||p are the norms of L
p
p−2 ([0, 1]) and Lp([0, 1]), respec-

tively.
We continue to denote by || · ||p the norm on D such that D[|| · ||p] ≡ Lp([0, 1]).
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Ω is q-closed with respect to || · ||p, but Ω is not solvable with respect to || · ||p.
Were it so then D[|| · ||p] would be isomorphic (by the operator XΥ, with Υ
a bounded sesquilinear form) to its dual D×[|| · ||×p ]. But Lp([0, 1]) is not
isomorphic to its dual. Corollary 4.5 establishes hence that Ω is not solvable
with respect to any norm.

5. Criteria of solvability

In this section, we formulate criteria for establishing if a given q-closed
sesquilinear form is solvable, in addition to those already seen, like Lemma
4.3. The definition of q-closed sesquilinear form is not affected by the notion
of the numerical range, but the latter will play a relevant role in some criteria.

Lemma 5.1. Let Ω be a q-closed sesquilinear form on D with respect to a norm
|| · ||Ω and let Υ be a bounded form on H. Consider the following statements:

(a) N(Ω + Υ) = {0};
(b) N(Ω∗ + Υ∗) = {0};
(c) there exists a constant c1 > 0 such that

c1||ξ||Ω ≤ sup
||η||Ω=1

|(Ω + Υ)(ξ, η)| ∀ξ ∈ D;

(d) there exists a constant c2 > 0 such that

c2||η||Ω ≤ sup
||ξ||Ω=1

|(Ω + Υ)(ξ, η)| ∀η ∈ D;

(e) for every sequence {ξn} in D such that

sup
||η||Ω=1

|(Ω + Υ)(ξn, η)| → 0,

||ξn||Ω → 0 results;
(f) for every sequence {ηn} in D such that

sup
||ξ||Ω=1

|(Ω + Υ)(ξ, ηn)| → 0,

||ηn||Ω → 0 results.

Statements (c) and (e) are equivalent, and the same holds for (d) and (f).
Moreover, the following statements are equivalent.

1. Υ ∈ P(Ω);
2. (a) and (d) hold;
3. (b) and (c) hold;
4. (c) and (d) hold.

Proof. The equivalences are proved noting the following facts.

• N(Ω + Υ) = {0} if, and only if, XΥ is invertible, if, and only if, X†Υ has
dense range (by the reflexivity of EΩ = D[|| · ||Ω]).

• N(Ω∗ + Υ∗) = {0} if, and only if, X†Υ is invertible, if, and only if, XΥ

has dense range.
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• Since

sup
||η||Ω=1

|(Ω + Υ)(ξ, η)| = sup
||η||Ω=1

|〈XΥξ|η〉| = ||XΥξ||×Ω ∀ξ ∈ D,

statement (c) holds if, and only if, XΥ is invertible with bounded inverse,
if, and only if, statement (e) holds.
• Since

sup
||ξ||Ω=1

|(Ω + Υ)(ξ, η)| = sup
||ξ||Ω=1

|〈X†Υη|ξ〉| = ||X
†
Υη||

×
Ω ∀η ∈ D,

statement (d) holds if, and only if,X†Υ is invertible with bounded inverse,
if, and only if, statement (f) holds.

• XΥ is a bijection of EΩ onto E×Ω if, and only if, X†Υ is a bijection of EΩ
onto E×Ω . �

Using Lemma 5.1 we obtain two specific cases.

Theorem 5.2. Let Ω be a q-closed sesquilinear form on D with respect to a
norm || · ||Ω with numerical range nΩ and let Υ be a bounded form in H.
Assume that nΩ ∩ n−Υ = ∅, where n−Υ is the numerical range of −Υ. Then,
Υ ∈ P(Ω) if, and only if, either the statement 1. or 2. below holds

1. if {ξn} is a sequence in D such that sup
||η||Ω=1

|(Ω + Υ)(ξn, η)| → 0, then

||ξn||Ω → 0.
2. there exists a constant c > 0 such that

c||ξ||Ω ≤ sup
||η||Ω=1

|(Ω + Υ)(ξ, η)| ∀ξ ∈ D.

Proof. We prove that N(Ω∗+Υ∗) = {0}, so the conclusion follows by Lemma
5.1, noting that statements 1 and 2 are the (e) and the (c) in this lemma.

If η ∈ N(Ω∗ + Υ∗) then 0 = (Ω∗ + Υ∗)(η, ξ) = (Ω + Υ)(ξ, η) for all ξ ∈ D. In
particular, Ω(η, η) = −Υ(η, η) and therefore, from nΩ ∩ n−Υ = ∅, η = 0. �

Corollary 5.3. Let Ω be a q-closed sesquilinear form on D with respect to a
norm ||·||Ω with numerical range nΩ and let λ /∈ nΩ. Then −λι ∈ P(Ω) if, and
only if, one of the statements 1. or 2. in Theorem 5.2 holds with Υ = −λι.

The next criterion is a generalization of [4, Theorem 5.11].

Theorem 5.4. Let Ω be a q-closed sesquilinear form on D with respect to a
norm || · ||Ω with numerical range nΩ. Suppose that the following condition is
satisfied

(qc) if {ξn} is a sequence in D such that lim
n→∞

||ξn|| = 0 and lim
n→∞

|Ω(ξn, ξn)| =
0, then lim

n→∞
||ξn||Ω = 0.

Let, moreover, Υ be a bounded sesquilinear form in H, and let n−Υ be the
numerical range of −Υ. If nΩ∩n−Υ = ∅, then Υ ∈ P(Ω), hence Ω is solvable
with respect to || · ||Ω. In particular, if λ /∈ nΩ, then −λι ∈ P(Ω) and Ω is
solvable with respect to || · ||Ω.
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Proof. The hypotheses allow to apply Theorem 5.2. We prove that the con-
dition 1 of that theorem holds.
Let {ξn} be a sequence in D such that sup

||η||Ω=1

|(Ω + Υ)(ξn, η)| → 0. We will

show that ||ξn||Ω → 0.
Let {ξnk} be the subsequence of {ξn} which consists of all non zero ele-
ments. If {ξnk} is a finite set then obviously ||ξn||Ω → 0. Otherwise, setting

φnk =
ξnk
||ξnk ||

, we have in particular

|(Ω + Υ)(ξnk , φnk)| → 0, (5.1)

i.e., ||ξnk |||(Ω + Υ)(φnk , φnk)| → 0.
From nΩ ∩ n−Υ = ∅ and taking into account that ||φnk || = 1, there exists
d > 0 such that d ≤ |(Ω + Υ)(φnk , φnk)| for all k ∈ N. Then

d||ξnk || ≤ ||ξnk |||(Ω + Υ)(φnk , φnk)| → 0.

Moreover, from (5.1), |(Ω + Υ)(ξnk , ξnk)| → 0, but Υ(ξnk , ξnk) → 0 because
Υ is bounded and ξnk → 0, therefore |Ω(ξnk , ξnk)| → 0.
The condition (qc) implies that ||ξnk ||Ω → 0, and hence ||ξn||Ω → 0. �

This criterion applies, in particular, to closed sectorial forms, as said in
[4, Example 5.12]. But as shown in the following example, not every solvable
sesquilinear form (whose numerical range is different from the whole complex
plane) satisfies the condition (qc).

Example 5.5 (Example 4.16). As we have seen, the form Ωα for all sequences
α := {αn} of complex numbers, is solvable with respect to the norm

||{ξn}||Ωα =

( ∞∑
n=1

|ξn|2 +

∞∑
n=1

|αn||ξn|2
) 1

2

,

and Υ = −λι ∈ P(Ωα), with λ /∈ {αn : n ∈ N}. We show that, in general,
the condition (qc) is not satisfied. Indeed, we suppose, for instance, α :=
{(−1)nn} (in such case Ωα has numerical range R) and let ζn := 1√

2n
e2n +

1√
2n+1

e2n+1 ∈ D(Ωα), where {en} is the canonical basis of l2. Then ||ζn|| → 0

and Ωα(ζn, ζn) = 0, but ||ζn||Ωα does not converge to 0.
It is possible to use also Corollary 5.3 to prove that Υ = −λι, with λ /∈
{αn : n ∈ N}, belongs to P(Ωα). Indeed, let ξ ∈ D, so that ξ = {ξn} and

put χ :=
{
αn−λ
|αn|+1ξn

}
. It follows that χ ∈ D and ξ =

{
|αn|+1
αn−λ χn

}
, hence

by the boundness of the sequence
{
|αn|+1
αn−λ

}
, there exists M > 0 such that

||ξ||Ωα ≤M ||χ||Ωα .
Moreover, denoting by 〈·|·〉Ωα the inner product which induces the norm
|| · ||Ωα ,

〈χ|η〉Ωα =

∞∑
n=1

(|αn|+ 1)χnηn =

∞∑
n=1

(αn − λ)ξnηn = (Ωα − λι)(ξ, η),
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so finally we obtain the condition 2 of Theorem 5.2, indeed

1

M
||ξ||Ωα ≤ ||χ||Ωα = sup

||η||Ωα=1

〈χ|η〉Ωα = sup
||η||Ωα=1

|(Ωα − λι)(ξ, η)|.

6. Solvable sesquilinear forms with respect to an inner product

As we will see in next sections, solvable sesquilinear forms with respect to
norms which are induced by inner products deserve particular attention.

Let Ω be a q-closed sesquilinear form with respect to a norm || · ||Ω on D, and
suppose that ||·||Ω is induced by an inner product 〈·|·〉Ω. Since EΩ := D[〈·|·〉Ω]
is a Hilbert space and there exists α > 0 such that ||ξ||2 ≤ α〈ξ|ξ〉Ω for all
ξ ∈ D, we have that 〈·|·〉Ω is a closed positive sesquilinear form on D. Hence,
by Kato’s First and Second Representation Theorems [11, Ch. VI, Theorems
2.1, 2.23], there exists a positive self-adjoint operator R on H, with domain

D(R) ⊆ D(R
1
2 ) = D, and 0 ∈ ρ(R), such that

〈ξ|η〉Ω = 〈Rξ|η〉 ∀ξ ∈ D(R), η ∈ D,

〈ξ|η〉Ω = 〈R 1
2 ξ|R 1

2 η〉 ∀ξ, η ∈ D.

Moreover, Ω is bounded in EΩ, hence there exists a unique bounded operator
A ∈ B(EΩ) such that

Ω(ξ, η) = 〈Aξ|η〉Ω ∀ξ, η ∈ D.

Now, let Υ be a bounded sesquilinear form in H, then there exists a unique
operator B ∈ B(H) such that Υ(ξ, η) = 〈Bξ|η〉 for all ξ, η ∈ H.
Therefore, taking into account that 0 ∈ ρ(R),

Υ(ξ, η) = 〈Bξ|η〉 = 〈R−1Bξ|η〉Ω ∀ξ, η ∈ D,

i.e., R−1B|D ∈ B(EΩ) is the operator which represents the restriction Υ|D of
Υ to D, as sesquilinear form in EΩ. Hence

(Ω + Υ)(ξ, η) = 〈(A+R−1B|D)ξ|η〉Ω ∀ξ, η ∈ D,

i.e., A + R−1B|D ∈ B(EΩ) is the operator which represents Ω + Υ, as a
sesquilinear form in EΩ.
Using conditions (4.1) and (4.2) one can prove the following lemma.

Lemma 6.1. Υ ∈ P(Ω) if, and only if, the operator which represents Ω + Υ
in EΩ, i.e. A+R−1B|D, is a bijection in D.

We suppose now that Υ ∈ P(Ω); then, in particular, Ω is solvable,
and admits an associated operator T . By the previous lemma, we have that
A+R−1B|D is a bijection in D, and

(Ω + Υ)((A+R−1B|D)−1ξ, η) = 〈ξ|η〉Ω = 〈Rξ|η〉
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for all ξ ∈ D(R), η ∈ D.
Setting D(T ′) := (A+R−1B|D)−1D(R) = D(RA) we define an operator T ′,

with domain D(T ′), by T ′ := R(A+R−1B|D)−B = RA; then,

(Ω+Υ)(ξ, η) = 〈R(A+R−1B|D)ξ|η〉 = 〈(RA+B)ξ|η〉 ∀ξ ∈ D(T ′), η ∈ D,
i.e.

Ω(ξ, η) = 〈RAξ|η〉 = 〈T ′ξ|η〉 ∀ξ ∈ D(T ′), η ∈ D. (6.1)

We prove that T ′ is exactly the operator T associated to Ω. From (6.1) we
have T ′ ⊆ T . Moreover, T ′ + B = R(A + R−1B|D) is a bijective operator
from D(T ′) onto H and, by Theorem 4.6, T = T ′ = RA.

To avoid confusion between the operators T and A which are both associated
to Ω, but in different spaces (H and EΩ), we say that A is the Gram operator
of Ω (with respect to 〈·|·〉Ω). This terminology follows the one used in the
theory of indefinite inner product spaces ([5, Ch. IV, par. 5]).

Remark 6.2. At this point it is worth mentioning that there exist solvable
sesquilinear forms with respect to norms not induced by inner products.
Consider the sesquilinear form Ωα of Examples 4.16 and 5.5. Let p > 2, then
the norm || · ||Ωα on D(Ωα) is equivalent to the norm

||{ξn}||p = (|ξ1|p + |ξ2|p)
1
p +

( ∞∑
n=3

|ξn|2 +

∞∑
n=3

|αn||ξn|2
) 1

2

,

which is not induced by an inner product. By Theorem 4.4, Ωα is solvable
with respect to || · ||p.

7. Comparisons with other representation theorems

We have already established that closed sectorial form are solvable. But the
converse is also true.

Proposition 7.1. Let Ω be a sectorial form with vertex γ ∈ R, and λ ≤ γ. Ω
is closed sectorial if, and only if, it is solvable with −λι ∈ P(Ω).

Proof. ”⇒ ” See Examples 5.8 and 5.12 of [4].
” ⇐ ” Let || · ||Ω be a norm with respect to which Ω is solvable. Then, we
have, for some constant M > 0 (see [11, Ch. VI, Sec. 1]),

|(Ω− λι)(ξ, η)| ≤M(<Ω− λι)(ξ, ξ) 1
2 (<Ω− λι)(η, η)

1
2 ∀ξ, η ∈ D,

and, from Lemma 5.1, there exists c > 0 such that

c||ξ||Ω ≤ sup
||η||Ω=1

|(Ω− λι)(ξ, η)| ∀ξ ∈ D.

Hence, putting M ′ := M sup
||η||Ω=1

(<Ω− λι)(η, η)
1
2 ,

c||ξ||Ω ≤M ′(<Ω− λι)(ξ, ξ) 1
2 ∀ξ ∈ D.
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But <Ω is bounded in D[|| · ||Ω], therefore for some d > 0,

c||ξ||Ω ≤M ′(<Ω− λι)(ξ, ξ) 1
2 ≤ d||ξ||Ω ∀ξ ∈ D. (7.1)

Consider the norm ||ξ||′Ω := (<Ω−λι)(ξ, ξ) 1
2 on D. By (7.1), || · ||′Ω and || · ||Ω

are equivalent, so the space D[|| · ||′Ω] is a Hilbert space and Ω is closed. �

In the rest of this section we will show that other results known in the
literature can be derived from those for solvable sesquilinear forms.

A sesquilinear form Ω with dense domain D in H is said to be closed in the
sense of McIntosh [13, 14], if the following conditions are satisfied:

1. D is a Hilbert space with an inner product 〈·|·〉Ω;
2. the embedding D[〈·|·〉Ω] ↪→ H is continuous;
3. Ω is bounded in D[〈·|·〉Ω];
4. there exist λ ∈ C and an bijective operator C ∈ B(D, 〈·|·〉Ω) such that

(Ω− λι)(ξ, η) = 〈Cξ|η〉Ω ∀ξ, η ∈ D.

According the definition of a q-closed sesquilinear form and using Lemma
6.1 one can prove the following theorem.

Theorem 7.2. Let Ω be a sesquilinear form on a dense domain D in H. Ω is
closed in the sense of McIntosh if, and only if, it is solvable with respect to
an inner product and −λι ∈ P(Ω) for some λ ∈ C.

It is worth mentioning that McIntosh considers the more general case
where the sesquilinear forms are defined in X × Y with X and Y possibly
different spaces. The next example shows that there exist solvable sesquilinear
forms, which are not closed in the sense of McIntosh.

Example 7.3. Let Ω be the sesquilinear form with domain

D :=

{
f ∈ L2(C) :

∫
C
|x||f(x)|2dx <∞

}
given by Ω(f, g) =

∫
C
xf(x)g(x)dx for all f, g ∈ D.

As already seen in Example 3.5, Ω is q-closed with respect to the norm

||f ||Ω =

(∫
C

(1 + |x|)|f(x)|2dx
) 1

2

.

We prove that Ω is also solvable with respect to ‖ · ‖Ω.
Let B : L2(C)→ L2(C) be the bounded operator given by

(Bf)(x) = χB(x)(1− x)f(x) x ∈ C,

where χB is the characteristic function on the unit ball B centred at 0 with
radius 1, and let

Υ(f, g) = 〈Bf |g〉 =

∫
C
χB(x)(1− x)f(x)g(x)dx ∀f, g ∈ L2(C).
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Hence, denoting by Bc the complement of B and r(x) := xχBc(x) + χB(x),

(Ω + Υ)(f, g) =

∫
C
r(x)f(x)g(x)dx ∀f, g ∈ D.

We note that 0 /∈ {r(x) : x ∈ C}, 1
|r(x)| ≤ 1 and |x|

|r(x)| ≤ 1 for all x ∈ C.

Let f ∈ D satisfy (Ω + Υ)(f, g) = 0 for all g ∈ D. If h ∈ L2(C), then
h
r ∈ L

2(C), but also h
r ∈ D, indeed∫

C
|x|
∣∣∣∣hr (x)

∣∣∣∣2 dx =

∫
C

|x|
|r(x)|

|h(x)|2

|r(x)|
dx ≤

∫
C
|h(x)|2dx <∞;

therefore, in particular,

0 = (Ω + Υ)

(
f,
h

r

)
=

∫
C
r(x)f(x)

h

r
(x)dx =

∫
C
f(x)h(x)dx

for all h ∈ L2(C), which implies f = 0.
Let Λ be a bounded functional on the Hilbert space D[|| · ||Ω], then by Riesz’s

Lemma, there exists p ∈ D such that 〈Λ|g〉 =

∫
C
(1 + |x|)p(x)g(x)dx for all

g ∈ D. We set f(x) := 1+|x|
r(x) p(x).

Since
∣∣∣ 1+|x|
r(x)

∣∣∣ ≤ 2 for all x ∈ C, we have that f ∈ D, and moreover,

〈Λ|g〉 =

∫
C

(1 + |x|)p(x)g(x)dx = (Ω + Υ)(f, g) ∀g ∈ D.

Hence, Υ ∈ P(Ω) and Ω is solvable. Now, we determine the operator T
associated to Ω. LetMx be the multiplication operator on L2(C) by x, with
domain

D(Mx) =

{
f ∈ L2(C) :

∫
C
|x|2|f(x)|2dx <∞

}
and given by (Mxf)(x) = xf(x) for all f ∈ D(Mx). If f ∈ D(Mx), then

2

∫
C
|x||f(x)|2dx ≤

∫
C
|f(x)|2dx+

∫
C
|x|2|f(x)|2dx <∞;

hence, f ∈ D and Ω(f, g) = 〈Mxf |g〉 for all f ∈ D(Mx), g ∈ D. Therefore,
Mx ⊆ T by Theorem 4.6.
Moreover, from 0 /∈ {r(x) : x ∈ C}, we obtain 0 ∈ ρ(Mx + B); i.e., Mx + B
has range H. By Theorem 4.6 we conclude that Mx = T .
Note that Ω is solvable, but if λ ∈ C then Υ′ = −λι /∈ P(Ω). Indeed, if
Υ′ = −λι ∈ P(Ω), we would have λ ∈ ρ(Mx), but Mx has empty resolvent
set.

Remark 7.4. In [10, Proposition 4.2] it is shown that there exist different
forms, that are closed in McIntosh’s sense (and hence solvable), with the
same associated operator. Moreover, the forms have not comparable domains.
Therefore, Lemma 4.15 does not hold, in general, without the hypothesis
that the domains are equal. In particular, two different forms with the same
associated operator are not comparable under the relation of extension.
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Now we prove a theorem on the relationship between solvable sesquilin-
ear forms and Krein spaces (see [5]).

Theorem 7.5. Let Ω be a sesquilinear form defined on a dense domain D in H,
and let Υ be a bounded sesquilinear form in H, such that Ω+Υ is symmetric.
Then, Ω is solvable with respect to an inner product and Υ ∈ P(Ω) if, and
only if, the pair (D,Ω + Υ) is a Krein space which is continuously embedded
in H.

Proof. By [5, Ch. V, Theorem 1.3], (D,Ω + Υ) is a Krein space if, and only
if, an inner product 〈·|·〉Ω is defined on D, so that D[〈·|·〉Ω] is a Hilbert space,
Ω+Υ is bounded in D[〈·|·〉Ω] and the Gram operator of Ω+Υ with respect to
〈·|·〉Ω is a bijection of D[〈·|·〉Ω]. Hence, by the definition of a q-closed form and
by Lemma 6.1, (D,Ω + Υ) is a Krein space which is continuously embedded
in H if, and only if, Ω is a solvable with respect to 〈·|·〉Ω and Υ ∈ P(Ω). �

We recall that, following instead Fleige, Hassi and de Snoo [7], a sym-
metric sesquilinear form defined in a dense subspace D of H, is said to be
closed, if, for some λ ∈ C, the gap point, the pair (D,Ω − λι) is a Krein
space, which is continuously embedded in H. From Theorem 7.5 we have the
following comparison between closed forms and solvable forms.

Corollary 7.6. Let Ω be a symmetric sesquilinear form defined on a dense
domain D in H, and let λ ∈ R. Ω is closed, with gap point λ, if, and only if,
Ω is solvable with respect to an inner product and −λι ∈ P(Ω).

Consequently, Lemma 3.1 and Theorem 3.3 of [7] are special cases of
Theorems 3.8, 4.6 and of Corollaries 4.10, 4.12. Proposition 3.2 in [9] cor-
responds to Theorem 4.15. The next example shows, instead, a symmetric
solvable form, which is not closed in the sense of [7].

Example 7.7. Let H = L2(R). We define the symmetric sesquilinear form Ω
with domain

D :=

{
f ∈ L2(R) :

∫
R
|x||f(x)|2dx <∞

}
putting Ω(f, g) =

∫
R
xf(x)g(x)dx for all f, g ∈ D.

Ω is solvable with respect to the norm (induced by an inner product) ||f ||Ω =

(
∫
R(1 + |x|)|f(x)|2dx)

1
2 , f ∈ D. Indeed, in a way similar to Example 3.5, we

prove that the bounded sesquilinear form Υ = −iι is in P(Ω). Moreover, the
operator associated to Ω is the multiplication operator Mx by x on L2(R),
with domain

D(Mx) =

{
f ∈ L2(R) :

∫
R
x2|f(x)|2dx <∞

}
and given by (Mxf)(x) = xf(x) for all f ∈ D(Mx).
However, Ω is not closed in the sense of [7], because if it were, with some gap
point λ ∈ R, then λ would belong to the resolvent set ofMx, which does not
contain real numbers.
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We recall that an operator T is accretive if its numerical range is con-
tained in the half-plane {λ ∈ C : <λ ≥ 0}, and maximal accretive if it has no
proper accretive extension. A characterization of maximal dissipative opera-
tors (i.e., the opposite of those maximal accretive) can be found in [16].
The following theorem is the result of McIntosh in [12] on the representation
of certain accretive sesquilinear forms (as for operators, accretive means that
the numerical range is contained in the half-plane {λ ∈ C : <λ ≥ 0}). We
prove that this is another special case of Theorem 4.6.

Theorem 7.8. Let Ω be an accretive sesquilinear form on a dense domain D
in H. Suppose that D can be made into a Hilbert space (indicated by H1),
with norm || · ||1, satisfying the following conditions

1. the embedding H1 ↪→ H is continuous;
2. Ω is bounded in H1;
3. if {ξn} is a sequence in D such that, sup

||η||1=1

|(Ω + ι)(ξn, η)| → 0 then

||ξn||1 → 0.

Then, there exists a maximal accretive operator T , with dense domain D(T ) ⊆
D in H, such that Ω(ξ, η) = 〈Tξ|η〉 for all ξ ∈ D(T ), η ∈ D.

Proof. Hypotheses 1, 2 imply that Ω is a q-closed sequilinear form with re-
spect to || · ||1. One can prove that Ω is solvable with respect to || · ||1, using
Corollary 5.3. Indeed, −1 /∈ nΩ, the numerical range of Ω, and the third hy-
pothesis in the statement is exactly the condition 1 in Theorem 5.2. So, the
required properties follow from Theorem 4.6, and T is a maximal accretive
operator by a corollary of [16, Theorem 1.1.1]. �

Now consider the sesquilinear forms of the type

Ω(ξ, η) = 〈HA 1
2 ξ|A 1

2 η〉 ∀ξ, η ∈ D := D(A
1
2 ), (7.2)

studied in [10], where H,A are self-adjoint, H is bounded, A is positive and
0 ∈ ρ(H) ∩ ρ(A). It is easy to see, using the definition, that Ω are solvable

with respect to the norm ||ξ||Ω = ||A 1
2 ξ|| for all ξ ∈ D, and Υ ∈ P(Ω), where

Υ = 0.

In [17] the sesquilinear forms considered are defined by

Ω(ξ, η) = 〈HA 1
2 ξ|A 1

2 η〉 ∀ξ, η ∈ D := D(A
1
2 ),

where the unique difference from above is that A is only non-negative and
self-adjoint, but the existence of a sef-adjoint involution J with some property
is required. As one can see in the proof of Theorem 2.3 of [17], such sesquilin-
ear forms are perturbations of those defined by (7.2) with the bounded form
Υ(ξ, η) = 〈Jξ|η〉 for all ξ, η ∈ H. Hence, Ω are solvable and Υ ∈ P(Ω).

We recall that the spectrum of a closed operator is called purely discrete if it
contains only eigenvalues of finite multiplicity which have no finite accumu-
lation points (see [18, Ch. 2]). We prove now the following theorem.
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Theorem 7.9. Let Ω be a solvable sesquilinear form on D with respect to an
inner product 〈·|·〉Ω and let T be its associated operator. Suppose that the
embedding D[〈·|·〉Ω] ↪→ H is compact.
Then, for all A ∈ B(H), such that T − A is invertible with bounded inverse
(T −A)−1 ∈ B(H), one has that (T −A)−1 is compact.
In particular, if λ ∈ ρ(T ), then Rλ(T ) = (T − λI)−1 is compact.
If the spectrum σ(T ) of T is different from C, then σ(T ) is purely discrete.

Proof. Let || · ||Ω be the norm induced by 〈·|·〉Ω, and EΩ = D[|| · ||Ω]. As we
have seen in Section 6, there exists a positive self-adjoint operator R, with
bounded inverse, such that D = D(R

1
2 ) and ||ξ||Ω = ||R 1

2 ξ|| for all ξ ∈ D.

Hence, since R−
1
2 ∈ B(H),

||R− 1
2 η||Ω = ||η|| ∀η ∈ H. (7.3)

The compactness of the embedding EΩ ↪→ H and (7.3) imply that R−
1
2 is a

compact operator. Indeed, if {ξn} ⊂ D(R−
1
2 ) = H is a bounded sequence in

H, then since ||R− 1
2 ξn||Ω = ||ξn||, the sequence {R− 1

2 ξn} is bounded in EΩ,

therefore {R− 1
2 ξn} admits a subsequence which converges in H.

T is the associated operator to Ω, hence (see again Section 6) there exist
B ∈ B(H) and an isomorphism C ∈ B(EΩ) such that T +B = RC|D(T ).
Thus

(T +B)−1 = C−1
|D(T )R

−1 = C−1
|D(T )R

− 1
2R−

1
2 . (7.4)

The operator C−1
|D(T )R

− 1
2 is bounded in H, because

||C−1
|D(T )R

− 1
2 ξ|| ≤ α||C−1

|D(T )R
− 1

2 ξ||Ω ≤ αδ||R−
1
2 ξ||Ω = αδ||ξ|| ∀ξ ∈ H,

(we have used the facts that || · || ≤ α|| · ||Ω and that ||C−1ξ||Ω ≤ δ||ξ||Ω, with

certain constants α, δ). Hence from (7.4) and from the compactness of R−
1
2

we see that (T +B)−1 is compact.
Let A ∈ B(H) be such that T − A is invertible with bounded inverse (T −
A)−1 ∈ B(H). Put, for simplicity of notation, RA(T ) := (T − A)−1, hence
R−B(T ) = (T +B)−1. We have the following relation (which is analogous to
the classical one between resolvent operators)

RA(T )(A+B)R−B(T ) = RA(T )(T+B−(T−A))R−B(T ) = RA(T )−R−B(T ),

which shows that RA(T ) is compact.
Suppose now that the spectrum σ(T ) is different from C, and let λ ∈ ρ(T ).
Then Rλ(T ) = (T − λI)−1 is compact, and from [18, Proposition 2.11] it
follows that σ(T ) is purely discrete. �

Corollary 7.10. In the hypothesis of Theorem 7.9 and assuming H is infinite
dimensional, if λ ∈ ρ(T ) and the resolvent Rλ(T ) is normal, then there exist
a sequence {µn : n ∈ N} of eigenvalues of T , such that lim

n→∞
|µn| = +∞, and

an orthonormal basis {ξn : n ∈ N} of H which consists of eigenvectors of T .

Proof. This fact is a consequence of [18, Theorem A.4]. �
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Remark 7.11. Let Ω be a solvable sesquilinear form on D with respect to a
norm || · ||Ω, and with associated operator T . Assume that λ and ξ are an
eigenvalue and a corresponding eigenvector of T , respectively. Then, they are
an eigenvalue and a corresponding eigenvector of Ω, respectively; in other
words, Ω(ξ, η) = λ〈ξ|η〉 for all η ∈ D.
The converse is also true. Indeed, if λ and ξ are an eigenvalue and a cor-
responding eigenvector of Ω, respectively, then, by Corollary 4.10, we have
ξ ∈ D(T ) and Tξ = λξ.
Hence, the statement of the previous corollary can be formulated considering
eigenvalues and eigenvectors of the form.

Definition 7.12. A q-closed sesquilinear form Ω on D with respect to a norm
|| · ||Ω is called coercive on D[|| · ||Ω] if there exists γ > 0 such that |Ω(ξ, ξ)| ≥
γ||ξ||2Ω for all ξ ∈ D.

The following facts on coercive sesquilinear forms hold.

Theorem 7.13. Let Ω be a q-closed sesquilinear form on D with respect to a
norm || · ||Ω. If there exists a bounded form Υ on H such that Ω+Υ is coercive
on D[|| · ||Ω], then Ω is solvable, and in particular, Υ ∈ P(Ω).

Proof. Since there exists γ > 0 such that |(Ω + Υ)(η, η)| ≥ γ||η||2Ω for all
η ∈ D, we have that N(Ω + Υ) = {0}. Moreover, for all η ∈ D

γ||η||Ω ≤ sup
||ξ||Ω=1

|(Ω + Υ)(ξ, η)|. (7.5)

Indeed, if η = 0 then (7.5) is obvious. If η 6= 0 then

γ||η||Ω =
γ||η||2Ω
||η||Ω

≤ |(Ω + Υ)(η, η)|
||η||Ω

≤ sup
||ξ||Ω=1

|(Ω + Υ)(ξ, η)|.

Hence, by Theorem 5.1, Υ ∈ P(Ω) and Ω is solvable. �

Corollary 7.14. A q-closed sesquilinear form Ω on D with respect to a norm
|| · ||Ω and coercive on D[|| · ||Ω] is solvable, and 0 ∈ ρ(T ), the resolvent set of
the operator T associated to Ω.

In general there is no relations between the concept of j-elliptic form in
[3] and that of solvable form, because a j-elliptic form is defined on a Hilbert
space (V, || · ||V ), where V need not be a subspace of H.
Let us consider the case when V is a dense subspace ofH and j : V → H is the
embedding. Let Ω be a j-elliptic sesquilinear form on V (Ω is q-closed with
respect to ||·||V ), then there exists ω ∈ R, µ > 0 such that <Ω(ξ, ξ)+ω||ξ||2 ≥
µ||ξ||2V for all ξ ∈ V . Therefore,

|Ω(ξ, ξ) + ω||ξ||2| ≥ µ||ξ||2V ∀ξ ∈ V,

and, by Theorem 7.13, Ω is solvable and ωι ∈ P(Ω).

We return again to the problem of forms with the same associated operators
(see Lemma 4.15 and Remark 7.4).
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Proposition 7.15. Let Ω1 be a solvable sesquilinear form on D1 with respect
to a norm || · ||1 and let Ω2 be a solvable sesquilinear form on D2 with respect
to || · ||2. If Ω1 and Ω2 are coercive in D1[|| · ||1] and in D2[|| · ||2], respectively,
and they have the same associated operator, then D1 = D2 and Ω1 = Ω2.

Proof. There exist constants β1, β2, γ1, γ2 > 0 such that

γ1||ξ||21 ≤ |Ω1(ξ, ξ)| ≤ β1||ξ||21 ∀ξ ∈ D1

γ2||η||22 ≤ |Ω2(η, η)| ≤ β2||η||22 ∀η ∈ D2.

Let D(T ) be the domain of the common associated operator T ; then we have

γ2||ξ||22 ≤ |〈Tξ|ξ〉| ≤ β1||ξ||21 ∀ξ ∈ D(T ),

and a similar expression exchanging || · ||1 and || · ||2. Therefore, the two norms
are equivalent in D(T ), but D(T ) is dense both in D1[|| · ||1] and in D2[|| · ||2].
Hence, D1 = D2 and Ω1 = Ω2 by Lemma 4.15. �

By Corollary 7.14, hence Theorem 11.3 of [18] is a consequence of Theo-
rems 4.6, 4.11 and 7.9. Moreover, Corollaries 11.4 and 11.5 of [18] are specific
cases of Proposition 7.15 and Corollary 4.14, respectively.
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