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Abstract. The notions of Bessel sequence, Riesz-Fischer sequence and
Riesz basis are generalized to a rigged Hilbert space D[t] ⊂ H ⊂ D×[t×].
A Riesz-like basis, in particular, is obtained by considering a sequence
{ξn} ⊂ D which is mapped by a one-to-one continuous operator T :
D[t]→ H[‖ · ‖] into an orthonormal basis of the central Hilbert space H
of the triplet. The operator T is, in general, an unbounded operator in
H. If T has a bounded inverse then the rigged Hilbert space is shown
to be equivalent to a triplet of Hilbert spaces.

1. Introduction

Riesz bases (i.e., sequences of elements {ξn} of a Hilbert space H which
are transformed into orthonormal bases by some bounded operator with
bounded inverse) often appear as eigenvectors of nonself-adjoint operators.
The simplest situation is the following one. Let H be a self-adjoint operator
with discrete spectrum defined on a subset D(H) of the Hilbert space H.
Assume, to be more definite, that each eigenvalue λn is simple. Then the
corresponding eigenvectors {en} constitute an orthonormal basis of H. If
X is another operator similar to H, i.e., there exists a bounded operator
T with bounded inverse T−1 which intertwines X and H, in the sense that
T : D(H) → D(X) and XTξ = THξ, for every ξ ∈ D(H), then, as it
is easily seen, the vectors {ϕn} with ϕn = Ten are eigenvectors of X and
constitute a Riesz basis for H. There are, however, more general situations,
mostly coming from physical applications, where the intertwining operator T
exists but at least one between T and T−1 is unbounded. This is actually the
case of the so-called cubic Hamiltonian X = p2 + ix3 of Pseudo-Hermitian
Quantum Mechanics, for which it has been proved that there is no inter-
twining operator bounded with bounded inverse which makes it similar to a
self-adjoint operator [28]. Of course, for studying these cases, one also has
to relax the notion of similarity since problems of domain may easily arise
(see [6, 7] for a full discussion of the various notions of (quasi-) similarity
that one may introduce).

Also, when studying the formal commutation relation [A,B] = 11, where
B is not the adjoint of A (the so-called pseudo-bosons studied by Bagarello
[8, 9]), in the most favorable situation, one finds two biorthogonal families of
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vectors {φk}, {ψk}, a positive intertwining operator K (Kϕn = ψn, n ∈ N)

and the family {en} with en = K−
1
2ϕn, n ∈ N, is an orthonormal family of

vectors. But, in general both K and K−1 are unbounded [10, 11].
These examples motivate, in our opinion, a study of possible generaliza-

tions of the notion of Riesz basis that could cover these situations of interest
for applications.

Whenever unbounded operators are involved, dealing with discontinuity
and with sometimes nontrivial domain problems becomes unavoidable. Both
difficulties can be by-passed if one enlarges the set-up from Hilbert spaces
to rigged Hilbert spaces.

A rigged Hilbert space (RHS) consists of a triplet (D,H,D×) where D is
a dense subspace of H endowed with a topology t, finer than that induced
by the Hilbert norm of H, and D× is the conjugate dual of D[t], endowed
with the strong topology t× := β(D×,D).

Of course, one could also pose the problem of extending the notion of
Riesz basis in the more general set-up of locally convex spaces, but the
nature itself of the notion of Riesz basis requires also a control of its behavior
in the context of duality and, as we shall see, a Riesz-like basis on a locally
convex space D[t] will automatically make of D the smallest space of rigged
Hilbert space. Thus it appears natural to consider rigged Hilbert spaces
from the very beginning.

On the other hand, rigged Hilbert spaces (and their further generalizations
like e.g. partial inner product spaces) have plenty of applications. In Analy-
sis they provide the general framework for distribution theory; in Quantum
Physics they give a convenient description of the Dirac formalism [5, Chap-
ter 7]. Finally, rigged Hilbert spaces (e.g. those generated by the Feichtinger
algebra) or lattices of Hilbert or Banach spaces (mixed-norm spaces, amal-
gam spaces, modulation spaces) play also an important role in signal analysis
(see [5, Chapter 8], for an overview).

As it is known, a Riesz basis {ξn} in a Hilbert space H is also a frame
[15, 17, 19]; i.e., there exist positive numbers c, C such that

(1) c‖ξ‖2 ≤
∞∑
n=1

| 〈ξ |ξn 〉 |2 ≤ C‖ξ‖2, ∀ξ ∈ H.

The peculiarity of a Riesz basis relies in its exactness or minimality: a
frame is a Riesz basis if it ceases to be a frame when anyone of its elements
is dropped out. The notion of frame is crucial in signal analysis and for
coherent states (see e.g. [15] and references therein) and in approximation
theory [1, 18, 30]. A further generalization is the notion of semi-frame [2]
for which one of the above frame bounds is absent (lower or upper semi-
frames). For instance a lower semi-frame has an unbounded frame operator,
with bounded inverse.

The paper is organized as follows. In Section 2, after some prelimi-
naries, we discuss shortly the notion of basis in a rigged Hilbert space
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D[t] ⊂ H ⊂ D×[t×]. Then we introduce Bessel-like sequences in D×[t×]
and Riesz-Fischer-like sequences in D[t] and study, in the present context,
their interplay in terms of duality. In Section 3, we define {ξn} to be a
Riesz-like basis if there exists a one-to-one linear map T : D → H, continu-
ous from D[t] into H[‖ · ‖], such that {Tξn} is an orthonormal basis for the
central Hilbert space H. Some characterizations of these bases are given.
Finally, we consider the special case where T has also a continuous inverse.
This additional assumption, even though natural, reveals to be quite strong,
since, as we will see, the rigged Hilbert space D[t] ⊂ H ⊂ D×[t×] is in fact
equivalent to a triplet of Hilbert spaces. An application to nonself-adjoint
Hamiltonians is briefly discussed in Section 3.2.

2. Preliminaries and basic aspects

2.1. Rigged Hilbert spaces and operators on them. Let D be a dense
subspace of H. A locally convex topology t on D finer than the topology
induced by the Hilbert norm defines, in standard fashion, a rigged Hilbert
space (RHS)

(2) D[t] ↪→ H ↪→ D×[t×],

where D× is the vector space of all continuous conjugate linear functionals on
D[t], i.e., the conjugate dual of D[t], endowed with the strong dual topology
t× = β(D×,D) and ↪→ denotes a continuous embedding. Since the Hilbert
space H can be identified with a subspace of D×[t×], we will systematically
read (2) as a chain of topological inclusions: D[t] ⊂ H ⊂ D×[t×]. These
identifications imply that the sesquilinear form B(·, ·) that puts D and D×
in duality is an extension of the inner product of D; i.e., B(ξ, η) = 〈ξ |η 〉,
for every ξ, η ∈ D (to simplify notations we adopt the symbol 〈· |· 〉 for both
of them).

Example 2.1. Let T be a closed densely defined operator with domain D(T )
in Hilbert space H. Let us endow D(T ) with the graph norm ‖ · ‖T defined
by

‖ξ‖T = (‖ξ‖2 + ‖Tξ‖2)
1
2 = ‖(I + T ∗T )

1
2 ξ‖, ξ ∈ D(T ).

With this norm D(T ) becomes a Hilbert space, denoted by HT . If H×T denotes
the Hilbert space conjugate dual of HT , then we get the triplet of Hilbert
spaces

HT ⊂ H ⊂ H×T
which is a particular example of rigged Hilbert space.

Example 2.2. Let D be a dense domain in Hilbert space H and denote by
L†(D) the *-algebra consisting of all closable operators A with D(A) = D,
which together with their adjoints, A∗, leave D invariant. The involution of
L†(D) is defined by A 7→ A†, where A† = A∗�D. The *-algebra L†(D) defines
in D the graph topology t† by the family of seminorms

ξ ∈ D → ‖ξ‖A := ‖(I +A∗A)
1
2 ξ‖, A ∈ L†(D).
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Since the topology t† is finer than the topology induced on D by the Hilbert
norm of H, it defines in natural way a structure of rigged Hilbert space.

Let now D[t] ⊂ H ⊂ D×[t×] be a rigged Hilbert space, and let L(D,D×)
denote the vector space of all continuous linear maps from D[t] into D×[t×].
If D[t] is barreled (e.g. reflexive), an involution X 7→ X† can be introduced
in L(D,D×) by the equality〈

X†η |ξ
〉

= 〈Xξ |η 〉, ∀ξ, η ∈ D.

Hence, in this case, L(D,D×) is a †-invariant vector space.
If D[t] is a smooth space (e.g. Fréchet and reflexive), then L(D,D×) is a

quasi *-algebra over L†(D) [3, Definition 2.1.9].
Let E ,F ∈ {D,H,D×} and L(E ,F) the space of all continuous linear

maps from E [tE ] into F [tF ]. We put

C(E ,F) := {X ∈ L(D,D×) : ∃Y ∈ L(E ,F), Y ξ = Xξ, ∀ξ ∈ D}.

In particular, if X ∈ C(D,H) then its adjoint X† ∈ L(D,D×) has an
extension from H into D×, which we denote by the same symbol.

The space L(D,D×) has been studied at length by several authors (see
e.g. [22, 23, 24, 29]) and several pathologies concerning their multiplicative
structure have been considered (see also [3, 5] and references therein). Re-
cently some spectral properties of operators of these classes have also been
studied [13].

2.2. Topological bases and Schauder bases. Let E [tE ] be a locally con-
vex space and {ξn} a sequence of vectors of E . We adopt the following
terminology:

(i) the sequence {ξn} is complete or total if the linear span of {ξn} is
dense in E [tE ];

(ii) the sequence {ξn} is a topological basis for E if, for every φ ∈ E , there
exists a unique sequence {cn} of complex numbers such that

(3) φ =
∞∑
n=1

cnξn,

where the series on the right hand side converges in E [tE ].

Every coefficient cn = cn(φ) in (3) can be regarded as a linear functional on
E and, following [20], we say that

(iii) a topological basis {ξn} of E [tE ] is a Schauder basis if the coefficient
functionals {cn} are tE -continuous.

Remark 2.3. We notice the following well-known facts.

(a) If E has a total sequence, then it is a separable space.
(b) Every topological basis is a complete sequence; the converse is false,

in general.
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(c) If {ξn} is a topological basis for E, then {ξn} is ω-independent; i.e.,
if
∑∞

n=1 cnξn = 0, then cn = 0, for every n ∈ N. This in turn implies
that the sequence {ξn} consists of linearly independent vectors.

(d) If E [tE ] is a Fréchet space, then every topological basis is a Schauder
basis ([20, Section 14.2, Theorem 5]).

By a slight modification of [20, Section 14.3, Theorem 6] we have

Proposition 2.4. A complete sequence of vectors {ξn} ⊂ E is a Schauder
basis of E [tE ] if, and only if, for every n ∈ N and every continuous seminorm
p on E [tE ], there exists a continuous seminorm q on E [tE ] such that

p

(
n∑
i=1

ciξi

)
≤ q

(
n+m∑
i=1

ciξi

)
where c1, . . . , cn+m are arbitrary complex numbers and m is an arbitrary
natural number.

As is known, a Riesz basis {ξn} in Hilbert space H is transformed by
some bounded operator into an orthonormal basis of H; this is equivalent
to saying that a new (and equivalent) inner product can be introduced in
H which makes of {ξn} an orthonormal basis. A similar notion for locally
convex spaces, calls immediately on the stage rigged Hilbert spaces.

Proposition 2.5. Let {ξn} ⊂ E be a Schauder basis of E [tE ] and assume
that there exists a one-to-one continuous linear map T from E [tE ] into some
Hilbert space K[‖ · ‖] such that {Tξn} is an orthonormal basis of K. Then
there exists an inner product 〈· |· 〉+ on E × E such that the topology induced
on E by the norm ‖ · ‖+ is coarser than tE and {ξn} is an orthonormal basis.

Proof. Define 〈ξ |η 〉+ := 〈Tξ |Tη 〉, ξ, η ∈ E . Then all the statements follow
immediately. �

Then, under the conditions of Proposition 2.5, one can consider E as a
subspace of the Hilbert space completion H+ of E [‖ · ‖+], so that a rigged
Hilbert space can be built in natural way: E [tE ] ⊂ H+ ⊂ E×[t×E ]. This is
essentially the reason why, as announced in the Introduction, we will confine
ourselves within this framework.

Let D[t] ⊂ H ⊂ D×[t×] be a rigged Hilbert space and {ξn} a Schauder ba-
sis for D[t]. Then, every f ∈ D can be written as

∑∞
n=1 cn(f)ξn, for uniquely

determined suitable coefficients cn(f). Since every cn is a continuous linear
functional on D[t], there exists a sequence {ζn} ⊂ D× such that

cn(f) = 〈ζn |f 〉, ∀n ∈ N, f ∈ D.
For every n ∈ N, the vector ζn is uniquely determined. If we take f = ξk,
then it is clear that cn(ξk) = δn,k. Hence 〈ζn |ξk 〉 = δn,k; i.e., the sequences
{ξn} and {ζn} are biorthogonal. More precisely,

Proposition 2.6. Let {ξn} be a topological basis for D[t]. The following
statements are equivalent.



6 GIORGIA BELLOMONTE AND CAMILLO TRAPANI

(i) {ξn} is a Schauder basis.

(ii) {ξn} is minimal; i.e., ξk 6∈ span{ξm;m 6= k}t, for every k ∈ N.
(iii) There exists a unique sequence {ζn} ⊂ D× such that {ξn} and {ζn}

are biorthogonal.

(i) ⇔ (ii) is proved in [20, Section 14.2, Proposition 3], and (ii) ⇒ (iii)
in [20, Section 14.2, Proposition 1]; (iii) ⇒ (ii) is trivial. See also [17,
Theorem 6.1.1].

Proposition 2.7. Let {ξn} be a Schauder basis for D[t]. Then there exists
a sequence {ζn} of vectors of D× such that

(i) the sequences {ξn} and {ζn} are biorthogonal;
(ii) for every f ∈ D,

(4) f =
∞∑
n=1

〈ζn |f 〉ξn;

(iii) The partial sum operator Sn, given by

Snf =
n∑
k=1

〈ζk |f 〉ξk, f ∈ D,

is continuous from D[t] into D[t] and has an adjoint S†n everywhere
defined in D× given by

S†nΨ =

n∑
k=1

〈Ψ |ξk 〉ζk, Ψ ∈ D×.

The proof is straightforward.

Proposition 2.8. Let {ξn} be a Schauder basis for D[t]. Then, the following
statements hold.

(i) The sequence {ζn} in (4) is complete in D×[τ ], where τ is a topo-
logy of the conjugate dual pair (D×,D). If D[t] is reflexive, {ζn} is
complete also with respect to t×.

(ii) The sequence {ζn} is a basis for D× with respect to the weak topology;
i.e., if Ψ ∈ D× one has

(5) 〈Ψ |f 〉 =

〈 ∞∑
k=1

〈Ψ |ξk 〉ζk |f

〉
=
∞∑
k=1

〈Ψ |ξk 〉 〈ζk |f 〉 , ∀f ∈ D.

Proof. (i): Assume that {ζn} is not complete. Then there exists f 6= 0,
f ∈ D (regarded as the conjugate dual of D×[τ ]) such that 〈ζn |f 〉 = 0,
for every n ∈ N. From (4) it follows that f = 0, a contradiction. If D[t]
is reflexive, the statement follows from the equality of t and the Mackey
topology τ(D×,D).

(ii): Assume first that Φ ∈ D× is of the form Φ =
∑n

k=1 ckζk. Then it

is easily seen that S†nΦ = Φ. Now, if Ψ ∈ D×, for every f ∈ D and for
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every ε > 0, there exists Φ =
∑n

k=1 ckζk such that | 〈Ψ− Φ |f 〉 | < ε. On
the other hand, since Snf → f , there exists nε ∈ N such that for n > nε,
| 〈Ψ− Φ |Snf − f 〉 | < ε. Thus we have∣∣∣〈S†nΨ−Ψ |f

〉∣∣∣ ≤ ∣∣∣〈S†nΨ− S†nΦ |f
〉∣∣∣+

∣∣∣〈S†nΦ− Φ |f
〉∣∣∣+ | 〈Φ−Ψ |f 〉 |

= | 〈Ψ− Φ |Snf 〉 |+ | 〈Φ−Ψ |f 〉 |
≤ | 〈Ψ− Φ |Snf − f 〉 |+ 2| 〈Φ−Ψ |f 〉 |
< 3ε.

Hence S†nΨ→ Ψ weakly, or

〈Ψ |f 〉 =

〈 ∞∑
k=1

〈Ψ |ξk 〉ζk |f

〉
=
∞∑
k=1

〈Ψ |ξk 〉 〈ζk |f 〉 .

�

For f ∈ D ⊂ D×, (5) gives in particular

‖f‖2 =
∞∑
k=1

〈f |ξk 〉 〈ζk |f 〉 , ∀f ∈ D;

so that the series on the right hand side is convergent, for every f ∈ D.

Remark 2.9. There is a wide interest and a rich literature on bases or
frames in locally convex spaces (in particular, Banach spaces) and on their
existence, see e.g. [16, 25] and [14] and references therein.

2.3. Bessel- and Riesz-Fischer-like sequences. We assume, from now
on, that D[t] is complete and reflexive.

Definition 2.10. Let {ζn} be a sequence in D×. We say that {ζn} is a
Bessel-like sequence if, for every bounded subset M of D[t],

(6) sup
η∈M

∞∑
k=1

| 〈ζk |η 〉 |2 =: γM <∞.

Proposition 2.11. A sequence {ζn} of elements of D× is Bessel-like if and
only if

∞∑
k=1

| 〈ζk |η 〉 |2 <∞, ∀η ∈ D

and the analysis operator

F : η ∈ D[t]→ {〈ζk |η 〉} ∈ `2[‖ · ‖2]

is continuous.

Proof. Let {ζn} be Bessel-like. From (6) it is clear that for every η ∈ D,∑∞
k=1 | 〈ζk |η 〉 |2 <∞.
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Now we prove that

U : {an} ∈ `2 →
∞∑
n=1

anζn

is a well-defined continuous linear map from `2[‖ · ‖2] into D×[t×].
We begin with proving that

∑∞
n=1 anζn converges in D×[t×]. Let M be

a bounded subset of D[t]. Then, for n > m,

sup
η∈M

∣∣∣∣∣
〈

n∑
k=1

akζk −
m∑
k=1

akζk |η

〉∣∣∣∣∣ = sup
η∈M

∣∣∣∣∣
〈

n∑
k=m+1

akζk |η

〉∣∣∣∣∣
≤ sup

η∈M

n∑
k=m+1

|ak 〈ζk |η 〉 |

≤

(
n∑

k=m+1

|ak|2
) 1

2

· sup
η∈M

( ∞∑
k=1

| 〈ζk |η 〉 |2
) 1

2

≤ γ
1
2
M

(
n∑

k=m+1

|ak|2
) 1

2

→ 0, as n,m→∞.

Hence the partial sums
∑n

k=1 akζk constitute a Cauchy sequence in D×[t×]
and, since D×[t×] being reflexive is1 quasi-complete [27, Chapter IV, 5.5,
Corollary 1], the series converges in D×. Moreover, by simple modifications
of the previous inequalities it follows also that

sup
η∈M

∣∣∣∣∣
∞∑
k=1

ak 〈ζk |η 〉

∣∣∣∣∣ ≤ γ 1
2
M‖{an}‖2.

Thus, U is continuous from `2[‖ · ‖2] into D×[t×] and therefore by the re-
flexivity of D[t], U has a continuous adjoint map U † : D[t]→ `2[‖ · ‖2]. It is
easily checked that

U †η = {〈ζn |η 〉}, ∀η ∈ D.
Thus U † = F and F is continuous.

Conversely, let us assume that {〈ζk |η 〉} ∈ `2 and that F is continuous.
This implies that there exists a continuous seminorm p on D[t] such that

‖Fη‖2 =

( ∞∑
k=1

| 〈ζk |η 〉 |2
) 1

2

≤ p(η), ∀η ∈ D.

Thus, if M is a bounded subset of D[t], we get

sup
η∈M

∞∑
k=1

| 〈ζk |η 〉 |2 = sup
η∈M

‖Fη‖22 ≤ sup
η∈M

p(η)2 <∞, ∀η ∈ D.

1A locally convex space is said to be quasi-complete if every closed bounded subset is
complete.
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Hence {ζn} is a Bessel-like sequence. �

As usual, we will call the operator F †: {an} ∈ `2 →
∑∞

n=1 anζn ∈ D×, the
syntesis operator of the sequence {ζn}.

From Proposition 2.11 and from the fact that (6) is not affected from a
possible reordering of the elements {ζn} it follows that if {ζn} is a Bessel-like
sequence and {an} ∈ `2 then the series

∑∞
n=1 anζn converges unconditionally

in D×[t×].
If {ζn} is a Bessel-like sequence, then the operator F †F (we keep for it

the name of frame operator, as usual) is a continuous linear map from D[t]
into D×[t×]; i.e., F †F ∈ L(D,D×). Clearly,

F †Fη =
∞∑
k=1

〈ζk |η 〉 ζk

where the series on the right hand side converges in D×[t×]. The operator
F †F is positive, in the sense that

〈
F †Fη |η

〉
≥ 0, for every η ∈ D.

Remark 2.12. A sequence {ξn} of elements of D can also be considered as
a sequence in D×. Hence the notion of Bessel-like sequence can be given also
in this case, and analysis and synthesis operators act in the very same way
as before. Moreover, if both series

∑∞
k=1 akξk and

∑∞
k=1 aσ(k)ξσ(k) converge

in D[t], where σ : N→ N is a bijection, then they have the same sum, since∑∞
k=1 akξk converges unconditionally in D×[t×].

Proposition 2.13. A sequence {ζn} of elements of D× is Bessel-like if and
only if, for every orthonormal basis {en} in H, there exists W ∈ C(H,D×)
such that Wen = ζn, for every n ∈ N.

Proof. Let {ζn} be Bessel-like and {en} an orthonormal basis for H. For
f ∈ H, f =

∑∞
k=1 〈f |ek 〉 ek, we define Wf =

∑∞
k=1 〈f |ek 〉 ζk. This series

converges in D×[t×] as seen in Proposition 2.11 and it is clear thatWen = ζn,
for every n ∈ N. We now prove that W ∈ C(H,D×). Let us consider a
bounded subset M of D[t]; then,

sup
η∈M

| 〈Wf |η 〉 | = sup
η∈M

∣∣∣∣∣
〈 ∞∑
k=1

〈f |ek 〉 ζk |η

〉∣∣∣∣∣
= sup

η∈M

∣∣∣∣∣
∞∑
k=1

〈f |ek 〉 〈ζk |η 〉

∣∣∣∣∣
≤

( ∞∑
k=1

| 〈f |ek 〉 |2
) 1

2

sup
η∈M

( ∞∑
k=1

| 〈ζk |η 〉 |2
) 1

2

≤ γ
1
2
M‖f‖.
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Conversely, assume that, given an orthonormal basis {en}, there exists W ∈
C(H,D×) such that Wen=ζn. Then, if M is a bounded subset of D[t],

sup
η∈M

∞∑
k=1

|〈ζk|η 〉|2= sup
η∈M

∞∑
k=1

|〈Wek|η 〉|2= sup
η∈M

∞∑
k=1

∣∣∣〈ek∣∣∣W †η〉∣∣∣2= sup
η∈M
‖W †η‖2<∞.

Hence {ζn} is a Bessel-like sequence. �

As in the case of Hilbert spaces, Bessel-like sequences have a dual coun-
terpart.

Definition 2.14. Let {ξn} be a sequence in D. We say that {ξn} is a Riesz-
Fischer-like sequence, if for every orthonormal basis {en} of H, there exists
S ∈ C(D,H) such that Sξn = en, for every n ∈ N.

For an arbitrary sequence {ξn} in D, we define, a second analysis opera-
tor V as follows:

(7)

D(V ) =

{
Φ ∈ D× :

∞∑
k=1

| 〈Φ |ξk 〉 |2 <∞

}
V Φ = {〈Φ |ξk 〉}, Φ ∈ D(V )

Proposition 2.15. If {ξn} is a Riesz-Fischer-like sequence, then V : D(V )→
`2 is surjective.

Proof. Let {an}∈`2 and {en} an orthonormal basis ofH. Put f=
∑∞

k=1akek∈
H. Then,

an = 〈f |en 〉 = 〈f |Sξn 〉 =
〈
S†f |ξn

〉
, ∀n ∈ N.

Then Φ = S†f ∈ D(V ) and V Φ = {an}. �

Let {ωn} denote the canonical basis in `2; i.e., ωn = {δkn}, for every
n ∈ N. Then, for every n ∈ N, there exists ζn ∈ D× (in general, nonunique)
such that δkn = 〈ζn |ξk 〉 , n, k ∈ N.

The duality between Riesz-Fischer-like sequences and Bessel-like ones is
then stated by the following

Proposition 2.16. {ξn} is a Riesz-Fischer-like sequence in D if and only
if there exists a Bessel-like sequence {ζn} in D× such that {ξn} and {ζn}
are biorthogonal.

Proof. Suppose that {ξn} has a Bessel-like biorthogonal sequence. Then,
for every orthonormal basis {en} in H, there exists T ∈C(H,D×) such that
Ten=ζn, for every n ∈ N. Then,

δkn = 〈ζn |ξk 〉 = 〈Ten |ξk 〉 =
〈
en

∣∣∣T †ξk〉 , n, k ∈ N.

This easily implies that T †ξk = ek, for every k ∈ N.
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Conversely, suppose that {ξn} is a Riesz-Fischer-like sequence. Then,
for every orthonormal basis {en} in H, there exists S ∈C(D,H) such that
Sξn=en, for every n ∈ N. Hence,

δkn = 〈Sξn |ek 〉 =
〈
ξn

∣∣∣S†ek〉 .
Let us define ζk = S†ek, k ∈ N. Then {ζk} is Bessel-like and {ξn} and {ζn}
are biorthogonal. �

For a sequence {ζn} ⊆ D×, we only get a partial result.

Proposition 2.17. Let {ζn} be a sequence in D×. If {ζn} possesses a
biorthogonal sequence {ξn} which is total and Riesz-Fischer-like, then {ζn}
is a Bessel-like sequence.

Proof. Since {ξn} is Riesz-Fischer-like, for every orthonormal basis {en} in
H, there exists S ∈ C(D,H) such that Sξn = en, for every n ∈ N. Hence,

δkn = 〈Sξn |ek 〉 =
〈
ξn

∣∣∣S†ek〉 .
This implies that

〈
ξn
∣∣S†ek − ζk 〉 = 0, for all k, n ∈ N. Since {ξk} is total,

we conclude that, for every k ∈ N, ζk = S†ek. Clearly, S† ∈ C(H,D×);
hence, the statement follows from Proposition 2.13. �

Let us now assume that {ξn} is a Schauder basis for D[t] and that the
dual basis {ζn} is a Bessel-like sequence. Then, {ξn} is a Riesz-Fischer-like
sequence and by (5), we have, for every Φ ∈ D× and for every bounded
subset M of D[t],

sup
f∈M
|〈Φ |f 〉| ≤

( ∞∑
k=1

|〈Φ |ξk 〉|2
)1

2

sup
f∈M

( ∞∑
k=1

|〈ζk |f 〉 |2
)1

2

≤ γ
1
2
M

( ∞∑
k=1

|〈Φ |ξk 〉|2
)1

2

,

which, by putting Φ = f gives a lower estimate of
(∑∞

k=1 | 〈f |ξk 〉 |2
) 1

2 , sim-
ilar to that one gets in the usual formulation in Hilbert spaces.

3. Riesz-like bases

3.1. Basic properties.

Definition 3.1. A Schauder basis {ξn} for D[t] is called a Riesz-like basis
if there exists an operator T ∈ C(D,H) such that {Tξn} is an orthonormal
basis for H.

It is clear that T is automatically one-to-one. It is easy to see that every
Riesz-like basis is a Riesz-Fisher-like sequence.

Since T maps D[t] intoH[‖·‖] continuously, T † has a continuous extension
(which we denote by the same symbol) from H[‖ · ‖] into D×[t×]. The range
R(T ) of T is dense in H since it contains the orthonormal basis {ek} with
ek := Tξk, k ∈ N. In particular, it may happen that R(T ) = H. Hence,
the operator T−1 is everywhere defined and it is continuous if, and only if
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R(T †) = D×. We will name {ξn} a strict Riesz-like basis, in this case. As
we shall see in Theorem 3.9, this imposes severe constraints on the topology
t of D.

If {ξn} is a Riesz-like basis, we can find explicitly the sequence {ζn} ⊂ D×
of Proposition 2.7. The continuity of T and (4), in fact, imply

Tf =
∞∑
n=1

〈ζn |f 〉Tξn =
∞∑
n=1

〈ζn |f 〉en, ∀f ∈ D.

This, in turn, implies that 〈ζn |f 〉 = 〈Tf |en 〉, for every f ∈ D. Hence
ζn = T †en, for every n ∈ N.

Clearly, for every n, k ∈ N,

〈ζk |ξn 〉 =
〈
T †ek |ξn

〉
= 〈ek |Tξn 〉 = 〈ek |en 〉 = δk,n,

and T †Tξn = ζn, for every n ∈ N.
Moreover, {ζn} is a Bessel-like sequence (Proposition 2.16). Indeed, one

has, for every bounded subset M of D[t],

sup
f∈M

∞∑
n=1

|〈ζn |f 〉|2= sup
f∈M

∞∑
n=1

∣∣∣〈T †en |f 〉∣∣∣2= sup
f∈M

∞∑
n=1

|〈en |Tf 〉|2= sup
f∈M
‖Tf‖2<∞.

An easy computation shows that

T †g =

∞∑
k=1

dkζk if g =

∞∑
n=1

dnen ∈ H.

Finally, we have

T †(H) =

{
Ψ ∈ D× :

∞∑
k=1

| 〈Ψ |ξk 〉 |2 <∞

}
,

that is, T †(H) = D(V ), where V is the operator defined in (7).
Indeed, if Ψ ∈ T †(H), then Ψ = T †h, for some h ∈ H. Let h =

∑∞
k=1 ckek.

Then, using the continuity of T †,

T †h = T †

( ∞∑
k=1

ckek

)
=

∞∑
k=1

ckT
†ek =

∞∑
k=1

ckζk.

This implies that ck = 〈Ψ |ξk 〉 and
∑∞

k=1 | 〈Ψ |ξk 〉 |2 <∞.
Conversely, let

∑∞
k=1 〈Ψ |ξk 〉 ζk ∈ D× with

∑∞
k=1 | 〈Ψ |ξk 〉 |2 < ∞. Define

h =
∑∞

k=1 〈Ψ |ξk 〉 ek ∈ H. Then

T †h =

∞∑
k=1

〈Ψ |ξk 〉T †ek =

∞∑
k=1

〈Ψ |ξk 〉 ζk.

The operator T can also be regarded as an Hilbertian operator (by assump-
tion it maps D into H). This operator is closable in H if, and only if, the
subspace

D(T ∗) = {g ∈ H : T †g ∈ H}
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is dense in H. In this case, the operator T ∗, the adjoint of T , is defined by
T ∗g = T †g, g ∈ D(T ∗).

Remark 3.2. If {ξn} is a Riesz-like basis for D[t] and {cn} ∈ `2 with∑∞
k=1 ckξk = 0, then cn = 0, for every n ∈ N.

Theorem 3.3. Let D[t] be complete and reflexive and D× quasi-complete.
Let {ξn} be a topological basis of D. The following statements are equivalent.

(i) {ξn} is a Riesz-like basis.
(ii) There exists a unique sequence {ζn} ⊂ D× such that

(ii.a) {ξn} and {ζn} are biorthogonal;
(ii.b) for every f ∈ D,

∑∞
n=1 | 〈ζn |f 〉 |2 <∞;

(ii.c) the seminorm pζ defined by

pζ(f) =

( ∞∑
k=1

| 〈ζn |f 〉 |2
) 1

2

is continuous on D[t].
(iii) There exists S ∈ L(D,D×), S ≥ 0, such that {ξn} and {Sξn} are

biorthogonal.

Proof. (i) ⇒ (ii): Let {ξn} be a Riesz-like basis for D. Then there exists
T ∈ C(D,H) such that {Tξn} is an orthonormal basis for H. Put en = Tξn
and ζn = T †en. Then,

〈ζn |ξk 〉 =
〈
T †en |ξk

〉
= 〈en |Tξk 〉 = 〈en |ek 〉 = δn,k, n, k ∈ N.

It is easily seen that, if f =
∑∞

n=1 anξn, then an = 〈ζn |f 〉 and

Tf =

∞∑
n=1

〈ζn |f 〉en .

Hence
∑∞

n=1 | 〈ζn |f 〉 |2 < ∞. Moreover, since T ∈ C(D,H), there exists a
continuous seminorm p on D[t] such that ‖Tf‖ ≤ p(f), for every f ∈ D.
Hence,

pζ(f) :=

( ∞∑
k=1

| 〈ζn |f 〉 |2
) 1

2

= ‖Tf‖ ≤ p(f), ∀f ∈ D.

This implies that pζ , which is a seminorm on D, is continuous.
(ii) ⇒ (iii): First, let us define Sξk = ζk and extend S by linearity to

D0 := span{ξm;m ∈ N}. Thus S : D0 → D×. If f =
∑n

k=1 〈ζk |f 〉ξk ∈ D0

and g =
∑∞

h=1 〈ζh |f 〉ξh ∈ D, we get

|〈Sf |g 〉|=

∣∣∣∣∣
∞∑
k=1

〈ζk |f 〉〈ζk |g 〉

∣∣∣∣∣≤
( ∞∑
n=1

|〈ζn |f 〉|2
)1

2
( ∞∑
n=1

|〈ζn |g 〉|2
)1

2

= pζ(f)pζ(g).
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Hence, if M is a bounded subset of D[t], we obtain

sup
g∈M

| 〈Sf |g 〉 | ≤ pζ(f) sup
g∈M

pζ(g).

This proves that S is continuous from D0[t] into D×[t×]. Thus S has an
extension (denoted by the same symbol) to a continuous linear map from the
quasi-completion of D0[t], which is D, to the quasi-completion of D×, which
coincides with D×. Hence, S ∈ L(D,D×). It is easily seen that 〈Sf |f 〉 ≥ 0,
for every f ∈ D.

(iii) ⇒ (i): Since {ξn} is a topological basis, every f ∈ D can be repre-
sented, in unique way, as f =

∑∞
k=1 akξk. Let now S ∈ L(D,D×) be such

that {ξn} and {Sξn} are biorthogonal. Then the following equality holds

(8) 〈Sf |f 〉 =

∞∑
k=1

|ak|2 if f =

∞∑
k=1

akξk ∈ D.

This implies that S ≥ 0 and {ak} ∈ `2. Then, if {ek} is any orthonormal
basis in H the series

∑∞
k=1 akek converges in H. Let us fix one of these bases

{en}. We define

Tn : f =
∞∑
k=1

akξk ∈ D → Tnf=
n∑
k=1

akek ∈ H

and

T : f =
∞∑
k=1

akξk ∈ D → Tf =
∞∑
k=1

akek ∈ H.

Using (8) it is easily seen that Tn ∈ C(D,H). Clearly, Tnf → Tf in H.
Since D[t] is reflexive, it is barreled and then, by the Banach-Steinhaus the-
orem (see e.g. [20, Theorem 11.1.3]), it follows that T ∈ C(D,H). Moreover
if f =

∑∞
k=1 akξk ∈ D, then ‖Tf‖2 =

∑∞
k=1 |ak|2 whence it follows immedi-

ately that T is injective. By the definition itself, Tξk = ek. Therefore {ξn}
is a Riesz-like basis. �

Example 3.4. Suppose that {en} is an orthonormal basis for H whose ele-
ments belong to D. If {en} is also a basis for D[t], then it is automatically a
Schauder basis and since the identity is continuous from D[t] into H[‖ ·‖], it
is clear that {en} is a Riesz-like basis for D[t]. The dual sequence in D× is
clearly {en} itself. This is a familiar situation. Let us consider, in fact, the
triplet S(R) ⊂ L2(R) ⊂ S×(R), where S(R) is the Schwartz space of rapidly
decreasing C∞-functions on the real line and S×(R) the space of (conjugate)
tempered distributions. Then, it is well known that the set {φn} of Hermite
functions is not only an orthonormal basis for L2(R), but also a basis for
S(R) in its own topology (see [26, Theorem V.13]).

Example 3.5. Let H be a separable Hilbert space and {en} an orthonormal
basis of H. Let N denote the number operator defined on the basis vectors
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by Nek = kek, k ∈ N. Then as it is well-known N is self-adjoint on its
natural domain

D(N) =

{
f ∈ H :

∞∑
k=1

k2| 〈f |ek 〉 |2 <∞

}
.

Let D := D∞(N) =
⋂∞
k=1D(Nk) be endowed with the topology tN defined

by the seminorms pk(·) = ‖Nk · ‖, k = 0, 1, 2, . . .. Then D is a Fréchet
and reflexive space. Define ξk = 1

kek, k ∈ N. Clearly, Nξk = ek, for every
k ∈ N and N maps continuously D[tN ] into H. Moreover, {ξk} is a basis
for D[tN ]. Indeed, for every p ∈ N we have∥∥∥∥∥Np

(
f−

n∑
k=1

k 〈f |ek〉 ξk

)∥∥∥∥∥=

∥∥∥∥∥Npf−
n∑
k=1

k 〈f |ek〉Npξk

∥∥∥∥∥=

∥∥∥∥∥Npf−
n∑
k=1

kp〈f |ek〉 ek

∥∥∥∥∥
and the latter tends obviously to zero as n → ∞. Since {ξk} is a Schauder
basis, it is a Riesz-like basis for D[tN ].

Example 3.6. Let {ξn} be a Schauder basis for D[t]. Assume that there
exists a continuous seminorm p on D[t] such that( ∞∑

k=1

|ck|2
) 1

2

≤ p

( ∞∑
k=1

ckξk

)
,

whenever
∑∞

k=1 ckξk converges in D[t].
Let {ek} be any orthonormal basis in H. Then the operator

T : f =
∞∑
k=1

ckξk → Tf =
∞∑
k=1

ckek

is one-to-one and continuous from D[t] into H[‖ · ‖]. Clearly Tξk = ek, for
every k ∈ N. Hence, {ξn} is a Riesz-like basis for D[t].

Example 3.7. Let {ξn} be a Schauder basis for D[t] and {ζn} the corre-
sponding sequence in D× such that 〈ξn |ζm 〉 = δnm. Define Sξn = ζn, n ∈ N,
and assume that S extends to a positive operator (denoted by the same sym-
bol) of L(D,D×). If S = T †T , with T ∈ C(D,H) and T † ∈ C(H,D×), then,
as it is easily seen, the sequence {en} with en = Tξn is orthonormal and, if
T is surjective, it is an orthonormal basis for H. Thus {ξn} is a Riesz-like
basis for D[t].

Remark 3.8. It is worth considering the case where, so to say, the rigged
Hilbert space collapses into one Hilbert space only, as it happens if the topo-
logy t of D is equivalent to the Hilbert norm. Then {ξn} is Riesz-like if there
exists an invertible bounded operator T mapping {ξn} into an orthonormal
basis of H. However, the inverse T−1 need not be bounded. Nevertheless
the discussion made so far shows that the essential features of (usual) Riesz
bases in Hilbert space are preserved also in this more general set-up.
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In the usual definition of Riesz basis in Hilbert space H one requires that
{ξn} is mapped into an orthonormal basis of H by a bounded operator with
bounded inverse. In Definition 3.1, we only required the continuity of the
operator T ; i.e T ∈ C(D,H). In fact, there is no room for the continuity
of T−1 from H into D[t], unless D[t] (and, then also D×[t×]) is equivalent
(in topological sense) to a Hilbert space. We maintain the basic assumption
that D[t] is complete and reflexive.

Theorem 3.9. Let {ξn} be a sequence of elements of D. The following
statements are equivalent.

(i) {ξn} is a Riesz-like basis and the one-to-one operator T ∈ C(D,H)
for which {Tξn} is an orthonormal basis of H, has a continuous
inverse; i.e., T−1 ∈ C(H,D).

(ii) The space D can be endowed with an inner product 〈· |· 〉+1 such that
the topology induced by the corresponding norm ‖·‖+1 is equivalent to
t, D[‖·‖+1] is a Hilbert space and the sequence {ξn} is an orthonormal
basis for D[‖ · ‖+1].

(iii) The sequence {ξn} is complete in D[t] and there exists a continu-
ous seminorm p such that for every n ∈ N and complex numbers
{c1, . . . , cn}

n∑
i=1

|ci|2 ≤ p

(
n∑
i=1

ciξi

)2

and for every continuous seminorm q there exists Cq > 0 such that

q

(
n∑
i=1

ciξi

)2

≤ Cq
n∑
i=1

|ci|2,

for every n ∈ N and complex numbers {c1, . . . , cn}.

Proof. (i) ⇒ (ii): Let T be the continuous operator with continuous inverse
such that {Tξn} is an orthonormal basis of H and define

〈ξ |η 〉+1 := 〈Tξ |Tη 〉 , ∀ξ, η ∈ D.

Then, 〈· |· 〉+1 is an inner product on D. Let ‖ · ‖+1 be the corresponding
norm. Clearly, ‖ξ‖+1 = ‖Tξ‖, for every ξ ∈ D. Since T is continuous from
D[t] to H, there exists a continuous seminorm p such that

(9) ‖ξ‖+1 = ‖Tξ‖ ≤ p(ξ), ∀ξ ∈ D.

On the other hand, T−1 is continuous from H onto D[t], then for every
seminorm q on D there exists γq > 0 such that

q(T−1ζ) ≤ γq‖ζ‖, ∀ζ ∈ H.

If ξ ∈ D, then ξ = T−1ζ for some ζ ∈ H, hence

(10) q(ξ) ≤ q(T−1ζ) ≤ γq‖Tξ‖ = γq‖ξ‖+1.
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The equivalence of the topology defined by ‖·‖+1 and t implies that D[‖·‖+1]
is a Hilbert space.

Finally, the sequence {ξn} is a basis consisting of orthonormal vectors in
D[‖ · ‖+1]; indeed,

〈ξi |ξj 〉+1 = 〈Tξi |Tξj 〉 = 〈ei |ej 〉 = δij , i, j ∈ N.

(ii) ⇒ (iii): Since ‖ · ‖+1 defines a topology equivalent to t, then there
exists a continuous seminorm p on D[t] such that (9) holds and for every
continuous seminorm q there exists γq > 0 such that (10) holds.

Now, consider any fixed n ∈ N and complex numbers {c1, . . . , cn} and
consider the orthonormal basis {ξn} for D[‖ · ‖+1]. If ξ =

∑n
i=1 ciξi ∈ D,

then ‖ξ‖2+1 =
∑n

i=1 |ci|2and the statement follows by applying (9) and (10)
to ξ. Of course the linear span of {ξn} is dense in D[‖ · ‖+1], since {ξn} is
an orthonormal basis for D[‖ · ‖+1]; hence the sequence {ξn} is complete in
D[‖ · ‖+1] and then, by the equivalence of t and of the topology generated
by ‖ · ‖+1, {ξn} is complete in D[t].

(iii)⇒ (i): Let {en} be any orthonormal basis for H and define two linear
operators T : D → H and S : H → D as follows: for any fixed n ∈ N
T (
∑n

i=1 ciξi) :=
∑n

i=1 ciei and S (
∑n

i=1 ciei) :=
∑n

i=1 ciξi with ci ∈ C; T
and S are continuous; moreover, Tξn = en and Sen = ξn, for every n ∈ N.
Certainly TS = I and, since {ξn} is complete in D[‖·‖+1], ST = I�D. Hence,
T is a continuous invertible linear operator with continuous inverse and {ξn}
is a strict Riesz-like basis for D[t]. �

The condition given in (iii) is clearly the natural substitute for the in-
equalities in (1) in this setting.

Let us call, for short, strict Riesz-like basis a basis for which (i) of Theo-
rem 3.9 holds.

Proposition 3.10. If the rigged Hilbert space D[t] ⊂ H ⊂ D×[t×], with D[t]
complete and reflexive, has a strict Riesz-like basis {ξn} then it is (equivalent
to) a triplet of Hilbert spaces H+1 ⊂ H ⊂ H−1. Moreover, {ξn} is an
orthonormal basis for H+1 and the dual sequence {ζn} is an orthonormal
basis for H−1.

In fact, from the previous discussion, it follows also that H+1 = D with
norm ‖ξ‖+1 = ‖Tξ‖, ξ ∈ D, where T ∈ C(D,H) is an operator such that
{Tξn} is an orthonormal basis for H. This operator T , regarded as an
operator in H is, in general, an unbounded operator with domain D(T ) = D
and bounded inverse.

Strict Riesz-like bases have an interest in their own since Riesz bases
in triplets of Hilbert spaces are useful for some applications [21]. A more
detailed analysis will be given in [12].

Example 3.11. Let A be a closed operator in a separable Hilbert space H,
with domain D(A). Then D(A) can be made into a Banach space, denoted
by BA, if a new norm is defined by ‖ϕ‖A := ‖ϕ‖+ ‖Aϕ‖.
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Let B×A be the conjugate dual of BA w.r.t. ‖ · ‖A. The operator (I+A∗A)
1
2

is continuous from BA into H and its continuous extension to H, denoted by
the same symbol, is continuous from H into B×A and has continuous inverse.
If {en} is an orthonormal basis for H, then the sequence {ξn} defined by

ξn := (I +A∗A)−
1
2 en is a strict Riesz-like basis for BA.

A concrete example can be constructed as follows. Consider the triplet of
Sobolev spaces W 1,2(R) ⊂ L2(R) ⊂W−1,2(R). As it is well-known, W 1,2(R)
is a Banach space under the norm ‖f‖1,2 = ‖f‖2 + ‖Df‖2, D denoting the
weak derivative.

Let {ξn} be the family of functions of W 1,2(R) defined by

ξn(x) =
(−i)n√

2π

∫
R

φn(y)eixy

(1 + y2)
1
2

dy,

where φn(x) = Hn(x)e−
x2

2 denotes the n-th Hermite function. The family
{ξn} is a strict Riesz-like basis of W 1,2(R)[‖ · ‖1,2]. In fact it is not difficult

to show by standard techniques of Fourier transform that (I −D2)
1
2 ξn = φn.

Moreover the operator (I−D2)
1
2 is continuous from W 1,2(R) into L2(R) and

has continuous inverse. The result of (ii) of Theorem 3.9 is not surprising
at all. Indeed, as it is well know, the space W 1,2(R) can be made into a
Hilbert space with inner product

〈ϕ |ψ 〉′1,2 =
〈

(I − D2)
1
2ϕ
∣∣∣(I − D2)

1
2ψ
〉
, ϕ, ψ ∈W 1,2(R)

which endows W 1,2(R) with a topology equivalent to that defined by ‖f‖1,2.

3.2. An application. As mentioned in the Introduction, an important
problem of Pseudo-Hermitian Quantum Mechanics is the following: given a
nonself-adjoint Hamiltonian H, with real spectrum, one tries to find a well-
behaved (bounded and with bounded inverse) intertwining operator T which
transforms H is a self-adjoint operator Hsa. When this happens one can get
of course a large amount of information on H making use of the spectral the-
ory of self-adjoint operators. The situation becomes more involved in cases
(like the cubic oscillator) where a so regular operator does not exist and
one has to deal with unbounded intertwining operators. Even the notion of
similarity must be relaxed, with a certain loss in the preservation of spectra
(see e.g. [4, 6, 7]). In this section, we will show how the approach in rigged
Hilbert space can be helpful in these cases.

Let H be a closed operator in Hilbert space. As already mentioned in
Example 2.1, its domain D(H) can be made into a Hilbert space HH with
the graph norm ‖ ·‖H. Let H×H be its conjugate dual and consider the triplet

of Hilbert spaces HH ⊂ H ⊂ H×H . Assume that Hsa is a self-adjoint operator
inH with discrete spectrum and, for simplicity, that every eigenvalue λk ∈ R
has multiplicity 1. Let ψk be an eigenvector corresponding to λk. Then {ψk}
is an orthonormal basis for H. Assume that there exists T ∈ C(HH,H),
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invertible and with continuous inverse T−1 : H → HH such that

(11)
〈
Hξ
∣∣∣T †η〉 = 〈Tξ |Hsaη 〉 , ∀ξ ∈ HH, η ∈ D(Hsa) s.t. T †η ∈ H.

Let us define ξk = T−1ψk, k ∈ N. Then, the set {ξk} is complete and it is a
Schauder basis of HH[‖ · ‖H](Remark 2.3(d)). Hence it is a strict Riesz-like
basis. From (11), for every η ∈ D(Hsa), we get

〈
Hξn

∣∣T †η 〉 = 〈Tξn |Hsaη 〉 =

〈ψn |Hsaη 〉 = 〈Hsaψn |η 〉 = λn 〈ψn |η 〉 = λn 〈Tξn |η 〉 = λn
〈
ξn
∣∣T †η 〉 . Thus,

if T †D(Hsa) ∩H is dense in H, we get Hξn = λnξn, for every n ∈ N.
Conversely, assume that a sequence {ξn} is a strict Riesz-like basis for HH

and that Hξn = λnξn, λn ∈ R, for every n ∈ N. Since there exists an operator
T ∈ C(HH,H), invertible and with continuous inverse T−1 : H → HH, such
that the vectors ψn = Tξn constitute an orthonormal basis for H, we can
construct a self-adjoint operator Hsa, in standard way; i.e.,

D(Hsa) =

{
ξ ∈ H :

∞∑
k=1

λ2k| 〈ξ |ψk 〉 |2 <∞

}

Hsaξ =
∞∑
k=1

λk 〈ξ |ψk 〉ψk, ξ ∈ D(Hsa).

If ξ ∈ HH, then ξ =
∑∞

k=1 〈ξ |ζk 〉 ξk w.r.t. ‖ · ‖H. This, in particular, implies
that Hξ =

∑∞
k=1 λk 〈ξ |ζk 〉 ξk, in the norm of H. Then, taking into account

that ξk ∈ HH, for every k ∈ N and that T † ∈ C(H,H×H), we have, for every

η ∈ D(Hsa) s.t. T †η ∈ H,〈
Hξ
∣∣∣T †η〉 =

〈
lim
N→∞

N∑
k=1

λk 〈ξ |ζk 〉 ξk

∣∣∣∣∣T †
∞∑
r=1

〈η |ψr 〉ψr

〉

= lim
N→∞

〈
N∑
k=1

λk 〈ξ |ζk 〉 ξk

∣∣∣∣∣T †
∞∑
r=1

〈η |ψr 〉ψr

〉

= lim
N→∞

〈
N∑
k=1

λk 〈ξ |ζk 〉Tξk

∣∣∣∣∣
∞∑
r=1

〈η |ψr 〉ψr

〉

=

〈 ∞∑
k=1

λk 〈ξ |ζk 〉ψk

∣∣∣∣∣
∞∑
r=1

〈η |ψr 〉ψr

〉

=
∞∑
k=1

λk 〈ξ |ζk 〉 〈η |ψk 〉.

On the other hand,

〈Tξ |Hsaη 〉 =

〈 ∞∑
k=1

〈ξ |ζk 〉ψk

∣∣∣∣∣
∞∑
r=1

λr 〈η |ψr 〉ψr

〉
=

∞∑
k=1

λk 〈ξ |ζk 〉 〈η |ψk 〉.

Hence the weak similarity condition (11) is fulfilled. It is clear that in what
we have done a crucial role is played by the continuity of both H and T as
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linear maps from HH into H, even though they are in general unbounded
operators when regarded in H. It is worth pointing out that the assumption
T ∈ C(HH,H) does not imply that T is a closable operator in H. But,
requiring that {η ∈ D(Hsa) s.t. T †η ∈ H} is dense in H, implies that T has
a densely defined hilbertian adjoint T ∗ and so it is automatically closable.

Acknowledgement. The authors thank the referee for pointing out some
inaccuracies in the previous version of this paper. This work has been sup-
ported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le
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