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Abstract
We consider nonlinear systems driven by a general nonhomogeneous differential operator
with various types of boundary conditions and with a reaction in which we have the com-
bined effects of a maximal monotone term A(x) and of a multivalued perturbation F(t, x, y)

which can be convex or nonconvex valued. We consider the cases where D(A) �= R
N and

D(A) = R
N and prove existence and relaxation theorems. Applications to differential vari-

ational inequalities and control systems are discussed.
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1 Introduction

In this paper, we study the following second order multivalued boundary value problem{
a(u′(t))′ ∈ A(u(t)) + F(t, u(t), u′(t)) for a.a. t ∈ T = [0, b],
u ∈ BC.

(1)

In this problem BC stands for one of the following boundary conditions:

• u(0) = u(b) = 0 (Dirichlet problem),
• u′(0) = u′(b) = 0 (Neumann problem),
• u(0) = u(b), u′(0) = u′(b) (periodic problem),
• u′(0) = u(b) = 0 (mixed problem).
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Also in the differential operator (left hand side of (1)), the map a : RN → R
N is con-

tinuous, strictly monotone and in general not homogeneous. Moreover, we do not require
that a(·) satisfies a polynomial growth condition. So, the differential operator in (1) is very
general and incorporates as special cases many well-known differential operators that we en-
counter in the literature. In the right hand side (reaction) of the problem we have two terms.
One is the map A : D(A) ⊆ R

N → 2R
N

which is maximal monotone. We do not require that
D(A) =R

N and so we incorporate in our framework systems with unilateral constraints (dif-
ferential variational inequalities). The perturbation F(t, u,u′) is multivalued. We consider
the cases where F has convex values (convex problem) and nonconvex values (nonconvex
problem). We prove existence theorems for both cases. Then we ask the question of whether
the solutions of the convex problem can be approximated by solutions of the nonconvex one.
Such a result is known in the literature as “relaxation theorem” and it has important conse-
quences in many applied areas. For example, in the context of control systems, it implies
that we can economize in the use of control functions. For the question of relaxation, we
have only a partial answer. Namely we show the result only for Dirichlet problems, under
more restrictive conditions on the map a(·) and with the perturbation F being independent
of u′. When domA = R

N , some of these restrictions on a(·) and F can be removed, but
again we have to restrict ourselves to the Dirichlet problem. In the last section, we present
applications of our existence results. One concerns differential variational inequalities and
the others control and optimal control problems with second order dynamics.

Our approach is topological based on a multivalued version of the Leray-Schauder prin-
ciple (see Papageorgiou-Rădulescu-Repovš [22], Proposition 3.2.22, p. 198), due to Bader
[1]. In the literature such problems are usually approached by using some variant of the
Hartman or Nagumo-Hartman condition, which leads to an a priori uniform bound for
the solutions. We refer to the works of Frigon-Montoki [4], Halidias-Papageorgiou [10],
Kandilakis-Papageorgiou [12], Kyritsi-Matzakos-Papageorgiou [13], Ma-Xue [15], Pruszko
[25], Zhang-Li [26] and the recent work of Gasiński-Papageorgiou [9] for first order sys-
tems. Here instead we employ a condition which involves the principal eigenvalue of the
corresponding eigenvalue problem for the vector p-Laplacian. A similar condition can be
found in the work of Papageorgiou-Vetro-Vetro [21] for multivalued Duffing systems with
no maximal monotone term (that is, A ≡ 0) and with Dirichlet boundary condition. In the
next section we briefly recall the main mathematical tools which we will need in the analysis
of the problem and also state the hypotheses on the data of (1).

2 Mathematical Background - Hypotheses

We will use tools from multivalued analysis (see Hu-Papageorgiou [11]) and from the theory
of nonlinear operators of monotone type (see Gasiński-Papageorgiou [7]).

Let X be a Banach space. We will use the following notation:

Pf (c)(X) = {B ⊆ X : B is nonempty, closed (and convex)},
P(w)k(c)(X) = {B ⊆ X : B is nonempty, (weakly-) compact (and convex)}.

Let (�,�) be a measurable space and assume that X is a separable Banach space. Given
a multifunction F : � → 2X \ {∅}, we say that F(·) is “graph measurable”, if

GrF = {(ω, x) ∈ � × X : x ∈ F(ω)} ∈ � ⊗ B(X),
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with B(X) being the Borel σ -field of X. If � = �̂ = the universal σ -field (this is true
if there is a σ -finite measure μ on �, with � being μ-complete), then a graph measur-
able multifunction F : � → 2X \ {∅} admits a measurable selection, that is, there exists a
(�,B(X))-measurable function f : � → X such that f (ω) ∈ F(ω) for all ω ∈ �. This is the
celebrated Yankov-von Neumann-Aumann selection theorem (see Hu-Papageorgiou [11], p.
158). In fact we can find a whole sequence {fn}n∈N of such measurable selections such that

F(ω) ⊆ {fn(ω)}n∈N for all ω ∈ � (see Hu-Papageorgiou [11], p. 159).

A multifunction F : � → Pf (X) is said to be “measurable”, if for all u ∈ X, the function
ω → d(u,F (ω)) = inf[‖u− x‖X : x ∈ F(ω)] is �-measurable. A measurable multifunction
F : � → Pf (X) is graph measurable and the converse is true for Pf (X)-valued multifunc-
tions, if there is a σ -finite, complete measure μ defined on �.

Let (�,�,μ) be a σ -finite measure space and X a separable Banach space. For any
1 ≤ p ≤ ∞ and for any multifunction F : � → 2X \ {∅}, we define the set

S
p

F = {f ∈ Lp(�,X) : f (ω) ∈ F(ω) μ-a.e.}.
If F(·) is graph measurable and ω → inf{‖x‖X : x ∈ F(ω)} belongs in Lp(�), then S

p

F �=
∅. This set is decomposable in the sense that for all triples (B,f1, f2) ∈ � × S

p

F × S
p

F , we
have

χBf1 + χBcf2 ∈ S
p

F (Bc = � \ B).

Here by χB we denote the characteristic function for the set B ∈ �, that is,

χB(ω) =
{

1 if ω ∈ B,

0 if ω /∈ B.

Since χBc = 1 − χB , the above definition of decomposability formally looks like that of
convexity. Only now the coefficients are not constants in [0,1], but functions with values
in [0,1]. Nevertheless decomposable sets exhibit properties similar to those of convex sets
(see Fryszkowski [6] and Hu-Papageorgiou [11]).

Suppose that Y , V are Hausdorff topological spaces and G : Y → 2V \ {∅} a multifunc-
tion. We introduce the following notions:

(a) We say that G(·) is “upper semicontinuous” (“usc” for short), if for all U ⊆ V open, the
set G+(U) = {y ∈ Y : G(y) ⊆ U} is open.

(b) We say that G(·) is “lower semicontinuous” (“lsc” for short), if for all U ⊆ V open, the
set G−(U) = {y ∈ Y : G(y) ∩ U �= ∅} is open.

(c) We say that G(·) is “closed”, if GrG = {(y, v) ∈ Y × V : v ∈ G(y)} ⊆ Y × V is closed.

When F is single valued, then both notions in (a) and (b) coincide with that of continuity.
Upper semicontinuity implies closedness, while the converse is true if G(·) is locally com-
pact, that is, for every y ∈ Y , there is a neighborhood W of y such that ∪

y′∈W
G(y ′) ∈ Pk(V ).

If V is a metric space with metric dV , then G(·) is lsc if and only if for every v ∈ V the
function y → dV (v,G(y)) is upper semicontinuous as an R+-valued function.

For a metric space V with metric dV , on Pf (V ) we can define a generalized metric,
known as the “Hausdorff metric” by

h(B,C) = sup[|dV (v,B) − dV (v,C)| : v ∈ V ] for all B,C ∈ Pf (V ).
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We know that if V is complete, then so is (Pf (V ),h). A multifunction G : Y → Pf (V )

is said to be “h-continuous”, if it is continuous from Y into (Pf (V ),h). We say that G(·)
is “continuous”, if it is both usc and lsc. The two notions are in general distinct and they
coincide if G(·) is Pk(V )-valued.

For a Banach space X and C ⊆ X nonempty, we define

|C| = sup [‖u‖X : u ∈ C] .

Let Y , V be two Banach spaces and ξ : Y → V . We say that ξ(·) is “completely contin-
uous”, if yn

w−→ y in Y implies ξ(yn) → ξ(y) in V (so it is sequentially continuous from Y

with the weak topology into V with the strong topology). A multifunction G : Y → 2V \ {∅}
is “compact”, if it is usc and maps bounded sets in Y into relatively compact sets in V .

We will use two results from multivalued analysis. The first is the multivalued analog of
the Leray-Schauder Alternative Principle due to Bader [1]. So, assume that Y , V are Banach
spaces, N : Y → Pwkc(V ) is usc from Y into Vw = the Banach space V endowed with the
weak topology and ξ : V → Y is completely continuous. Let L = ξ ◦N . The result of Bader
[1] (Theorem 8) asserts the following:

Theorem 1 If Y , V , L are as above and L(·) is compact, then one of the following statements
holds:

(a) S = {y ∈ Y : y ∈ μL(y), 0 < μ < 1} is unbounded; or
(b) L(·) admits a fixed point (that is, there exists y0 ∈ Y such that y0 ∈ L(y0)).

The next theorem is an extension of the celebrated Michael Selection Theorem (see [11],
p. 92) to multifunctions with decomposable values. The result is a powerful illustration that
decomposability is a good substitute for convexity and it is due to Bressan-Colombo [2] and
Fryszkowski [5].

Theorem 2 If (�,�,μ) is a finite measure space, X is a separable Banach space, Y is a
separable metric space and N : Y → Pf (L1(�,X)) is a lsc multifunction with decompos-
able values, then there exists a continuous map e : Y → L1(�,X) such that

e(y) ∈ N(y) for all y ∈ Y .

Now let E be a reflexive Banach space and E∗ its topological dual. By 〈·, ·〉 we denote
the duality brackets for the pair (E,E∗). A map A : E → 2E∗

is said to be “monotone”, if

〈u∗ − v∗, u − v〉 ≥ 0 for all (u,u∗), (v, v∗) ∈ GrA.

Recall that GrA = {(u,u∗) ∈ E × E∗ : u∗ ∈ A(u)}. We say that A(·) is “strictly mono-
tone”, if

〈u∗ − v∗, u − v〉 > 0 for all (u,u∗), (v, v∗) ∈ GrA, u �= v.

We say that A(·) is “maximal monotone”, if GrA is not properly included in the graph
of another monotone map, that is,

〈u∗ − v∗, u − v〉 ≥ 0 for all (u,u∗) ∈ GrA =⇒ (v, v∗) ∈ GrA.
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If A(·) is maximal monotone, then GrA is closed in E × E∗
w and in Ew × E∗. Here by

Ew (resp. by E∗
w), we denote the space E (resp. E∗) equipped with the weak topology. Also

we set D(A) = {u ∈ E : A(u) �= ∅} (the domain of A).
Suppose that E = H = a Hilbert space and identify H with its dual (that is, H = H ∗, by

the Riesz-Frechet Theorem). Let A : H → 2H be a maximal monotone map. We introduce
the following single-valued maps:

Jλ = (id + λA)−1 (the resolvent of A),

Aλ = 1

λ
[id − Jλ] (the Yosida approximation of A)

(λ > 0).

Proposition 1 If A : H → 2H is maximal monotone and λ > 0, then

(a) Jλ : H → H is nonexpansive, that is,

‖Jλ(u) − Jλ(v)‖H ≤ ‖u − v‖H for all u,v ∈ H ;
(b) Aλ(u) ∈ A(Jλ(u)) for all u ∈ H ;
(c) Aλ(·) is monotone and 1

λ
-Lipschitz continuous, that is,

‖Aλ(u) − Aλ(v)‖H ≤ 1

λ
‖u − v‖H for all u,v ∈ H ;

(d) ‖Aλ(u)‖H ≤ ‖A0(u)‖ = min[‖u∗‖H : u∗ ∈ A(u)] and Aλ(u) → A0(u) in H as λ → 0+
for all u ∈ D(A);

(e) D(A) is convex and Jλ(u) → proj(u,D(A)) as λ → 0+ for all u ∈ H .

Remark 1 We know that in a Hilbert space every closed, convex set has the best approxima-
tion property. So, in part (e) of the above proposition, the metric projection proj(u,D(A))

is well-defined.

We will also use an extension of the notion of maximal monotone operator. So, as before
E is a reflexive Banach space with E∗ its topological dual. A multivalued map L : E →
Pwkc(E

∗) is said to be “pseudomonotone” if it maps bounded sets to bounded sets and has
the following property

“for every sequences {un}n∈N ⊆ E, {u∗
n}n∈N ⊆ E∗, such that

un

w−→ u in E, u∗
n

w−→ u∗ in E∗, lim sup
n→+∞

〈u∗
n, un − u〉 ≤ 0

we have
(u,u∗) ∈ GrL and 〈u∗

n, un〉 → 〈u∗, u〉.”
If L(·) is maximal monotone and D(L) = E, then L(·) is pseudomonotone (for details

we refer to Gasiński-Papageorgiou [7], Sect. 3.2).
Finally we mention that by ‖ · ‖ we denote the norm of the Sobolev space W 1,p(�).

Recall that

‖u‖ = [‖u‖p
p + ‖u′‖p

p

]1/p
for all u ∈ W 1,p(�).

Now, we are ready to introduce the hypotheses on the data of problem (1). First for the
map a(·) in the differential operator.
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H0: a :RN →R
N has the form a(y) = a0(|y|)y for all y ∈R

N , with a0(t) > 0 for all t > 0
and

(i) a(·) is continuous, strictly monotone;
(ii) there exists c0 > 0 such that

c0|y|p ≤ (a(y), y)RN for all y ∈R
N , 2 ≤ p.

Remark 2 Hypothesis H0(i) implies that a(·) is maximal monotone. It is worth pointing out
that no global growth condition is imposed on a(·). So, the map is very general. Hypothe-
ses H0 imply that a : RN → R

N is a homeomorphism and we have |a−1(y)| → +∞ as
|y| → +∞. The restriction 2 ≤ p is needed since we will not assume that D(A) = R

N .
When D(A) = R

N , then we can have 1 < p. Such kind of maps a(·), were first used by
Manásevich-Mawhin [16].

Example 1 The following maps satisfy hypotheses H0:

(a) a(y) = |y|p−2y, 2 ≤ p < +∞.
This map corresponds to the vector p-Laplacian.

(b) a(y) = |y|p−2y + |y|q−2y, 1 < q < p < +∞, 2 ≤ p < +∞.
This map corresponds to the (p, q)-Laplacian.

(c) a(y) = [1 + |y|2] p−2
2 y, 2 ≤ p < +∞.

(d) a(y) = |y|p−2y[1 + e|y|p ], 2 ≤ p < +∞.

H1: A :RN → 2R
N

is a maximal monotone map.

Remark 3 We stress that we do not assume that D(A) = R
N . This way our setting covers

problems with unilateral constraints. Also this fact leads to the restriction 2 ≤ p.

In what follows by λ̂1 we denote the principal eigenvalue of the eigenvalue problem

− (|u′|p−2u′)′ = λ̂|u|p−2u, u ∈ BC.

These eigenvalue problems are discussed in Manásevich-Mawhin [17] and we have

λ̂1 > 0 for the Dirichlet and mixed problems,

λ̂1 = 0 for the Neumann and periodic problems.

For the convex problem our hypotheses on the multivalued perturbation F(t, x, y) are
the following:

H2: F : T ×R
N ×R

N → Pkc(R
N) is a multifunction such that

(i) for every x, y ∈R
N , t → F(t, x, y) is graph measurable;

(ii) for a.a. t ∈ T , (x, y) → F(t, x, y) is closed;
(iii) if σ(t, x, y) = inf

[
(v, x)RN : v ∈ F(t, x, y)

]
, then

lim inf|x|→+∞
σ(t, x, y)

|x|p ≥ ϑ(t) uniformly for a.a. t ∈ T , all y ∈R
N ,

with ϑ ∈ L∞(T ), ϑ(t) ≥ −c0̂λ1 for a.a. t ∈ T , ϑ �≡ −c0̂λ1;
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(iv) |F(t, x, y)| ≤ η1(t, |x|) + η2(t, |x|)|y|p−1 for a.a. t ∈ T , all x, y ∈R
N and

sup[η1(t, r) : 0 ≤ r ≤ M] ≤ γ1,M(t) for a.a. t ∈ T , with γ1,M ∈ L2(T ),

sup[η2(t, r) : 0 ≤ r ≤ M] ≤ γ2,M(t) for a.a. t ∈ T , with γ2,M ∈ L∞(T ).

For the nonconvex problem, the hypotheses on the multivalued perturbation are the fol-
lowing:

H3: F : T ×R
N ×R

N → Pf (RN) is a multifunction such that

(i) GrF ∈ LT ⊗ B(RN) ⊗ B(RN) with LT being the Lebesgue σ -algebra of T and
B(RN) is the Borel σ -algebra of RN ;

(ii) for a.a. t ∈ T , (x, y) → F(t, x, y) is lsc;
(iii) same as hypothesis H1(iii);
(iv) same as hypothesis H1(iv).

Remark 4 Now the measurability hypothesis (see H2(i)) is stronger. This is always the case
for nonconvex problems.

3 Convex Problem

In this section we consider the case when F is convex-valued.
Setting F̂ (t, x, y) = F(t, x, y) − |x|p−2x, for every λ > 0, we consider the following

auxiliary boundary value problem{
a(u′(t))′ − |u(t)|p−2u(t) ∈ Aλ(u(t)) + F̂ (t, u(t), u′(t)) a.e. on T ,

u ∈ BC.
(2λ)

We will solve (2λ). In order to simplify the notation, we write Lr = Lr(T ,RN), W 1,r =
W 1,r ((0, b),RN) for all 1 ≤ r ≤ +∞ and C1 = C1(T ,RN). We consider the map â : D(̂a) ⊆
Lp → Lp′

( 1
p

+ 1
p′ = 1) defined by

â(u)(·) = −a(u′(·))′

for all u ∈ D(̂a) = {y ∈ C1 : a(y ′(·)) ∈ W 1,p′
, y ∈ BC}. From Kyritsi-Matzakos-Papageor-

giou [13] (Proposition 3), we have the following result concerning this map (the same proof
is valid for all four boundary conditions).

Proposition 2 If hypotheses H0 hold, then the map â : D(̂a) ⊆ Lp → Lp′
is maximal mono-

tone.

Let Âλ : Lp → Lp′
be defined by

Âλ(u)(·) = Aλ(u(·)) for all u ∈ Lp .

Since Aλ(·) is Lipschitz continuous, Aλ(0) = 0 and 2 ≤ p, we see that Âλ is well-defined
and we have:

Proposition 3 If hypotheses H1 hold and λ > 0, then the map Âλ : Lp → Lp′
is monotone,

continuous (hence maximal monotone).
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Remark 5 It is at this point that we use the restriction 2 ≤ p. If D(A) = R
N , then we do not

need to consider the approximate boundary value problem (2λ) and so we do not need the
restriction 2 ≤ p.

Given h ∈ Lp′, we consider the following boundary value problem{
a(u′(t))′ − |u(t)|p−2u(t) ∈ Aλ(u(t)) + h(t) a.e. on T ,

u ∈ BC.
(3λ)

Proposition 4 If hypotheses H0,H1 hold and λ > 0, then problem (3λ) admits a unique
solution ûλ ∈ C1.

Proof Let ϕp : Lp → Lp′
be the map defined by

ϕp(u)(·) = |u(·)|p−2u(·) for all u ∈ Lp.

Consider the map Vλ : D(Vλ) ⊆ Lp → Lp′
defined by

Vλ(u) = â(u) + ϕp(u) + Âλ(u) for all u ∈ D(̂a).

Evidently D(Vλ) = D(̂a) and from Theorem 3.2.41, p. 328, of Gasiński-Papageorgiou
[7], we have that Vλ(·) is maximal monotone. Let (·, ·)pp′ denote the duality brackets for the
pair (Lp,Lp′

). We have

(Vλ(u),u)pp′

=
∫ b

0
(−a(u′)′, u)RN dt + ‖u‖p

p +
∫ b

0
(Aλ(u),u)RN dt

≥
∫ b

0
(a(u′), u′)RN dt + ‖u‖p

p

(performing integration by parts and since Aλ(0) = 0)

≥ c0‖u′‖p
p + ‖u‖p

p (see hypothesis H0(ii)),

⇒ Vλ(·) is coercive.

Then Corollary 3.2.31, p. 319, of Gasiński-Papageorgiou [7] implies that

Vλ(·) is surjective.

So, we can find ûλ ∈ D(̂a) ⊆ C1 such that

Vλ(̂uλ) = h.

In fact, on account of the strict monotonicity of ϕp(·) this solution is unique. �

In what follows X stands for one of the following spaces for vector-valued functions:

X = C1
0 for the Dirichlet problem

C1
0 = {u ∈ C1(T ,RN) : u(0) = u(b) = 0},
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X = C1 for the Neumann problem,

X = C1
per for the periodic problem

C1
per = {u ∈ C1(T ,RN) : u(0) = u(b), u′(0) = u′(b)},

X = C1
∗ for the mixed problem

C1
∗ = {u ∈ C1(T ,RN) : u′(0) = u(b) = 0}.

Consider the map ξλ : Lp′ → D(Vλ) = D(̂a) ⊆ X defined by

ξλ(h) = ûλ

with ûλ being the unique solution of (3λ) guaranteed by Proposition 4.

Proposition 5 If hypotheses H0,H1 hold and λ > 0, then the solution map ξλ : Lp′ → X is
completely continuous.

Proof Consider a sequence hn

w−→ h in Lp′
and let ûn = ξλ(hn), n ∈ N, and û = ξλ(h). We

have

â(̂un) + ϕp(̂un) + Âλ(̂un) = hn in Lp′
for all n ∈ N,

⇒ c0‖û′
n‖p

p + ‖ûn‖p
p ≤ c1‖ûn‖ for some c1 > 0, all n ∈ N

(acting with ûn and performing integration by parts),

⇒ {̂un}n∈N ⊆ W 1,p is bounded.

Exploiting the fact that W 1,p ↪→ C(T ,RN) compactly, we infer that

{̂un}n∈N ⊆ C(T ,RN) is relatively compact. (4)

We have

− a(̂u′
n(t))

′ + ϕp(̂un)(t) + Aλ(̂un(t)) = hn(t) for a.a. t ∈ T , û ∈ BC, (5)

for all n ∈N,

⇒ {a(̂u′
n(t))

′}n∈N ⊆ Lp′
is bounded (see (4)). (6)

From (5) we have

a(̂u′
n(t)) = a(̂u′

n(0)) +
∫ t

0

[
ϕp(̂un)(s) + Aλ(̂un(s)) − hn(s)

]
ds

for all t ∈ T , all n ∈N.

We let k(̂un) ∈ Lp′
be defined by

k(̂un)(t) = hn(t) − Aλ(̂un(t)) − ϕp(̂un)(t), n ∈N. (7)

Then we have

û′
n(t) = a−1

[
a(̂u′

n(0)) − H(k(̂un))(t)
]

(8)
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with H(k(̂un))(t) = ∫ t

0 k(̂un)(s)ds.
If the boundary condition BC is Dirichlet or periodic, then

∫ b

0
û′

n(t)dt = 0.

So, we have

∫ b

0
a−1

[
a(̂u′

n(0)) − H(k(̂un))(t)
]
dt = 0.

Then by Proposition 2.2 of Manásevich-Mawhin [16], we have

a(̂u′
n(0)) = σ̂ (H(k(̂un))) for all n ∈ N, (9)

with σ̂ : C(T ,RN) → R
N a continuous map which sends bounded sets in C(T ,RN) to

bounded sets in R
N . From (4) and (7) we see that

‖H(k(̂un))‖C(T ,RN ) ≤ c2 for some c2 > 0, all n ∈N,

⇒ {a(̂u′
n(0)}n∈N ⊆ R

N is bounded (see (9)).

Recall that a−1, seen as a map from C(T ,RN) into C(T ,RN), maps bounded sets to
bounded sets. Therefore from (8) we see that

|̂u′
n(t)| ≤ c3 for some c3 > 0, all t ∈ T , all n ∈ N,

⇒ |a(̂u′
n(t))| ≤ c4 for some c4 > 0, all t ∈ T , all n ∈ N (see hypothesis H0(i)). (10)

Therefore from (6) and (10) it follows

{a(̂u′
n(·))}n∈N ⊆ W 1,p′

is bounded. (11)

Now suppose that the boundary condition BC is Neumann or mixed. Then

a(̂u′
n(0)) = 0 for all n ∈N,

⇒ û′
n(t) = a−1(−H(k(̂u′

n))(t)) for all t ∈ T , all n ∈N (see (8)),

⇒ |̂u′
n(t)| ≤ c5 for some c5 > 0, all t ∈ T , all n ∈N,

⇒ |a(̂u′
n(t))| ≤ c6 for some c6 > 0, all t ∈ T , all n ∈N.

Then again we infer that (11) holds.
Using (11) and recalling that W 1,p ↪→ C(T ,RN) compactly, we infer that

{a(̂u′
n(·))}n∈N ⊆ C(T ,RN) is relatively compact,

⇒ {̂u′
n}n∈N ⊆ C(T ,RN) is relatively compact. (12)

Then (4) and (12) imply that

{̂un}n∈N ⊆ C1 is relatively compact.



Existence and Relaxation Results for Second Order Multivalued Systems Page 11 of 36     5 

So, by passing to a subsequence if necessary, we may assume that

ûn → ũ in C1.

Note that {
ϕp(̂un) → ϕp(̃u), Âλ(̂un) → Âλ(̃u), hn

w−→ h in Lp′
,

(−ûn, hn − ϕp(̂un) − Âλ(̂un)) ∈ Gr â for all n ∈N.
(13)

Recall that â(·) is maximal monotone (see Proposition 2). Therefore

Gr â ⊆ Lp × Lp′
w is closed,

with Lp′
w being the Lebesgue space Lp′

(T ,RN) equipped with the weak topology (see
Gasiński-Papageorgiou [7], Proposition 3.2.15, p. 308). Then on account of (13), we have

(−ũ, h − ϕp(̃u) − Âλ(̃u)) ∈ Gr â,

⇒ ũ = ξλ(h) = û.

So, for the original sequence we have

ûn → û in C1,

⇒ ξλ(·) is completely continuous. �

Next we introduce the multivalued map N̂ : X → 2Lp′
defined by

N̂(u) = NF (u) − ϕp(u) for all u ∈ X,

with NF (·) being the multivalued Nemyckii map

NF (u) = S
p′
F(·,u(·),u′(·)).

Proposition 6 If hypotheses H2 hold, then the multifunction N̂(·) has values in Pwkc(L
p′

)

and it is usc from X with the norm topology into Lp′
with the weak topology (denoted by

Lp′
w ).

Proof Note that hypotheses H2(i), (ii), do not imply graph measurability of F (see Hu-
Papageorgiou [11], p. 226). So, it is not immediately clear that N̂(·) has nonempty values.
To show this, we argue as follows. Let u ∈ X. Then we can find two sequences {sn}n∈N,
{rn}n∈N of simple functions such that{

sn(t) → u(t), |sn(t)| ≤ |u(t)| for a.a. t ∈ T , all n ∈ N,

rn(t) → u′(t), |rn(t)| ≤ |u′(t)| for a.a. t ∈ T , all n ∈N.
(14)

We consider the multifunction Gn : T → Pkc(R
N) defined by

Gn(t) = F(t, sn(t), rn(t)) for all t ∈ T , all n ∈N.
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Hypothesis H2(i) implies that

GrGn ∈ LT ⊗ B(RN) ⊗ B(RN) for all n ∈N

(recall that LT is the Lebesgue σ -algebra of T and B(RN) the Borel σ -algebra of RN ).
Invoking the Yankov-von Neumann-Aumann selection theorem (see Hu-Papageorgiou

[11], Theorem 2.14, p. 158), we can find gn : T → R
N , n ∈ N, a Lebesgue measurable map

such that

gn(t) ∈ Gn(t) = F(t, sn(t), rn(t)) for a.a. t ∈ T , all n ∈ N. (15)

Since u ∈ X, from hypothesis H2(iv), we have that

{gn}n∈N ⊆ L2 is bounded.

So, we may assume that

gn

w−→ g in L2 as n → +∞. (16)

On account of Proposition 3.9, p. 694, of Hu-Papageorgiou [11], we have

g(t) ∈ conv lim sup
n→+∞

F(t, sn(t), rn(t)) (see (15), (16))

⊆ F(t, u(t), u′(t)) (see (14) and hypothesis H2(ii)).

Therefore we have that

g ∈ NF (u),

⇒ N̂(u) �= 0 for all u ∈ X.

Moreover, from hypothesis H2(iv) and the definition of N̂(·), it is clear that N̂(·) is
Pwkc(L

p′
)-valued. Hypothesis H2(iv) shows that N̂(·) is locally compact into Lp′

w (see
Sect. 2) and so in order to prove the desired upper semicontinuity of N̂(·), it suffices to
show that N̂(·) is closed (that is, Gr N̂ ⊆ X × Lp′

w is closed). To this end, let {un}n∈N ⊆ X

and {f̂n}n∈N ⊆ Lp be two sequences which satisfy

un → u in X, f̂n

w−→ f in Lp′
, (un, f̂n) ∈ Gr N̂ for all n ∈N. (17)

We have f̂n = fn − ϕp(un) with fn ∈ NF (un) for all n ∈N. We have

ϕp(un) → ϕp(u) in Lp′
,

⇒ fn

w−→ f = f̂ + ϕp(u) in Lp′
(see (17)).

Then as before, using Proposition 3.9, p. 694, of Hu-Papageorgiou [11], we have

f (t) ∈ conv lim sup
n→+∞

F(t, un(t), u
′
n(t)) ⊆ F(t, u(t), u′(t))

(see (17) and hypothesis H2(ii)),

⇒ f ∈ NF (u),
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⇒ f̂ = f − ϕp(u) ∈ N̂(u),

⇒ N̂(·) is closed and so usc as claimed by the Proposition. �

Consider the map Lλ : X → 2X \ {∅} defined by

Lλ(u) = [ξλ ◦ N̂](u) for all u ∈ X.

Evidently a fixed point of Lλ(·) is a solution of problem (2λ). To produce such a fixed
point, we will use Theorem 1.

Proposition 7 If hypotheses H0, H1, H2 hold and λ > 0, then problem (2λ) admits a solution
ũλ ∈ X.

Proof We consider the set

K = {u ∈ X : u ∈ μ(ξλ ◦ N̂)(u), 0 < μ < 1}.
For u ∈ K , we have

1

μ
u = ξλ(f̂ ) with f̂ ∈ N̂(u). (18)

Then f̂ = f − ϕp(u) with f ∈ NF (u). It follows that

â

(
1

μ
u′

)
+ ϕp

(
1

μ
u

)
+ Âλ

(
1

μ
u

)
= −f̂ .

Acting with u ∈ X, performing integration by parts and using hypothesis H0(ii) and the
fact that (Aλ(x), x)RN ≥ 0 for all x ∈R

N , we obtain

c0

μ
‖u′‖p

p +
[

1

μp
− 1

]
‖u‖p

p ≤
∫ b

0
(−f,u)RN dt (see (18)). (19)

On account of hypotheses H2(iii), (iv), given ε > 0, we can find kε ∈ L2 ⊆ Lp′
(recall

p ≥ 2) such that

(−f (t), u(t))RN ≤ [−ϑ(t) + ε]|u(t)|p + kε(t) for a.a. t ∈ T . (20)

We return to (19) and use (20). Then

c0‖u′‖p
p +

∫ b

0
ϑ(t)|u|pdt − ε‖u‖p ≤ c7 for some c7 > 0 (recall 0 < μ < 1),

⇒ [c8 − ε]‖u‖p ≤ c7 for some c8 > 0 (see Mugnai-Papageorgiou [18], Lemma 4.11).

Choosing ε ∈ (0, c8), we conclude that

K ⊆ W 1,p is bounded.

Then as in the proof of Proposition 5, we obtain that

K ⊆ X is bounded (in fact relatively compact).
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So, we can apply Theorem 1 and find ũλ ∈ W 1,p such that

ũλ ∈ Lλ(̃uλ),

⇒ ũλ ∈ X is a solution of problem (2λ). �

Finally we will let λ → 0+ to produce a solution for problem (1). To perform this passage
to the limit as λ → 0+, we will need the next lemma, which can be found in a more general
form in Gasiński-Papageorgiou [9], Lemma 2.3. Consider the “lifting” of A(·) on (Lp,Lp′

),

that is, the operator Â : Lp → 2Lp′
defined by

Â(u) = {u∗ ∈ Lp′ : u∗(t) ∈ A(u(t)) for a.a. t ∈ T },
with D(Â)={u ∈ Lp : Sp′

A(u(·)) �= ∅}.

Lemma 1 The “lifting” operator Â : Lp → 2Lp′
is maximal monotone.

Now we are ready for the existence result for the convex problem.

Theorem 3 If hypotheses H0, H1, H2 hold, then problem (1) admits a solution ũ ∈ X.

Proof Let λn → 0+ and let ũn = ũλn ∈ X be a solution of problem (2λn), n ∈ N (see Propo-
sition 7). We have

â(̃un) + Âλn (̃un) + fn = 0 with fn ∈ NF (̃un) for all n ∈ N. (21)

Acting with ũn ∈ X, performing integration by parts and using hypothesis H0(ii) and the
fact that (Aλn(x), x)RN ≥ 0 for all x ∈R

N , all n ∈N (see hypotheses H1), we obtain

c0‖ũ′
n‖p

p ≤
∫ b

0
(−fn, ũn)RN dt,

⇒ c0‖ũ′
n‖p

p +
∫ b

0
ϑ(t)|̃un|pdt − ε‖ũn‖p ≤ c9 for some c9 > 0 (see (20)),

⇒ {̃un}n∈N ⊆ W 1,p is bounded (choosing ε > 0 small, see the proof of Proposition 7).

So, we may assume that

ũn

w−→ ũ in W 1,p and ũn → ũ in C(T ,RN) (22)

(recall that W 1,p ↪→ C(T ,RN) compactly).

On account of Proposition 1, t → Aλn (̃un(t)) is Lipschitz continuous on T and so by
Rademacher’s theorem (see Gasiński-Papageorgiou [7], p. 56), it is differentiable almost
everywhere. On (21) we act with Aλn (̃un) and have∫ b

0
(−a(̃u′

n)
′,Aλn (̃un))RN dt + ‖Âλn (̃un)‖2

2 ≤
∫ b

0
|fn||Aλn(un)|dt for all n ∈N. (23)

Performing integration by parts and using the fact that Aλn(0) = 0, we obtain∫ b

0
(−a(̃u′

n)
′,Aλn (̃un))RN dt =

∫ b

0
(a(̃u′

n),
d

dt
Aλn (̃un))RN dt. (24)
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By the chain rule (see Leoni [14], Corollary 3.52, p. 97), we have

d

dt
Aλn (̃un(t)) = A′

λn
(̃un(t))̃u

′
n(t) for a.a. t ∈ T .

Therefore we obtain∫ b

0
(a(̃u′

n),
d

dt
Aλn (̃un))RN dt =

∫ b

0
a0(|̃u′

n|)(̃u′
n,A

′
λn

(̃un)̃u
′
n)RN dt. (25)

The monotonicity of Aλn(·) (see Proposition 1) implies that

(x,A′
λn

(un)x)RN ≥ 0 for all x ∈R
N , all n ∈N,

⇒
∫ b

0
(−a(̃u′

n)
′,Aλn (̃un))RN dt ≥ 0 (see (24), (25)). (26)

Using (26) in (23), we have

‖Âλn (̃u)‖2
2 ≤ ‖fn‖2‖Âλn (̃un)‖2 for all n ∈N. (27)

But from (22) and hypothesis H2(iv), we see that

{fn}n∈N ⊆ L2 is bounded,

⇒ {Âλn (̃un)}n∈N ⊆ L2 is bounded (see (27)).

So, we may assume that

Âλn (̃un)
w−→ η in L2 as n → +∞ (28)

and fn

w−→ f in L2 as n → +∞. (29)

Then as before (see the proof of Proposition 6), using (29) and hypothesis H2(ii), we
show that f ∈ NF (̃u).

From (21) we have

(̃un,−Âλn (̃un) − fn) ∈ Gr â for all n ∈N. (30)

From Proposition 2 we know that â(·) is maximal monotone. Hence from (22), (28), (29)
and (30), it follows that

(̃u,−η − f ) ∈ Gr â,

⇒ â(̃u) + η − f = 0 with f ∈ NF (̃u).

To finish the proof, we need to show that η ∈ Â(̃u).
Let Ĵλn (u)(·) = Jλn(u(·)) for all u ∈ Lp (see Sect. 2). We have

Ĵλn (̃un) + λnÂλn (̃un) = ũn for all n ∈N,

⇒ Ĵλn (̃un) → ũ in L2, (31)

(note that {Âλn (̃un)}n∈N ⊆ L2 is bounded and λn → 0+).
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We know that

(Ĵλn (̃un), Âλn (̃un)) ∈ Gr Â for all n ∈N (see Proposition 1).

Since Â(·) is maximal monotone (see Lemma 1), from (28) and (31) we infer that

(̃u, η) ∈ Gr Â,

⇒ η ∈ Â(̃u),

which is what we wanted. So, we conclude that ũ ∈ X is a solution of problem (1). �

4 Nonconvex Problem

In this section, we prove an existence theorem for the “nonconvex problem”, that is, the
multivalued perturbation F(t, x, y) has nonconvex values (hypotheses H3).

Theorem 4 If hypotheses H0, H1, H3 hold, then problem (1) admits a solution ũ ∈ X.

Proof We consider the multifunction NF : X → 2Lp′
(recall that 2 ≤ p) defined by

NF (u) = S
p′
F(·,u(·),u′(·)) for all u ∈ X.

Hypotheses H3(i), (iv) imply that NF (·) has values in Pf (Lp′
).

Claim: NF (·) is lsc.
From Sect. 2 (see also Proposition 2.26, p. 45, of Hu-Papageorgiou [11]), we know that

in order to prove the Claim, it suffices to show that for every g ∈ Lp′
, the function

u → d(g,NF (u)) = inf
[‖g − f ‖p′ : f ∈ NF (u)

]
is upper semicontinuous (as an R+-valued function). We have

d(g,NF (u))p′ = inf

[∫ b

0
|g − f |p′

dt : f ∈ NF (u)

]

=
∫ b

0
d(g(t),F (t, u(t), u′(t)))p′

dt (32)

(see Theorem 3.24, p. 183, of Hu-Papageorgiou [11]).

Let d̂g(u) = d(g,NF (u))p′
. We need to show that for all μ ≥ 0, the set

Uμ = {u ∈ X : d̂g(u) ≥ μ} is closed.

So, let {un}n∈N ⊆ Uμ and assume that un → u in X. We have

d̂g(un) ≥ μ for all n ∈N.

We have

un → u and u′
n → u′ in C(T ,RN). (33)
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Then from (32) and passing to the limit as n → +∞, on account of (33) and Fatou’s
lemma, we have

μ ≤ lim sup
n→+∞

d̂g(un) ≤
∫ b

0
lim sup
n→+∞

d(g(t),F (t, un(t), u
′
n(t)))

p′
dt

≤
∫ b

0
d(g(t),F (t, u(t), u′(t)))p′

dt

(see (33) and hypothesis H3(ii))

= d̂g(u),

⇒ u ∈ Uμ and so Uμ is closed.

This proves the Claim.
Since NF (·) has decomposable values in Pf (Lp′

) and it is lsc (see the Claim), we can
use Theorem 2 and produce a continuous map e : X → Lp′

such that

e(u) ∈ NF (u) for all u ∈ X.

Then we consider the following boundary value problem{
a(u′(t))′ ∈ A(u(t)) + e(u)(t) for a.a. t ∈ T ,

u ∈ BC.
(34)

Reasoning as in the “convex” case (see Sect. 3). We show that problem (34) admits a
solution ũ ∈ X. Evidently ũ ∈ X is also a solution of (1). �

5 Relaxation

We introduce the following two sets:

Sc = solution set of the “convex” problem,

S = solution set of the “nonconvex” problem.

Our aim in this section, is to determine conditions which guarantee that S
‖·‖ = Sc . Such

a result is known in the literature as “relaxation theorem” and has important consequences
in many applied areas such as control theory and game theory.

Our solution to this fundamental problem is partial. We prove a relaxation theorem only
for the Dirichlet problem, under stronger conditions on the map a(·). When we try to extend
the result to other boundary conditions, we encounter serious technical difficulties and it
is an interesting open problem whether it is possible to have a relaxation theorem for the
Neumann, periodic and mixed problems. Also, we will consider multivalued perturbations
F which are independent of the derivative u′. So, now the problem under consideration is
the following {

a(u′(t))′ ∈ A(u(t)) + F(t, u(t)) for a.a. t ∈ T ,

u(0) = u(b) = 0.
(35)

The condition on the data of problem (35) are the following:
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H4: a :RN →R
N has the form a(y) = a0(|y|)y for all y ∈R

N , with a0(t) > 0 for all t > 0
and

(i) a(·) is continuous and there exists ĉ > 0 such that

ĉ|y − y ′|2 ≤ (a(y) − a(y ′), y − y ′)RN for a.a. t ∈ T , all y, y ′ ∈ R
N ;

(ii) there exists c0 > 0 such that

c0|y|p ≤ (a(y), y)RN for all y ∈R
N , 2 ≤ p.

Example 2 The following maps satisfy hypotheses H4:

(a) a(y) = |y|p−2y + y, 2 < p < +∞.

(b) a(y) = y + [1 + |y|2] p−2
2 , 2 < p < +∞.

(c) a(y) = y + |y|p−2y
(

ln(1 + |y|p) + |y|p
1+|y|p

)
, 2 < p < +∞.

The hypotheses on the multivalued perturbation F(t, x) are the following:

H5: F : T ×R
N → Pk(R

N) is a multifunction such that

(i) for every x ∈R
N , t → F(t, x) is graph measurable;

(ii) h(F (t, x),F (t, v)) ≤ k(t)|x − v| for a.a. t ∈ T , all x, v ∈ R
N , with k ∈ L1(T )

such that b‖k‖1 < ĉ;
(iii) if σ0(t, x) = inf

[
(v, x)RN : v ∈ F(t, x)

]
, then

lim inf
|x|→+∞

σ0(t, x)

|x|p ≥ ϑ(t) uniformly for a.a. t ∈ T ,

with ϑ ∈ L∞(T ), ϑ(t) ≥ −c0̂λ1 for a.a. t ∈ T , ϑ �≡ −c0̂λ1;
(iv) for every M > 0, there exists γM ∈ L2(T ) such that

|F(t, x)| ≤ γM(t) for a.a. t ∈ T , all |x| ≤ M.

The “convex problem” is obtained by replacing F with convF . We start by mentioning
that the set Sc ⊆ C1 is closed. This follows easily from the proof of the “convex” existence
theorem. This observation is valid for the more general setting of Sect. 3.

In what follows the solution sets Sc and S refer to problem (35).

Theorem 5 If hypotheses H4, H1, H5 hold, then Sc = S
W1,2

.

Proof Let u ∈ Sc . Then we have{
a(u′(t))′ ∈ A(u(t)) + f (t) for a.a. t ∈ T ,

u(0) = u(b) = 0,

with f ∈ S
p′
convF(·,u(·)).

Invoking Proposition 3.30, p. 185, of Hu-Papageorgiou [11], we can find gn ∈ S
p′
F(·,u(·))

such that

gn

w−→ f in Lp′
. (36)
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Let εn → 0+, y ∈ W 1,p and consider the multifunction

Gn(t) = {
v ∈ R

N : |gn(t) − v| < εn + d(gn(t),F (t, y(t))), v ∈ F(t, y(t))
}
.

Hypotheses H5(i), (ii) imply that F(·, ·) is graph measurable (see Hu-Papageorgiou [11],
Proposition 7.9, p. 229). So, it follows that

GrGn ∈ LT ⊗ B(RN).

Then applying the Yankov-von Neumann-Aumann selection theorem, we can find a mea-
surable selection of the multifunction Gn(·). Evidently this selection belongs in Lp′

(see
hypothesis H5(iv)).

Consider the multifunction Kn : W 1,p → 2Lp′
defined by

Kn(y) =
{
h ∈ S

p′
F(·,y(·)) : |gn(t) − h(t)| < εn + d(gn(t),F (t, y(t))), for a.a. t ∈ T

}
.

Since Lp′
is reflexive, we see that

Kn(y) ∈ Pwkc(L
p′

) for all y ∈ W 1,p.

Lemma 3.9, p. 239, of Hu-Papageorgiou [11], implies that Kn(·) is lsc. Also, it has de-
composable values. Therefore

y → Kn(y)
‖·‖p′

is lsc with decomposable values.

So, we can apply Theorem 2 and find a continuous map βn : W 1,p → Lp′
such that

βn(y) ∈ Kn(y)
‖·‖p′

for all y ∈ W 1,p.

We consider the following auxiliary Dirichlet problem

{
a(v′(t))′ ∈ A(v(t)) + βn(v)(t) for a.a. t ∈ T ,

v(0) = v(b) = 0.
(37)

We know that problem (37) admits a solution vn ∈ C1(T ,RN) (see the proof of Theorem
4).

Claim: {vn}n∈N ⊆ W 1,p is bounded.
In (37) we take inner product of both sides with −vn(t), integrate over T = [0, b], per-

form integration by parts and use the fact that (A(x), x)RN ≥ 0 for all x ∈R
N . Then

c0‖v′
n‖p

p ≤
∫ b

0
(a(v′

n), v
′
n)RN dt ≤

∫ b

0
(βn(vn),−vn)RN dt (38)

for all n ∈N (see hypothesis H4(ii)).
Hypotheses H5(iii), (iv) imply that given ε > 0, we can find γε ∈ L1(T ) such that

(βn(vn)(t),−vn(t))RN ≤ [−ϑ(t) + ε]|vn(t)|p + γε(t) for a.a. t ∈ T , all n ∈N. (39)
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Using (39) in (38), we obtain

c0‖v′
n‖p

p +
∫ b

0
ϑ(t)|vn|pdt − ε‖vn‖p ≤ ‖γε‖1,

⇒ [c10 − ε]‖vn‖p ≤ ‖γε‖1 for some c10 > 0, all n ∈ N.

Choosing ε ∈ (0, c10), we conclude that

{vn}n∈N ⊆ W 1,p is bounded.

This proves the Claim.
On account of the Claim we may assume that

vn

w−→ v in W 1,p and vn → v in C(T ,RN). (40)

Since A(·) is monotone, we have∫ b

0
(a(u′)′ − a(v′

n)
′, vn − u)RN dt

≤
∫ b

0
(h − βn(vn), vn − u)RN dt

=
∫ b

0
(h − gn, vn − u)RN dt +

∫ b

0
(gn − βn(vn), vn − u)RN dt. (41)

Performing integration by parts and using hypothesis H4(i) we have

ĉ‖v′
n − u′‖2

2 ≤
∫ b

0
(a(v′

n) − a(u′), v′
n − u′)RN dt =

∫ b

0
(a(u′)′ − a(v′

n)
′, vn − u)RN dt. (42)

Also we have ∫ b

0
(h − gn, vn − u)RN dt → 0 (see (36), (40)). (43)

Moreover, using hypothesis H5(ii), we obtain∫ b

0
(gn − βn(vn), vn − u)RN dt

≤
∫ b

0
[εn + h(F (t, u),F (t, vn))]|vn − u|dt

≤ εnb +
∫ b

0
k(t)|vn − u|2dt for all n ∈N. (44)

Note that

vn(t) − u(t) =
∫ t

0
(vn − u)′ds,

⇒ |vn(t) − u(t)| ≤
∫ t

0
|v′

n − u′|ds,
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⇒ |vn(t) − u(t)|2 ≤ b

∫ b

0
|v′

n − u′|2ds (using Jensen’s inequality).

Using this last inequality in (44), we have

∫ b

0
(gn − βn(vn), vn − u)RN dt ≤ εnb + b‖k‖1‖v′

n − u′‖2
2 for all n ∈ N. (45)

Using (42), (43), (45) in (41), we have

ĉ ‖v′
n − u′‖2

2 ≤ ε′
n + b‖k‖1‖v′

n − u′‖2
2 with ε′

n → 0+,

⇒ c11‖v′
n − u′‖2

2 ≤ ε′
n for all n ∈ N, some c11 > 0 (recall that b‖k‖1 < ĉ),

⇒ v′
n → u′ in L2,

⇒ vn → u in W 1,2 (see (40) and recall p ≥ 2).

Since vn ∈ S for all n ∈ N (see (37)), we conclude that

Sc = S
W1,2

. �

6 DomA =R
N

When domA = R
N and we restrict ourselves to the Dirichlet, Neumann and periodic prob-

lems, we can relax some of the hypotheses on the data of (1). More precisely, the new
hypotheses are the following:

H6: a :RN →R
N is a map such that a(0) = 0 and

(i) a(·) is continuous and strictly monotone;
(ii) |a(y)| ≤ c12[1 + |y|p−1] for all y ∈R

N , some c12 > 0;
(iii) c0|y|p ≤ (a(y), y)RN for all y ∈R

N , some c0 > 0 and 1 < p < +∞.

Remark 6 We do not require that a(y) = a0(|y|)y and we remove the restriction p ≥ 2. So,
our formulation includes the singular vectorial p-Laplacian |y|p−2y, 1 < p < 2. Another
example which is covered by H6 but not by H0, is the map

a(y) = |y|p−2y + proj(y,C),

with C ∈ Pf c(R
N), 0 ∈ C, proj(y,C) being the metric projection and 1 < p < +∞.

H7: A :RN → 2R
N

is a maximal monotone map with D(A) = R
N , 0 ∈ A(0).

Remark 7 Even with this more restrictive condition on A(·), we continue to include in our
framework many important classes of systems, such as gradient systems with a potential
which is in general nonsmooth. In this case A = ∂ϕ with ∂ϕ being the convex subdifferential
of a continuous convex function ϕ(·).

For the “convex” and “nonconvex” problems, we can improve the growth hypotheses.
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H8: F : T × R
N × R

N → Pkc(R
N) is a multifunction such that hypotheses H8(i), (ii), (iii)

are the same as the corresponding hypotheses H2(i), (ii), (iii) and

(iv) for every r > 0, there exist γr ∈ Lp′
(T ) and cr > 0 such that

|F(t, x, y)| ≤ γr(t) + cr |y|p−1

for a.a. t ∈ T , all |x| ≤ r , all y ∈R
N .

H9: F : T × R
N × R

N → Pk(R
N) is a multifunction such that hypotheses H9(i), (ii), (iii)

are the same as the corresponding hypotheses H3(i), (ii), (iii) and

(iv) for every r > 0, there exist γr ∈ Lp′
(T ) and cr > 0 such that

|F(t, x, y)| ≤ γr(t) + cr |y|p−1

for a.a. t ∈ T , all |x| ≤ r , all y ∈R
N .

Now let V = W
1,p

0 for the Dirichlet problem, V = W 1,p for the Neumann problem and
V = W

1,p
per = {u ∈ W 1,p : u(0) = u(b)} for the periodic problem. Then let ξ̂ : V → V ∗ be

defined by

〈̂ξ(u),h〉 =
∫ b

0
|u′|p−2(u′, h′)RN dt for all u,h ∈ V .

This map is continuous, monotone, thus maximal monotone too.

As before Â : Lp → 2Lp′
is the “lifting” of A(·) on the pair (Lp,Lp′

) with D(Â) = {u ∈
Lp : S

p′
A(u(·)) �= ∅}. We know from Lemma 1 that Â is maximal monotone. Moreover, in the

present setting with D(A) = R
N , we have C(T ,RN) ⊆ D(Â). To see this note that the map

A(·) has values in Pkc(R
N) and it is usc (see Gasiński-Papageorgiou [7], Proposition 3.2.14,

p. 308). So, A(·) maps compact sets to compact sets (see Hu-Papageorgiou [11], Corollary
2.20, p. 42). Let u ∈ C(T ,RN). Then

|A(u(t))| ≤ c13 for some c13 > 0, all t ∈ T . (46)

We can easily check that the multifunction t → A(u(t)) has closed graph. Using the
Yankov-von Neumann-Aumann selection theorem, we can find a measurable map g : T →
R

N such that

g(t) ∈ A(u(t)) for a.a. t ∈ T ,

⇒ g ∈ L∞ ⊆ Lp′
(see (46)),

⇒ S
p′
A(u(·)) �= ∅ and so u ∈ D(Â).

Therefore C(T ,RN) ⊆ D(Â).
As before NF : V → 2V ∗

is defined by

NF (u) = S
p′
F(·,u(·),u′(·)).

From Sects. 3 and 4, we know that

NF (u) ∈ Pwkc(L
p′

) (convex case, hypotheses H8),
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NF (u) ∈ Pf (Lp′
) (nonconvex case, hypotheses H9).

We introduce the multivalued map L : V → 2V ∗ \ {∅} defined by

L(u) = ξ̂ (u) + Â(u) + NF (u) for all u ∈ V ⊆ D(Â).

First we deal with the convex problem.

Proposition 8 If hypotheses H6, H7, H8 hold, then L(·) is pseudomonotone.

Proof Evidently L(·) is bounded (that is, maps bounded sets to bounded sets). Consider
sequences {un}n∈N ⊆ V and {u∗

n}n∈N ⊆ V ∗ such that

{
un

w−→ u in V , u∗
n

w−→ u∗ in V ∗, (un,u
∗
n) ∈ GrL for all n ∈N,

lim supn→+∞〈u∗
n, un − u〉 ≤ 0.

(47)

For every n ∈ N, we have

u∗
n = ξ̂ (un) + gn + fn with gn ∈ Â(un), fn ∈ NF (un). (48)

Recall that V ↪→ C(T ,RN) compactly. So, from (47) it follows that we can find c14 > 0
such that

sup
n∈N

‖un‖C(T ,RN ) ≤ c14,

⇒ |A(un(t))| ≤ c15 for some c15 > 0, all n ∈N, all t ∈ T (see hypotheses H7),

⇒ {gn}n∈N ⊆ L∞ ⊆ Lp′
is bounded (see (47), (48) and hypothesis H8(iv)).

So, we have

〈gn,un − u〉 = (gn, un − u)pp′ → 0 and 〈fn,un − u〉 = (fn,un − u)pp′ → 0. (49)

From (47), (48), (49) it follows that

lim sup
n→+∞

〈̂ξ(un), un − u〉 ≤ 0,

⇒ lim
n→+∞〈̂ξ(un) − ξ̂ (u), un − u〉 = 0 (since ξ̂ (·) is monotone). (50)

For every n ∈ N, we define

ηn(t) = (a(u′
n(t)) − a(u′(t)), u′

n(t) − u′(t))RN .

Evidently ηn ∈ L1(T ) (Hölder’s inequality), η̂n ≥ 0 (on account of the monotonicity of
ξ̂ (·)) and from (50) we have

∫ b

0
ηn(t)dt → 0,

⇒ ηn → 0 in L1(T ).
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So, we may assume that

ηn(t) → 0 for a.a. t ∈ T , 0 ≤ ηn(t) ≤ k̂0(t) for a.a. t ∈ T , all n ∈N, (51)

with k̂0 ∈ L1(T ). We have

k̂0(t) ≥ ηn(t) ≥ c0[|u′
n(t)|p + |u′(t)|p]

− c12[1 + |u′
n(t)|p−1]|u′(t)| − c12[1 + |u′(t)|p−1]|u′

n(t)|
(see hypotheses H6(i), (ii)).

It follows that for a.a. t ∈ T , {u′
n(t)}n∈N ⊆ R

N is bounded. Hence by passing to a subse-
quence (depending a priori on t ∈ T ), we can say that

u′
n(t) → v(t) in R

N as n → +∞.

From (51) in the limit as n → +∞, we obtain

(a(v(t)) − a(u′(t)), v(t) − u′(t))RN = 0,

⇒ u′(t) = v(t) (since a(·) is strictly monotone).

So, for the initial sequence we have

u′
n(t) → v(t) in R

N for a.a. t ∈ T . (52)

From (47) we have

u′
n

w−→ u′ in Lp . (53)

Then from (52) and (53) it follows that

u′
n → u′ in Lp ,

(by Vitali’s Theorem or see Gasiński-Papageorgiou [8], Problem 1.23, p. 38). Hence

un → v in V (see (47)). (54)

We know that the sequences {gn}n∈N, {fn}n∈N ⊆ Lp′
are bounded. So, for at least a sub-

sequence we have

gn

w−→ g and fn

w−→ f in Lp′
as n → +∞. (55)

We have

(un, gn) ∈ Gr Â for all n ∈N. (56)

Recall that Â is maximal monotone (see Lemma 1). Therefore from (54), (55), (56), we
infer that

(u, g) ∈ Gr Â. (57)
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In addition, we have

fn(t) ∈ F(t, un(t), u
′
n(t)) for a.a. t ∈ T , all n ∈N. (58)

From (54) we see that we may assume (by passing to a subsequence if necessary), that

un(t) → u(t) and u′
n(t) → u′(t) in R

N for a.a. t ∈ T . (59)

Then (56), (58), (59) and hypothesis H8(ii) imply that

f (t) ∈ conv lim sup
n→+∞

F(t, un(t), u
′
n(t)) ⊆ F(t, u(t), u′(t)) for a.a. t ∈ T .

(see Hu-Papageorgiou [11], Proposition 3.9, p. 694),

⇒ f ∈ NF (u). (60)

If in (48) we pass to the limit as n → +∞ and use (47), (54), (55) and the continuity of
ξ̂ (·), we obtain

u∗ = ξ̂ (u) + g + f with g ∈ Â(u), f ∈ NF (u) (see (57), (60)),

⇒ u∗ ∈ L(u).

Also, we have

〈u∗
n, un〉 → 〈u∗, u〉 (see (47), (54)).

This proves that L(·) is pseudomonotone. �

Proposition 9 If hypotheses H6, H7, H8 hold, then L(·) is coercive, that is,

inf[〈u∗, u〉 : u∗ ∈ L(u)]
‖u‖ → +∞ as ‖u‖ → +∞.

Proof On account of hypotheses H8(iii), (iv), given ε > 0, we can find γε ∈ Lp′
(T ) and

cε > 0 such that

σ(t, x, y) ≥ [η(t) − ε]|x|p − γε(t) − cε|y|p−1 for a.a. t ∈ T , all x, y ∈R
N .

Let u∗ ∈ L(u). We have

u∗ = ξ̂ (u) + g + f with g ∈ Â(u), f ∈ NF (u),

⇒ 〈u∗, u〉 =
∫ b

0
(a(u′), u′)RN dt +

∫ b

0
(g(t), u(t))RN dt +

∫ b

0
(f (t), u(t))RN dt

≥ c0‖u′‖p
p +

∫ b

0
η(t)|u|pdt − ε‖u‖p − c16 − cε‖u‖p−1

with c16 = ‖γε‖1 (recall (A(x), x)RN ≥ 0)

≥ [c17 − ε]‖u‖p − cε‖u‖p−1 − c16 for some c17 > 0.
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Choosing ε ∈ (0, c17), we infer that

〈u∗, u〉 ≥ c18‖u‖p − cε‖u‖p−1 − c16 for some c18 > 0,

⇒ L(·) is coercive. �

Now we are ready for the existence theorem for the convex problem.

Theorem 6 If hypotheses H6, H7, H8 hold, then problem (1) admits a solution ũ ∈ C1.

Proof Propositions 8 and 9 imply that L(·) is surjective. So, we can find ũ ∈ V such that

0 ∈ L(̃u),

⇒ ξ̂ (̃u) + g + f = 0 for some g ∈ Â(̃u), f ∈ NF (̃u),

⇒ a(̃u′(t))′ = g(t) + f (t) for a.a. t ∈ T (see Papageorgiou-Papalini [19]). (61)

From (61) it follows that

a(̃u′(·)) ∈ W 1,p′
,

⇒ ũ′ ∈ C(T ,RN),

⇒ ũ ∈ C1 and solves (1). �

Using hypotheses H9 we can have an existence theorem for the nonconvex problem.

Theorem 7 If hypotheses H6, H7, H9 hold, then problem (1) admits a solution ũ ∈ C1.

Proof We consider the multifunction NF : V → 2Lp′
defined by

NF (u) = S
p′
F(·,u(·),u′(·)) for all u ∈ V .

From the proof of Theorem 4, we know that NF (·) has decomposable values in Pf (Lp′
)

and it is lsc. So, invoking Theorem 2, we can find a continuous map e : V → Lp′
such that

e(u) ∈ NF (u) for all u ∈ X.

Then we consider the following boundary value problem{
a(u′(t))′ ∈ A(u(t)) + e(u)(t) for a.a. t ∈ T ,

u ∈ BC.
(62)

Reasoning as in the proof of Theorem 6, we show that problem (62) admits a solution
ũ ∈ C1. �

We can have relaxation theorems. First we will consider problem (35), but now our hy-
potheses on a(·) are less restrictive and so we can incorporate in our analysis more differen-
tial operators.

So, we introduce the following hypotheses on a(·) and F(·, ·):
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H10: a :RN → R
N is a map such that a(0) = 0 and

(i) a(·) is continuous and strictly monotone;
(ii) for every r > 0, there exists ĉr > 0 such that

ĉr |y − y ′|2 ≤ (a(y) − a(y ′), y − y ′)RN for all |y|, |y ′| ≤ r ;

(iii) |a(y)| ≤ c19[1 + |y|p−1] for all y ∈R
N , some c19 > 0;

(iv) c0|y|p ≤ (a(y), y)RN for all y ∈R
N , some c0 > 0 and 1 < p < +∞.

Remark 8 Note that hypothesis H10(ii) is weaker than the corresponding hypothesis H4(ii),
since now the strong monotonicity condition is local. This fits in the present framework
more differential operators (see the examples below).

Example 3 The following maps satisfy hypotheses H10:

(a) a(y) = |y|p−2y, 1 < p ≤ 2.
(b) a(y) = |y|p−2y + |y|q−2y, 1 < q < p < +∞, q ≤ 2.

(c) a(y) = [1 + |y|2] p−2
2 y, 1 < p < +∞.

H11: F : T ×R
N → Pk(R

N) is a multifunction such that

(i) for every x ∈ R
N , t → F(t, x) is graph measurable;

(ii) for every r > 0, there exists kr ∈ L1(T ) such that

h(F (t, x),F (t, v)) ≤ kr(t)|x − v| for a.a. t ∈ T , all |x|, |v| ≤ r ,

and b‖kr‖1 < ĉr ;
(iii) if σ0(t, x) = inf

[
(v, x)RN : v ∈ F(t, x)

]
, then

lim inf|x|→+∞
σ0(t, x)

|x|p ≥ ϑ(t) uniformly for a.a. t ∈ T ,

with ϑ ∈ L∞(T ), ϑ(t) ≥ −c0̂λ1 for a.a. t ∈ T , ϑ �≡ −c0̂λ1;
(iv) for every M > 0, there exists γM ∈ Lp′

(T ) such that

|F(t, x)| ≤ γM(t) for a.a. t ∈ T , all |x| ≤ M.

Theorem 8 If hypotheses H10, H7, H11 hold, then for problem (35), Sc = S
C1

.

Proof Evidently Sc is closed in C1. Also, keeping the notation introduced in the proof of
Theorem 5, we have that

{vn}n∈N ⊆ W 1,p is bounded, (63)

vn → u in W 1,2 as n → +∞ (64)

(recall u ∈ Sc , see the proof of Theorem 5). We have{
a(v′

n(t))
′ ∈ A(vn(t)) + βn(vn)(t) for a.a. t ∈ T ,

vn(0) = vn(b) = 0.
(65)
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From (63) and since W 1,p ↪→ C(T ,RN) compactly, we have

|A(vn(t))| ≤ c20 for some c20 > 0, all t ∈ T , all n ∈N (see hypotheses H7). (66)

Also from (63) and hypothesis H11(iv), we have that

{βn(vn)}n∈N ⊆ Lp′
is bounded. (67)

Then, from (65), (66) and (67) it follows that

{a(v′
n)

′}n∈N ⊆ Lp′
is bounded. (68)

From (68) and reasoning as in the proof of Proposition 5, we obtain that

{vn}n∈N ⊆ C1 is relatively compact.

On account of (64), we have

vn → u in C1 with vn ∈ S (see (65)),

⇒ Sc = S
C1

. �

If we strengthen the conditions on A(·), we can have relaxation for the case where F is
also dependent on u′ and the boundary condition is always Dirichlet.

So, the new conditions on the data are:

H12: A : RN →R
N is locally Lipschitz and strictly monotone.

H13: F : T ×R
N ×R

N → Pk(R
N) is a multifunction such that

(i) for all x, y ∈R
N , t → F(t, x, y) is graph measurable;

(ii) for every r > 0, there exists kr ∈ L1(T ) such that

h(F (t, x, y),F (t, x ′, y ′)) ≤ kr(t)[|x − x ′| + |y − y ′|]

for a.a. t ∈ T , all |x|, |x ′|, |y|, |y ′| ≤ r ;
(iii) if σ(t, x, y) = inf [(v, x) : v ∈ F(t, x, y)], then

lim inf
|x|→+∞

σ(t, x, y)

|x|p ≥ ϑ(t) uniformly for a.a. t ∈ T , all y ∈R
N ,

with ϑ ∈ L∞(T ), ϑ(t) ≥ −c0̂λ1 for a.a. t ∈ T , ϑ �≡ −c0̂λ1;
(iv) for every r > 0, there exist γr ∈ Lp′

(T ) and cr > 0 such that

|F(t, x, y)| ≤ γr(t) + cr |y|p−1 for a.a. t ∈ T , all |x| ≤ r and all y ∈R
N .

Now Sc (resp. S) is the solution set of the convex (resp. nonconvex) problem (1) with
Dirichlet boundary condition.

Theorem 9 If hypotheses H10, H12, H13 hold, then Sc = S
C1

.
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Proof Let u ∈ Sc . We have{
a(u′(t)) = A(u(t)) + f (t) for a.a. t ∈ T ,

u(0) = u(b) = 0,

with f ∈ S
p′
convF(·,u(·),u′(·)).

Invoking Proposition 3.30, p. 185, of Hu-Papageorgiou [11], we can find {fn}n∈N ⊆
S

p

F(·,u(·),u′(·)) such that

fn

w−→ f in Lp′
. (69)

Let εn → 0+ and y ∈ W 1,p . We introduce the multifunction L̂n : T → 2R
N

defined by

L̂n(t) = {v ∈ R
n : |fn(t) − v| < εn + d(fn(t),F (t, y(t), y ′(t))), v ∈ F(t, y(t), y ′(t))}

for all n ∈N, all t ∈ T .
By modifying L̂n(·) on a Lebesgue-null set if necessary, we can say that

L̂n(t) �= ∅ for all t ∈ T , all n ∈ N.

Hypotheses H13(i), (ii) imply that t → F(t, y(t), y ′(t)) is graph measurable and so

Gr L̂ ∈ LT ⊗ B(RN) ⊗ B(RN).

Then the Yankov-von Neumann-Aumann selection theorem implies that we can find hn ∈
Lp′

such that

hn(t) ∈ Ln(t) for a.a. t ∈ T , all n ∈N.

Hence, if we consider the multifunction �n : V → 2Lp′
, n ∈ N, defined by

�n(y) = {h ∈ S
p′
F(·,y(·),y′(·)) : |fn(t) − h(t)| < εn + d(fn(t),F (t, y(t), y ′(t))) for a.a. t ∈ T },

then from the previous argument we infer that �n(y) �= ∅, for all y ∈ V , all n ∈N. Moreover,
on account of Lemma 8.3, p. 239, of Hu-Papageorgiou [11], we have that

y → �n(y)
‖·‖p′

is lsc for all n ∈N.

In addition this multifunction has decomposable values. So, we can apply Theorem 2 and
obtain a continuous map γ̂n : V → Lp′

, n ∈N, such that

γ̂n(y) ∈ �n(y)
‖·‖p′

for all y ∈ V , all n ∈N.

Then we consider the following boundary value problem{
a(v′(t))′ = A(v(t)) + γ̂n(v)(t) for a.a. t ∈ T ,

v(0) = v(b) = 0, n ∈N.

This problem has a solution vn ∈ C1, n ∈ N.
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We have

−
∫ b

0
(a(v′

n)
′, vn)RN dt ≤

∫ b

0
(γ̂n(vn),−vn)RN dt

(recall that (A(x), x)RN ≥ 0 for all x ∈ R
N ),

⇒ c0‖v′
n‖p

p ≤
∫ b

0
(γ̂n(vn),−vn)RN dt (70)

(performing integration by parts and using H10(iv)).

From hypotheses H13(iii), (iv) given ε > 0, we can find kε ∈ Lp′
(T ) such that

σ(t, x, y) ≥ (ϑ(t) − ε)|x|p − kε(t) for a.a. t ∈ T , all x, y ∈R
N .

Using this in (70), we obtain

c0‖v′
n‖p

p +
∫ b

0
ϑ(t)|vn|pdt − ε‖vn‖p ≤ c21 for some c21 > 0, all n ∈N,

⇒ {vn}n∈N ⊆ W 1,p is bounded (as before choosing ε > 0 and using H13(iii)). (71)

Then from (71) as in the proof of Proposition 5 we infer that

{vn}n∈N ⊆ C1 is relatively compact.

So, we may assume that

vn → v in C1. (72)

We have

a(u′(t))′ − a(v′
n(t))

′

=A(u(t)) − A(vn(t)) + f (t) − γ̂n(vn)(t)

≤ c22|u(t) − vn(t)| + f (t) − γ̂n(vn)(t)

for a.a. t ∈ T , all n ∈N and some c22 > 0,

⇒ |a(u′(t)) − a(v′
n(t)) ≤ c22

∫ t

0
|u(s) − vn(s)|ds +

∣∣∣∣
∫ t

0
(f (s) − γ̂n(vn)(s))ds

∣∣∣∣ (73)

for all n ∈ N (using the BC).

Note that∣∣∣∣
∫ t

0
(f (s) − γ̂n(vn)(s))ds

∣∣∣∣
≤

∣∣∣∣
∫ t

0
(f (s) − fn(s))ds

∣∣∣∣ +
∣∣∣∣
∫ t

0
(fn(s) − γ̂n(vn)(s))ds

∣∣∣∣
≤

∣∣∣∣
∫ t

0
(f (s) − fn(s))ds

∣∣∣∣ +
∫ t

0
|fn(s) − γ̂n(vn)(s)|ds
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≤
∣∣∣∣
∫ t

0
(f (s) − fn(s))ds

∣∣∣∣ + εnb +
∫ t

0
h(F (s,u(s), u′(s)),F (s, vn(s), v

′
n(s)))ds. (74)

We have

ε′
n(t) =

∣∣∣∣
∫ t

0
(f (s) − fn(s))ds

∣∣∣∣ + εnb → 0 for all t ∈ T , as n → +∞ (see (69)). (75)

We return to (73) and use (74), (75) and hypotheses H10(ii) and H13(ii). We obtain

c23|u′(t) − v′
n(t)| ≤ ε′

n(t) +
∫ t

0

∫ s

0
|u′(τ ) − v′

n(τ )|dτds

+
∫ t

0
k0(s)

[∫ s

0
|u(τ) − vn(τ )|dτ + |u′(s) − v′

n(s)|
]

ds

for some c23 > 0, k0 ∈ L1(T ) and all n ∈N.

Passing to the limit as n → +∞ and using (72) and (75), we obtain

c23|u′(t) − v′(t)| ≤
∫ t

0
k(s)|u′(s) − v′(s)|ds +

∫ t

0
(bk(s) + 1)

∫ s

0
|u′(τ ) − v′(τ )|dτds

for all t ∈ T .
Then Proposition 1.7.87, p. 128, of Denkowski-Migorski-Papageorgiou [3], implies that

u′(t) = v′(t) for all t ∈ T ,

⇒ u = v + η with η ∈ R
N .

The Dirichlet boundary condition implies η = 0. We have

vn → u in C1 and vn ∈ S for all n ∈N,

⇒ Sc = S
C1

. �

7 Applications

First we present an application on differential variational inequalities.
So, let RN+ be the positive cone of RN . We consider the indicator function of this cone,

namely the function

i
R

N+ (x) =
{

0 if x ∈ R
N+ ,

+∞ if x /∈ R
N+ .

This function is convex and lower semicontinuous. We consider the subdifferential in the
sense of convex analysis ∂i

R
N+ (x). We know that for all x = (xk)

N
k=1 ∈R

N+ we have

∂i
R

N+ (x) = N
R

N+ (x) =
{

0 if xk > 0 for all k ∈ {1, . . . ,N},
−R

N+ ∩ {x}⊥ if xk = 0 for some k ∈ {1, . . . ,N},
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and ∂i
R

N+ (x) = ∅ if x /∈ R
N+ (see Gasiński-Papageorgiou [7], p. 526). The set N

R
N+ (x) is

known as the normal cone to R
N+ at x. We set

A(x) = ∂i
R

N+ (x) = N
R

N+ (x).

Evidently A(·) is maximal monotone, 0 = A(0) and D(A) �= R
N . Given u = (uk)

N
k=1 ∈

W 1,p , we introduce the following sets

T+(u) = {t ∈ T : uk(t) > 0 for all k ∈ {1, . . . ,N}},
T0(u) = {t ∈ T : uk(t) = 0 for some k ∈ {1, . . . ,N}}.

We consider the problem{
a(u′(t))′ ∈ A(u(t)) + F(t, u(t), u′(t)) for a.a. t ∈ T ,

u ∈ BC,
(76)

with A(·) as above and a : RN → R
N , F : T ×R

N ×R
N → Pkc(R

N) satisfying hypotheses
H0 and H2 respectively.

Problem (76) is equivalent to the following differential variational inequality⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(u′(t))′ ∈ F(t, u(t), u′(t)) for a.a. t ∈ T+(u),

a(u′(t))′ ∈ F(t, u(t), u′(t)) − g(t) for a.a. t ∈ T0(u),

u(t), g(t) ∈ R
N+ , (g(t), u(t))RN = 0 for a.a. t ∈ T ,

u ∈ BC, 2 ≤ p.

(77)

On account of Theorem 3, problem (77) has a solution ũ ∈ C1.
Next we consider the following optimal control problem

J (u, v) =
∫ b

0
L(t, u(t), u′(t), v′(t))dt → inf = m,

subject to: {
a(u′(t))′ ∈ A(u(t)) + f (t, u(t))u′(t) + B(t)v(t) for a.a. t ∈ T ,

u ∈ BC, v ∈ S1
K(·,u(·)).

(78)

Here u(·) is the state of the system and v(·) the control function. So, problem (78) has
second order dynamics and a priori feedback since the control constraint multifunction K is
state dependent.

The hypotheses on the data of this problem are the following:

H14: f : T ×R
N → L(RN,RN) is a function such that

(i) for all x, y ∈R
N , t → f (t, x)y is measurable;

(ii) for a.a. t ∈ T , x → f (t, x) is continuous;
(iii)

lim inf
|x|→+∞

(f (t, x)y, x)RN

|x|p ≥ ϑ(t) uniformly for a.a. t ∈ T , all y ∈R
N ,

with ϑ ∈ L∞(T ), ϑ(t) ≥ −c0̂λ1 for a.a. t ∈ T , ϑ �≡ −c0̂λ1;
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(iv) for every r > 0, there exists cr > 0 such that

‖f (t, x)‖L ≤ cr for a.a. t ∈ T , all |x| ≤ r ;

H15: B ∈ Lp′
(T ,L(Rm,RN)).

H16: K : T ×R
N → Pkc(R

m) is a multifunction such that

(i) (t, x) → K(t, x) is measurable;
(ii) for a.a. t ∈ T , x → K(t, x) is closed;

(iii) |K(t, x)| ≤ M for a.a. t ∈ T , all x ∈ R
N with M > 0.

H17: L : T ×R
N ×R

N ×R
m →R= R∪ {+∞} is a measurable integrand such that

(i) for a.a. t ∈ T , (x, y, v) → L(t, x, y, v) is lsc;
(ii) for a.a. t ∈ T and all x ∈R

N , (y, v) → L(t, x, y, v) is convex;
(iii) η(t) − c24(|x| + |y| + |v|) ≤ L(t, x, y, v) for a.a. t ∈ T , all x, y ∈ R

N , v ∈ R
m

and with η ∈ L1(T ).

On account of hypothesis H16(i) we can find kn : T × R
N → R

m, n ∈ N, measurable
functions such that

K(t, x) = {kn(t, x)}n∈N

(see Hu-Papageorgiou [11], Theorem 2.4, p. 156). Then

G(t, x) = B(t)K(t, x) = {B(t)kn(t, x)}n∈N,

⇒ G(·, ·) is measurable.

Also, hypotheses H14(i), (ii) imply that f is jointly measurable (see Papageorgiou-
Winkert [20], Theorem 2.2.31, p. 106). Therefore

F(t, x, y) = f (t, x)y + G(t, x)

is a measurable multifunction. A straightforward application of the Yankov-von Neumann-
Aumann selection shows that the dynamic constraint of the optimal control problem is
equivalent to the following multivalued boundary value problem

{
a(u′(t))′ ∈ A(u(t)) + F(t, u(t), u′(t)) for a.a. t ∈ T ,

u ∈ BC.

On account of hypotheses H14, H15, H16, the multifunction F(t, x, y) satisfies hypothe-
ses H2.

Moreover, hypotheses H17 imply that the cost functional J (·, ·) is sequentially lower
semicontinuous on Lp × Lp

w × Lp
w (see Papageorgiou-Winkert [20], Theorem 5.6.55, p.

458).
Finally we assume that a(·) and A(·) satisfy hypotheses H0 and H1 respectively.
Let {(un, vn)}n∈N ⊆ C1 × L1 be a minimizing sequence for problem (78). Then we can

show that {un}n∈N ⊆ W 1,p is bounded. So, we may assume that

un

w−→ u in W 1,p and un → u in C(T ,RN). (79)
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Note that

f (t, un)u
′
n

w−→ f (t, u)u′ in Lp′
(see hypothesis H14(ii) and (79)).

On account of hypothesis H16(iii) we may assume that

vn

w−→ v in Lp′
and v(t) ∈ K(t,u(t)) for a.a. t ∈ T .

Therefore the state-control pair (u, v) is admissible. Also, we have

J (u, v) ≤ lim inf
n→+∞ J (un, vn) = m,

⇒ J (u, v) = m.

So, the optimal control problem (78) has a solution.
Finally consider the following control system{

a(u′(t))′ ∈ ∇ϕ(u(t)) + f (t, u(t), u′(t)) + B(t)v(t) for a.a. t ∈ T ,

u(0) = u(b) = 0, v(t) ∈ K(t,u(t)) for a.a. t ∈ T .

Now we assume the following:

H18: ϕ ∈ C1(RN) and x → ∇ϕ(x) is locally Lipschitz, strictly monotone.
H19: f : T ×R

N ×R
N →R

N is a function such that

(i) for all x, y ∈R
N , t → f (t, x, y) is measurable;

(ii) for a.a. t ∈ T , f (t, ·, ·) is l(t)-Lipschitz with l ∈ L1(T );
(iii)

lim inf|x|→+∞
(f (t, x, y), x)RN

|x|p ≥ ϑ(t) uniformly for a.a. t ∈ T , all y ∈R
N ,

with ϑ ∈ L∞(T ), ϑ(t) ≥ −c0̂λ1 for a.a. t ∈ T , ϑ �≡ −c0̂λ1;
(iv) for every r > 0, there exist kr ∈ Lp′

and cr > 0 such that

|f (t, x, y)| ≤ kr(t) + cr |y|p−1 for a.a. t ∈ T , all |x| ≤ r , all y ∈ R
N .

H20: K : T ×R
N → Pk(R

m) is a multifunction such that

(i) t → K(t, x) is graph measurable;
(ii) h(K(t, x),K(t, x ′)) ≤ l̂(t)|x − x ′| for a.a. t ∈ T , all x, x ′ ∈R

N , with l̂ ∈ L1(T );
(iii) |K(t, x)| ≤ M for a.a. t ∈ T , all x ∈ R

N , some M > 0.

We denote by P (resp. Pc) the set of states generated by controls in K (resp. convK).
Then assuming H10, H18, H15, H19 and H20 and using Theorem 9, we conclude that

Pc = P
C1

.

This result can lead to admissible relaxation methods for optimal control problems (see
Papageorgiou-Rădulescu-Repovš [23] and Papageorgiou-Vetro-Vetro [24], who deal with
first order systems).
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