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Abstract. Let V be a variety of associative algebras with involution over a field F of characteristic zero
and let c∗n(V), n = 1, 2, . . . , be its ∗-codimension sequence. Such a sequence is polynomially bounded if and

only if V does not contain the commutative algebra F ⊕F, endowed with the exchange involution, and M, a

suitable 4-dimensional subalgebra of the algebra of 4× 4 upper triangular matrices. Such algebras generate
the only varieties of ∗-algebras of almost polynomial growth, i.e., varieties of exponential growth such that

any proper subvariety is polynomially bounded. In this paper we completely classify all subvarieties of the

∗-varieties of almost polynomial growth by giving a complete list of finite dimensional ∗-algebras generating
them.

1. Introduction

Let A be an associative algebra with involution (∗-algebra) over a field F of characteristic zero and let
c∗n(A), n = 1, 2, . . . , be its sequence of ∗-codimensions.

Recall that c∗n(A), n = 1, 2, . . . , is the dimension of the space of multilinear polynomials in n ∗-variables
in the corresponding relatively free algebra with involution of countable rank. In case A satisfies a nontrivial
identity, it was proved in [9] that, as in the ordinary case, c∗n(A) is exponentially bounded.

Given a variety of ∗-algebras V, the growth of V is the growth of the sequence of ∗-codimensions of any
algebra A generating V, i.e., V = var∗(A).

In this paper we are interested in varieties of polynomial growth, i.e., varieties of ∗-algebras such that
c∗n(V) = c∗n(A) is polynomially bounded.

In such a case, if A is an algebra with 1, in [21] it was proved that

c∗n(A) = qnk +O(nk−1)

is a polynomial with rational coefficients. Moreover its leading term satisfies the inequalities

1

k!
≤ q ≤

k∑
i=0

2k−i
(−1)i

i!
.

In case of polynomial growth, the following characterization was given in [8]: a variety V has polynomial
growth if and only if V does not contain the commutative algebra F ⊕ F, endowed with the exchange
involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4× 4 upper triangular matrices.

Hence var∗(F ⊕ F ) and var∗(M) are the only varieties of almost polynomial growth, i.e., they grow
exponentially but any proper subvariety is polynomially bounded.

From their description it follows that there exists no variety with intermediate growth of the ∗-codimensions
between polynomial and exponential, i.e, either c∗n(V) is polynomially bounded or c∗n(V) grows exponentially.
The above 2 algebras play the role of the infinite-dimensional Grassmann algebra and the algebra of 2 × 2
upper triangular matrices in the ordinary case ([12], [13]).

Recently, much interest was put into the study of varieties of polynomial growth (see for instance [3, 4,
5, 6, 15, 16, 14]) and different characterizations were given.

In this paper we completely classify all subvarieties of the varieties of ∗-algebras of almost polynomial
growth by giving a complete list of finite dimensional ∗-algebras generating them.
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Moreover we classify all their minimal subvarieties of polynomial growth, i.e., varieties V satisfying the
property: c∗n(V) ≈ qnk for some k ≥ 1, q > 0, and for any proper subvariety U $ V, c∗n(U) ≈ q′nt with t < k.

2. On star-algebras with polynomial codimension growth

Throughout this paper F will denote a field of characteristic zero and A an associative F -algebra with
involution ∗. Let us write A = A+ + A−, where A+ = {a ∈ A| a∗ = a} and A− = {a ∈ A| a∗ = −a} denote
the sets of symmetric and skew elements of A, respectively. Let X = {x1, x2, . . .} be a countable set and let
F 〈X, ∗〉 = F 〈x1, x

∗
1, x2, x

∗
2, . . .〉 be the free associative algebra with involution on X over F . It is useful to

regard to F 〈X, ∗〉 as generated by symmetric and skew variables: if for i = 1, 2, . . . , we let yi = xi + x∗i and
zi = xi−x∗i , then F 〈X, ∗〉 = F 〈y1, z1, y2, z2, . . .〉. Recall that a polynomial f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈X, ∗〉
is a ∗-polynomial identity of A (or simply a ∗-identity), and we write f ≡ 0, if f(s1, . . . , sn, k1, . . . , km) = 0
for all s1, . . . , sn ∈ A+, k1, . . . , km ∈ A−.

We denote by Id∗(A) = {f ∈ F 〈X, ∗〉|f ≡ 0 on A} the T ∗-ideal of ∗-identities of A, i.e., Id∗(A) is an ideal
of F 〈X, ∗〉 invariant under all endomorphisms of the free algebra commuting with the involution ∗.

It is well known that in characteristic zero, every ∗-identity is equivalent to a system of multilinear
∗-identities. We denote by

P ∗n = spanF
{
wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = yi or wi = zi, i = 1, . . . , n

}
the vector space of multilinear polynomials of degree n in the variables y1, z1, . . . , yn, zn. Hence for every
i = 1, . . . , n either yi or zi appears in every monomial of P ∗n at degree 1 (but not both).

The study of Id∗(A) is equivalent to the study of P ∗n ∩ Id∗(A) for all n ≥ 1 and we denote by

c∗n(A) = dimF
P ∗n

P ∗n ∩ Id∗(A)
, n ≥ 1,

the n-th ∗-codimension of A.
If A is an algebra with 1, by [2] Id∗(A) is completely determined by its multilinear proper polynomials.

Recall that f(y1, z1, . . . , yn, zn) ∈ P ∗n is a proper polynomial if it is a linear combination of elements of the
type

zi1 · · · zikw1 · · ·wm
where w1, . . . , wm are left normed (long) Lie commutators in the yis and zis.

Let Γ∗n denote the subspace of P ∗n of proper polynomials in y1, z1, . . . , yn, zn and Γ∗0 = span{1}.
The sequence of proper ∗-codimensions is defined as

γ∗n(A) = dim
Γ∗n

Γ∗n ∩ Id∗(A)
, n = 0, 1, 2, . . . .

For a unitary algebra A, the relation between ordinary ∗-codimensions and proper ∗-codimensions (see
for instance [2]), is given by the following:

(1) c∗n(A) =

n∑
i=0

(
n

i

)
γ∗i (A), n = 0, 1, 2, . . . .

One of the main tool in the study of the T∗-ideals is provided by the representation theory of the hyper-
octahedral group Z2 o Sn.

Recall that the group Z2 oSn acts on the space P ∗n as follows: for h = (a1, . . . , an;σ) ∈ Z2 oSn, hyi = yσ(i)

and hzi = z
aσ(i)
σ(i) = zσ(i) or −zσ(i) according as aσ(i) = 1 or −1, respectively.

Since P ∗n ∩ Id∗(A) is invariant under this action, the space
P∗n

P∗n∩Id∗(A) has a structure of left Z2 oSn module

and its character, denoted by χ∗n(A), is called the n-th ∗-cocharacter of A. By complete reducibility we can
write

χ∗n(A) =

n∑
r=0

∑
λ`r

µ`n−r

mλ,µχλ,µ,

2



where λ and µ are partitions of r and n− r respectively, χλ,µ is the irreducible Z2 o Sn-character associated
to the pair (λ, µ), and mλ,µ ≥ 0 is the corresponding multiplicity.

Similarly
Γ∗n

Γ∗n∩Id∗(A) is a Z2 o Sn-module under the induced action and we denote by ψ∗n(A) its character

which is called the n-th proper ∗-cocharacter of A.
By complete reducibility it decomposes into irreducibles as follows

ψ∗n(A) =

n∑
r=0

∑
λ`r

µ`n−r

m′λ,µχλ,µ,

where χλ,µ is the irreducible Z2 o Sn-character associated to the pair of partitions (λ, µ) and m′λ,µ is the
corresponding multiplicity.

We are going to prove that, in case A generates a variety of polynomial growth, then A satisfies the same
∗-identities as a finite dimensional ∗-algebra.

We start with the following.

Theorem 1. Let V be a variety of ∗-algebras. If c∗n(V) ≤ αnt, for some constants α, t then V = var∗(A),
for some finitely generated ∗-algebra A.

Proof. Since c∗n(V) ≤ αnt, for some α, t, then by [7, Theorem 3] there exists a constant d such that

χ∗n(V) =
∑

|λ|+|µ|=n

mλ,µχλ,µ

and mλ,µ = 0 whenever either |λ| − λ1 > d − 1 or |µ| > d. This also says that mλ,µ = 0 whenever either
h(λ) > d or h(µ) > d, where h(λ) and h(µ) denote the height of λ and µ, respectively. Hence, as in the
proof of Theorem 11.4.3 in [11], it is proved that V = var∗(A), where A is the relatively free algebra of V
generated by d symmetric and d skew variables. �

In order to characterize the varieties of polynomial growth we need to apply the following result.

Theorem 2. [23, Theorem 1]. If A is a PI-finitely generated associative algebra with involution over a field
F of characteristic zero then A satisfies the the same ∗-identities as a finite dimensional associative algebra
over F.

Given two ∗-algebras A and B, we say that A is T ∗-equivalent to B, and we write A ∼T∗ B, if Id∗(A) =
Id∗(B).

Theorem 3. Let A be an algebra with involution over a field of characteristic zero and suppose that c∗n(A),
n = 1, 2, . . . , is polynomially bounded. Then A is T ∗-equivalent to a finite direct sum of algebras B1⊕· · ·⊕Bm,
where B1, . . . , Bm are finite dimensional algebras with involution over F and dimBi/J(Bi) ≤ 1, for all
i = 1, . . . ,m.

Proof. By Theorems 1 and 2, since c∗n(A) ≤ αnt for some α, t, we may assume that A is a finite dimensional
algebra. Hence the result follows by applying the Proposition 7 in [20]. �

Now let us focus our attention to the algebra UTn(F ) of n×n upper triangular matrices over the field F .
One can define an involution on UTn(F ), that we shall denote by ∗, in the following way: if a ∈ UTn(F ),
then a∗ = batb−1, where at denotes the usual transpose and b is the following permutation matrix:

b =


0 . . . 0 1
0 . . . 1 0
...

. . .
...

1 . . . 0 0

 .

Clearly, a∗ is the matrix obtained from a by reflecting a along its secondary diagonal. Hence, if a = (aij)
then a∗ = (a∗ij) where a∗ij = an+1−j,n+1−i. This involution on UTn(F ) is called the canonical reflection
involution.

Given polynomials f1, . . . , fn ∈ F 〈X, ∗〉 let us denote by 〈f1, . . . , fn〉T∗ the T∗-ideal generated by f1, . . . , fn.
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The purpuse of this paper is to classify the subvarieties of the varieties of ∗-algebras of almost polynomial
growth. Such varieties are generated by the following two algebras [7]:

1) F ⊕ F, the two-dimensional commutative algebra, endowed with the exchange involution (a, b)∗ =
(b, a);

2) M =



u r 0 0
0 s 0 0
0 0 s v
0 0 0 u

 | u, r, s, v ∈ F
 , the subalgebra of UT4(F ) endowed with the reflection

involution.

Such algebras were extensively studied in [7] and [22]; there it was proved that Id∗(F⊕F ) = 〈[y1, y2], [y, z], [z1, z2]〉T∗
and Id∗(M) = 〈z1z2〉T∗ .

3. Constructing ∗-algebras in var∗(M)

The purpose of this section is to construct finite dimensional ∗-algebras belonging to the variety generated
by M whose ∗-codimension sequence grows polynomially.

For k ≥ 2, let

Ak = spanF
{
e11 + e2k,2k, E, . . . , E

k−2, e12, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−1,2k

}
be the subalgebra of UT2k(F ) equipped with the reflection involution, where E =

∑k−1
i=2 ei,i+1 + e2k−i,2k−i+1

and the eijs denote the usual matrix units.
The following result characterizes the ∗-identities and the ∗-codimensions of Ak.

Lemma 1. Let k ≥ 2. Then:

1) Id∗(Ak) = 〈y1 · · · yk−2st3(yk−1, yk, yk+1)yk+2 · · · y2k−1, y1 · · · yk−1zyk · · · y2k−2, z1z2〉T∗ , where st3(yk−1, yk, yk+1) =∑
σ∈S3

sgn(σ)yσ(k−1)yσ(k)yσ(k+1) denotes the standard polynomial of degree 3.

2) For n < 2k − 1, c∗n(Ak) = 1 +
∑
t<k−1

or
n−t<k

(
n

t

)
(n− t) +

∑
t<k−1

or
n−t<k

(
n

t

)
(n− t− 1).

For n ≥ 2k − 1, c∗n(Ak) = 1 +
∑
t<k−1

or
n−t<k

(
n

t

)
(n− t) +

∑
t<k−1

or
n−t<k−1

(
n

t

)
(n− t− 1) +

(
n− 1

k − 2

)
(n− k + 1) ≈

qnk−1, for some q > 0.

Proof. Write I = 〈y1 · . . . ·yk−2st3(yk−1, yk, yk+1)yk+2 · . . . ·y2k−1, y1 · · · yk−1zyk · · · y2k−2, z1z2〉T∗ . It is clear
that I ⊆ Id∗(Ak). In order to prove the opposite inclusion, first we find a set of generators of P ∗n , modulo
P ∗n ∩ I, for every n ≥ 1.

Let f ∈ P ∗n be a multilinear polynomial of degree n. By the Poincaré-Birkhoff-Witt theorem f can be
written as a linear combination of products of the type

yj1 · · · yjrzk1 · · · zktw1 · · ·wm,
where w1, . . . , wm are left normed commutators in the yis and zis, j1 ≤ · · · ≤ jr and k1 ≤ · · · ≤ kt.

Because of z1z2 ∈ I ([20, Remark 8]), modulo I, f is a linear combination of the polynomials

(2) y1 · · · yn, yi1 · · · yit′ zlyj1 · · · yjs′ , yp1 · · · ypt [yr, ym]yq1 · · · yqs
where i1 < . . . < it′ , j1 < . . . < js′ , p1 < . . . < pt, r > m < q1 < . . . < qs.

Notice that in case n < 2k − 1 we have t′ < k − 1 or s′ < k − 1, t < k − 1 or s < k − 1. That is also true for
n ≥ 2k − 1, because of y1 · · · yk−1zyk · · · y2k−2 ∈ I. Moreover, always in case n ≥ 2k − 1, we can write

yp1 · · · ypn−k [yr, ym]yq1 · · · yqk−2

modulo 〈y1 · · · yk−2st3(yk−1, yk, yk+1)yk+2 · · · y2k−1〉T∗ , as a linear combination of polynomials of the type

(3) yr1 · · · yrn−k [y1, yi]yu1
· · · yuk−2

with r1 < . . . < rn−k, u1 < . . . < uk−2.
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It follows that the space P ∗n is generated, modulo P ∗n ∩ I, by the polynomials in (2) , in case n < 2k − 1
and, by the polynomials

(4) y1 · · · yn, yi1 · · · yit′ zlyj1 · · · yjs′ , yp1 · · · ypt [yr, ym]yq1 · · · yqs , yr1 · · · yrn−k [y1, yi]yu1 · · · yuk−2

where i1 < . . . < it′ , j1 < . . . < js′ , t
′ < k − 1 or s′ < k − 1, p1 < . . . < pt, r > m < q1 < . . . < qs t < k − 1

or s < k − 2, r1 < . . . < rn−k, u1 < . . . < uk−2, in case n ≥ 2k − 1.
We next show that the above polynomials are linearly independent modulo Id∗(Ak).
We assume that n ≥ 2k− 1 (the case n < 2k− 1 is proved in a similar way). To this end, let f ∈ Id∗(Ak)

be a linear combination of the above polynomials and write

f = δy1 · · · yn +
∑

t′<k−1
or

s′<k−1

∑
l,I,J

αl,I,Jyi1 · · · yit′ zlyj1 · · · yjs′

+
∑
t<k−1
or

s<k−2

∑
r,P,Q

βr,P,Qyp1 · · · ypt [yr, ym]yq1 · · · yqs

+
∑
i,R,U

γi,R,Uyr1 · · · yrn−k [y1, yi]yu1 · · · yuk−2

where t′ + s′ = n − 1, t + s = n − 2. Moreover, for any fixed t, s, t′ and s′, i1 < . . . < it′ , j1 < . . . < js′ ,
p1 < . . . < pt, m < q1 < . . . < qs, r1 < . . . < rn−k, u1 < . . . < uk−2 and I = {i1, . . . , it′}, J = {j1, . . . , js′},
P = {p1, . . . , pt}, Q = {q1, . . . , qs}, R = {r1, . . . , rn−k} and U = {u1, . . . , uk−2}.

First suppose that δ 6= 0, then by making the evaluation y1 = . . . = yn = e11 + e2k,2k and zl = 0 for all
l = 1, . . . , n, one gets δ(e11 + e2k,2k) = 0 and so δ = 0, a contradiction.
Suppose that there exists βr,P,Q 6= 0 for some t < k − 1, r, P and Q, then by making the evaluation
yp1 = . . . = ypt = E, yr = e12 + e2k−1,2k, ym = yq1 = . . . = yqs = e11 + e2k,2k and zl = 0 for all l = 1, . . . , n,
one gets βr,P,Qe2k−t−1,2k − βr,Q,P e1,2+t = 0. Thus βr,P,Q = βr,Q,P = 0, a contradiction. Suppose now
βr,P,Q 6= 0 for some t ≥ k + 1, r, P and Q. By making the evaluation yp1 = . . . = ypt = e11 + e2k,2k,
yr = e12 + e2k−1,2k, ym = yq1 = . . . = yqs = E and zl = 0 for all l = 1, . . . , n, one gets βr,P,Q = βr,Q,P = 0
as before.

Suppose now γi,R,U 6= 0 for some R and U . The evaluation y1 = yr1 = . . . = yrn−k = e11 + e2k,2k,
yi = e12 + e2k−1,2k, yu1

= . . . = yuk−2
= E and zl = 0 for all l = 1, . . . , n gives γi,R,U = 0, a contradiction.

Let now αl,I,J 6= 0 for some t′ < k − 1, l, I and J . By making the evaluation zl = e12 − e2k−1,2k,
yi1 = . . . = yit′ = E and yj1 = . . . = yjs′ = e11 + e2k,2k one gets −αl,I,Je2k−t′−1 + αl,J,Ie1,2+t′ = 0, thus
αl,I,J = αl,J,I = 0, a contradiction. Similarly, if 0 ≤ s′ < k − 1, let αl,I,J 6= 0 for some t′ ≥ k − 1 l, I and
J . Then the evaluation zl = e12 − e2k−1,2k, yi1 = . . . = yit′ = e11 + e2k,2k and yj1 = . . . = yjs′ = E gives
αl,I,J = 0, a contradiction.

Therefore the polynomials in (4) are linearly independent modulo P ∗n ∩ Id∗(Ak) and, since P ∗n ∩ Id∗(Ak) ⊇
P ∗n ∩ I, the form a basis of P ∗n (mod P ∗n ∩ Id∗(Ak)) and Id∗(Ak) = I.

Thus, by counting we obtain

c∗n(Ak) = 1 +
∑
t<k−1

or
n−t<k

(
n

t

)
(n− t) +

∑
t<k−1

or
n−t<k−1

(
n

t

)
(n− t− 1) +

(
n− 1

k − 2

)
(n− k + 1) ≈ qnk−1,

for some q > 0 and we are done.

In case n < 2k − 1, c∗n(Ak) = 1 +
∑
t<k−1

or
n−t<k

(
n

t

)
(n− t) +

∑
t<k−1

or
n−t<k

(
n

t

)
(n− t− 1).

�

Next we construct, for any fixed k ≥ 2, two ∗-algebras with unity in the variety generated by M whose
codimension sequences grow as nk−1.
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For any k ≥ 2, let

Nk = spanF
{
I, E, . . . , Ek−2, e12 − e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k

}
be the subalgebra of UT2k(F ) equipped with the reflection involution, where I denotes the 2k × 2k identity

matrix and E =
∑k−1
i=2 ei,i+1 + e2k−i,2k−i+1.

Lemma 2. The T∗-ideal Id∗(Nk) is generated by the polynomials [y1, y2], [y, z], z1z2, in case k = 2 and by
[y1, . . . , yk−1], z1z2, in case k ≥ 3.

Moreover

c∗n(Nk) = 1 +

k−2∑
i=1

(
n

i

)
(2i− 1) +

(
n

k − 1

)
(k − 1) ≈ qnk−1, for some q > 0.

Proof. If k = 2 then clearly 〈[y1, y2], [y, z], z1z2〉 ⊆ Id∗(N2). The opposite inclusion is a direct consequence
of [20, Lemma 10].
Let now k ≥ 3 and let I = 〈[y1, . . . , yk−1], z1z2〉T∗ . It is easily proved that I ⊆ Id∗(Nk).

Let now f be a ∗-identity of Nk. We may clearly assume that f is multilinear, and since Nk is an algebra
with 1 we may take f proper. After reducing the polynomial f modulo the polynomials in I we obtain that
f is the zero polynomial if deg f ≥ k and f is a linear combination of commutators

[zi, yi1 , . . . , yik−2
], i1 < . . . < ik−2

in case deg f = k − 1 and is a linear combination of commutators

[zi, yi1 , . . . , yis−1
], [yj1 , yj2 , . . . , yjs ], i1 < . . . < is−1, j1 > j2 < . . . < js

in case deg f < k − 1. Hence

f =

s∑
i=1

αi[zi, yi1 , . . . , yis−1 ] +

s∑
j1=2

βj1 [yj1 , . . . , yjs ], for some 1 < s ≤ k − 1.

Suppose that there exists j1 such that βj1 6= 0. By making the evaluation yj1 = e13 + e2k−2,2k, yj2 =
. . . = yjs = E and zi = 0 for all i = 1, . . . , s, we get βj1 = 0, a contradiction. So βj1 = 0 for all j1 = 2, . . . , s.
Now suppose that there exists i such that αi 6= 0. By making the evaluation zi = e12 − e2k−1,2k, zj = 0 for
all j 6= i and yi1 = . . . = yis−1 = E we get αi = 0, a contradiction. Thus αi = 0 for all i = 1, . . . , s. This
says that f ∈ I, and so, Id∗(Nk) ⊆ I.

The arguments above also prove that

γ∗s (Nk) =


2s− 1 if s < k − 1

s if s = k − 1

0 if s ≥ k.
.

Hence, by (1) we obtain that

c∗n(Nk) = 1 +

k−2∑
i=1

(
n

i

)
(2i− 1) +

(
n

k − 1

)
(k − 1) ≈ qnk−1, for some q > 0.

�

Let now, for any fixed k ≥ 2,

Uk = spanF
{
I, E, . . . , Ek−2, e12 + e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k

}
be the subalgebra of UT2k equipped with the reflection involution.

The following lemma holds and it can be proved in a similar way as the previous lemma.

Lemma 3. The T∗-ideal Id∗(Uk) is generated by the polynomials [y1, y2], z1 in case k = 2 and by [z, y1, . . . , yk−2], z1z2

in case k ≥ 3. Moreover

c∗n(U2) = 1 and c∗n(Uk) = 1 +

k−2∑
i=1

(
n

i

)
(2i− 1) +

(
n

k − 1

)
(k − 2) ≈ qnk−1, for some q > 0, for k ≥ 3.

6



Remark 1. Notice that U2 ∼T∗ F is a commutative ∗-algebra with trivial involution.

Finally we give a description of the ∗-identities of the direct sum among Uk and Nk.
Here we remark that if t 6= k than Ut ⊕ Nk ∼T∗ Ut if t > k and Ut ⊕ Nk ∼T∗ Nk if t < k. Moreover, if

k = t = 2, then N2 ⊕ U2 ∼T∗ N2.

Lemma 4. If k ≥ 3 then

(1) Id∗(Nk ⊕ Uk) = 〈[y1, . . . , yk], [z, y1, . . . , yk−1], z1z2〉T∗

(2) c∗n(Nk ⊕ Uk) = 1 +

k−1∑
i=1

(
n

i

)
(2i− 1) ≈ qnk−1, for some q > 0.

Proof. Let I = 〈[y1, . . . , yk], [z, y1, . . . , yk−1], z1z2〉T∗ . It is clear that I ⊆ Id∗(Nk ⊕ Uk). Now, if f ∈
Id∗(Uk ⊕Nk), as in the proof of Lemma 2, we get that f can be written as

f =

s∑
i=1

αi[zi, yi1 , . . . , yis−1
] +

s∑
j1=2

βj1 [yj1 , yj2 , . . . , yjs ].

where s < k.
Suppose that there exists j1 such that βj1 6= 0. By making the evaluation yj1 = (0, e12 + e2k−1,2k),

yj2 = . . . = yjs = (0, E) and zi = 0 for all i = 1, . . . , s, we get βj1 = 0, a contradiction. So βj1 = 0 for all
j1 = 2, . . . , s.
Now suppose that there exists i such that αi 6= 0. By making the evaluation zi = (e12 − e2k−1,2k, 0), zj = 0
for all j 6= i and yj1 = . . . = yjs−1

= (E, 0) we get αi = 0, a contradiction. Thus αi = 0 for all i = 1, . . . , s.
This says that Id∗(Nk ⊕ Uk) ⊆ I and also

γ∗s (Nk ⊕ Uk) =

{
2s− 1 if s ≤ k − 1

0 if s ≥ k.
.

Hence

c∗n(Nk ⊕ Uk) = 1 +

k−1∑
i=1

(
n

i

)
(2i− 1) ≈ qnk−1, for some q > 0.

�

4. On minimal ∗-varieties in var∗(M)

In this section we shall prove that Ak, Nk and Uk generate minimal varieties of polynomial growth. We
start with the definition of minimal variety.

Definition 1. A variety V of ∗-algebras is minimal of polynomial growth if c∗n(V) ≈ qnk for some k ≥ 1,
q > 0, and for any proper subvariety U $ V we have that c∗n(U) ≈ q′nt with t < k.

We recall that if A = B+J is a finite dimensional ∗-algebra over F , where B is a semisimple ∗-subalgebra
and J = J(A) is its Jacobson radical, then J can be decomposed into the direct sum of B-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,

where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or i = 0, respectively.
Similarly, Jik is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively.
Moreover, for i, k, l,m ∈ {0, 1}, JikJlm ⊆ δk,lJim where δk,l is the Kronecker delta and J11 = BN for some
nilpotent subalgebra N of A commuting with B. For a proof of this result see [10, Lemma 2].

Remark 2. Let A = F +J be a ∗-algebra with J = J00 +J01 +J10 +J11. If A satisfies the ordinary identity
[x1, . . . , xt], for some t ≥ 2, then J10 = J01 = 0.

Proof. The proof is obvious since J10 = [J10, F, . . . , F︸ ︷︷ ︸
t−1

] and J01 = [J01, F, . . . , F︸ ︷︷ ︸
t−1

]. �

Theorem 4. For any k ≥ 2 and t > 2, Nk and Ut generate minimal varieties.
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Proof. We shall prove the statement for Nk. In a similar way it is possible to prove the statement also for
Ut.
If k = 2, the result follows from [20, Lemma 28].

Now assume that k ≥ 3. Suppose that the algebra A ∈ var∗(Nk) generates a subvariety of var∗(Nk) and
c∗n(A) ≈ qnk−1, for some q > 0. We shall prove that A ∼T∗ Nk and this will complete the proof.
Since c∗n(A) is polynomially bounded, by Theorem 3 we may assume that

A = B1 ⊕ . . .⊕Bm,

where B1, . . . , Bm are finite dimensional ∗-algebras such that dimF
Bi

J(Bi)
≤ 1 for all i = 1, . . . ,m. This

implies that either Bi ∼= F + J(Bi) or Bi = J(Bi) is a nilpotent algebra. Since

c∗n(A) ≤ c∗n(B1) + . . .+ c∗n(Bm),

then there exists Bi such that c∗n(Bi) ≈ bnk−1, for some b > 0. Hence

var∗(Nk) ⊇ var∗(A) ⊇ var∗(F + J(Bi)) ⊇ var∗(F + J11(Bi))

and c∗n(F + J(Bi)) ≈ bnk−1, for some b > 0. Moreover, by the previous remark, since Nk, and so F + J(Bi),
satisfies the ordinary identity [x1, . . . , xk], we get that J01(Bi) = J10(Bi) = 0. Hence F + J(Bi) = (F +
J11(Bi)) ⊕ J00(Bi) and c∗n(F + J(Bi)) = c∗n(F + J11(Bi)) for n large enough. Hence, in order to prove
A ∼T∗ Nk, it is enough to show that F + J11(Bi) ∼T∗ Nk. Thus, without loss of generality we may assume
that A is a unitary algebra.
Now since c∗n(A) ≈ qnk−1 then

c∗n(A) =

k−1∑
i=0

(
n

i

)
γ∗i (A)

and, by [21, Lemma 2.2], γ∗i (A) 6= 0 for all 0 ≤ i ≤ k − 1.

Recall that since Id∗(A) ⊇ Id∗(Nk), then
Γ∗i

(Γ∗i∩Id∗(A) is isomorphic to a quotient module of
Γ∗i

(Γ∗i∩Id∗(Nk)) .

Hence, if ψ∗i (A) =
∑
|λ|+|µ|=imλ,µχλ,µ and ψ∗i (Nk) =

∑
|λ|+|µ|=im

′
λ,µχλ,µ are the i-th proper ∗-cocharacters

of A and Nk respectively , we must have mλ,µ ≤ m′λ,µ for all λ ` r, µ ` i− r, r = 0, . . . , i.

For any i = 2, . . . , k − 2, let f1 = [z1, y2, . . . , y2] and f2 = [y1, y2, y1, . . . , y1] be highest weight vectors
corresponding to the partitions (λ, µ) = ((i− 1), (1)) and (λ, µ) = ((i− 1, 1), ∅), respectively (see [1] ). It is
clear that f1 and f2 are not ∗-identities of Nk. Thus, for i = 2, . . . , k− 2, χ(i−1),(1) and χ(i−1,1),∅ participate
in the i-th proper ∗-cocharacter ψ∗i (Nk) with non-zero multiplicities.
Hence, for i = 2, . . . , k − 2, since γ∗i (Nk) = 2i− 1 = degχ(i−1),(1) + degχ(i−1,1),∅, we have that

ψ∗i (Nk) = χ(i−1),(1) + χ(i−1,1),∅.

Similarly one obtain ψ∗k−1(Nk) = χ(k−2),(1).
Thus, since γ∗k−1(A) 6= 0 we get also that ψ∗k−1(A) = χ(k−2),(1). Moreover, for 2 ≤ i ≤ k − 2 one gets
ψ∗i (A) = χ(i−1),(1) +χ(i−1,1),∅. In fact, if ψ∗i (A) = χ(i−1),(1), for some 2 ≤ i ≤ k− 2, then the highest weight
vector [y2, y1, . . . , y1︸ ︷︷ ︸

i−1

] corresponding to the couple of partitions (λ, µ) = ((i − 1, 1), ∅) would be a ∗-identity

for A. But this implies that also [z, y, . . . , y︸ ︷︷ ︸
k−2

] is a ∗-identity for A, and so, ψ∗k−1(A) = 0, a contradiction.

In a similar way one can prove that if ψ∗i (A) = χ(i−1,1),∅ we would reach a contradiction. So we get that
ψ∗i (A) = χ(i−1),(1) + χ(i−1,1),∅, for 2 ≤ i ≤ k − 2 and ψ∗k−1(A) = χ(k−2),(1).
Hence

c∗n(A) =

k−1∑
i=0

(
n

i

)
γ∗i (A) = 1 +

k−2∑
i=1

(
n

i

)
(2i− 1) +

(
n

k − 1

)
(k − 1) = c∗n(Nk).

Thus A and Nk have the same sequence of ∗-codimensions and, since Id∗(Nk) ⊆ Id∗(A) we get the equality
Id∗(Nk) = Id∗(A). �
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In order to prove that also Ak generates a minimal variety we need to state some preliminary results.

Lemma 5. Let A = F + J ∈ var∗(Ak). Then J−11 = [J11, J11] = 0.

Proof. From J−11 = F · · ·F︸ ︷︷ ︸
k−1

J−11 F · · ·F︸ ︷︷ ︸
k−1

follows J−11 = 0, since y1 · · · yk−1zyk · · · y2k−2 is a ∗-identity of A. As a

consequence, since [J+
11, J

+
11] ⊆ J−11 we get that [J11, J11] = 0.

�

Lemma 6. Let A = F + J ∈ var∗(Ak) with J10 6= 0 (hence J01 6= 0). If c∗n(A) ≈ qnk−1, for some q > 0,
then A ∼T∗ Ak.

Proof. By the previous lemma, A = F + J11 + J10 + J01 + J00 with J−11 = [J11, J11] = 0. Suppose that
J10(J+

00)k−2 = 0. This says that also (J+
00)k−2J01 = 0. If Jm = 0, we claim that for any n ≥ m, the

multilinear polynomial

f = yi1 · · · yily1 · · · yk−2zyk−1 · · · y2k−4yj1 · · · yjt ∈ Id∗(A),

where t+ l + 2k − 3 = n.
In fact, by the multilinearity of f, we can evaluate the variables in a basis of A which is the union of a

basis of J11, J10 + J01, J00 and 1 = 1F . Since Jm = 0, if all variables are evaluated in J we get a zero value
of f. Hence at least one variable must be evaluated in 1. Since J−11 = 0 we need to check the evaluation of z
in J10 + J01. It is easily checked that since J10(J+

00)k−2 = (J+
00)k−2J01 = 0 then f vanishes on A.

We have proved that f = yi1 · · · yily1 · · · yk−2zyk−1 · · · y2k−4yj1 · · · yjt ∈ Id∗(A).
In a similar way it is proved that for any n ≥ m,

g = yi1 · · · yily1 · · · yk−2[yl, ym]yk−1 · · · y2k−4yj1 · · · yjt ∈ Id∗(A),

where t+ l + 2k − 2 = n.
Let Q ⊆ Id∗(A) be the T ∗-ideal generated by f and g plus the generators of the T ∗-ideal Id∗(Ak). For

any n ≥ m a set of generators of P ∗n (mod P ∗n ∩ Id∗(Q)) is given by{
yi1 · · · yitzlyj1 · · · yjs | 1 ≤ l ≤ n, t < k − 2 or s < k − 2, i1 < . . . < it, j1 < . . . < js

}
∪{

yi1 · · · yit [yl, ym]yj1 · · · yjs | t < k − 2 or s < k − 2, i1 < . . . < it, l > m < j1 < . . . < js
}
∪
{
y1y2 · · · yn

}
.

Hence

c∗n(A) ≤
∑
t<k−2

or
n−t<k−1

(
n− 1

t

)
n+

∑
t<k−2

or
n−t<k−1

(
n

t

)
(n− t− 1) ≈ qnk−2,

a contradiction.
Therefore we must have J10(J+

00)k−2 6= 0. Let a ∈ J10, b1, . . . , bk−2 ∈ J+
00 be such that ab1 · · · bk−2 6= 0.

Also b∗k−2 · · · b∗1a∗ 6= 0, with b∗k−2, . . . , b
∗
1 ∈ J+

00 and a∗ ∈ J01.
Let f ∈ Id∗(A) be a multilinear polynomial of degree n ≥ 2k − 1. By Lemma 1, we can write f, modulo

Id∗(Ak), as

f = δy1 · · · yn +
∑
t<k−1

or
s<k−1

∑
l,I,J

αl,I,Jyi1 · · · yitzlyj1 · · · yjs

+
∑
t<k−1
or

s<k−2

∑
r,P,Q

βr,P,Qyp1 · · · ypt [yr, ym]yq1 · · · yqs

+
∑
i,R,U

γi,R,Uyr1 · · · yrn−k [y1, yi]yu1 · · · yuk−2

where I = {i1, . . . , it}, J = {j1, . . . , js}, P = {p1, . . . , pt}, Q = {m, q1, . . . , qs}
are such that I ] J ] {l} = P ] Q ] {r} = {1, . . . , n}, and i1 < · · · < it, j1 < · · · < js, p1 < . . . < pt,

r < m < q1 < . . . < qs. Also R = {r1, . . . , rn−k} and U = {1, u1, . . . , uk−2} are such that R ] U ] {i} =
{1, . . . , n} and r1 < . . . < rn−k, u1 < . . . < uk−2.

9



The evaluation y1 = · · · = yn = 1F and zl = 0, for all l = 1, . . . , n, gives δ = 0. Also, for fixed s <
k−1, l, I, J the evaluation yim = 1F , m ≤ t, zl = a−a∗ and yjp = bp, p ≤ s, gives αl,I,Jab1 · · · bs+αl,J,Ic = 0
with ab1 · · · bs ∈ J10 and c ∈ J01 linearly independent. Hence αl,I,J = αl,J,I = 0. Similarly, for fixed
t < k − 1, l, I, J the evaluation yit−m = b∗m+1, 0 ≤ m ≤ t − 1, zl = a − a∗ and yjp = 1F , p ≤ s, gives
αl,M,N = 0 and αl,N,M = 0.

Also, for fixed i 6= 1, R, U the evaluation y1 = 1F , yrj = 1F , j ≤ n − k, yi = a + a∗ and yul = bl,
l ≤ k − 2, gives γi,R,U = 0 and γi,U,R = 0. Finally, for fixed s < k − 2, r, P,Q the evaluation ypj = 1F ,
1 ≤ j ≤ t, yr = a+ a∗, ym = b1and yql = bl+1, 1 ≤ l ≤ s, gives βr,P,Q = 0 and βr,Q,P = 0. Similarly, for fixed
t < k − 1, r, P,Q the evaluation ypt−j = b∗j+1, 0 ≤ j ≤ t− 1, yr = a+ a∗, ym = 1F and yql = 1F , 1 ≤ l ≤ s,
gives βr,P,Q = 0 and βr,Q,P = 0.

Therefore f ∈ Id∗(Ak). Similarly, if n < 2k−1 it is proved that f ∈ Id∗(Ak). Hence Id∗(A) = Id∗(Ak). �

Now we are in a position to prove that the algebra Ak generates a minimal variety.

Theorem 5. For any k ≥ 2, Ak generates a minimal variety.

Proof. Let A ∈ var∗(Ak) be such that c∗n(A) ≈ qnk−1, for some q > 0. As in the prroof of Theorem 4, we
may assume that

A = B1 ⊕ · · · ⊕Bm,
where B1, . . . , Bm are finite dimensional algebras with involution and either Bi ∼= F + J(Bi) or Bi = J(Bi)
is a nilpotent algebra. Since

c∗n(A) ≤ c∗n(B1) + · · ·+ c∗n(Bm),

then there exists Bi such that c∗n(Bi) ≈ bnk−1, for some b > 0. Being Bi ∈ var∗(Ak) by the previous lemma
Bi ∼T∗ Ak. Hence,

var∗(Ak) = var∗(Bi) ⊆ var∗(A) ⊆ var∗(Ak)

and var∗(A) = var∗(Ak) follows. �

5. Classifying the subvarieties of var∗(M)

The main goal of this section is to completely classify the subvarieties of var∗(M) by giving a list of
generating ∗-algebras. We start with the following.

Lemma 7. Let A = F + J11 ∈ var∗(M) and c∗n(A) ≈ qnk−1 for some q > 0, k ≥ 1. Then:

- if k = 1, A is a commutative algebra with trivial involution;
- if k > 1, either A ∼T∗ Uk or A ∼T∗ Nk or A ∼T∗ Nk ⊕ Uk.

Proof. If k ≤ 2, from [20, Lemma 28] it follows that either A ∼T∗ N2 or A ∼T∗ U2 ∼T∗ F. Let now k ≥ 3.
We remark that at least one polynomial among [y1, . . . , yk−1] and [z, y1, . . . , yk−2] cannot be a ∗-identity for
A, since otherwise we would have γ∗k−1(A) = 0, a contradiction since c∗n(A) ≈ qnk−1.
Suppose first that [y1, . . . , yk−1] is not a ∗-identity and [z, y1, . . . , yk−2] ≡ 0 on A. This implies that Id∗(Uk) ⊆
Id∗(A) and, since Uk generates a minimal variety and c∗n(A) ≈ qnk−1, one gets that A ∼T∗ Uk.
Now suppose that [z, y1, . . . , yk−2] is not a ∗-identity and [y1, . . . , yk−1] ≡ 0 on A. Then Id∗(Nk) ⊆ Id∗(A)
and since Nk generates a minimal variety, as before, one gets A ∼T∗ Nk.
Finally, suppose that neither of the polynomials [y1, . . . , yk−1] and [z, y1, . . . , yk−2] are identities for A. Since
c∗n(A) ≈ qnk−1, then γ∗k(A) = 0, so every proper polynomial of degree k belongs to Id∗(A). In particular
[y1, . . . , yk], [z, y1, . . . , yk−1] ∈ Id∗(A) and, so, Id∗(Nk ⊕ Uk) ⊆ Id∗(A).

Let f1 = [z, y, . . . , y︸ ︷︷ ︸
i−1

] and f2 = [y2, y1, . . . , y1︸ ︷︷ ︸
i−1

] be highest weight vectos corresponding to the partitions

(λ, µ) = ((i − 1), (1)) and (λ, µ) = ((i − 1, 1), ∅), respectively, for i = 2, . . . , k − 1 Since f1 and f2 are not
∗-identities for Nk ⊕ Uk, we get that χ(i−1),(1) and χ(i−1,1),∅ participate in the i-th proper ∗-cocharacter of
Nk ⊕Uk with non-zero multiplicities. Hence, since γ∗i (Nk ⊕Uk) = 2i− 1 = degχ(i−1),(1) + degχ(i−1,1),∅, we
have that

(5) ψ∗i (Nk ⊕ Uk) = χ(i−1),(1) + χ(i−1,1),∅, for i = 2, . . . , k − 1.
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If ψ∗i (A) =
∑
λ`r µ`i−rmλ,µχλ,µ and ψ∗i (Nk ⊕ Uk) =

∑
λ`r µ`i−rm

′
λ,µχλ,µ, then it must be mλ,µ ≤ m′λ,µ

for all λ ` r, µ ` i− r, r = 0, . . . , i. Moreover, since [y1, . . . , yk−1] and [z, y1, . . . , yk−2] are not ∗-identies for
A we must have ψ∗i (A) = χ(i−1,1),∅ + χ(i−1),(1) for all i = 2, . . . , k − 2. Hence

c∗n(A) =

k−1∑
i=0

(
n

i

)
γ∗i (A) = 1 +

k−1∑
i=1

(2i− 1) = c∗n(Nk ⊕ Uk).

Thus A and Uk ⊕ Nk have the same ∗-codimension sequence and, since Id∗(Nk ⊕ Uk) ⊆ Id∗(A), we finally
get the equality Id∗(Nk ⊕ Uk) = Id∗(A) and A ∼T∗ Nk ⊕ Uk. This completes the proof. �

Remark 3. Let A = F + J11 + J10 + J01 + J00 ∈ var∗(M). Then J10J01 = J01J10 = J−11J10 = J01J
−
11 = 0.

Proof. We start by proving that J10J01 = J01J10 = 0. Let a ∈ J10, b ∈ J01. Since z1z2 ≡ 0 we get that
(a − a∗)(b − b∗) = 0, and so, ab = a∗b∗ = 0. Now let a ∈ J−11 and b ∈ J10. From z1z2 ≡ 0 it follows
a(b− b∗) = ab = 0. Similarly, if b ∈ J01 we get ba = 0. �

Lemma 8. Let A = F + J11 + J10 + J01 + J00 ∈ var∗(M) with J10 6= 0 (hence J01 6= 0). Then there exist
constants k, u ≥ 2 such that

1) if J−11 = 0, A ∼T∗ Ak ⊕N, where N is a nilpotent ∗-algebra;
2) if J−11 6= 0 either A ∼T∗ Nu ⊕ Ak ⊕N or A ∼T∗ Uu ⊕ Ak ⊕N or A ∼T∗ Nu ⊕ Uu ⊕ Ak ⊕N, where

N is a nilpotent ∗-algebra.

Proof. Let j ≥ 0 be the largest integer such that J10J
j
00 6= 0 and hence Jj00J01 6= 0. Notice that j = 0 means

that J10J00 = 0 and in this case A = F + J11 + J10 + J01 ⊕ J00.
We shall prove that either A ∼T∗ Aj+2 ⊕ J00 or A ∼T∗ Aj+2 ⊕ Nu ⊕ J00 or A ∼T∗ Aj+2 ⊕ Uu ⊕ J00 or

A ∼T∗ Aj+2 ⊕Nu ⊕ Uu ⊕ J00 for some u ≥ 2.
Suppose first that J−11 = 0.

Let Ā = A/Jj+1
00 . Then it is easily checked that

y1 · · · yj+1zyj+2 · · · y2j+2, y1 · · · yjst3(yj+1, yj+2, yj+3)yj+4 · · · y2j+3 ∈ Id∗(Ā)

and, so, by Lemma 1, Id∗(Aj+2) ⊆ Id∗(Ā).
Moreover, as in the proof of Lemma 6, it is possible to check the opposite inclusion. This says that

Aj+2 ∼T∗ Ā and, so, Aj+2 ∈ var∗(A). It follows that Id∗(A) ⊆ Id∗(Aj+2) ∩ Id∗(J00) = Id∗(Aj+2 ⊕ J00).
Conversely, let f ∈ Id∗(Aj+2 ⊕ J00) be a multilinear polynomial of degree n.
Suppose n ≤ 2j + 2. Since f ∈ Id∗(Aj+2), then f must be a consequence of z1z2 ∈ Id∗(A). Hence

f ∈ Id∗(A).
Now let n > 2j + 2.
We can write f as

(6) f = δy1 · · · yn +
∑
t<j+1

or
s<j+1

∑
l,I,J

αl,I,Jyi1 · · · yitzlyj1 · · · yjs

+
∑
t<j+1
or
s<j

∑
r,P,Q

βr,P,Qyp1 · · · ypt [yr, ym]yq1 · · · yqs +
∑
i,R,U

γi,R,Uyr1 · · · yrn−j−2
[y1, yi]yu1

· · · yuj

+
∑
t≥j+1

and
s≥j+1

∑
l′,I′,J′

δl′,I′,J′yi′1 · · · yi′tzl′yj′1 · · · yj′s +
∑
t≥j+1
and
s≥j+1

∑
r′,P ′,Q′

εr′,P ′,Q′yp′1 · · · yp′t [yr′ , ym′ ]yq′1 · · · yq′s + g,

where g ∈ 〈z1z2〉T∗ and I = {i1, . . . , it}, J = {j1, . . . , js}, P = {p1, . . . , pt}, Q = {m, q1, . . . , qs} are such that
I ]J ]{l} = P ]Q]{r} = {1, . . . , n}, and i1 < · · · < it, j1 < · · · < js, p1 < . . . < pt, r > m < q1 < . . . < qs.
Also R = {r1, . . . , rn−j−2} and U = {u1, . . . , uj} are such that R ] U ] {i, 1} = {1, . . . , n} and r1 < . . . <
rn−j−2, u1 < . . . < uj . Also I ′ = {i′1, . . . , i′t}, J ′ = {j′1, . . . , j′s}, P ′ = {p′1, . . . , p′t}, Q′ = {m′, q′1, . . . , q′s} are
such that I ′ ] J ′ ] {l′} = P ′ ] Q′ ] {r′,m′} = {1, . . . , n}, and i′1 < · · · < i′t, j

′
1 < · · · < j′s, p

′
1 < . . . < p′t,

r′ > m′ < q′1 < . . . < q′s.
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Notice that g and∑
t≥j+1

and
s≥j+1

∑
l′,I′,J′

δl′,I′,J′yi′1 · · · yi′tzl′yj′1 · · · yj′s +
∑
t≥j+1
and
s≥j+1

∑
r′,P ′,Q′

εr′,P ′,Q′yp′1 · · · yp′t [yr′ , ym′ ]yq′1 · · · yq′s

are ∗-identities of Aj+2. Hence, since f ∈ Id∗(Aj+2) and the monomials appearing in the the first two rows
in (6) are linearly independent modulo Id∗(Aj+2) (see Lemma 1), then αl,I,J = βr,P,Q = γi,R,U = 0 for every
l, I, J, r, P,Q, i, R, U. Hence

f =
∑
t≥j+1

and
s≥j+1

∑
l′,I′,J′

δl′,I′,J′yi′1 · · · yi′tzl′yj′1 · · · yj′s +
∑
t≥j+1
and
s≥j+1

∑
r′,P ′,Q′

εr′,P ′,Q′yp′1 · · · yp′t [yr′ , ym′ ]yq′1 · · · yq′s + g.

Since f ∈ Id∗(J00), if we evaluate f into J00 we get a zero value. Since J10J
j+1
00 = 0 and J−11 = 0 it is

immediate to see that every evaluation of f into A gives a zero value. Hence f is a ∗-identity of A and
Id∗(Aj+2 ⊕ J00) ⊆ Id∗(A). So A ∼T∗ Aj+2 ⊕ J00 follows.

Suppose now thatJ−11 6= 0.
Let B = F + J10 + J10 + J00. By Remark 3, B is a subalgebra of A and, since J11(B) = 0, we can apply

the first part of the lemma to B and conclude that B ∼T∗ Aj+2 ⊕ J00.
Now let D = F + J11. By Lemma 7, either D ∼T∗ Nr or D ∼T∗ Ur or D ∼T∗ Nr ⊕ Ur, for some r ≥ 2.
We shall prove that A ∼T∗ D ⊕B and this will complete the proof.
Let f ∈ Id∗(A). Since B and D are subalgebras of A, f ∈ Id∗(D) ∩ Id∗(B) = Id∗(D ⊕B).
Conversely, let f ∈ Id∗(D ⊕B) be a multilinear polynomial of degree n.
As above we can write f as f = f1 + f2 + g1 + g2

where

f1 = δy1 · · · yn +
∑
t<j+1
or
s<j

∑
r,P,Q

βr,P,Qyp1 · · · ypt [yr, ym]yq1 · · · yqs

+
∑
i,R,U

γi,R,Uyr1 · · · yrn−j−2
[y1, yi]yu1

· · · yuj +
∑
t≥j+1
and
s≥j+1

∑
r′,P ′,Q′

εr′,P ′,Q′yp′1 · · · yp′t [yr′ , ym′ ]yq′1 · · · yq′s ,

f2 =
∑
t<j+1

or
s<j+1

∑
l,I,J

αl,I,Jyi1 · · · yitzlyj1 · · · yjs +
∑
t≥j+1

and
s≥j+1

∑
l′,I′,J′

δl′,I′,J′yi′1 · · · yi′tzl′yj′1 · · · yj′s

and g1, g2 ∈ 〈z1z2〉T∗ are polynomials in the only yis and in one z and n− 1 yis, respectively.
By the multihomogeneity of the T ∗-ideals we may assume that either f = f1 + g1 or f = f2 + g2.
We start by proving that f = f1 + g1 ∈ Id∗(A). Notice that f ∈ Id∗(Aj+2), since f ∈ Id∗(B) and

B ∼T∗ Aj+2 ⊕ J00. Also∑
t≥j+1
and
s≥j+1

∑
r′,P ′,Q′

εr′,P ′,Q′yp′1 · · · yp′t [yr′ , ym′ ]yq′1 · · · yq′s , g1 ∈ Id∗(Aj+2).

Hence, since the monomials y1 · · · yn and those ones appearing in the second and in the third sum of f1 are
linearly independent modulo Id∗(Aj+2) we must have δ = βr,P,Q = γi,R,U = 0 for all r, P,Q, i, R, U.

Hence

f =
∑
t≥j+1
and
s≥j+1

∑
r′,P ′,Q′

εr′,P ′,Q′yp′1 · · · yp′t [yr′ , ym′ ]yq′1 · · · yq′s + g1.

Since f ∈ Id∗(D ⊕ B), if we evaluate f into B or into D we get a zero value. Moreover, since J10J
j+2
00 =

Jj+2
00 J01 = J−11J10 = 0 it follows that every evaluation of f into A gives a zero value. Hence f is a ∗-identity

of A and we are done.
12



Similarly, if f = f2 + g2 we get that αl,I,J = 0 for all l, I, J. Hence

f =
∑
t≥j+1

and
s≥j+1

∑
l′,I′,J′

δl′,I′,J′yi′1 · · · yi′tzl′yj′1 · · · yj′s + g2,

and it easily follows that every evaluation of f into A gives a zero value. Hence f is a ∗-identity of A and
we are done. �

Now we are in a position to classify all the subvarieties of var∗(M).

Theorem 6. If A ∈ var∗(M) then A is T∗-equivalent to one of the following algebras:

M,N,Uk ⊕N,Nk ⊕N,Nk ⊕ Uk ⊕N,At ⊕N,Nk ⊕At ⊕N,Uk ⊕At ⊕N,Nk ⊕ Uk ⊕At ⊕N,
for some k, t ≥ 2, where N is a nilpotent ∗-algebra.

Proof. If A ∼T∗ M there is nothing to prove. Hence we may assume that A generates a proper subvariety
of M and so, since M generates a variety of almost polynomial growth, c∗n(A) is polynomially bounded. As
in the proof of Theorem 5, we may assume that

A = B1 ⊕ · · · ⊕Bm,
where B1, . . . , Bm are finite dimensional algebras with involution such that dimBi/J(Bi) ≤ 1. Now, if
dimBi/J(Bi) = 0, Bi is nilpotent. Suppose that i is such that dimBi/J(Bi) = 1. Then Bi = F +J(Bi) and
let J(Bi) = J11 + J10 + J01 + J00.

If J10 = J01 = 0, then by Lemma 7, A is T∗-equivalent to one of the following algebras: Uk ⊕N, Nk ⊕N,
Uk⊕Nk⊕N, where N is a nilpotent ∗-algebra, for some k ≥ 2. Otherwise, by Lemma 8 either A ∼T∗ Ak⊕N
or A ∼T∗ Nu ⊕Ak ⊕N or A ∼T∗ Uu ⊕Ak ⊕N or A ∼T∗ Nu ⊕ Uu ⊕Ak ⊕N, for some k, u ≥ 2, where N is
a nilpotent ∗-algebra.

Since A = B1 ⊕ · · · ⊕Bm, by putting together these results we get the desired conclusion. �

As a consequence of Theorems 4 and 5 we get that Uk, Nk and Ak generate the only minimal subvarieties
of the variety generated by M.

Corollary 1. A ∗-algebra A ∈ var∗(M) generates a minimal variety if and only if either A ∼T∗ Ur or
A ∼T∗ Nk or A ∼T∗ Ak, for some r > 2, k ≥ 2.

6. Classifying the subvarieties of var∗(F ⊕ F )

In this section we classify, up to T ∗-equivalence, all the ∗-algebras contained in the variety generated by
the commutative algebra F ⊕ F endowed with the exchange involution (a, b)∗ = (b, a).

Notice that since F ⊕ F is commutative, any antiautomorphism of F ⊕ F is an automorphism. So
D = F ⊕ F can be viewed as a superalgebra with grading (D(0), D(1)), where D(0) = D+ and D(1) = D−.

Hence, the classification of the ∗-algebras, up to T ∗ -equivalence, inside var∗(F ⊕ F ) is equivalent to the
classification of the superalgebras inside supervar(F ⊕ F ). Such a classification was given in [17, 19].

In what follows we present such results in the language of ∗-algebras for convenience of the reader.
We start by constructing, for any fixed k ≥ 1, ∗-algebras belonging to the variety generated by F ⊕ F

whose ∗-codimension sequence grows polynomially as nk.

For k ≥ 2, let Ik be the k × k g matrix and E1 =
∑k−1
i=1 ei,i+1.

We denote by

Ck = Ck(F ) = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F} ⊆ UTk,

the commutative subalgebra of UTk with involution given by

(αIk +
∑

1≤i<k

αiE
i
1)∗ = αIk +

∑
1≤i<k

(−1)iαiE
i
1.

We next state the following result characterizing the ∗-identities and the ∗-codimensions of Ck (see [17]).

Lemma 9. Let k ≥ 2. Then
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1) Id∗(Ck) = 〈[y1, y2], [y, z], [z1, z2], z1 · · · zk〉T∗ .
2) c∗n(Ck) =

∑k−1
j=0

(
n
j

)
≈ 1

(k−1)!n
k−1.

The following result classifies the subvarieties of the variety generated by F ⊕ F.

Theorem 7. [17, 19] Let A ∈ var∗(F ⊕ F ). Then either A ∼T∗ F ⊕ F or A ∼T∗ N or A ∼T∗ C ⊕ N or
A ∼T∗ Ck⊕N, for some k ≥ 2, where N is a nilpotent ∗-algebra and C is a commutative algebra with trivial
involution.

Notice that the previous theorem allows us to classify all ∗-codimension sequences of the ∗-algebras lying
in the variety generated by F ⊕ F.

Corollary 2. Let A ∈ var∗(F ⊕ F ) be such that var∗(A) $ var∗(F ⊕ F ). Then there exists n0 such that for

all n > n0 we must have either c∗n(A) = 0 or c∗n(A) =
∑k−1
j=0

(
n
j

)
, for some k ≥ 0.

As a consequence of the previous theorem, we can also classify all ∗-algebras generating minimal varieties
(see [17] ).

Corollary 3. A ∗-algebra A ∈ var∗(F ⊕F ) generates a minimal variety if and only if A ∼T∗ Ck, for some
k ≥ 2.
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