POLYNOMIAL GROWTH AND STAR-VARIETIES

DANIELA LA MATTINA AND FABRIZIO MARTINO

Abstract

Let \mathcal{V} be a variety of associative algebras with involution over a field F of characteristic zero and let $c_{n}^{*}(\mathcal{V}), n=1,2, \ldots$, be its $*$-codimension sequence. Such a sequence is polynomially bounded if and only if \mathcal{V} does not contain the commutative algebra $F \oplus F$, endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular matrices. Such algebras generate the only varieties of $*$-algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety is polynomially bounded. In this paper we completely classify all subvarieties of the *-varieties of almost polynomial growth by giving a complete list of finite dimensional $*$-algebras generating them.

1. Introduction

Let A be an associative algebra with involution (*-algebra) over a field F of characteristic zero and let $c_{n}^{*}(A), n=1,2, \ldots$, be its sequence of $*$-codimensions.

Recall that $c_{n}^{*}(A), n=1,2, \ldots$, is the dimension of the space of multilinear polynomials in $n *$-variables in the corresponding relatively free algebra with involution of countable rank. In case A satisfies a nontrivial identity, it was proved in [9] that, as in the ordinary case, $c_{n}^{*}(A)$ is exponentially bounded.

Given a variety of $*$-algebras \mathcal{V}, the growth of \mathcal{V} is the growth of the sequence of $*$-codimensions of any algebra A generating \mathcal{V}, i.e., $\mathcal{V}=\operatorname{var}^{*}(A)$.

In this paper we are interested in varieties of polynomial growth, i.e., varieties of $*$-algebras such that $c_{n}^{*}(\mathcal{V})=c_{n}^{*}(A)$ is polynomially bounded.

In such a case, if A is an algebra with 1 , in [21] it was proved that

$$
c_{n}^{*}(A)=q n^{k}+O\left(n^{k-1}\right)
$$

is a polynomial with rational coefficients. Moreover its leading term satisfies the inequalities

$$
\frac{1}{k!} \leq q \leq \sum_{i=0}^{k} 2^{k-i} \frac{(-1)^{i}}{i!}
$$

In case of polynomial growth, the following characterization was given in [8]: a variety \mathcal{V} has polynomial growth if and only if \mathcal{V} does not contain the commutative algebra $F \oplus F$, endowed with the exchange involution, and M, a suitable 4 -dimensional subalgebra of the algebra of 4×4 upper triangular matrices.

Hence $\operatorname{var}^{*}(F \oplus F)$ and $\operatorname{var}^{*}(M)$ are the only varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety is polynomially bounded.

From their description it follows that there exists no variety with intermediate growth of the $*$-codimensions between polynomial and exponential, i.e, either $c_{n}^{*}(\mathcal{V})$ is polynomially bounded or $c_{n}^{*}(\mathcal{V})$ grows exponentially. The above 2 algebras play the role of the infinite-dimensional Grassmann algebra and the algebra of 2×2 upper triangular matrices in the ordinary case ([12], [13]).

Recently, much interest was put into the study of varieties of polynomial growth (see for instance [3, 4, $5,6,15,16,14]$) and different characterizations were given.

In this paper we completely classify all subvarieties of the varieties of $*$-algebras of almost polynomial growth by giving a complete list of finite dimensional $*$-algebras generating them.

[^0]Moreover we classify all their minimal subvarieties of polynomial growth, i.e., varieties \mathcal{V} satisfying the property: $c_{n}^{*}(\mathcal{V}) \approx q n^{k}$ for some $k \geq 1, q>0$, and for any proper subvariety $\mathcal{U} \varsubsetneqq \mathcal{V}, c_{n}^{*}(\mathcal{U}) \approx q^{\prime} n^{t}$ with $t<k$.

2. On star-algebras with polynomial codimension growth

Throughout this paper F will denote a field of characteristic zero and A an associative F-algebra with involution $*$. Let us write $A=A^{+}+A^{-}$, where $A^{+}=\left\{a \in A \mid a^{*}=a\right\}$ and $A^{-}=\left\{a \in A \mid a^{*}=-a\right\}$ denote the sets of symmetric and skew elements of A, respectively. Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set and let $F\langle X, *\rangle=F\left\langle x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\rangle$ be the free associative algebra with involution on X over F. It is useful to regard to $F\langle X, *\rangle$ as generated by symmetric and skew variables: if for $i=1,2, \ldots$, we let $y_{i}=x_{i}+x_{i}^{*}$ and $z_{i}=x_{i}-x_{i}^{*}$, then $F\langle X, *\rangle=F\left\langle y_{1}, z_{1}, y_{2}, z_{2}, \ldots\right\rangle$. Recall that a polynomial $f\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m}\right) \in F\langle X, *\rangle$ is a $*$-polynomial identity of A (or simply a $*$-identity), and we write $f \equiv 0$, if $f\left(s_{1}, \ldots, s_{n}, k_{1}, \ldots, k_{m}\right)=0$ for all $s_{1}, \ldots, s_{n} \in A^{+}, k_{1}, \ldots, k_{m} \in A^{-}$.

We denote by $\operatorname{Id}^{*}(A)=\{f \in F\langle X, *\rangle \mid f \equiv 0$ on $A\}$ the T^{*}-ideal of $*$-identities of A, i.e., $\operatorname{Id}^{*}(A)$ is an ideal of $F\langle X, *\rangle$ invariant under all endomorphisms of the free algebra commuting with the involution $*$.

It is well known that in characteristic zero, every $*$-identity is equivalent to a system of multilinear *-identities. We denote by

$$
P_{n}^{*}=\operatorname{span}_{F}\left\{w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_{n}, \quad w_{i}=y_{i} \quad \text { or } \quad w_{i}=z_{i}, \quad i=1, \ldots, n\right\}
$$

the vector space of multilinear polynomials of degree n in the variables $y_{1}, z_{1}, \ldots, y_{n}, z_{n}$. Hence for every $i=1, \ldots, n$ either y_{i} or z_{i} appears in every monomial of P_{n}^{*} at degree 1 (but not both).

The study of $\operatorname{Id}^{*}(A)$ is equivalent to the study of $P_{n}^{*} \cap \operatorname{Id}^{*}(A)$ for all $n \geq 1$ and we denote by

$$
c_{n}^{*}(A)=\operatorname{dim}_{F} \frac{P_{n}^{*}}{P_{n}^{*} \cap \operatorname{Id}^{*}(A)}, \quad n \geq 1
$$

the n-th $*$-codimension of A.
If A is an algebra with 1 , by [2] $\mathrm{Id}^{*}(A)$ is completely determined by its multilinear proper polynomials. Recall that $f\left(y_{1}, z_{1}, \ldots, y_{n}, z_{n}\right) \in P_{n}^{*}$ is a proper polynomial if it is a linear combination of elements of the type

$$
z_{i_{1}} \cdots z_{i_{k}} w_{1} \cdots w_{m}
$$

where w_{1}, \ldots, w_{m} are left normed (long) Lie commutators in the y_{i} s and z_{i} s.
Let Γ_{n}^{*} denote the subspace of P_{n}^{*} of proper polynomials in $y_{1}, z_{1}, \ldots, y_{n}, z_{n}$ and $\Gamma_{0}^{*}=\operatorname{span}\{1\}$.
The sequence of proper $*$-codimensions is defined as

$$
\gamma_{n}^{*}(A)=\operatorname{dim} \frac{\Gamma_{n}^{*}}{\Gamma_{n}^{*} \cap \operatorname{Id}^{*}(A)}, n=0,1,2, \ldots
$$

For a unitary algebra A, the relation between ordinary $*$-codimensions and proper $*$-codimensions (see for instance [2]), is given by the following:

$$
\begin{equation*}
c_{n}^{*}(A)=\sum_{i=0}^{n}\binom{n}{i} \gamma_{i}^{*}(A), n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

One of the main tool in the study of the T^{*}-ideals is provided by the representation theory of the hyperoctahedral group \mathbb{Z}_{2} \ S_{n}.

Recall that the group $\mathbb{Z}_{2} \backslash S_{n}$ acts on the space P_{n}^{*} as follows: for $h=\left(a_{1}, \ldots, a_{n} ; \sigma\right) \in \mathbb{Z}_{2} \backslash S_{n}, h y_{i}=y_{\sigma(i)}$ and $h z_{i}=z_{\sigma(i)}^{a_{\sigma(i)}}=z_{\sigma(i)}$ or $-z_{\sigma(i)}$ according as $a_{\sigma(i)}=1$ or -1 , respectively.

Since $P_{n}^{*} \cap \mathrm{Id}^{*}(A)$ is invariant under this action, the space $\frac{P_{n}^{*}}{P_{n}^{*} \cap I d^{*}(A)}$ has a structure of left $\mathbb{Z}_{2} \backslash S_{n}$ module and its character, denoted by $\chi_{n}^{*}(A)$, is called the n-th $*$-cocharacter of A. By complete reducibility we can write

$$
\chi_{n}^{*}(A)=\sum_{r=0}^{n} \sum_{\substack{\lambda \vdash r \\ \mu \vdash n-r}} m_{\lambda, \mu} \chi_{\lambda, \mu}
$$

where λ and μ are partitions of r and $n-r$ respectively, $\chi_{\lambda, \mu}$ is the irreducible \mathbb{Z}_{2} 〕 S_{n}-character associated to the pair (λ, μ), and $m_{\lambda, \mu} \geq 0$ is the corresponding multiplicity.

Similarly $\frac{\Gamma_{n}^{*}}{\Gamma_{n}^{*} \cap I d^{*}(A)}$ is a $\mathbb{Z}_{2} \backslash S_{n}$-module under the induced action and we denote by $\psi_{n}^{*}(A)$ its character which is called the n-th proper $*$-cocharacter of A.

By complete reducibility it decomposes into irreducibles as follows

$$
\psi_{n}^{*}(A)=\sum_{r=0}^{n} \sum_{\substack{\lambda \vdash r \\ \mu \vdash n-r}} m_{\lambda, \mu}^{\prime} \chi_{\lambda, \mu}
$$

where $\chi_{\lambda, \mu}$ is the irreducible \mathbb{Z}_{2} \ S_{n}-character associated to the pair of partitions (λ, μ) and $m_{\lambda, \mu}^{\prime}$ is the corresponding multiplicity.

We are going to prove that, in case A generates a variety of polynomial growth, then A satisfies the same $*$-identities as a finite dimensional $*$-algebra.

We start with the following.
Theorem 1. Let \mathcal{V} be a variety of $*$-algebras. If $c_{n}^{*}(\mathcal{V}) \leq \alpha n^{t}$, for some constants α, t then $\mathcal{V}=\operatorname{var}^{*}(A)$, for some finitely generated $*$-algebra A.

Proof. Since $c_{n}^{*}(\mathcal{V}) \leq \alpha n^{t}$, for some α, t, then by [7, Theorem 3] there exists a constant d such that

$$
\chi_{n}^{*}(\mathcal{V})=\sum_{|\lambda|+|\mu|=n} m_{\lambda, \mu} \chi_{\lambda, \mu}
$$

and $m_{\lambda, \mu}=0$ whenever either $|\lambda|-\lambda_{1}>d-1$ or $|\mu|>d$. This also says that $m_{\lambda, \mu}=0$ whenever either $h(\lambda)>d$ or $h(\mu)>d$, where $h(\lambda)$ and $h(\mu)$ denote the height of λ and μ, respectively. Hence, as in the proof of Theorem 11.4.3 in [11], it is proved that $\mathcal{V}=\operatorname{var}^{*}(A)$, where A is the relatively free algebra of \mathcal{V} generated by d symmetric and d skew variables.

In order to characterize the varieties of polynomial growth we need to apply the following result.
Theorem 2. [23, Theorem 1]. If A is a PI-finitely generated associative algebra with involution over a field F of characteristic zero then A satisfies the the same *-identities as a finite dimensional associative algebra over F.

Given two $*$-algebras A and B, we say that A is T^{*}-equivalent to B, and we write $A \sim_{T^{*}} B$, if $\operatorname{Id}^{*}(A)=$ $\mathrm{Id}^{*}(B)$.

Theorem 3. Let A be an algebra with involution over a field of characteristic zero and suppose that $c_{n}^{*}(A)$, $n=1,2, \ldots$, is polynomially bounded. Then A is T^{*}-equivalent to a finite direct sum of algebras $B_{1} \oplus \cdots \oplus B_{m}$, where B_{1}, \ldots, B_{m} are finite dimensional algebras with involution over F and $\operatorname{dim} B_{i} / J\left(B_{i}\right) \leq 1$, for all $i=1, \ldots, m$.

Proof. By Theorems 1 and 2 , since $c_{n}^{*}(A) \leq \alpha n^{t}$ for some α, t, we may assume that A is a finite dimensional algebra. Hence the result follows by applying the Proposition 7 in [20].

Now let us focus our attention to the algebra $U T_{n}(F)$ of $n \times n$ upper triangular matrices over the field F. One can define an involution on $U T_{n}(F)$, that we shall denote by $*$, in the following way: if $a \in U T_{n}(F)$, then $a^{*}=b a^{t} b^{-1}$, where a^{t} denotes the usual transpose and b is the following permutation matrix:

$$
b=\left(\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 1 & 0 \\
\vdots & \ddots & & \vdots \\
1 & \ldots & 0 & 0
\end{array}\right)
$$

Clearly, a^{*} is the matrix obtained from a by reflecting a along its secondary diagonal. Hence, if $a=\left(a_{i j}\right)$ then $a^{*}=\left(a_{i j}^{*}\right)$ where $a_{i j}^{*}=a_{n+1-j, n+1-i}$. This involution on $U T_{n}(F)$ is called the canonical reflection involution.

Given polynomials $f_{1}, \ldots, f_{n} \in F\langle X, *\rangle$ let us denote by $\left\langle f_{1}, \ldots, f_{n}\right\rangle_{T^{*}}$ the T^{*}-ideal generated by f_{1}, \ldots, f_{n}.

The purpuse of this paper is to classify the subvarieties of the varieties of $*$-algebras of almost polynomial growth. Such varieties are generated by the following two algebras [7]:

1) $F \oplus F$, the two-dimensional commutative algebra, endowed with the exchange involution $(a, b)^{*}=$ (b, a);
2) $M=\left\{\left.\left(\begin{array}{llll}u & r & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & v \\ 0 & 0 & 0 & u\end{array}\right) \right\rvert\, u, r, s, v \in F\right\}$, the subalgebra of $U T_{4}(F)$ endowed with the reflection involution.
Such algebras were extensively studied in [7] and [22]; there it was proved that $\operatorname{Id}^{*}(F \oplus F)=\left\langle\left[y_{1}, y_{2}\right],[y, z],\left[z_{1}, z_{2}\right]\right\rangle_{T^{*}}$ and $\mathrm{Id}^{*}(M)=\left\langle z_{1} z_{2}\right\rangle_{T^{*}}$.

3. Constructing $*$-Algebras in $\operatorname{VAR}^{*}(M)$

The purpose of this section is to construct finite dimensional $*$-algebras belonging to the variety generated by M whose $*$-codimension sequence grows polynomially.

For $k \geq 2$, let

$$
A_{k}=\operatorname{span}_{F}\left\{e_{11}+e_{2 k, 2 k}, E, \ldots, E^{k-2}, e_{12}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-1,2 k}\right\}
$$

be the subalgebra of $U T_{2 k}(F)$ equipped with the reflection involution, where $E=\sum_{i=2}^{k-1} e_{i, i+1}+e_{2 k-i, 2 k-i+1}$ and the $e_{i j}$ s denote the usual matrix units.

The following result characterizes the $*$-identities and the $*$-codimensions of A_{k}.
Lemma 1. Let $k \geq 2$. Then:

1) $I d^{*}\left(A_{k}\right)=\left\langle y_{1} \cdots y_{k-2} s t_{3}\left(y_{k-1}, y_{k}, y_{k+1}\right) y_{k+2} \cdots y_{2 k-1}, y_{1} \cdots y_{k-1} z y_{k} \cdots y_{2 k-2}, z_{1} z_{2}\right\rangle_{T^{*}}$, where $s t_{3}\left(y_{k-1}, y_{k}, y_{k+1}\right)=$ $\sum_{\sigma \in S_{3}} \operatorname{sgn}(\sigma) y_{\sigma(k-1)} y_{\sigma(k)} y_{\sigma(k+1)}$ denotes the standard polynomial of degree 3 .
2) For $n<2 k-1, c_{n}^{*}\left(A_{k}\right)=1+\sum_{\substack{t<k-1 \\ o r \\ n-t<k}}\binom{n}{t}(n-t)+\sum_{\substack{t<k-1 \\ o r \\ n-t<k}}\binom{n}{t}(n-t-1)$.

$$
\text { For } n \geq 2 k-1, c_{n}^{*}\left(A_{k}\right)=1+\sum_{\substack{t<k-1 \\ o r \\ n-t<k}}\binom{n}{t}(n-t)+\sum_{\substack{t<k-1 \\ o r \\ n-t<k-1}}\binom{n}{t}(n-t-1)+\binom{n-1}{k-2}(n-k+1) \approx
$$ $q n^{k-1}$, for some $q>0$.

Proof. Write $I=\left\langle y_{1} \cdot \ldots \cdot y_{k-2} s t_{3}\left(y_{k-1}, y_{k}, y_{k+1}\right) y_{k+2} \cdot \ldots \cdot y_{2 k-1}, y_{1} \cdots y_{k-1} z y_{k} \cdots y_{2 k-2}, z_{1} z_{2}\right\rangle_{T^{*}}$. It is clear that $I \subseteq \operatorname{Id}^{*}\left(A_{k}\right)$. In order to prove the opposite inclusion, first we find a set of generators of P_{n}^{*}, modulo $P_{n}^{*} \cap I$, for every $n \geq 1$.

Let $f \in P_{n}^{*}$ be a multilinear polynomial of degree n. By the Poincaré-Birkhoff-Witt theorem f can be written as a linear combination of products of the type

$$
y_{j_{1}} \cdots y_{j_{r}} z_{k_{1}} \cdots z_{k_{t}} w_{1} \cdots w_{m}
$$

where w_{1}, \ldots, w_{m} are left normed commutators in the y_{i} s and $z_{i} \mathrm{~s}, j_{1} \leq \cdots \leq j_{r}$ and $k_{1} \leq \cdots \leq k_{t}$.
Because of $z_{1} z_{2} \in I$ ([20, Remark 8]), modulo I, f is a linear combination of the polynomials

$$
\begin{equation*}
y_{1} \cdots y_{n}, y_{i_{1}} \cdots y_{i_{t^{\prime}}} z_{l} y_{j_{1}} \cdots y_{j_{s^{\prime}}}, y_{p_{1}} \cdots y_{p_{t}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{s}} \tag{2}
\end{equation*}
$$

where $i_{1}<\ldots<i_{t^{\prime}}, j_{1}<\ldots<j_{s^{\prime}}, p_{1}<\ldots<p_{t}, r>m<q_{1}<\ldots<q_{s}$.
Notice that in case $n<2 k-1$ we have $t^{\prime}<k-1$ or $s^{\prime}<k-1, t<k-1$ or $s<k-1$. That is also true for $n \geq 2 k-1$, because of $y_{1} \cdots y_{k-1} z y_{k} \cdots y_{2 k-2} \in I$. Moreover, always in case $n \geq 2 k-1$, we can write

$$
y_{p_{1}} \cdots y_{p_{n-k}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{k-2}}
$$

modulo $\left\langle y_{1} \cdots y_{k-2} s t_{3}\left(y_{k-1}, y_{k}, y_{k+1}\right) y_{k+2} \cdots y_{2 k-1}\right\rangle_{T^{*}}$, as a linear combination of polynomials of the type

$$
\begin{equation*}
y_{r_{1}} \cdots y_{r_{n-k}}\left[y_{1}, y_{i}\right] y_{u_{1}} \cdots y_{u_{k-2}} \tag{3}
\end{equation*}
$$

with $r_{1}<\ldots<r_{n-k}, u_{1}<\ldots<u_{k-2}$.

It follows that the space P_{n}^{*} is generated, modulo $P_{n}^{*} \cap I$, by the polynomials in (2), in case $n<2 k-1$ and, by the polynomials

$$
\begin{equation*}
y_{1} \cdots y_{n}, y_{i_{1}} \cdots y_{i_{t^{\prime}}} z_{l} y_{j_{1}} \cdots y_{j_{s^{\prime}}}, y_{p_{1}} \cdots y_{p_{t}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{s}}, y_{r_{1}} \cdots y_{r_{n-k}}\left[y_{1}, y_{i}\right] y_{u_{1}} \cdots y_{u_{k-2}} \tag{4}
\end{equation*}
$$

where $i_{1}<\ldots<i_{t^{\prime}}, j_{1}<\ldots<j_{s^{\prime}}, t^{\prime}<k-1$ or $s^{\prime}<k-1, p_{1}<\ldots<p_{t}, r>m<q_{1}<\ldots<q_{s} t<k-1$ or $s<k-2, r_{1}<\ldots<r_{n-k}, u_{1}<\ldots<u_{k-2}$, in case $n \geq 2 k-1$.

We next show that the above polynomials are linearly independent modulo $\operatorname{Id}^{*}\left(A_{k}\right)$.
We assume that $n \geq 2 k-1$ (the case $n<2 k-1$ is proved in a similar way). To this end, let $f \in \operatorname{Id}^{*}\left(A_{k}\right)$ be a linear combination of the above polynomials and write

$$
\begin{aligned}
f & =\delta y_{1} \cdots y_{n}+\sum_{\substack{t^{\prime}<k-1 \\
\text { or } \\
s^{\prime}<k-1}} \sum_{l, I, J} \alpha_{l, I, J} y_{i_{1}} \cdots y_{i_{t^{\prime}}} z_{l} y_{j_{1}} \cdots y_{j_{s^{\prime}}} \\
& +\sum_{\substack{t<k-1 \\
o r-2 \\
s<k-2,2}} \sum_{r, P, Q} \beta_{r, P, Q} y_{p_{1}} \cdots y_{p_{t}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{s}} \\
& +\sum_{i, R, U} \gamma_{i, R, U} y_{r_{1}} \cdots y_{r_{n-k}}\left[y_{1}, y_{i}\right] y_{u_{1}} \cdots y_{u_{k-2}}
\end{aligned}
$$

where $t^{\prime}+s^{\prime}=n-1, t+s=n-2$. Moreover, for any fixed t, s, t^{\prime} and $s^{\prime}, i_{1}<\ldots<i_{t^{\prime}}, j_{1}<\ldots<j_{s^{\prime}}$, $p_{1}<\ldots<p_{t}, m<q_{1}<\ldots<q_{s}, r_{1}<\ldots<r_{n-k}, u_{1}<\ldots<u_{k-2}$ and $I=\left\{i_{1}, \ldots, i_{t^{\prime}}\right\}, J=\left\{j_{1}, \ldots, j_{s^{\prime}}\right\}$, $P=\left\{p_{1}, \ldots, p_{t}\right\}, Q=\left\{q_{1}, \ldots, q_{s}\right\}, R=\left\{r_{1}, \ldots, r_{n-k}\right\}$ and $U=\left\{u_{1}, \ldots, u_{k-2}\right\}$.

First suppose that $\delta \neq 0$, then by making the evaluation $y_{1}=\ldots=y_{n}=e_{11}+e_{2 k, 2 k}$ and $z_{l}=0$ for all $l=1, \ldots, n$, one gets $\delta\left(e_{11}+e_{2 k, 2 k}\right)=0$ and so $\delta=0$, a contradiction.
Suppose that there exists $\beta_{r, P, Q} \neq 0$ for some $t<k-1, r, P$ and Q, then by making the evaluation $y_{p_{1}}=\ldots=y_{p_{t}}=E, y_{r}=e_{12}+e_{2 k-1,2 k}, y_{m}=y_{q_{1}}=\ldots=y_{q_{s}}=e_{11}+e_{2 k, 2 k}$ and $z_{l}=0$ for all $l=1, \ldots, n$, one gets $\beta_{r, P, Q} e_{2 k-t-1,2 k}-\beta_{r, Q, P} e_{1,2+t}=0$. Thus $\beta_{r, P, Q}=\beta_{r, Q, P}=0$, a contradiction. Suppose now $\beta_{r, P, Q} \neq 0$ for some $t \geq k+1, r, P$ and Q. By making the evaluation $y_{p_{1}}=\ldots=y_{p_{t}}=e_{11}+e_{2 k, 2 k}$, $y_{r}=e_{12}+e_{2 k-1,2 k}, y_{m}=y_{q_{1}}=\ldots=y_{q_{s}}=E$ and $z_{l}=0$ for all $l=1, \ldots, n$, one gets $\beta_{r, P, Q}=\beta_{r, Q, P}=0$ as before.

Suppose now $\gamma_{i, R, U} \neq 0$ for some R and U. The evaluation $y_{1}=y_{r_{1}}=\ldots=y_{r_{n-k}}=e_{11}+e_{2 k, 2 k}$, $y_{i}=e_{12}+e_{2 k-1,2 k}, y_{u_{1}}=\ldots=y_{u_{k-2}}=E$ and $z_{l}=0$ for all $l=1, \ldots, n$ gives $\gamma_{i, R, U}=0$, a contradiction.

Let now $\alpha_{l, I, J} \neq 0$ for some $t^{\prime}<k-1, l, I$ and J. By making the evaluation $z_{l}=e_{12}-e_{2 k-1,2 k}$, $y_{i_{1}}=\ldots=y_{i_{t^{\prime}}}=E$ and $y_{j_{1}}=\ldots=y_{j_{s^{\prime}}}=e_{11}+e_{2 k, 2 k}$ one gets $-\alpha_{l, I, J} e_{2 k-t^{\prime}-1}+\alpha_{l, J, I} e_{1,2+t^{\prime}}=0$, thus $\alpha_{l, I, J}=\alpha_{l, J, I}=0$, a contradiction. Similarly, if $0 \leq s^{\prime}<k-1$, let $\alpha_{l, I, J} \neq 0$ for some $t^{\prime} \geq k-1 l, I$ and J. Then the evaluation $z_{l}=e_{12}-e_{2 k-1,2 k}, y_{i_{1}}=\ldots=y_{i_{t^{\prime}}}=e_{11}+e_{2 k, 2 k}$ and $y_{j_{1}}=\ldots=y_{j_{s^{\prime}}}=E$ gives $\alpha_{l, I, J}=0$, a contradiction.

Therefore the polynomials in (4) are linearly independent modulo $P_{n}^{*} \cap \operatorname{Id}^{*}\left(A_{k}\right)$ and, since $P_{n}^{*} \cap \operatorname{Id}^{*}\left(A_{k}\right) \supseteq$ $P_{n}^{*} \cap I$, the form a basis of $P_{n}^{*}\left(\bmod P_{n}^{*} \cap \operatorname{Id}^{*}\left(A_{k}\right)\right)$ and $\operatorname{Id}^{*}\left(A_{k}\right)=I$.

Thus, by counting we obtain

$$
c_{n}^{*}\left(A_{k}\right)=1+\sum_{\substack{t<k-1 \\ \text { or } \\ n-t<k}}\binom{n}{t}(n-t)+\sum_{\substack{t<k-1 \\ \text { or } \\ n-t<k-1}}\binom{n}{t}(n-t-1)+\binom{n-1}{k-2}(n-k+1) \approx q n^{k-1}
$$

for some $q>0$ and we are done.
In case $n<2 k-1, c_{n}^{*}\left(A_{k}\right)=1+\sum_{\substack{t<k-1 \\ \text { or } \\ n-t<k}}\binom{n}{t}(n-t)+\sum_{\substack{t<k-1 \\ \text { or } \\ n-t<k}}\binom{n}{t}(n-t-1)$.

Next we construct, for any fixed $k \geq 2$, two $*$-algebras with unity in the variety generated by M whose codimension sequences grow as n^{k-1}.

For any $k \geq 2$, let

$$
N_{k}=\operatorname{span}_{F}\left\{I, E, \ldots, E^{k-2}, e_{12}-e_{2 k-1,2 k}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-2,2 k}\right\}
$$

be the subalgebra of $U T_{2 k}(F)$ equipped with the reflection involution, where I denotes the $2 k \times 2 k$ identity matrix and $E=\sum_{i=2}^{k-1} e_{i, i+1}+e_{2 k-i, 2 k-i+1}$.

Lemma 2. The T^{*}-ideal $I d^{*}\left(N_{k}\right)$ is generated by the polynomials $\left[y_{1}, y_{2}\right],[y, z], z_{1} z_{2}$, in case $k=2$ and by $\left[y_{1}, \ldots, y_{k-1}\right], z_{1} z_{2}$, in case $k \geq 3$.

Moreover

$$
c_{n}^{*}\left(N_{k}\right)=1+\sum_{i=1}^{k-2}\binom{n}{i}(2 i-1)+\binom{n}{k-1}(k-1) \approx q n^{k-1}, \text { for some } q>0 .
$$

Proof. If $k=2$ then clearly $\left\langle\left[y_{1}, y_{2}\right],[y, z], z_{1} z_{2}\right\rangle \subseteq \operatorname{Id}^{*}\left(N_{2}\right)$. The opposite inclusion is a direct consequence of [20, Lemma 10].
Let now $k \geq 3$ and let $I=\left\langle\left[y_{1}, \ldots, y_{k-1}\right], z_{1} z_{2}\right\rangle_{T^{*}}$. It is easily proved that $I \subseteq \operatorname{Id}^{*}\left(N_{k}\right)$.
Let now f be a $*$-identity of N_{k}. We may clearly assume that f is multilinear, and since N_{k} is an algebra with 1 we may take f proper. After reducing the polynomial f modulo the polynomials in I we obtain that f is the zero polynomial if $\operatorname{deg} f \geq k$ and f is a linear combination of commutators

$$
\left[z_{i}, y_{i_{1}}, \ldots, y_{i_{k-2}}\right], i_{1}<\ldots<i_{k-2}
$$

in case $\operatorname{deg} f=k-1$ and is a linear combination of commutators

$$
\left[z_{i}, y_{i_{1}}, \ldots, y_{i_{s-1}}\right],\left[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{s}}\right], i_{1}<\ldots<i_{s-1}, j_{1}>j_{2}<\ldots<j_{s}
$$

in case $\operatorname{deg} f<k-1$. Hence

$$
f=\sum_{i=1}^{s} \alpha_{i}\left[z_{i}, y_{i_{1}}, \ldots, y_{i_{s-1}}\right]+\sum_{j_{1}=2}^{s} \beta_{j_{1}}\left[y_{j_{1}}, \ldots, y_{j_{s}}\right], \text { for some } 1<s \leq k-1
$$

Suppose that there exists j_{1} such that $\beta_{j_{1}} \neq 0$. By making the evaluation $y_{j_{1}}=e_{13}+e_{2 k-2,2 k}, y_{j_{2}}=$ $\ldots=y_{j_{s}}=E$ and $z_{i}=0$ for all $i=1, \ldots, s$, we get $\beta_{j_{1}}=0$, a contradiction. So $\beta_{j_{1}}=0$ for all $j_{1}=2, \ldots, s$. Now suppose that there exists i such that $\alpha_{i} \neq 0$. By making the evaluation $z_{i}=e_{12}-e_{2 k-1,2 k}, z_{j}=0$ for all $j \neq i$ and $y_{i_{1}}=\ldots=y_{i_{s-1}}=E$ we get $\alpha_{i}=0$, a contradiction. Thus $\alpha_{i}=0$ for all $i=1, \ldots, s$. This says that $f \in I$, and so, $\operatorname{Id}^{*}\left(N_{k}\right) \subseteq I$.

The arguments above also prove that

$$
\gamma_{s}^{*}\left(N_{k}\right)= \begin{cases}2 s-1 & \text { if } s<k-1 \\ s & \text { if } s=k-1 \\ 0 & \text { if } s \geq k\end{cases}
$$

Hence, by (1) we obtain that

$$
c_{n}^{*}\left(N_{k}\right)=1+\sum_{i=1}^{k-2}\binom{n}{i}(2 i-1)+\binom{n}{k-1}(k-1) \approx q n^{k-1}, \text { for some } q>0
$$

Let now, for any fixed $k \geq 2$,

$$
U_{k}=\operatorname{span}_{F}\left\{I, E, \ldots, E^{k-2}, e_{12}+e_{2 k-1,2 k}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-2,2 k}\right\}
$$

be the subalgebra of $U T_{2 k}$ equipped with the reflection involution.
The following lemma holds and it can be proved in a similar way as the previous lemma.
Lemma 3. The T^{*}-ideal $I d^{*}\left(U_{k}\right)$ is generated by the polynomials $\left[y_{1}, y_{2}\right], z_{1}$ in case $k=2$ and by $\left[z, y_{1}, \ldots, y_{k-2}\right], z_{1} z_{2}$ in case $k \geq 3$. Moreover

$$
c_{n}^{*}\left(U_{2}\right)=1 \text { and } c_{n}^{*}\left(U_{k}\right)=1+\sum_{i=1}^{k-2}\binom{n}{i}(2 i-1)+\binom{n}{k-1}(k-2) \approx q n^{k-1}, \text { for some } q>0, \text { for } k \geq 3
$$

Remark 1. Notice that $U_{2} \sim_{T^{*}} F$ is a commutative $*$-algebra with trivial involution.
Finally we give a description of the $*$-identities of the direct sum among U_{k} and N_{k}.
Here we remark that if $t \neq k$ than $U_{t} \oplus N_{k} \sim_{T^{*}} U_{t}$ if $t>k$ and $U_{t} \oplus N_{k} \sim_{T^{*}} N_{k}$ if $t<k$. Moreover, if $k=t=2$, then $N_{2} \oplus U_{2} \sim_{T^{*}} N_{2}$.
Lemma 4. If $k \geq 3$ then
(1) $I d^{*}\left(N_{k} \oplus U_{k}\right)=\left\langle\left[y_{1}, \ldots, y_{k}\right],\left[z, y_{1}, \ldots, y_{k-1}\right], z_{1} z_{2}\right\rangle_{T^{*}}$
(2) $c_{n}^{*}\left(N_{k} \oplus U_{k}\right)=1+\sum_{i=1}^{k-1}\binom{n}{i}(2 i-1) \approx q n^{k-1}$, for some $q>0$.

Proof. Let $I=\left\langle\left[y_{1}, \ldots, y_{k}\right],\left[z, y_{1}, \ldots, y_{k-1}\right], z_{1} z_{2}\right\rangle_{T^{*}}$. It is clear that $I \subseteq \operatorname{Id}^{*}\left(N_{k} \oplus U_{k}\right)$. Now, if $f \in$ $\mathrm{Id}^{*}\left(U_{k} \oplus N_{k}\right)$, as in the proof of Lemma 2, we get that f can be written as

$$
f=\sum_{i=1}^{s} \alpha_{i}\left[z_{i}, y_{i_{1}}, \ldots, y_{i_{s-1}}\right]+\sum_{j_{1}=2}^{s} \beta_{j_{1}}\left[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{s}}\right]
$$

where $s<k$.
Suppose that there exists j_{1} such that $\beta_{j_{1}} \neq 0$. By making the evaluation $y_{j_{1}}=\left(0, e_{12}+e_{2 k-1,2 k}\right)$, $y_{j_{2}}=\ldots=y_{j_{s}}=(0, E)$ and $z_{i}=0$ for all $i=1, \ldots, s$, we get $\beta_{j_{1}}=0$, a contradiction. So $\beta_{j_{1}}=0$ for all $j_{1}=2, \ldots, s$.
Now suppose that there exists i such that $\alpha_{i} \neq 0$. By making the evaluation $z_{i}=\left(e_{12}-e_{2 k-1,2 k}, 0\right), z_{j}=0$ for all $j \neq i$ and $y_{j_{1}}=\ldots=y_{j_{s-1}}=(E, 0)$ we get $\alpha_{i}=0$, a contradiction. Thus $\alpha_{i}=0$ for all $i=1, \ldots, s$. This says that $\operatorname{Id}^{*}\left(N_{k} \oplus U_{k}\right) \subseteq I$ and also

$$
\gamma_{s}^{*}\left(N_{k} \oplus U_{k}\right)= \begin{cases}2 s-1 & \text { if } s \leq k-1 \\ 0 & \text { if } s \geq k\end{cases}
$$

Hence

$$
c_{n}^{*}\left(N_{k} \oplus U_{k}\right)=1+\sum_{i=1}^{k-1}\binom{n}{i}(2 i-1) \approx q n^{k-1}, \text { for some } q>0
$$

4. On minimal $*$-Varieties in $\operatorname{VAR}^{*}(M)$

In this section we shall prove that A_{k}, N_{k} and U_{k} generate minimal varieties of polynomial growth. We start with the definition of minimal variety.
Definition 1. A variety \mathcal{V} of $*$-algebras is minimal of polynomial growth if $c_{n}^{*}(\mathcal{V}) \approx q n^{k}$ for some $k \geq 1$, $q>0$, and for any proper subvariety $\mathcal{U} \varsubsetneqq \mathcal{V}$ we have that $c_{n}^{*}(\mathcal{U}) \approx q^{\prime} n^{t}$ with $t<k$.

We recall that if $A=B+J$ is a finite dimensional $*$-algebra over F, where B is a semisimple $*$-subalgebra and $\mathrm{J}=\mathrm{J}(\mathrm{A})$ is its Jacobson radical, then J can be decomposed into the direct sum of B-bimodules

$$
J=J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}
$$

where for $i \in\{0,1\}, J_{i k}$ is a left faithful module or a 0 -left module according as $i=1$ or $i=0$, respectively. Similarly, $J_{i k}$ is a right faithful module or a 0 -right module according as $k=1$ or $k=0$, respectively. Moreover, for $i, k, l, m \in\{0,1\}, J_{i k} J_{l m} \subseteq \delta_{k, l} J_{i m}$ where $\delta_{k, l}$ is the Kronecker delta and $J_{11}=B N$ for some nilpotent subalgebra N of A commuting with B. For a proof of this result see [10, Lemma 2].
Remark 2. Let $A=F+J$ be $a *$-algebra with $J=J_{00}+J_{01}+J_{10}+J_{11}$. If A satisfies the ordinary identity $\left[x_{1}, \ldots, x_{t}\right]$, for some $t \geq 2$, then $J_{10}=J_{01}=0$.
Proof. The proof is obvious since $J_{10}=[J_{10}, \underbrace{F, \ldots, F}_{t-1}]$ and $J_{01}=[J_{01}, \underbrace{F, \ldots, F}_{t-1}]$.
Theorem 4. For any $k \geq 2$ and $t>2, N_{k}$ and U_{t} generate minimal varieties.

Proof. We shall prove the statement for N_{k}. In a similar way it is possible to prove the statement also for U_{t}. If $k=2$, the result follows from [20, Lemma 28].

Now assume that $k \geq 3$. Suppose that the algebra $A \in \operatorname{var}^{*}\left(N_{k}\right)$ generates a subvariety of $\operatorname{var}^{*}\left(N_{k}\right)$ and $c_{n}^{*}(A) \approx q n^{k-1}$, for some $q>0$. We shall prove that $A \sim_{T^{*}} N_{k}$ and this will complete the proof. Since $c_{n}^{*}(A)$ is polynomially bounded, by Theorem 3 we may assume that

$$
A=B_{1} \oplus \ldots \oplus B_{m}
$$

where B_{1}, \ldots, B_{m} are finite dimensional $*$-algebras such that $\operatorname{dim}_{F} \frac{B_{i}}{J\left(B_{i}\right)} \leq 1$ for all $i=1, \ldots, m$. This implies that either $B_{i} \cong F+J\left(B_{i}\right)$ or $B_{i}=J\left(B_{i}\right)$ is a nilpotent algebra. Since

$$
c_{n}^{*}(A) \leq c_{n}^{*}\left(B_{1}\right)+\ldots+c_{n}^{*}\left(B_{m}\right)
$$

then there exists B_{i} such that $c_{n}^{*}\left(B_{i}\right) \approx b n^{k-1}$, for some $b>0$. Hence

$$
\operatorname{var}^{*}\left(N_{k}\right) \supseteq \operatorname{var}^{*}(A) \supseteq \operatorname{var}^{*}\left(F+J\left(B_{i}\right)\right) \supseteq \operatorname{var}^{*}\left(F+J_{11}\left(B_{i}\right)\right)
$$

and $c_{n}^{*}\left(F+J\left(B_{i}\right)\right) \approx b n^{k-1}$, for some $b>0$. Moreover, by the previous remark, since N_{k}, and so $F+J\left(B_{i}\right)$, satisfies the ordinary identity $\left[x_{1}, \ldots, x_{k}\right]$, we get that $J_{01}\left(B_{i}\right)=J_{10}\left(B_{i}\right)=0$. Hence $F+J\left(B_{i}\right)=(F+$ $\left.J_{11}\left(B_{i}\right)\right) \oplus J_{00}\left(B_{i}\right)$ and $c_{n}^{*}\left(F+J\left(B_{i}\right)\right)=c_{n}^{*}\left(F+J_{11}\left(B_{i}\right)\right)$ for n large enough. Hence, in order to prove $A \sim_{T^{*}} N_{k}$, it is enough to show that $F+J_{11}\left(B_{i}\right) \sim_{T^{*}} N_{k}$. Thus, without loss of generality we may assume that A is a unitary algebra.
Now since $c_{n}^{*}(A) \approx q n^{k-1}$ then

$$
c_{n}^{*}(A)=\sum_{i=0}^{k-1}\binom{n}{i} \gamma_{i}^{*}(A)
$$

and, by [21, Lemma 2.2], $\gamma_{i}^{*}(A) \neq 0$ for all $0 \leq i \leq k-1$.
Recall that since $\operatorname{Id}^{*}(A) \supseteq \operatorname{Id}^{*}\left(N_{k}\right)$, then $\frac{\Gamma_{i}^{*}}{\left(\Gamma_{i}^{*} \cap \mathrm{Id}^{*}(A)\right.}$ is isomorphic to a quotient module of $\frac{\Gamma_{i}^{*}}{\left(\Gamma_{i}^{*} \cap \mathrm{Id}^{*}\left(N_{k}\right)\right)}$. Hence, if $\psi_{i}^{*}(A)=\sum_{|\lambda|+|\mu|=i} m_{\lambda, \mu} \chi_{\lambda, \mu}$ and $\psi_{i}^{*}\left(N_{k}\right)=\sum_{|\lambda|+|\mu|=i} m_{\lambda, \mu}^{\prime} \chi_{\lambda, \mu}$ are the i-th proper *-cocharacters of A and N_{k} respectively, we must have $m_{\lambda, \mu} \leq m_{\lambda, \mu}^{\prime}$ for all $\lambda \vdash r, \mu \vdash i-r, r=0, \ldots, i$.

For any $i=2, \ldots, k-2$, let $f_{1}=\left[z_{1}, y_{2}, \ldots, y_{2}\right]$ and $f_{2}=\left[y_{1}, y_{2}, y_{1}, \ldots, y_{1}\right]$ be highest weight vectors corresponding to the partitions $(\lambda, \mu)=((i-1),(1))$ and $(\lambda, \mu)=((i-1,1), \emptyset)$, respectively (see [1]). It is clear that f_{1} and f_{2} are not $*$-identities of N_{k}. Thus, for $i=2, \ldots, k-2, \chi_{(i-1),(1)}$ and $\chi_{(i-1,1), \emptyset}$ participate in the i-th proper $*$-cocharacter $\psi_{i}^{*}\left(N_{k}\right)$ with non-zero multiplicities.
Hence, for $i=2, \ldots, k-2$, since $\gamma_{i}^{*}\left(N_{k}\right)=2 i-1=\operatorname{deg} \chi_{(i-1),(1)}+\operatorname{deg} \chi_{(i-1,1), \emptyset}$, we have that

$$
\psi_{i}^{*}\left(N_{k}\right)=\chi_{(i-1),(1)}+\chi_{(i-1,1), \emptyset} .
$$

Similarly one obtain $\psi_{k-1}^{*}\left(N_{k}\right)=\chi_{(k-2),(1)}$.
Thus, since $\gamma_{k-1}^{*}(A) \neq 0$ we get also that $\psi_{k-1}^{*}(A)=\chi_{(k-2),(1)}$. Moreover, for $2 \leq i \leq k-2$ one gets $\psi_{i}^{*}(A)=\chi_{(i-1),(1)}+\chi_{(i-1,1), \emptyset}$. In fact, if $\psi_{i}^{*}(A)=\chi_{(i-1),(1)}$, for some $2 \leq i \leq k-2$, then the highest weight vector $[y_{2}, \underbrace{y_{1}, \ldots, y_{1}}_{i-1}]$ corresponding to the couple of partitions $(\lambda, \mu)=((i-1,1), \emptyset)$ would be a $*$-identity for A. But this implies that also $[z, \underbrace{y, \ldots, y}_{k-2}]$ is a $*$-identity for A, and so, $\psi_{k-1}^{*}(A)=0$, a contradiction.
In a similar way one can prove that if $\psi_{i}^{*}(A)=\chi_{(i-1,1), \emptyset}$ we would reach a contradiction. So we get that $\psi_{i}^{*}(A)=\chi_{(i-1),(1)}+\chi_{(i-1,1), \emptyset}$, for $2 \leq i \leq k-2$ and $\psi_{k-1}^{*}(A)=\chi_{(k-2),(1)}$.
Hence

$$
c_{n}^{*}(A)=\sum_{i=0}^{k-1}\binom{n}{i} \gamma_{i}^{*}(A)=1+\sum_{i=1}^{k-2}\binom{n}{i}(2 i-1)+\binom{n}{k-1}(k-1)=c_{n}^{*}\left(N_{k}\right) .
$$

Thus A and N_{k} have the same sequence of $*$-codimensions and, since $\operatorname{Id}^{*}\left(N_{k}\right) \subseteq \operatorname{Id}^{*}(A)$ we get the equality $\operatorname{Id}^{*}\left(N_{k}\right)=\operatorname{Id}^{*}(A)$.

In order to prove that also A_{k} generates a minimal variety we need to state some preliminary results.

Lemma 5. Let $A=F+J \in \operatorname{var}^{*}\left(A_{k}\right)$. Then $J_{11}^{-}=\left[J_{11}, J_{11}\right]=0$.
Proof. From $J_{11}^{-}=\underbrace{F \cdots F}_{k-1} J_{11}^{-} \underbrace{F \cdots F}_{k-1}$ follows $J_{11}^{-}=0$, since $y_{1} \cdots y_{k-1} z y_{k} \cdots y_{2 k-2}$ is a $*$-identity of A. As a consequence, since $\left[J_{11}^{+}, J_{11}^{+}\right] \subseteq J_{11}^{-}$we get that $\left[J_{11}, J_{11}\right]=0$.

Lemma 6. Let $A=F+J \in \operatorname{var}^{*}\left(A_{k}\right)$ with $J_{10} \neq 0$ (hence $J_{01} \neq 0$). If $c_{n}^{*}(A) \approx q n^{k-1}$, for some $q>0$, then $A \sim_{T_{*}} A_{k}$.

Proof. By the previous lemma, $A=F+J_{11}+J_{10}+J_{01}+J_{00}$ with $J_{11}^{-}=\left[J_{11}, J_{11}\right]=0$. Suppose that $J_{10}\left(J_{00}^{+}\right)^{k-2}=0$. This says that also $\left(J_{00}^{+}\right)^{k-2} J_{01}=0$. If $J^{m}=0$, we claim that for any $n \geq m$, the multilinear polynomial

$$
f=y_{i_{1}} \cdots y_{i_{l}} y_{1} \cdots y_{k-2} z y_{k-1} \cdots y_{2 k-4} y_{j_{1}} \cdots y_{j_{t}} \in \operatorname{Id}^{*}(A)
$$

where $t+l+2 k-3=n$.
In fact, by the multilinearity of f, we can evaluate the variables in a basis of A which is the union of a basis of $J_{11}, J_{10}+J_{01}, J_{00}$ and $1=1_{F}$. Since $J^{m}=0$, if all variables are evaluated in J we get a zero value of f. Hence at least one variable must be evaluated in 1 . Since $J_{11}^{-}=0$ we need to check the evaluation of z in $J_{10}+J_{01}$. It is easily checked that since $J_{10}\left(J_{00}^{+}\right)^{k-2}=\left(J_{00}^{+}\right)^{k-2} J_{01}=0$ then f vanishes on A.

We have proved that $f=y_{i_{1}} \cdots y_{i_{l}} y_{1} \cdots y_{k-2} z y_{k-1} \cdots y_{2 k-4} y_{j_{1}} \cdots y_{j_{t}} \in \operatorname{Id}^{*}(A)$.
In a similar way it is proved that for any $n \geq m$,

$$
g=y_{i_{1}} \cdots y_{i_{l}} y_{1} \cdots y_{k-2}\left[y_{l}, y_{m}\right] y_{k-1} \cdots y_{2 k-4} y_{j_{1}} \cdots y_{j_{t}} \in \operatorname{Id}^{*}(A)
$$

where $t+l+2 k-2=n$.
Let $Q \subseteq \operatorname{Id}^{*}(A)$ be the T^{*}-ideal generated by f and g plus the generators of the T^{*} - $\operatorname{ideal~}^{\operatorname{Id}}\left(A_{k}\right)$. For any $n \geq m$ a set of generators of $P_{n}^{*}\left(\bmod P_{n}^{*} \cap \operatorname{Id}^{*}(Q)\right)$ is given by
$\left\{y_{i_{1}} \cdots y_{i_{t}} z_{l} y_{j_{1}} \cdots y_{j_{s}} \mid 1 \leq l \leq n, t<k-2\right.$ or $\left.s<k-2, i_{1}<\ldots<i_{t}, j_{1}<\ldots<j_{s}\right\} \cup$ $\left\{y_{i_{1}} \cdots y_{i_{t}}\left[y_{l}, y_{m}\right] y_{j_{1}} \cdots y_{j_{s}} \mid t<k-2\right.$ or $\left.s<k-2, i_{1}<\ldots<i_{t}, l>m<j_{1}<\ldots<j_{s}\right\} \cup\left\{y_{1} y_{2} \cdots y_{n}\right\}$.

Hence

$$
c_{n}^{*}(A) \leq \sum_{\substack{t<k-2 \\ \text { or } \\ n-t<k-1}}\binom{n-1}{t} n+\sum_{\substack{t<k-2 \\ \text { or } \\ n-t<k-1}}\binom{n}{t}(n-t-1) \approx q n^{k-2}
$$

a contradiction.
Therefore we must have $J_{10}\left(J_{00}^{+}\right)^{k-2} \neq 0$. Let $a \in J_{10}, b_{1}, \ldots, b_{k-2} \in J_{00}^{+}$be such that $a b_{1} \cdots b_{k-2} \neq 0$. Also $b_{k-2}^{*} \cdots b_{1}^{*} a^{*} \neq 0$, with $b_{k-2}^{*}, \ldots, b_{1}^{*} \in J_{00}^{+}$and $a^{*} \in J_{01}$.

Let $f \in \operatorname{Id}^{*}(A)$ be a multilinear polynomial of degree $n \geq 2 k-1$. By Lemma 1 , we can write f, modulo $\operatorname{Id}^{*}\left(A_{k}\right)$, as

$$
\begin{aligned}
f & =\delta y_{1} \cdots y_{n}+\sum_{\substack{t<k-1 \\
s<k-1 \\
s<k-I, J}} \sum_{l, I, J} \alpha_{i_{1}} \cdots y_{i_{t}} z z_{l} y_{j_{1}} \cdots y_{j_{s}} \\
& +\sum_{\substack{t<k-1 \\
s<-1 \\
s<k-2}} \sum_{r, Q} \beta_{r, P, Q} y_{p_{1}} \cdots y_{p_{t}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{s}} \\
& +\sum_{i, R, U} \gamma_{i, R, U} y_{r_{1}} \cdots y_{r_{n-k}}\left[y_{1}, y_{i}\right] y_{u_{1}} \cdots y_{u_{k-2}}
\end{aligned}
$$

where $I=\left\{i_{1}, \ldots, i_{t}\right\}, J=\left\{j_{1}, \ldots, j_{s}\right\}, P=\left\{p_{1}, \ldots, p_{t}\right\}, Q=\left\{m, q_{1}, \ldots, q_{s}\right\}$
are such that $I \uplus J \uplus\{l\}=P \uplus Q \uplus\{r\}=\{1, \ldots, n\}$, and $i_{1}<\cdots<i_{t}, j_{1}<\cdots<j_{s}, p_{1}<\ldots<p_{t}$, $r<m<q_{1}<\ldots<q_{s}$. Also $R=\left\{r_{1}, \ldots, r_{n-k}\right\}$ and $U=\left\{1, u_{1}, \ldots, u_{k-2}\right\}$ are such that $R \uplus U \uplus\{i\}=$ $\{1, \ldots, n\}$ and $r_{1}<\ldots<r_{n-k}, u_{1}<\ldots<u_{k-2}$.

The evaluation $y_{1}=\cdots=y_{n}=1_{F}$ and $z_{l}=0$, for all $l=1, \ldots, n$, gives $\delta=0$. Also, for fixed $s<$ $k-1, l, I, J$ the evaluation $y_{i_{m}}=1_{F}, m \leq t, z_{l}=a-a^{*}$ and $y_{j_{p}}=b_{p}, p \leq s$, gives $\alpha_{l, I, J} a b_{1} \cdots b_{s}+\alpha_{l, J, I} c=0$ with $a b_{1} \cdots b_{s} \in J_{10}$ and $c \in J_{01}$ linearly independent. Hence $\alpha_{l, I, J}=\alpha_{l, J, I}=0$. Similarly, for fixed $t<k-1, l, I, J$ the evaluation $y_{i_{t-m}}=b_{m+1}^{*}, 0 \leq m \leq t-1, z_{l}=a-a^{*}$ and $y_{j_{p}}=1_{F}, p \leq s$, gives $\alpha_{l, M, N}=0$ and $\alpha_{l, N, M}=0$.

Also, for fixed $i \neq 1, R, U$ the evaluation $y_{1}=1_{F}, y_{r_{j}}=1_{F}, j \leq n-k, y_{i}=a+a^{*}$ and $y_{u_{l}}=b_{l}$, $l \leq k-2$, gives $\gamma_{i, R, U}=0$ and $\gamma_{i, U, R}=0$. Finally, for fixed $s<k-2, r, P, Q$ the evaluation $y_{p_{j}}=1_{F}$, $1 \leq j \leq t, y_{r}=a+a^{*}, y_{m}=b_{1}$ and $y_{q_{l}}=b_{l+1}, 1 \leq l \leq s$, gives $\beta_{r, P, Q}=0$ and $\beta_{r, Q, P}=0$. Similarly, for fixed $t<k-1, r, P, Q$ the evaluation $y_{p_{t-j}}=b_{j+1}^{*}, 0 \leq j \leq t-1, y_{r}=a+a^{*}, y_{m}=1_{F}$ and $y_{q_{l}}=1_{F}, 1 \leq l \leq s$, gives $\beta_{r, P, Q}=0$ and $\beta_{r, Q, P}=0$.

Therefore $f \in \operatorname{Id}^{*}\left(A_{k}\right)$. Similarly, if $n<2 k-1$ it is proved that $f \in \operatorname{Id}^{*}\left(A_{k}\right)$. Hence $\operatorname{Id}^{*}(A)=\operatorname{Id}^{*}\left(A_{k}\right)$.
Now we are in a position to prove that the algebra A_{k} generates a minimal variety.
Theorem 5. For any $k \geq 2, A_{k}$ generates a minimal variety.
Proof. Let $A \in \operatorname{var}^{*}\left(A_{k}\right)$ be such that $c_{n}^{*}(A) \approx q n^{k-1}$, for some $q>0$. As in the prroof of Theorem 4, we may assume that

$$
A=B_{1} \oplus \cdots \oplus B_{m}
$$

where B_{1}, \ldots, B_{m} are finite dimensional algebras with involution and either $B_{i} \cong F+J\left(B_{i}\right)$ or $B_{i}=J\left(B_{i}\right)$ is a nilpotent algebra. Since

$$
c_{n}^{*}(A) \leq c_{n}^{*}\left(B_{1}\right)+\cdots+c_{n}^{*}\left(B_{m}\right)
$$

then there exists B_{i} such that $c_{n}^{*}\left(B_{i}\right) \approx b n^{k-1}$, for some $b>0$. Being $B_{i} \in \operatorname{var}^{*}\left(A_{k}\right)$ by the previous lemma $B_{i} \sim_{T^{*}} A_{k}$. Hence,

$$
\operatorname{var}^{*}\left(A_{k}\right)=\operatorname{var}^{*}\left(B_{i}\right) \subseteq \operatorname{var}^{*}(A) \subseteq \operatorname{var}^{*}\left(A_{k}\right)
$$

and $\operatorname{var}^{*}(A)=\operatorname{var}^{*}\left(A_{k}\right)$ follows.

5. Classifying the subvarieties of $\operatorname{Var}^{*}(M)$

The main goal of this section is to completely classify the subvarieties of $\operatorname{var}^{*}(M)$ by giving a list of generating $*$-algebras. We start with the following.
Lemma 7. Let $A=F+J_{11} \in \operatorname{var}^{*}(M)$ and $c_{n}^{*}(A) \approx q n^{k-1}$ for some $q>0, k \geq 1$. Then:

- if $k=1, A$ is a commutative algebra with trivial involution;
- if $k>1$, either $A \sim_{T^{*}} U_{k}$ or $A \sim_{T^{*}} N_{k}$ or $A \sim_{T^{*}} N_{k} \oplus U_{k}$.

Proof. If $k \leq 2$, from [20, Lemma 28] it follows that either $A \sim_{T^{*}} N_{2}$ or $A \sim_{T^{*}} U_{2} \sim_{T^{*}} F$. Let now $k \geq 3$. We remark that at least one polynomial among $\left[y_{1}, \ldots, y_{k-1}\right]$ and $\left[z, y_{1}, \ldots, y_{k-2}\right]$ cannot be a $*$-identity for A, since otherwise we would have $\gamma_{k-1}^{*}(A)=0$, a contradiction since $c_{n}^{*}(A) \approx q n^{k-1}$.
Suppose first that $\left[y_{1}, \ldots, y_{k-1}\right]$ is not a $*$-identity and $\left[z, y_{1}, \ldots, y_{k-2}\right] \equiv 0$ on A. This implies that $\mathrm{Id}^{*}\left(U_{k}\right) \subseteq$ $\operatorname{Id}^{*}(A)$ and, since U_{k} generates a minimal variety and $c_{n}^{*}(A) \approx q n^{k-1}$, one gets that $A \sim_{T_{*}} U_{k}$.
Now suppose that $\left[z, y_{1}, \ldots, y_{k-2}\right]$ is not a $*$-identity and $\left[y_{1}, \ldots, y_{k-1}\right] \equiv 0$ on A. Then $\operatorname{Id}^{*}\left(N_{k}\right) \subseteq \operatorname{Id}^{*}(A)$ and since N_{k} generates a minimal variety, as before, one gets $A \sim_{T_{*}} N_{k}$.
Finally, suppose that neither of the polynomials $\left[y_{1}, \ldots, y_{k-1}\right]$ and $\left[z, y_{1}, \ldots, y_{k-2}\right]$ are identities for A. Since $c_{n}^{*}(A) \approx q n^{k-1}$, then $\gamma_{k}^{*}(A)=0$, so every proper polynomial of degree k belongs to $\operatorname{Id}^{*}(A)$. In particular $\left[y_{1}, \ldots, y_{k}\right],\left[z, y_{1}, \ldots, y_{k-1}\right] \in \operatorname{Id}^{*}(A)$ and, so, $\operatorname{Id}^{*}\left(N_{k} \oplus U_{k}\right) \subseteq \operatorname{Id}^{*}(A)$.

Let $f_{1}=[z, \underbrace{y, \ldots, y}_{i-1}]$ and $f_{2}=[y_{2}, \underbrace{y_{1}, \ldots, y_{1}}_{i-1}]$ be highest weight vectos corresponding to the partitions $(\lambda, \mu)=((i-1),(1))$ and $(\lambda, \mu)=((i-1,1), \emptyset)$, respectively, for $i=2, \ldots, k-1$ Since f_{1} and f_{2} are not *-identities for $N_{k} \oplus U_{k}$, we get that $\chi_{(i-1),(1)}$ and $\chi_{(i-1,1), \emptyset}$ participate in the i-th proper $*$-cocharacter of $N_{k} \oplus U_{k}$ with non-zero multiplicities. Hence, since $\gamma_{i}^{*}\left(N_{k} \oplus U_{k}\right)=2 i-1=\operatorname{deg} \chi_{(i-1),(1)}+\operatorname{deg} \chi_{(i-1,1), \emptyset}$, we have that

$$
\begin{equation*}
\psi_{i}^{*}\left(N_{k} \oplus U_{k}\right)=\chi_{(i-1),(1)}+\chi_{(i-1,1), \emptyset}, \text { for } i=2, \ldots, k-1 \tag{5}
\end{equation*}
$$

If $\psi_{i}^{*}(A)=\sum_{\lambda \vdash r \mu \vdash i-r} m_{\lambda, \mu} \chi_{\lambda, \mu}$ and $\psi_{i}^{*}\left(N_{k} \oplus U_{k}\right)=\sum_{\lambda \vdash r \mu \vdash i-r} m_{\lambda, \mu}^{\prime} \chi_{\lambda, \mu}$, then it must be $m_{\lambda, \mu} \leq m_{\lambda, \mu}^{\prime}$ for all $\lambda \vdash r, \mu \vdash i-r, r=0, \ldots, i$. Moreover, since $\left[y_{1}, \ldots, y_{k-1}\right]$ and $\left[z, y_{1}, \ldots, y_{k-2}\right]$ are not $*$-identies for A we must have $\psi_{i}^{*}(A)=\chi_{(i-1,1), \emptyset}+\chi_{(i-1),(1)}$ for all $i=2, \ldots, k-2$. Hence

$$
c_{n}^{*}(A)=\sum_{i=0}^{k-1}\binom{n}{i} \gamma_{i}^{*}(A)=1+\sum_{i=1}^{k-1}(2 i-1)=c_{n}^{*}\left(N_{k} \oplus U_{k}\right) .
$$

Thus A and $U_{k} \oplus N_{k}$ have the same $*$-codimension sequence and, since $\operatorname{Id}^{*}\left(N_{k} \oplus U_{k}\right) \subseteq \operatorname{Id}^{*}(A)$, we finally get the equality $\mathrm{Id}^{*}\left(N_{k} \oplus U_{k}\right)=\mathrm{Id}^{*}(A)$ and $A \sim_{T^{*}} N_{k} \oplus U_{k}$. This completes the proof.

Remark 3. Let $A=F+J_{11}+J_{10}+J_{01}+J_{00} \in \operatorname{var}^{*}(M)$. Then $J_{10} J_{01}=J_{01} J_{10}=J_{11}^{-} J_{10}=J_{01} J_{11}^{-}=0$.
Proof. We start by proving that $J_{10} J_{01}=J_{01} J_{10}=0$. Let $a \in J_{10}, b \in J_{01}$. Since $z_{1} z_{2} \equiv 0$ we get that $\left(a-a^{*}\right)\left(b-b^{*}\right)=0$, and so, $a b=a^{*} b^{*}=0$. Now let $a \in J_{11}^{-}$and $b \in J_{10}$. From $z_{1} z_{2} \equiv 0$ it follows $a\left(b-b^{*}\right)=a b=0$. Similarly, if $b \in J_{01}$ we get $b a=0$.

Lemma 8. Let $A=F+J_{11}+J_{10}+J_{01}+J_{00} \in \operatorname{var}^{*}(M)$ with $J_{10} \neq 0$ (hence $J_{01} \neq 0$). Then there exist constants $k, u \geq 2$ such that

1) if $J_{11}^{-}=0, A \sim_{T^{*}} A_{k} \oplus N$, where N is a nilpotent $*$-algebra;
2) if $J_{11}^{-} \neq 0$ either $A \sim_{T^{*}} N_{u} \oplus A_{k} \oplus N$ or $A \sim_{T^{*}} U_{u} \oplus A_{k} \oplus N$ or $A \sim_{T^{*}} N_{u} \oplus U_{u} \oplus A_{k} \oplus N$, where N is a nilpotent *-algebra.

Proof. Let $j \geq 0$ be the largest integer such that $J_{10} J_{00}^{j} \neq 0$ and hence $J_{00}^{j} J_{01} \neq 0$. Notice that $j=0$ means that $J_{10} J_{00}=0$ and in this case $A=F+J_{11}+J_{10}+J_{01} \oplus J_{00}$.

We shall prove that either $A \sim_{T^{*}} A_{j+2} \oplus J_{00}$ or $A \sim_{T^{*}} A_{j+2} \oplus N_{u} \oplus J_{00}$ or $A \sim_{T^{*}} A_{j+2} \oplus U_{u} \oplus J_{00}$ or $A \sim_{T^{*}} A_{j+2} \oplus N_{u} \oplus U_{u} \oplus J_{00}$ for some $u \geq 2$.

Suppose first that $J_{11}^{-}=0$.
Let $\bar{A}=A / J_{00}^{j+1}$. Then it is easily checked that

$$
y_{1} \cdots y_{j+1} z y_{j+2} \cdots y_{2 j+2}, y_{1} \cdots y_{j} s t_{3}\left(y_{j+1}, y_{j+2}, y_{j+3}\right) y_{j+4} \cdots y_{2 j+3} \in \operatorname{Id}^{*}(\bar{A})
$$

and, so, by Lemma $1, \operatorname{Id}^{*}\left(A_{j+2}\right) \subseteq \operatorname{Id}^{*}(\bar{A})$.
Moreover, as in the proof of Lemma 6, it is possible to check the opposite inclusion. This says that $A_{j+2} \sim_{T_{*}} \bar{A}$ and, so, $A_{j+2} \in \operatorname{var}^{*}(A)$. It follows that $\operatorname{Id}^{*}(A) \subseteq \operatorname{Id}^{*}\left(A_{j+2}\right) \cap \operatorname{Id}^{*}\left(J_{00}\right)=\operatorname{Id}^{*}\left(A_{j+2} \oplus J_{00}\right)$.

Conversely, let $f \in \operatorname{Id}^{*}\left(A_{j+2} \oplus J_{00}\right)$ be a multilinear polynomial of degree n.
Suppose $n \leq 2 j+2$. Since $f \in \operatorname{Id}^{*}\left(A_{j+2}\right)$, then f must be a consequence of $z_{1} z_{2} \in \operatorname{Id}^{*}(A)$. Hence $f \in \operatorname{Id}^{*}(A)$.

Now let $n>2 j+2$.
We can write f as

$$
\begin{gather*}
f=\delta y_{1} \cdots y_{n}+\sum_{\substack{t<j+1 \\
\text { or } \\
s<j+1}} \sum_{l, I, J} \alpha_{l, I, J} y_{i_{1}} \cdots y_{i_{t}} z_{l} y_{j_{1}} \cdots y_{j_{s}} \tag{6}\\
+\sum_{\substack{t<j+1 \\
o r \\
s<j}} \sum_{r, P, Q} \beta_{r, P, Q} y_{p_{1}} \cdots y_{p_{t}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{s}}+\sum_{i, R, U} \gamma_{i, R, U} y_{r_{1}} \cdots y_{r_{n-j-2}}\left[y_{1}, y_{i}\right] y_{u_{1}} \cdots y_{u_{j}} \\
+\sum_{\substack{t \geq j+1 \\
\text { and } \\
s \geq j+1}} \sum_{l^{\prime}, I^{\prime}, J^{\prime}} \delta_{l^{\prime}, I^{\prime}, J^{\prime}} y_{i_{1}^{\prime}} \cdots y_{i_{t}^{\prime}} z_{l^{\prime}} y_{j_{1}^{\prime}} \cdots y_{j_{s}^{\prime}}+\sum_{\substack{t \geq j+1 \\
a n d \\
s \geq j+1}} \sum_{r^{\prime}, P^{\prime}, Q^{\prime}} \varepsilon_{r^{\prime}, P^{\prime}, Q^{\prime}} y_{p_{1}^{\prime}} \cdots y_{p_{t}^{\prime}}\left[y_{r^{\prime}}, y_{m^{\prime}}\right] y_{q_{1}^{\prime}} \cdots y_{q_{s}^{\prime}}+g,
\end{gather*}
$$

where $g \in\left\langle z_{1} z_{2}\right\rangle_{T_{*}}$ and $I=\left\{i_{1}, \ldots, i_{t}\right\}, J=\left\{j_{1}, \ldots, j_{s}\right\}, P=\left\{p_{1}, \ldots, p_{t}\right\}, Q=\left\{m, q_{1}, \ldots, q_{s}\right\}$ are such that $I \uplus J \uplus\{l\}=P \uplus Q \uplus\{r\}=\{1, \ldots, n\}$, and $i_{1}<\cdots<i_{t}, j_{1}<\cdots<j_{s}, p_{1}<\ldots<p_{t}, r>m<q_{1}<\ldots<q_{s}$. Also $R=\left\{r_{1}, \ldots, r_{n-j-2}\right\}$ and $U=\left\{u_{1}, \ldots, u_{j}\right\}$ are such that $R \uplus U \uplus\{i, 1\}=\{1, \ldots, n\}$ and $r_{1}<\ldots<$ $r_{n-j-2}, u_{1}<\ldots<u_{j}$. Also $I^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{t}^{\prime}\right\}, J^{\prime}=\left\{j_{1}^{\prime}, \ldots, j_{s}^{\prime}\right\}, P^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{t}^{\prime}\right\}, Q^{\prime}=\left\{m^{\prime}, q_{1}^{\prime}, \ldots, q_{s}^{\prime}\right\}$ are such that $I^{\prime} \uplus J^{\prime} \uplus\left\{l^{\prime}\right\}=P^{\prime} \uplus Q^{\prime} \uplus\left\{r^{\prime}, m^{\prime}\right\}=\{1, \ldots, n\}$, and $i_{1}^{\prime}<\cdots<i_{t}^{\prime}, j_{1}^{\prime}<\cdots<j_{s}^{\prime}, p_{1}^{\prime}<\ldots<p_{t}^{\prime}$, $r^{\prime}>m^{\prime}<q_{1}^{\prime}<\ldots<q_{s}^{\prime}$.

Notice that g and

$$
\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{l^{\prime}, I^{\prime}, J^{\prime}} \delta_{l^{\prime}, I^{\prime}, J^{\prime}} y_{i_{1}^{\prime}} \cdots y_{i_{t}^{\prime}} z_{l^{\prime}} y_{j_{1}^{\prime}} \cdots y_{j_{s}^{\prime}}+\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{r^{\prime}, P^{\prime}, Q^{\prime}} \varepsilon_{r^{\prime}, P^{\prime}, Q^{\prime}} y_{p_{1}^{\prime}} \cdots y_{p_{t}^{\prime}}\left[y_{r^{\prime}}, y_{m^{\prime}}\right] y_{q_{1}^{\prime}} \cdots y_{q_{s}^{\prime}}
$$

are $*$-identities of A_{j+2}. Hence, since $f \in \operatorname{Id}^{*}\left(A_{j+2}\right)$ and the monomials appearing in the the first two rows in (6) are linearly independent modulo $\mathrm{Id}^{*}\left(A_{j+2}\right)$ (see Lemma 1), then $\alpha_{l, I, J}=\beta_{r, P, Q}=\gamma_{i, R, U}=0$ for every $l, I, J, r, P, Q, i, R, U$. Hence

$$
f=\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{l^{\prime}, I^{\prime}, J^{\prime}} \delta_{l^{\prime}, I^{\prime}, J^{\prime}} y_{i_{1}^{\prime}} \cdots y_{i_{t}^{\prime}} z_{l^{\prime}} y_{j_{1}^{\prime}} \cdots y_{j_{s}^{\prime}}+\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{r^{\prime}, P^{\prime}, Q^{\prime}} \varepsilon_{r^{\prime}, P^{\prime}, Q^{\prime}} y_{p_{1}^{\prime}} \cdots y_{p_{t}^{\prime}}\left[y_{r^{\prime}}, y_{m^{\prime}}\right] y_{q_{1}^{\prime}} \cdots y_{q_{s}^{\prime}}+g
$$

Since $f \in \operatorname{Id}^{*}\left(J_{00}\right)$, if we evaluate f into J_{00} we get a zero value. Since $J_{10} J_{00}^{j+1}=0$ and $J_{11}^{-}=0$ it is immediate to see that every evaluation of f into A gives a zero value. Hence f is a $*$-identity of A and $\operatorname{Id}^{*}\left(A_{j+2} \oplus J_{00}\right) \subseteq \operatorname{Id}^{*}(A)$. So $A \sim_{T^{*}} A_{j+2} \oplus J_{00}$ follows.

Suppose now that $J_{11}^{-} \neq 0$.
Let $B=F+J_{10}+J_{10}+J_{00}$. By Remark $3, B$ is a subalgebra of A and, since $J_{11}(B)=0$, we can apply the first part of the lemma to B and conclude that $B \sim_{T^{*}} A_{j+2} \oplus J_{00}$.

Now let $D=F+J_{11}$. By Lemma 7, either $D \sim_{T^{*}} N_{r}$ or $D \sim_{T^{*}} U_{r}$ or $D \sim_{T^{*}} N_{r} \oplus U_{r}$, for some $r \geq 2$.
We shall prove that $A \sim_{T^{*}} D \oplus B$ and this will complete the proof.
Let $f \in \operatorname{Id}^{*}(A)$. Since B and D are subalgebras of $A, f \in \operatorname{Id}^{*}(D) \cap \operatorname{Id}^{*}(B)=\operatorname{Id}^{*}(D \oplus B)$.
Conversely, let $f \in \operatorname{Id}^{*}(D \oplus B)$ be a multilinear polynomial of degree n.
As above we can write f as $f=f_{1}+f_{2}+g_{1}+g_{2}$
where

$$
\begin{gathered}
f_{1}=\delta y_{1} \cdots y_{n}+\sum_{\substack{t<j+1 \\
o r \\
s<j}} \sum_{r, P, Q} \beta_{r, P, Q} y_{p_{1}} \cdots y_{p_{t}}\left[y_{r}, y_{m}\right] y_{q_{1}} \cdots y_{q_{s}} \\
+\sum_{i, R, U} \gamma_{i, R, U} y_{r_{1}} \cdots y_{r_{n-j-2}}\left[y_{1}, y_{i}\right] y_{u_{1}} \cdots y_{u_{j}}+\sum_{\substack{t \geq j+1 \\
\text { and } \\
s \geq j+1}} \sum_{r^{\prime}, P^{\prime}, Q^{\prime}} \varepsilon_{r^{\prime}, P^{\prime}, Q^{\prime}} y_{p_{1}^{\prime}} \cdots y_{p_{t}^{\prime}}\left[y_{r^{\prime}}, y_{m^{\prime}}\right] y_{q_{1}^{\prime}} \cdots y_{q_{s}^{\prime}}, \\
f_{2}=\sum_{\substack{t<j+1 \\
s<j+1}} \sum_{l, I, J} \alpha_{l, I, J} y_{i_{1}} \cdots y_{i_{t}} z_{l} y_{j_{1}} \cdots y_{j_{s}}+\sum_{\substack{t \geq j+1 \\
\text { and } \\
s \geq j+1}} \sum_{l^{\prime}, I^{\prime}, J^{\prime}} \delta_{l^{\prime}, I^{\prime}, J^{\prime}} y_{i_{1}^{\prime}} \cdots y_{i_{t}^{\prime}} z_{l^{\prime}} y_{j_{1}^{\prime}} \cdots y_{j_{s}^{\prime}}
\end{gathered}
$$

and $g_{1}, g_{2} \in\left\langle z_{1} z_{2}\right\rangle_{T_{*}}$ are polynomials in the only $y_{i} \mathrm{~s}$ and in one z and $n-1 y_{i} \mathrm{~s}$, respectively.
By the multihomogeneity of the T^{*}-ideals we may assume that either $f=f_{1}+g_{1}$ or $f=f_{2}+g_{2}$.
We start by proving that $f=f_{1}+g_{1} \in \operatorname{Id}^{*}(A)$. Notice that $f \in \operatorname{Id}^{*}\left(A_{j+2}\right)$, since $f \in \operatorname{Id}^{*}(B)$ and $B \sim_{T_{*}} A_{j+2} \oplus J_{00}$. Also

$$
\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{r^{\prime}, P^{\prime}, Q^{\prime}} \varepsilon_{r^{\prime}, P^{\prime}, Q^{\prime}} y_{p_{1}^{\prime}} \cdots y_{p_{t}^{\prime}}\left[y_{r^{\prime}}, y_{m^{\prime}}\right] y_{q_{1}^{\prime}} \cdots y_{q_{s}^{\prime}}, g_{1} \in \operatorname{Id}^{*}\left(A_{j+2}\right)
$$

Hence, since the monomials $y_{1} \cdots y_{n}$ and those ones appearing in the second and in the third sum of f_{1} are linearly independent modulo $\mathrm{Id}^{*}\left(A_{j+2}\right)$ we must have $\delta=\beta_{r, P, Q}=\gamma_{i, R, U}=0$ for all r, P, Q, i, R, U.

Hence

$$
f=\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{r^{\prime}, P^{\prime}, Q^{\prime}} \varepsilon_{r^{\prime}, P^{\prime}, Q^{\prime}} y_{p_{1}^{\prime}} \cdots y_{p_{t}^{\prime}}\left[y_{r^{\prime}}, y_{m^{\prime}}\right] y_{q_{1}^{\prime}} \cdots y_{q_{s}^{\prime}}+g_{1}
$$

Since $f \in \operatorname{Id}^{*}(D \oplus B)$, if we evaluate f into B or into D we get a zero value. Moreover, since $J_{10} J_{00}^{j+2}=$ $J_{00}^{j+2} J_{01}=J_{11}^{-} J_{10}=0$ it follows that every evaluation of f into A gives a zero value. Hence f is a $*$-identity of A and we are done.

Similarly, if $f=f_{2}+g_{2}$ we get that $\alpha_{l, I, J}=0$ for all l, I, J. Hence

$$
f=\sum_{\substack{t \geq j+1 \\ \text { and } \\ s \geq j+1}} \sum_{l^{\prime}, I^{\prime}, J^{\prime}} \delta_{l^{\prime}, I^{\prime}, J^{\prime}} y_{i_{1}^{\prime}} \cdots y_{i_{t}^{\prime}} z_{l^{\prime}} y_{j_{1}^{\prime}} \cdots y_{j_{s}^{\prime}}+g_{2},
$$

and it easily follows that every evaluation of f into A gives a zero value. Hence f is a $*$-identity of A and we are done.

Now we are in a position to classify all the subvarieties of $\operatorname{var}^{*}(M)$.
Theorem 6. If $A \in \operatorname{var}^{*}(M)$ then A is T^{*}-equivalent to one of the following algebras:

$$
M, N, U_{k} \oplus N, N_{k} \oplus N, N_{k} \oplus U_{k} \oplus N, A_{t} \oplus N, N_{k} \oplus A_{t} \oplus N, U_{k} \oplus A_{t} \oplus N, N_{k} \oplus U_{k} \oplus A_{t} \oplus N
$$

for some $k, t \geq 2$, where N is a nilpotent $*$-algebra.
Proof. If $A \sim_{T^{*}} M$ there is nothing to prove. Hence we may assume that A generates a proper subvariety of M and so, since M generates a variety of almost polynomial growth, $c_{n}^{*}(A)$ is polynomially bounded. As in the proof of Theorem 5, we may assume that

$$
A=B_{1} \oplus \cdots \oplus B_{m}
$$

where B_{1}, \ldots, B_{m} are finite dimensional algebras with involution such that $\operatorname{dim} B_{i} / J\left(B_{i}\right) \leq 1$. Now, if $\operatorname{dim} B_{i} / J\left(B_{i}\right)=0, B_{i}$ is nilpotent. Suppose that i is such that $\operatorname{dim} B_{i} / J\left(B_{i}\right)=1$. Then $B_{i}=F+J\left(B_{i}\right)$ and let $J\left(B_{i}\right)=J_{11}+J_{10}+J_{01}+J_{00}$.

If $J_{10}=J_{01}=0$, then by Lemma 7, A is T^{*}-equivalent to one of the following algebras: $U_{k} \oplus N, N_{k} \oplus N$, $U_{k} \oplus N_{k} \oplus N$, where N is a nilpotent $*$-algebra, for some $k \geq 2$. Otherwise, by Lemma 8 either $A \sim_{T^{*}} A_{k} \oplus N$ or $A \sim_{T^{*}} N_{u} \oplus A_{k} \oplus N$ or $A \sim_{T^{*}} U_{u} \oplus A_{k} \oplus N$ or $A \sim_{T^{*}} N_{u} \oplus U_{u} \oplus A_{k} \oplus N$, for some $k, u \geq 2$, where N is a nilpotent $*$-algebra.

Since $A=B_{1} \oplus \cdots \oplus B_{m}$, by putting together these results we get the desired conclusion.
As a consequence of Theorems 4 and 5 we get that U_{k}, N_{k} and A_{k} generate the only minimal subvarieties of the variety generated by M.
Corollary 1. $A *$-algebra $A \in \operatorname{var}^{*}(M)$ generates a minimal variety if and only if either $A \sim_{T^{*}} U_{r}$ or $A \sim_{T^{*}} N_{k}$ or $A \sim_{T^{*}} A_{k}$, for some $r>2, k \geq 2$.

6. Classifying the subvarieties of $\operatorname{vaR}^{*}(F \oplus F)$

In this section we classify, up to T^{*}-equivalence, all the $*$-algebras contained in the variety generated by the commutative algebra $F \oplus F$ endowed with the exchange involution $(a, b)^{*}=(b, a)$.

Notice that since $F \oplus F$ is commutative, any antiautomorphism of $F \oplus F$ is an automorphism. So $D=F \oplus F$ can be viewed as a superalgebra with grading $\left(D^{(0)}, D^{(1)}\right)$, where $D^{(0)}=D^{+}$and $D^{(1)}=D^{-}$.

Hence, the classification of the $*$-algebras, up to T^{*}-equivalence, inside $\operatorname{var}^{*}(F \oplus F)$ is equivalent to the classification of the superalgebras inside supervar $(F \oplus F)$. Such a classification was given in [17, 19].

In what follows we present such results in the language of $*$-algebras for convenience of the reader.
We start by constructing, for any fixed $k \geq 1, *$-algebras belonging to the variety generated by $F \oplus F$ whose $*$-codimension sequence grows polynomially as n^{k}.

For $k \geq 2$, let I_{k} be the $k \times k$ g matrix and $E_{1}=\sum_{i=1}^{k-1} e_{i, i+1}$.
We denote by

$$
C_{k}=C_{k}(F)=\left\{\alpha I_{k}+\sum_{1 \leq i<k} \alpha_{i} E_{1}^{i} \mid \alpha, \alpha_{i} \in F\right\} \subseteq U T_{k}
$$

the commutative subalgebra of $U T_{k}$ with involution given by

$$
\left(\alpha I_{k}+\sum_{1 \leq i<k} \alpha_{i} E_{1}^{i}\right)^{*}=\alpha I_{k}+\sum_{1 \leq i<k}(-1)^{i} \alpha_{i} E_{1}^{i} .
$$

We next state the following result characterizing the $*$-identities and the $*$-codimensions of C_{k} (see [17]).
Lemma 9. Let $k \geq 2$. Then

1) $I d^{*}\left(C_{k}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z],\left[z_{1}, z_{2}\right], z_{1} \cdots z_{k}\right\rangle_{T^{*}}$.
2) $c_{n}^{*}\left(C_{k}\right)=\sum_{j=0}^{k-1}\binom{n}{j} \approx \frac{1}{(k-1)!} n^{k-1}$.

The following result classifies the subvarieties of the variety generated by $F \oplus F$.
Theorem 7. [17, 19] Let $A \in \operatorname{var}^{*}(F \oplus F)$. Then either $A \sim_{T^{*}} F \oplus F$ or $A \sim_{T^{*}} N$ or $A \sim_{T^{*}} C \oplus N$ or $A \sim_{T^{*}} C_{k} \oplus N$, for some $k \geq 2$, where N is a nilpotent $*$-algebra and C is a commutative algebra with trivial involution.

Notice that the previous theorem allows us to classify all $*$-codimension sequences of the $*$-algebras lying in the variety generated by $F \oplus F$.
Corollary 2. Let $A \in \operatorname{var}^{*}(F \oplus F)$ be such that $\operatorname{var}^{*}(A) \varsubsetneqq \operatorname{var}^{*}(F \oplus F)$. Then there exists n_{0} such that for all $n>n_{0}$ we must have either $c_{n}^{*}(A)=0$ or $c_{n}^{*}(A)=\sum_{j=0}^{k-1}\binom{n}{j}$, for some $k \geq 0$.

As a consequence of the previous theorem, we can also classify all $*$-algebras generating minimal varieties (see [17]).
Corollary 3. $A *$-algebra $A \in \operatorname{var}^{*}(F \oplus F)$ generates a minimal variety if and only if $A \sim_{T^{*}} C_{k}$, for some $k \geq 2$.

References

[1] V. Drensky, Free algebras and PI-algebras, Graduate course in algebra, Springer-Verlag Singapore, Singapore, 2000.
[2] V. Drensky, A. Giambruno, Cocharacters, codimensions and Hilbert series of the polynomial identities for 2×2 matrices with involution, Canad. J. Math. 46 (1994), 718-733.
[3] A. Giambruno, D. La Mattina, PI-algebras with slow codimension growth, J. Algebra 284 (2005), no. 1, $371-391$.
[4] A. Giambruno, D. La Mattina, P. Misso, Polynomial identities on superalgebras: classifying linear growth, J. Pure Appl. Algebra 207 (2006), no. 1, 215-240.
[5] A. Giambruno, D. La Mattina, V. M. Petrogradsky, Matrix algebras of polynomial codimension growth, Israel J. Math. 158 (2007), 367-378.
[6] A. Giambruno, D. La Mattina, M. Zaicev, Classifying the minimal varieties of polynomial growth, Canad. J. Math. 66 (2014), no. 3, 625-640.
[7] A. Giambruno, S. Mishchenko, Polynomial growth of the *-codimensions and Young diagrams, Comm. Algebra 29 (2001), no. 1, 277-284.
[8] A. Giambruno, S. Mishchenko, On star-varieties with almost polynomial growth, Algebra Colloq. 8 (1) (2001), 33-42.
[9] A. Giambruno, A. Regev, Wreath products and P.I. algebras, J. Pure Applied Algebra 35 (1985), 133-149.
[10] A. Giambruno, M. Zaicev, Asymptotics for the standard and the Capelli identities, Israel J. Math. 135 (2003), 125-145.
[11] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, AMS, Mathematical Surveys and Monographs Vol. 122, Providence, R.I., 2005.
[12] A. R. Kemer, T-ideals with power growth of the codimensions are Specht (Russian), Sibirskii Matematicheskii Zhurnal 19 (1978), 54-69; English translation: Siberian Math. J. 19 (1978), 37-48.
[13] A. R. Kemer, Varieties of finite rank, Proc. 15-th All the Union Algebraic Conf., Krasnoyarsk, Vol 2, p. 73, 1979 (Russian).
[14] P. Koshlukov, D. La Mattina, Graded algebras with polynomial growth of their codimensions, J. Algebra 434 (2015), 115-137.
[15] D. La Mattina, Varieties of almost polynomial growth: classifying their subvarieties, Manuscripta Math. 123 (2007), 185-203.
[16] D. La Mattina, Varieties of algebras of polynomial growth, Boll. Unione Mat. Ital. (9) 1 (2008), no. 3, 525-538.
[17] D. La Mattina, Varieties of superalgebras of almost polynomial growth, J. Algebra 336 (2011), 209-226.
[18] D. La Mattina, Varieties of superalgebras of polynomial growth, Serdica Math. J. 38 (2012), no. 1-3, 237-258.
[19] D. La Mattina, Almost polynomial growth: classifying varieties of graded algebras, Israel J. Math. (2015), http://dx.doi.org/10.1007/s11856-015-1171-y, in press.
[20] D. La Mattina, P. Misso, Algebras with involution with linear codimension growth, J. Algebra 305 (2006), $270-291$.
[21] D. La Mattina, S. Mauceri, P. Misso, Polynomial growth and identities of superalgebras and star-algebras, J. Pure Appl. Algebra 213 (2009), 2087-2094.
[22] S. Mishchenko, A. Valenti, A star-variety with almost polynomial growth, J. Algebra 223 (2000), 66-84.
[23] I. Sviridova, Finitely generated algebras with involution and their identities, J. Algebra 383 (2013), 144-167.
Dipartimento di Matematica ed Informatica, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy
E-mail address: daniela.lamattina@unipa.it
IMECC, UNICAMP, Sérgio Buraque de Holanda 651, 13083-859 Campinas, SP, Brazil
E-mail address: fabmartino@ime.unicamp.br

[^0]: 1991 Mathematics Subject Classification. Primary 16R10, 16R50; Secondary 16W10.
 Key words and phrases. Star-polynomial identities; Star-codimensions; Growth.
 D. La Mattina was partially supported by GNSAGA-INDAM.
 F. Martino was supported by a postdoctoral grant PNPD from CAPES, Brazil.

