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Abstract
We analyze the notion of reproducing pair of weakly measurable functions, which generalizes

that of continuous frame. We show, in particular, that each reproducing pair generates two
Hilbert spaces, conjugate dual to each other. Several examples, both discrete and continuous, are
presented.
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1 Introduction

Frames and their relatives are most often considered in the discrete case, for instance in signal
processing [15]. However, continuous frames have also been studied and offer interesting mathe-
matical problems. They have been introduced originally by Ali, Gazeau and one of us [1, 2] and
also, independently, by Kaiser [22]. Since then, several papers dealt with various aspects of the
concept, see for instance [16] or [23]. However, there may occur situations where it is impossible
to satisfy both frame bounds.

Therefore, several generalizations of frames have been introduced. The concept of semi-frames
[6, 7], for example, is concerned with functions that only satisfy one of the two frame bounds.
It turns out that a large portion of frame theory can be extended to this larger framework, in
particular the notion of duality.

More recently, a new generalization of frames was introduced by Balazs and one of us [24],
namely, reproducing pairs. Here one considers a couple of weakly measurable functions (ψ, φ),
instead of a single mapping, and one studies what amounts to the correlation between the two
(a precise definition is given below). This definition also includes the original definition of a
continuous frame [1, 2] given the choice ψ = φ. Moreover, it gives rise to a continuous and
invertible analysis/synthesis process without the need of any frame bounds. The increase of
freedom in choosing the mappings ψ and φ, however, leads to the problem of characterizing the
range of the analysis operators.

We will show in Section 3 that this problem can be solved by introducing a pair of intrinsically
generated Hilbert spaces, conjugate dual to each other. We discuss in detail the properties of
these spaces, in particular, we examine when a given function has a reproducing partner. In
Section 6, we exhibit several concrete examples of the construction, both in the discrete and in
the continuous cases. In particular, we show that the wavelet upper semi-frame described in [6]
does not admit a second mapping to form a reproducing pair.
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2 Preliminaries

Before proceeding, we list our definitions and conventions. The framework is a (separable) Hilbert
space H, with the inner product 〈·|·〉 linear in the first factor. Given an operator A on H, we
denote its domain by DomA, its range by RanA and its kernel by KerA. GL(H) denotes the set
of all invertible bounded operators on H with bounded inverse. Throughout the paper, we will
consider weakly measurable functions ψ : X → H, where (X,µ) is a locally compact space with
a Radon measure µ. Then the weakly measurable function ψ is a continuous frame if there exist
constants 0 < m ≤ M <∞ (the frame bounds) such that

m ‖f‖2 ≤
∫
X
|〈f |ψx〉|2 dµ(x) ≤ M ‖f‖2 , ∀ f ∈ H. (2.1)

Given the continuous frame ψ, the analysis operator Cψ : H → L2(X, dµ) 1 is defined as

(Cψf)(x) = 〈f |ψx〉, f ∈ H, (2.2)

and the corresponding synthesis operator C∗ψ : L2(X, dµ)→ H as (the integral being understood
in the weak sense, as usual)

C∗ψξ =

∫
X
ξ(x)ψx dµ(x), for ξ ∈ L2(X, dµ). (2.3)

We set Sψ := C∗ψCψ, which is self-adjoint.
Then it follows that

〈Sψf |g〉 = 〈C∗ψCψf |g〉 = 〈Cψf |Cψg〉 =

∫
X
〈f |ψx〉〈ψx|g〉 dµ(x).

Thus, for continuous frames, Sψ and S−1ψ are both bounded, that is, Sψ ∈ GL(H).
The weakly measurable function ψ is said to be µ-total if 〈ψx|g〉 = 0, a.e., implies g = 0, that

is, KerCφ = {0}.
Now, in practice, there are situations where the notion of frame is too restrictive, in the sense

that one cannot satisfy both frame bounds simultaneously. Thus there is room for two natural
generalizations. Following [6, 7], we will say that a family ψ is an upper (resp. lower) semi-
frame, if it is µ-total in H and satisfies the upper (resp. lower) frame inequality. For the sake of
completeness, we recall the definitions. A weakly measurable function ψ is an upper semi-frame
if there exists M <∞ such that

0 <

∫
X
|〈f |ψx〉|2 dµ(x) ≤ M ‖f‖2 , ∀ f ∈ H, f 6= 0. (2.4)

Note that an upper semi-frame is also called a total Bessel mapping [16]. On the other hand, a
function ψ is a lower semi-frame if there exists a constant m > 0 such that

m ‖f‖2 ≤
∫
X
|〈f |ψx〉|2 dµ(x), ∀ f ∈ H. (2.5)

Note that the lower frame inequality automatically implies that the family is µ-total. Thus, if
ψ is an upper semi-frame and not a frame, Sψ is bounded and S−1ψ is unbounded, as follows
immediately from (2.4).

1As usual, we identify a function ξ with its residue class in L2(X, dµ).
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In the lower case, however, the definition of Sψ must be changed, since Cψ need not be densely
defined, so that C∗ψ may not exist. Instead, following [6, Sec.2] one defines the synthesis operator
as

DψF =

∫
X
F (x)ψx dµ(x), F ∈ L2(X, dµ), (2.6)

on the domain of all elements F for which the integral in (2.6) converges weakly in H, and then
Sψ := DψCψ. With this definition, it is shown in [6, Sec.2] that Sψ is unbounded and S−1ψ is
bounded.

All these objects are studied in detail in our previous papers [6, 7]. In particular, it is shown
there that a natural notion of duality exists, namely, two measurable functions ψ, φ are dual to
each other (the relation is symmetric) if one has

〈f |g〉 =

∫
X
〈f |ψx〉〈φx|g〉 dµ(x), ∀ f, g ∈ H.

3 Hilbert spaces generated by a reproducing pair

The couple of weakly measurable functions (ψ, φ) is called a reproducing pair if

(a) The sesquilinear form

Ωψ,φ(f, g) =

∫
X
〈f |ψx〉〈φx|g〉 dµ(x) (3.1)

is well-defined and bounded on H×H, that is, |Ωψ,φ(f, g)| ≤ c ‖f‖ ‖g‖, for some c > 0.

(b) The corresponding bounded operator Sψ,φ belongs to GL(H).

Under these hypotheses, one has

Sψ,φf =

∫
X
〈f |ψx〉φx dµ(x), ∀ f ∈ H, (3.2)

the integral on the r.h.s. being defined in weak sense.
If ψ = φ, we recover the notion of continuous frame.
Notice that Sψ,φ is in general neither positive, nor self-adjoint, since S∗ψ,φ = Sφ,ψ. However, if

(ψ, φ) is a reproducing pair, then (ψ, S−1ψ,φφ) is also a reproducing pair, for which the corresponding
resolution operator is the identity, that is, ψ and φ are in duality. Therefore, there is no restriction
of generality to assume that Sφ,ψ = I [24]. The worst that can happen is to replace some norms
by equivalent ones.

In this section we will study normed spaces constructed from weakly measurable functions and
show that for reproducing pairs these spaces enjoy natural duality properties.

3.1 Construction and characterization of the spaces Vφ(X,µ)

Let φ be a weakly measurable function and let us denote by Vφ(X,µ) the space of all measurable
functions ξ : X → C such that the integral

∫
X ξ(x)〈φx|g〉 dµ(x) exists for every g ∈ H and defines

a bounded conjugate linear functional on H, i.e., ∃ c > 0 such that∣∣∣∣∫
X
ξ(x)〈φx|g〉 dµ(x)

∣∣∣∣ ≤ c ‖g‖ , ∀ g ∈ H. (3.3)
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Example 3.1 If the sesquilinear form Ωψ,φ defined in (3.1) is bounded, in particular if (ψ, φ)
is a reproducing pair, it is clear that all functions ξ(x) = 〈f |ψx〉 belong to Vφ(X,µ) since, by
assumption, ∫

X
〈f |ψx〉〈φx|g〉dµ(x)

exists and is bounded.

For every ξ ∈ Vφ(X,µ), there exists a unique vector hφ,ξ ∈ H such that∫
X
ξ(x)〈φx|g〉dµ(x) = 〈hφ,ξ|g〉, ∀g ∈ H.

By the Riesz lemma, we can define a linear map

Tφ : ξ ∈ Vφ(X,µ) 7→ Tφξ ∈ H (3.4)

in the following weak sense

〈Tφξ|g〉 = 〈hφ,ξ|g〉 =

∫
X
ξ(x)〈φx|g〉 dµ(x), ∀g ∈ H. (3.5)

The kernel of Tφ and the notion of degeneracy will be studied in more detail in Section 5.
Accordingly, we define the following vector space

Vφ(X,µ) = Vφ(X,µ)/Ker Tφ.

If ξ ∈ Vφ(X,µ), we put, for short, [ξ]φ = ξ + Ker Tφ and define

‖[ξ]φ‖φ := sup
‖g‖≤1

∣∣∣∣∫
X
ξ(x)〈φx|g〉dµ(x)

∣∣∣∣ . (3.6)

It is easy to see that the left hand side does not depend on the particular representative of [ξ]φ.
The following result is immediate.

Proposition 3.2 Let φ be a weakly measurable function. Then Vφ(X,µ) is a normed space with

respect to ‖·‖φ and the map T̂φ : Vφ(X,µ) → H, T̂φ[ξ]φ := Tφξ is a well-defined isometry of
Vφ(X,µ) into H.

Since T̂φ : Vφ(X,µ)→ H is an isometry, we can define on Vφ(X,µ) an inner product by setting

〈[ξ]φ|[η]φ〉(φ) := 〈T̂φ[ξ]φ|T̂φ[η]φ〉, [ξ]φ, [η]φ∈ Vφ(X,µ).

Using (3.5), we get, more explicitly

〈[ξ]φ|[η]φ〉(φ) =

∫
X
ξ(x)

(∫
X
η(y)〈φx|φy〉 dµ(y)

)
dµ(x)

=

∫
X
η(y)

(∫
X
ξ(x)〈φx|φy〉 dµ(x)

)
dµ(y).

Then the norm defined by 〈·|·〉(φ) coincides with the norm ‖ · ‖φ defined in (3.6), since one has

‖[ξ]φ‖(φ) =
∥∥∥T̂φ[ξ]φ

∥∥∥ = ‖Tφξ‖ = sup
‖g‖≤1

|〈Tφξ|g〉| = ‖[ξ]φ‖φ .
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Thus Vφ(X,µ) is an inner product (pre-Hilbert) space.
Let us denote by Vφ(X,µ)∗ the Hilbert dual space of Vφ(X,µ), that is, the set of continuous

linear functionals on Vφ(X,µ). The norm ‖ · ‖φ∗ of Vφ(X,µ)∗ is defined, as usual, by

‖F‖φ∗ = sup
‖[ξ]φ‖φ≤1

|F ([ξ]φ)|.

Now we define a conjugate linear map Cφ : H → Vφ(X,µ)∗ by

(Cφf)([ξ]φ) :=

∫
X
ξ(x)〈φx|f〉dµ(x), f ∈ H, (3.7)

which will take the role of the analysis operator Cφ of Section 2. Notice that Cφ is a linear map,
whereas Cφ is conjugate linear, hence the difference in notation. The discrepancy is explained in
Remark 3.15 below.

Of course, (3.7) means that (Cφf)([ξ]φ) = 〈Tφξ|f〉 = 〈T̂φ[ξ]φ|f〉, for every f ∈ H. Thus

Cφ = T̂ ∗φ , the adjoint map of T̂φ. By (3.3) it follows that Cφ is continuous . This implies that

H = [Ran T̂φ]˜⊕ Ker Cφ, (3.8)

where the first summand denotes the closure of Ran T̂φ. Hence C∗φ = T̂ ∗∗φ = T̂φ, if Vφ(X,µ) is
complete.

By modifying in an obvious way the definition given in Section 2, we say that φ is µ-total if
Ker Cφ = {0}.

Proposition 3.3 The following statements are equivalent.

(i) Vφ(X,µ)[〈·|·〉(φ)] is a Hilbert space.

(ii) T̂φ has closed range.

Proof. (i)⇒(ii): Since Vφ(X,µ) is complete and T̂φ is an isometry, Ran T̂φ is also complete.

(ii)⇒(i): Let T̂φ have closed range. Then T̂φ : Vφ(X,µ) → Ran T̂φ is isometric with isometric

inverse. Hence, Vφ(X,µ) = T̂−1φ (Ran T̂φ) is the isometric image of a complete space, and therefore
it is complete. �

As a consequence of (3.8) we get

Corollary 3.4 The following statements hold.

(i) A weakly measurable function φ is µ-total if and only if Ran T̂φ is dense in H.

(ii) If Vφ(X,µ) is a Hilbert space, Ran T̂φ is equal to H if and only if φ is µ-total.

Lemma 3.5 If (ψ, φ) is a reproducing pair, then Ran T̂φ = H.

Proof. Since Sψ,φ ∈ GL(H), for every h ∈ H, there exists a unique f ∈ H such that Sψ,φf = h.
But, by (3.2), we get

h =

∫
X
〈f |ψx〉φx dµ(x),

so that

〈h|g〉 =

∫
X
〈f |ψx〉〈φx|g〉 dµ(x), ∀ g ∈ H,

that is, h = T̂φ[Cψf ]φ. �

Notice that, if (ψ, φ) is a reproducing pair, both functions are necessarily µ-total.
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3.2 Duality properties of the spaces Vφ(X,µ)

If the space Vφ(X,µ) is complete, i.e., a Hilbert space, it is certainly isomorphic to its dual,
via the Riesz operator. Nevertheless if (ψ, φ) is a reproducing pair, the dual of Vφ(X,µ) can be
identified with Vψ(X,µ) as we shall prove below. We emphasize that the duality is taken with
respect to the sesquilinear form

〈〈ξ|η〉〉
µ

:=

∫
X
ξ(x)η(x) dµ(x), (3.9)

which coincides with the inner product of L2(X,µ) whenever the latter makes sense.

Theorem 3.6 Let φ be a weakly measurable function. If F is a continuous linear functional on
Vφ(X,µ), then there exists a unique g ∈ [Mφ]˜, the closure of the range of T̂φ, such that

F ([ξ]φ) =

∫
X
ξ(x)〈φx|g〉dµ(x), ∀ ξ ∈ Vφ(X,µ) (3.10)

and ‖F‖φ∗ = ‖g‖, where ‖·‖φ∗ denotes the (dual) norm on Vφ(X,µ)∗. Moreover, every g ∈ H
defines a continuous functional F on Vφ(X,µ) with ‖F‖φ∗ ≤ ‖g‖, by (3.10). In particular, if

g ∈ Ran T̂φ, then ‖F‖φ∗ = ‖g‖.

Proof. Let F ∈ Vφ(X,µ)∗. Then, there exists c > 0 such that

|F ([ξ]φ)| ≤ c ‖[ξ]φ‖φ = c ‖Tφξ‖ , ∀ ξ ∈ Vφ(X,µ).

Let Mφ := {Tφξ : ξ ∈ Vφ(X,µ)} = Ran T̂φ. Then Mφ is a vector subspace of H, with closure
[Mφ]˜.

Let F̃ be the functional defined on Mφ by

F̃ (Tφξ) := F ([ξ]φ), ξ ∈ Vφ(X,µ).

We notice that F̃ is well-defined. Indeed, if Tφξ = Tφξ
′, then ξ − ξ′ ∈ Ker Tφ. Hence, [ξ]φ = [ξ′]φ

and F ([ξ]φ) = F ([ξ′]φ)

Hence, F̃ is a continuous linear functional on Mφ. Thus there exists a unique g ∈ [Mφ] ,̃ the

closure of the range of T̂φ, such that

F̃ (Tφξ) = 〈T̂φ[ξ]φ|g〉 =

∫
X
ξ(x)〈φx|g〉 dµ(x)

and ‖g‖ = ‖F̃‖.
In conclusion,

F ([ξ]φ) =

∫
X
ξ(x)〈φx|g〉dµ(x), ∀ ξ ∈ Vφ(X,µ)

and ‖F‖φ∗ = ‖g‖.
Moreover, every g ∈ H obviously defines a continuous linear functional F by (3.10) as

|F ([ξ]φ)| ≤ ‖g‖ ‖[ξ]φ‖φ. This inequality implies that ‖F‖φ∗ ≤ ‖g‖. In particular, if g ∈ Ran T̂φ,

then there exists [ξ]φ ∈ Vφ(X,µ), ‖[ξ]φ‖φ = 1, such that T̂φ[ξ]φ = g‖g‖−1. Hence F ([ξ]φ) =

〈T̂φ[ξ]φ|g〉 = ‖g‖. This concludes the proof. �
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Corollary 3.7 Let φ be a µ-total weakly measurable function, then Cφ : H → Vφ(X,µ)∗ is an
isometric isomorphism.

Proof. Cφ is surjective by Theorem 3.6. As φ is µ-total, it follows by Corollary 3.4 that Ran T̂φ
is dense in H. Consequently, for f ∈ H it follows that

‖Cφf‖φ∗ = sup
‖[ξ]φ‖φ=1

∣∣∣∣∫
X
ξ(x)〈φx|f〉 dµ(x)

∣∣∣∣ = sup
‖[ξ]φ‖φ=1

|〈T̂φξ|f〉| = sup
‖g‖=1, g∈Ran T̂φ

|〈g|f〉| = ‖f‖ .

�

Remark 3.8 It turns out that Cφ being an isometric isomorphism is not sufficient to guarantee
that Vψ(X,µ) is complete. We will see a counterexample in Sec. 6.2.3.

Theorem 3.9 If (ψ, φ) is a reproducing pair, then every bounded linear functional F on Vφ(X,µ),
i.e., F ∈ Vφ(X,µ)∗, can be represented as

F ([ξ]φ) =

∫
X
ξ(x)η(x) dµ(x), ∀ [ξ]φ ∈ Vφ(X,µ), (3.11)

with η ∈ Vψ(X,µ). The residue class [η]ψ ∈ Vψ(X,µ) is uniquely determined.

Proof. By Theorem 3.6, we have the representation

F (ξ) =

∫
X
ξ(x)〈φx|g〉dµ(x).

It is easily seen that η(x) = 〈g|φx〉 ∈ Vψ(X,µ).
It remains to prove uniqueness. Suppose that

F (ξ) =

∫
X
ξ(x)η′(x) dµ(x).

Then ∫
X
ξ(x)(η′(x)− η(x)) dµ(x) = 0.

Now the function ξ(x) is arbitrary. Hence, taking in particular for ξ(x) the functions 〈f |ψx〉 ∈
V(X,µ), f ∈ H, we get [η]ψ = [η′]ψ. �

The lesson of the previous statements is that the map

j : F ∈ Vφ(X,µ)∗ 7→ [η]ψ ∈ Vψ(X,µ) (3.12)

is well-defined and conjugate linear. On the other hand, j(F ) = j(F ′) implies easily F = F ′.
Therefore Vφ(X,µ)∗ can be identified with a closed subspace of Vψ(X,µ) := {[ξ]ψ : ξ ∈ Vψ(X,µ)}.

Now we want to prove that the spaces Vφ(X,µ)∗ and Vψ(X,µ) can be identified. First, cor-

responding to T̂φ, we introduce the linear operator Ĉψ,φ : H → Vφ(X,µ) by Ĉψ,φf := [Cψf ]φ.
We note that the construction can distinguish the equivalence classes generated by the analysis
operator. Indeed, we have Ĉψ,φf = Ĉψ,φf

′ if and only if f = f ′. To see this, let Ĉψ,φf = Ĉψ,φf
′.

Then

0 =

∫
X
〈f − f ′|ψx〉〈φx|g〉dµ(x) = 〈Sψ,φ(f − f ′)|g〉, ∀g ∈ H. (3.13)

Since Sψ,φ ∈ GL(H), it follows that f = f ′.
For proving that the spaces Vφ(X,µ)∗ and Vψ(X,µ) can be identified. we will first need two

auxiliary lemmas.
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Lemma 3.10 Let (ψ, φ) be a reproducing pair. Then Ran Ĉψ,φ is closed in Vφ(X,µ)[‖·‖φ]. In
particular, there exist m,M > 0 such that

m ‖f‖ ≤
∥∥∥Ĉψ,φf∥∥∥

φ
≤ M ‖f‖ , ∀ f ∈ H. (3.14)

Moreover, every [η]ψ ∈ Vψ(X,µ) defines a bounded linear functional on the closed subspace

Ran Ĉψ,φ[‖·‖φ].

Proof. Since Sψ,φ ∈ GL(H), we have, for f ∈ H,

‖f‖ ≤
∥∥∥S−1ψ,φ∥∥∥ ‖Sψ,φf‖ =

∥∥∥S−1ψ,φ∥∥∥ sup
‖g‖≤1

|〈Sψ,φf |g〉|

=
∥∥∥S−1ψ,φ∥∥∥ sup

‖g‖≤1

∣∣∣∣∫
X
〈f |ψx〉〈φx|g〉dµ(x)

∣∣∣∣ =
∥∥∥S−1ψ,φ∥∥∥ ‖[〈f |ψ(·)〉]φ‖φ =

∥∥∥S−1ψ,φ∥∥∥ ∥∥∥Ĉψ,φf∥∥∥
φ
.

This relation implies that Ran Ĉψ,φ is closed in Vφ(X,µ)[‖ · ‖φ]. On the other hand,∥∥∥Ĉψ,φf∥∥∥
φ

= sup
‖g‖≤1

∣∣∣∣∫
X
〈f |ψx〉〈φx|g〉 dµ(x)

∣∣∣∣
= sup
‖g‖≤1

|〈Sψ,φf |g〉| = ‖Sψ,φf‖ ≤ ‖Sψ,φ‖ ‖f‖ .

Next, let η ∈ Vψ(X,µ). Then, by definition,
∫
X〈f |ψx〉η(x) dµ(x) exists and defines a bounded

linear functional on H, i.e., ∣∣∣∣∫
X
〈f |ψx〉η(x) dµ(x)

∣∣∣∣ ≤ c ‖f‖ , ∀ f ∈ H.
By the definition of ‖·‖ψ, we have, more precisely,∣∣∣∣∫

X
〈f |ψx〉η(x) dµ(x)

∣∣∣∣ ≤ ‖f‖ ‖η‖ψ , ∀ f ∈ H.
Hence, ∣∣∣∣∫

X
〈f |ψx〉η(x) dµ(x)

∣∣∣∣ ≤ ∥∥∥S−1ψ,φ∥∥∥ ∥∥∥Ĉψ,φf∥∥∥φ ‖η‖ψ , ∀ f ∈ H, η ∈ Vψ(X,µ).

Thus, by (3.11), [η]ψ defines a bounded linear functional on the space Ran Ĉψ,φ = RanCψ/Ker Tφ.
�

If (ψ, φ) is a reproducing pair and
∥∥∥Ĉψ,φf∥∥∥

φ
= ‖f‖, then Sψ,φ is an isometry, since one has,

for every f ∈ H,

‖f‖ = sup
‖g‖=1

∣∣∣∣∫
X
〈f |ψ(x)〉〈φx|g〉 dµ(x)

∣∣∣∣ = sup
‖g‖=1

|〈Sψ,φf |g〉| = ‖Sψ,φf‖ .

Lemma 3.11 Let (ψ, φ) be a reproducing pair. Then Ran Ĉψ,φ is dense in Vφ(X,µ).
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Proof. Were it not so, there would be a nonzero F ∈ Vφ(X,µ)∗ such that F (〈f |ψ(·)〉) = 0 for
every f ∈ H. By Theorem 3.6, there exists g ∈ H\{0}, such that

F (ξ) =

∫
X
ξ(x)〈φx|g〉dµ(x), ∀ ξ ∈ Vφ(X,µ).

Then,

F (〈f |ψ(·)〉) =

∫
X
〈f |ψ(x)〉〈φx|g〉 dµ(x) = 0, ∀ f ∈ H.

This implies that 〈Sψ,φf |g〉 = 0, for every f ∈ H. This in turn implies that g = 0, which is a
contradiction. �

Theorem 3.12 If (ψ, φ) is a reproducing pair, the map j defined in (3.12) is surjective. Hence,
Vφ(X,µ)∗ ' Vψ(X,µ), where ' denotes a bounded isomorphism and the norm ‖·‖ψ is the dual

norm of ‖·‖φ. Moreover, Ran Ĉψ,φ[‖·‖φ] = Vφ(X,µ)[‖ · ‖φ] and Ran Ĉφ,ψ[‖·‖ψ] = Vψ(X,µ)[‖ · ‖ψ].

Proof. By Lemma 3.10, Ran Ĉψ,φ is closed in Vφ(X,µ)[‖ · ‖φ]. By Lemma 3.11, it is also dense.

Hence, Ran Ĉψ,φ[‖·‖φ] and Vφ(X,µ)[‖ · ‖φ] coincide. Now, the map j is surjective as every η ∈ Vψ
defines a bounded linear functional on Vφ(X,µ)[‖ · ‖φ]. �

By Theorems 3.9 and 3.12, it follows that, if (ψ, φ) is a reproducing pair, then for every
η ∈ Vψ(X,µ), there exists g ∈ H such that η = 〈φ(·)|g〉.

In conclusion, we may state

Theorem 3.13 If (ψ, φ) is a reproducing pair, the spaces Vφ(X,µ) and Vψ(X,µ) are both Hilbert
spaces, conjugate dual of each other with respect to the sesquilinear form (3.9).

Corollary 3.14 If (ψ, φ) is a reproducing pair and φ = ψ, then ψ is a continuous frame and
Vψ(X,µ) is a closed subspace of L2(X,µ).

Proof. Since the duality takes place with respect to the L2 inner product, Vψ(X,µ) is a subspace

of L2(X,µ). The equality Ran Ĉψ,ψ = Vψ(X,µ) and the fact that Ĉψ,ψ is bounded from below
with respect to the L2-norm imply that it is closed. �

Remark 3.15 The operator Cφ defined by (2.2) is linear, but the operator Cφ given in (3.7) is
conjugate linear. However the latter maps H into Vφ(X,µ)∗, which is identified with Vψ(X,µ),
thus Cφ maps H linearly into Vψ(X,µ).

Actually Theorem 3.13 has an inverse. Indeed:

Theorem 3.16 Let φ and ψ be weakly measurable and µ-total. Then, the couple (ψ, φ) is a
reproducing pair if and only if Vφ(X,µ) and Vψ(X,µ) are Hilbert spaces, conjugate dual of each
other with respect to the sesquilinear form (3.9).

Proof. The ‘if’ part is Theorem 3.13. Let now Vφ(X,µ) and Vψ(X,µ) be Hilbert spaces in
conjugate duality. Consider the sesquilinear form

Ωψ,φ(f, g) =

∫
X
〈f |ψx〉〈φx|g〉dµ(x), f, g ∈ H.
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By the definition of the norms ‖·‖φ , ‖·‖ψ and the duality condition, we have, for every f, g ∈ H,
the two inequalities

|Ωψ,φ(f, g)| ≤ ‖[〈f |ψ(·)〉]φ‖φ ‖g‖ ,

|Ωψ,φ(f, g)| ≤ ‖[〈g|φ(·)〉]ψ‖ψ ‖f‖ .

This means the form Ωψ,φ is separately continuous, hence continuous. Therefore there exists
a bounded operator Sψ,φ such that Ωψ,φ(f, g) = 〈Sψ,φf |g〉. First the operator Sψ,φ is injective.
Indeed, by definition of Cφ, we have

〈Sψ,φf |g〉 = 〈〈Cψf |Cφg〉〉µ = (Cφg)
(
Ĉψ,φf

)
= 〈T̂φĈψ,φf |g〉, ∀f, g ∈ H.

Now T̂φ is isometric and Ĉψ,φ is injective, hence T̂φĈψ,φf = 0 implies f = 0. Next, Sψ,φ is also
surjective, by Corollary 3.4. Hence Sψ,φ belongs to GL(H). �

Remark 3.17 If the couple (ψ, φ) is a reproducing pair, then Vφ(X,µ) and Vψ(X,µ) are Hilbert
spaces, conjugate dual of each other with respect to 〈〈·|·〉〉

µ
. Thus, every [η]ψ ∈ Vψ(X,µ) determines

a linear functional Fη on Vφ(X,µ) by

Fη([ξ]φ) =

∫
X
ξ(x)η(x) dµ(x) = 〈〈ξ|η〉〉

µ
.

On the other hand (Riesz’s lemma) there exists a unique [η′]φ ∈ Vφ(X,µ) such that

Fη([ξ]φ) = 〈[ξ]φ|[η′]φ〉(φ) =

∫
X
ξ(x)

(∫
X
η′(y)〈φx|φy〉 dµ(y)

)
dµ(x).

Define N : [η]ψ ∈ Vψ(X,µ)→ [η′]φ ∈ Vφ(X,µ). Then,

〈〈ξ|η〉〉
µ

= 〈[ξ]φ|N [η]ψ〉(φ), ∀[ξ]φ ∈ Vφ(X,µ), [η]ψ ∈ Vψ(X,µ).

In the very same way we can define an operator M : Vφ(X,µ)→ Vψ(X,µ) such that

〈〈ξ|η〉〉
µ

= 〈M [ξ]φ|[η]ψ〉(ψ), ∀[ξ]φ ∈ Vφ(X,µ), [η]ψ ∈ Vψ(X,µ).

Then it is clear that N∗ = M . Moreover, N is isometric. Hence, N∗ = N−1 = M. From the above
equalities we get an explicit form for N−1

(N−1[η′]φ)(x) =

∫
X
η′(y)〈φy|φx〉 dµ(y).

In addition to Lemma 3.12, there is another characterization of the space Vψ(X,µ), in terms
of an eigenvalue equation, based on the fact that 〈S−1ψ,φφy|ψx〉 is a reproducing kernel [24, Prop.3].

Proposition 3.18 Let (ψ, φ) be a reproducing pair. Let ξ ∈ Vψ(X,µ) and consider the eigenvalue
equation ∫

X
ξ(y)〈S−1ψ,φφy|ψx〉 dµ(y) = λξ(x). (3.15)

Then ξ ∈ RanCψ ⇔ λ = 1 and ξ ∈ Ker Tφ ⇔ λ = 0. Moreover, there are no other eigenvalues.
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4 Existence of reproducing partners

Next we present a criterion towards the existence of a specific dual partner to a given measurable
function. We remind that the basic sesquilinear form 〈〈·|·〉〉

µ
is given by (3.9).

Theorem 4.1 Let φ be a weakly measurable function and e = {en}n∈N an orthonormal basis of
H. There exists another measurable function ψ, such that (ψ, φ) is a reproducing pair if and only
if Ran T̂φ = H and there exists a family {ξn}n∈N ⊂ Vφ(X,µ) such that

[ξn]φ = [T̂−1φ en]φ, ∀n ∈ N, and
∑
n∈N
|ξn(x)|2 <∞, for a.e. x ∈ X. (4.1)

Proof. If Ran T̂φ = H, then Vφ(X,µ) is a Hilbert space, Cφ : H → V ∗φ (X,µ) is an isometric

isomorphism and C∗φ = T̂φ. Hence, for f, g ∈ H, one has

〈f |g〉 = 〈f |C−1φ Cφg〉 = (Cφg)
(
(C−1φ )∗f

)
= 〈〈(C−1φ )∗

(∑
n∈N
〈f |en〉en

)
|Cφg〉〉µ

= 〈〈
∑
n∈N
〈f |en〉(C−1φ )∗en|Cφg〉〉µ = 〈〈

∑
n∈N
〈f |en〉T̂−1φ en|Cφg〉〉µ

(4.2)

where {en}n∈N is an orthonormal basis of H.
Let (ψ, φ) be a reproducing pair. As Sψ,φ ∈ GL(H), it immediately follows that Ran T̂φ = H

and thus (4.2) holds. For the sake of simplicity assume that Sψ,φ = I. Using (4.2) we get

〈〈Cψf |Cφg〉〉µ = 〈〈
∑
n∈N

T̂−1φ en〈f |en〉|Cφg〉〉µ, ∀ f, g ∈ H,

and, consequently,

[Cψf ]φ =
[∑
n∈N
〈f |en〉Cψen

]
φ

=
[∑
n∈N
〈f |en〉T̂−1φ en

]
φ
, ∀ f ∈ H.

In particular, the choice f = en implies [Cψen]φ = [T̂−1φ en]φ, ∀n ∈ N. Moreover, Cψe(x) :=

{Cψen(x)}n∈N ∈ `2(N) for almost every x ∈ X, since ‖Cψe(x)‖`2 = ‖ψx‖.
Conversely, if Ran T̂φ = H the following holds weakly by (4.2)

f =

∫
X
Cφf(x)

(∑
n∈N

T̂−1φ en(x)en

)
dµ(x), ∀ f ∈ H.

By (4.1) we can find {ξn}n∈N ⊂ Vφ(X,µ) such that

f =

∫
X
Cφf(x)

(∑
n∈N

ξn(x)en

)
dµ(x), ∀ f ∈ H,

holds weakly and ψx :=
∑

n∈N ξn(x)en is a well defined vector in H for almost every x ∈ X. �

Remark 4.2 If φ is in fact a frame, then the reproducing partner ψ given by the proof of Theorem
4.1 is also a frame. To see this, we first observe that if ψ is an upper semi-frame (Bessel mapping),
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then its reproducing partner φ is necessarily a lower semi-frame [6, Lemma 2.5]. The operator
T̂−1φ is given by CφS

−1
φ . Hence, for some γ > 0 and for every f ∈ H,

‖Cψf‖22 =

∫
X

∣∣∣∑
n∈N
〈S−1φ en|φx〉〈f |en〉

∣∣∣2 dµ(x)

=

∫
X

∣∣∣∣∣∑
n∈N
〈f |en〉〈en|(S−1)∗φx〉

∣∣∣∣∣
2

dµ(x) ≤ γ
∥∥∥S−1φ ∥∥∥2 ‖f‖2.

Observe that, in principle, there may exist a reproducing partner ψ which is not Bessel. Take for
example the frame φ := {en}n∈N ∪ { 1nen}n∈N, where {en}n∈N is an orthonormal basis, and define
ψ := {en}n∈N ∪ {nen}n∈N.

Given the weakly measurable function φ, the fact that (ψ, φ) is a reproducing pair does not
determine the function ψ uniquely. Indeed we have :

Theorem 4.3 Let (ψ, φ) be a reproducing pair, then (θ, φ) is a reproducing pair if and only if
θ = Aψ + θ0, where A ∈ GL(H) and [〈f |θ0(·)〉]φ = [0]φ, ∀f ∈ H, i.e., Ĉθ0,φf = 0, ∀ f ∈ H.

Proof. If θ = Aψ+ θ0 as above, then Sθ,φf = T̂φ(ĈAψ,φ + Ĉθ0,φ)f = T̂φ(ĈAψ,φf) = T̂φĈψ,φA
∗f =

Sψ,φA
∗f , hence Sθ,φ = Sψ,φA

∗ ∈ GL(H).
Conversely, assume that (θ, φ) is a reproducing pair. By Theorem 3.12, we have Vφ(X,µ) =

RanCψ/Ker Tφ = RanCθ/Ker Tφ, i.e., for every f ∈ H there exists g ∈ H such that [Cθf ]φ =
[Cψg]φ. Then, using successively the definition of Sφ,θ, the relation [Cθf ]φ = [Cψg]φ and the
reproducing kernel (3.15), we obtain

〈f |Sφ,θ(S−1ψ,φ)∗ψ(·)〉 =

∫
X
〈f |θ(x)〉〈φx|(S−1ψ,φ)∗ψ(·)〉dµ(x)

=

∫
X
〈g|ψ(x)〉〈φx|(S−1ψ,φ)∗ψ(·)〉 dµ(x) = 〈g|ψ(·)〉 = 〈f |θ(·)〉 , ∀ f ∈ H.

This means that, for all f ∈ H, we have [Cθf ]φ = [CAψf ]φ or, equivalently, Ĉθ,φ = ĈAψ,φ, where
A := Sφ,θ(S

−1
ψ,φ)∗ ∈ GL(H). Moreover, Cθf(x) = CAψf(x) + F (f, x) for a.e. x ∈ X and every

f ∈ H, where F (f, ·) ∈ Ker Tφ, i.e., F (f, x) = 〈f |(θ −Aψ)(x)〉 =: 〈f |θ0(x)〉. �

5 Nondegenerate systems

The measurable function φ is said to be µ-independent if Ker Tφ = {0}, that is, if it satisfies the
following condition ∫

X
ξ(x)〈φx|g〉 dµ(x) = 0, ∀ g ∈ H, implies ξ(x) = 0 a.e.. (5.1)

In that case, of course, Vφ(X,µ) = Vφ(X,µ). This definition is modeled on that of ω-independence
of sequences, introduced in [15, Def.3.1.2]. The function φ is called µ-nondegenerate if it is both
µ-total and µ-independent.

Proposition 5.1 Let (ψ, φ) be a reproducing pair, where φ is Bessel, and assume (RanCψ ∩
L2(X, dµ))⊥ 6= {0}. Then φ is not µ-independent, hence it is µ-degenerate.
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Proof. Let us assume that φ is µ-independent and, without loss of generality, that Sψ,φ = I
(that is, φ and ψ are dual of each other). Take F ∈ (RanCψ ∩ L2(X, dµ))⊥\{0}. As φ is µ-
independent, it follows that DφF 6= 0 and consequently F ′ = CψDφF 6= 0 since ψ is µ-total.
Moreover, F − F ′ 6= 0 since F ∈ (RanCψ ∩L2(X, dµ))⊥ and F ′ ∈ Cψ(H). Hence we get∫

X
(F (x)− F ′(x))〈φx|g〉 dµ(x) = 〈DφF − TφCψDφF |g〉 = 0, ∀ g ∈ H,

since TφCψ = Sψ,φ = I, and this contradicts the assumption of µ-independence of φ. �

Actually there is more. Assume that ψ is an upper semi-frame (i.e., a Bessel map). Then φ
is a lower semi-frame [6, Lemma 2.5] (they can both be frames). Then, if (X,µ) is a nonatomic
measure space, it follows from [20, Theorem 2] that dim(RanCφ∩L2(X, dµ))⊥ =∞.

Intuitively, µ-nondegeneracy occurs only for discrete systems (atomic measure) or continuous
systems closely related to discrete ones, called continuous orthonormal bases in [10] and studied
in [11, 16]. Incidentally, in the discrete case, similar considerations have been extended to rigged
Hilbert spaces in recent papers by Bellomonte and one of us [13, 14].

6 Examples

In this section, we present a few concrete examples of the construction of Section 3. We begin
with discrete examples, that is, X = N with the counting measure.

6.1 Discrete examples

6.1.1 Orthonormal basis

Let e = {en}n∈N be an orthonormal basis, then Ve(N) = Ve(N) = `2(N). Indeed, for ξ ∈ Ve(N),
we have ∣∣∣∑

n∈N
ξn〈en|g〉

∣∣∣ =
∣∣∣∑
n∈N

ξngn

∣∣∣ ≤ c ‖g‖ = c ‖{gn}n∈N‖`2 , ∀g ∈ H,

where gn := 〈g|en〉. As Ce : H → `2(N) is bijective, ξ ∈ `2(N)∗ = `2(N). Moreover, since
Ker Te = {0} it follows that Ve(N) = Ve(N) and ‖·‖`2 = ‖·‖e.

6.1.2 Riesz basis

Now consider a Riesz basis r = {rn}n∈N. Then rn = Aen for some A ∈ GL(H) [15]. Therefore
Vr(N) = Vr(N) = `2(N) as sets, but with equivalent (not necessary equal) norms, since

‖ξ‖r = sup
‖g‖=1

∣∣∣∑
n∈N

ξn〈rn|g〉
∣∣∣ = sup

‖g‖=1

∣∣∣∑
n∈N

ξn〈en|A∗g〉
∣∣∣

= sup
‖g‖=1

‖A∗g‖
∣∣∣∑
n∈N

ξn〈en|
A∗g

‖A∗g‖
〉
∣∣∣ ≤ ‖A‖ sup

‖g‖=1

∣∣∣∑
n∈N

ξn〈en|g〉
∣∣∣ = ‖A‖ ‖ξ‖`2 , ∀ ξ ∈ `

2.

The lower inequality follows by a similar argument.
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6.1.3 Discrete upper and lower-semi frames

Let θ = {θn}n∈N be a discrete frame, m = {mn}n∈N ⊂ C\{0} and define φ := {mnθn}n∈N.
If {|mn|}n∈N ∈ c0, then φ is an upper semi-frame and if {|mn|−1}n∈N ∈ c0, then φ is a lower
semi-frame. Observe that in both cases φ is not a frame.

To see this, let {|mn|}n∈N ∈ c0. Then, for every ε > 0 there exists N ∈ N such that |mn| ≤
ε, ∀n ≥ N . Take f ∈ span{φ1, ..., φN−1}⊥, then∑

n∈N
|〈f |φn〉|2 =

∑
n≥N
|〈f |φn〉|2 ≤ ε2

∑
n∈N
|〈f |θn〉|2 ≤ Cε2 ‖f‖2 .

Hence the lower frame inequality cannot be satisfied. The same argument with inverse inequalities
yields the result for {|mn|−1}n∈N ∈ c0.

It can easily be seen that Vφ(N) = M1/m(Vθ(N)) = M1/m(RanCθ) as sets, where Mm is the
multiplication operator defined by (Mmξ)n = mnξn. Moreover, ‖·‖φ � ‖·‖`2m , where ‖ξ‖`2m :=∑

n∈N |ξnmn|2.
Now we will apply Theorem 4.1 to show that there exists ψ such that (ψ, φ) is a reproducing

pair. We first identify T̂φ. Let ξ ∈ Vφ(N), then

T̂φξ =
∑
n∈N

ξnφn =
∑
n∈N

ξnmnθn = Tθ(Mmξ).

The identification Vφ(N) = M1/m(RanCθ) immediately implies that Ran T̂φ = H. In order to
check condition (4.1) we observe that the reproducing kernel property yields

T̂−1φ f = M1/mCθS
−1
θ f, ∀ f ∈ H.

Hence, for every fixed k ∈ N, we have∑
n∈N
|m−1k 〈S

−1
θ en|θk〉|2 = |mk|−2

∥∥S−1θ θk
∥∥2 <∞.

One natural choice of a reproducing partner is ψ := {(1/mn)θn}n∈N as Sψ,φ = Sθ ∈ GL(H).

6.1.4 Gabor systems

Let a, b > 0 and g ∈ L2(R), the Gabor system G(g, a, b) is given by

G(g, a, b) := {TanMbmϕ}n,m∈Z,

where Tx denotes the translation and Mω the modulation operator. For an overview on Gabor
analysis, see [18].

Reproducing pairs appear to be a promising approach for the study of Gabor systems at critical
density (a ·b = 1) since the well-known Balian-Low theorem (BLT) states that if g is well-localized
in both time and frequency, then G(g, a, 1/a) is not a frame.

In [25] the authors show that it is possible to construct a reproducing pair consisting of two
Gabor systems where one window beats the obstructions of the BLT. However, Balian-Low like
results still exist in this setup.

The Gabor system of integer time-frequency shifts of the Gaussian G := G(ϕ, 1, 1), where
ϕ(t) := 21/4e−πt

2
, is one of the most studied object in time-frequency analysis. It is complete but

not a frame. Moreover, there is no Gabor system with a window in L2(R) which is dual to G.
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However, Bastiaans [12] and Janssen [21] have shown that there is γ /∈ L2(R), such that G(γ, 1, 1)
is dual to G in a weak distributional sense.

With the help of the novel tools developed in this paper, in particular Theorem 4.1, it is
possible to show the existence of an unstructured reproducing partner for G, see [25]. In other
words, the coefficients for the Gabor expansion with G can be calculated using inner products in
L2(R). This solves one of the last open questions for this system.

6.2 Continuous examples

6.2.1 Continuous frames

If φ is a continuous frame, Corollary 3.14 implies that Vφ(X,µ) ⊆ L2(X,µ). Now, since L2(X,µ) =
RanCφ ⊕ KerDφ, it follows that Vφ(X,µ)[‖·‖φ] ' RanCφ[‖·‖L2 ].

Observe that there may exist ξ ∈ Vφ(X,µ), such that ξ /∈ L2(X,µ). If, for example, there
exists ψ : X → H and f ∈ H such that (ψ, φ) is a reproducing pair and ‖Cψf‖L2 = ∞, then
RanCψ ⊂ Vφ(X,µ) * L2(X,µ). For a concrete example, see [24, Section 4]. Nevertheless, there
is always a unique f ∈ H such that ξ = Cφf + ξ0, where [ξ]φ = [Cφf ]φ and ξ0 ∈ Ker Tφ, i.e.,
ξ0 /∈ L2(X,µ).

6.2.2 1D continuous wavelets

Let φ, ψ ∈ L2(R, dx) and consider the continuous wavelet systems φx,a = TxDaφ, where, as usual,
Tx denotes the translation and Da the dilation operator. If∫

R
|ψ̂(ω)φ̂(ω)| dω

|ω|
<∞, (6.1)

then (ψ, φ) is a reproducing pair for L2(R, dx) with Sψ,φ = cψ,φI [18, Theorem 10.1], where

cψ,φ :=

∫
R
ψ̂(ω)φ̂(ω)

dω

|ω|
.

Actually this is just another way of expressing the well-known orthogonality relations of wavelet
transforms — or, for that matter, of all coherent states associated to square integrable group
representations [3, Chaps. 8 and 12]. For ψ = φ, the cross-admissibility condition (6.1) reduces
to the classical admissibility condition

cφ :=

∫
R
|φ̂(ω)|2 dω

|ω|
<∞. (6.2)

Considering the obvious inequalities

|cψ,φ| ≤
∫
R
|ψ̂(ω)φ̂(ω)| dω

|ω|
≤ c1/2φ c

1/2
ψ ,

we see that condition (6.1) is automatically satisfied whenever φ and ψ are both admissible. How-
ever, it is possible to choose a mother wavelet φ that does not satisfy the admissibility condition
(6.2) and still obtain a reproducing pair (ψ, φ).

Consider for example the Gaussian window φ(x) = e−πx
2
, then cφ =∞ which implies that φ is

not a continuous wavelet frame. However, if one defines ψ ∈ L2(R, dx) in the Fourier domain via
ψ̂(ω) = |ω|φ̂(ω), it follows that 0 < cψ,φ = ‖φ‖22 <∞. Thus we conclude that (ψ, φ) is a reproduc-
ing pair. Needless to say, the same considerations apply to D-dimensional continuous wavelets [3].
This example clearly shows the increasing flexibility obtained when replacing continuous frames
by reproducing pairs.
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6.2.3 A continuous upper semi-frame: affine coherent states

In [6, Section 2.6] the following example of an upper semi-frame is investigated. Define H(n) :=
L2(R+, rn−1 dr), where n ∈ N and the following measure space (X,µ) = (R, dx). Let ψ ∈ H(n)

and define the affine coherent state

ψx(r) = e−ixrψ(r), r ∈ R+.

Then ψ is admissible if supr∈R+ s(r) = 1, where s(r) := 2πrn−1|ψ(r)|2, and |ψ(r)| 6= 0, for a.e.
r ∈ R+. The frame operator is given by the multiplication operator on H(n)

(Sψf)(r) = s(r)f(r),

and, more generally,
(Smψ f)(r) = [s(r)]mf(r), ∀m ∈ Z.

Hence Sψ is bounded and S−1ψ is unbounded.

First we identify KerDψ as the space K+ := {η ∈ L2(R) : η̂(ω) = 0, for a.e. ω ≥ 0}. For every
ξ ∈ L2(R) and g ∈ H(n), we have, indeed, the following equality

〈Dψξ|g〉 =

∫
R+

(∫
R
ξ(x)e−ixrψ(r) dx

)
g(r)rn−1 dr =

∫
R+

ξ̂(r)ψ(r)g(r)rn−1 dr,

which easily implies that KerDψ = K+.
Thus in this case we find that KerDψ = (RanCφ)⊥ = K+ 6= {0} (it is infinite dimensional),

an example of the situation described in Section 5.

The function ψ enjoys the interesting property that we can characterize the space Vψ(R, dx)

and its norm. First, we show that ξ ∈ Vψ(R, dx) implies ξ̂ψ ∈ H(n) and ‖ξ‖ψ =
∥∥∥ξ̂ψ∥∥∥. Indeed,

let ξ ∈ Vψ(R, dx) and ψ, g ∈ H(n). Then we have,

〈〈ξ|Cψg〉〉µ = 〈T̂ψξ|g〉 =

∫
R+

∫
R
ξ(x)e−ixrψ(r) dx g(r)rn−1 dr

=

∫
R+

ξ̂(r)ψ(r)g(r)rn−1 dr = 〈ξ̂ψ|g〉.
(6.3)

Hence, Tφξ = ξ̂ψ which in turn implies that ξ̂ has to be given by an almost everywhere defined

function which satisfies ξ̂ψ ∈ H(n). Moreover, (6.3) yields

‖ξ‖ψ = sup
‖g‖≤1

|〈〈ξ|Cψg〉〉µ| = sup
‖g‖≤1

|〈ξ̂ψ|g〉| =
∥∥∥ξ̂ψ∥∥∥ . (6.4)

Then again, by the same reasoning, the previous chain of equalities shows that a measurable
function ξ is contained in Vψ(R, dx) provided that ξ ∈ F−1(ψ−1H(n)).

Proposition 6.1 Let ψ ∈ H(n), then, as sets,

Vψ(R, dx) =
{
ξ : X → C measurable : ξ ∈ F−1(ψ−1H(n))

}
/Ker Tφ

and ‖ξ‖ψ =
∥∥∥ξ̂ψ∥∥∥ , ∀ ξ ∈ Vψ(R, dx).
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The inverse Fourier transform is taken in the sense of distributions, if needed.

In the quest of a reproducing partner for ψ we will first treat the question if there exists an
affine coherent state φx(r) = e−ixrφ(r), r ∈ R+, φ ∈ H(n), such that (ψ, φ) forms a reproducing
pair. Indeed, since ψ is Bessel and not a frame, its dual φ is by necessity a lower semi-frame,
whereas an affine coherent state must be Bessel, but can never satisfy the lower frame bound.
Hence, there is no pair of affine coherent states forming a reproducing pair. This fact can also be
proven by an explicit calculation.

Finally, we have here an example of the situation described in Remark 3.8, namely, Cψ being

an isometry by Corollary 3.7, but Ran T̂ψ 6= H. We have already seen in (6.3) that T̂ψξ = ξ̂ψ. If

Ran T̂ψ = H, an arbitrary element h ∈ H(n) = L2(R+, rn−1 dr) could be written as h = T̂ψξ = ξ̂ψ
for some ξ ∈ Vψ(R, dx). This applies, in particular, to ψ itself, which also belongs to H(n). This

in turn implies that there exists ξ, such that ξ̂(r) = 1 for a.e. r ≥ 0. But there is no function that
satisfies this condition (however the δ-distribution does the job).

This has two major consequences. First, it shows that Vψ(R, dx) is not a Hilbert space, since
it is not complete. Second, there is no reproducing partner for ψ making it a reproducing pair.

6.2.4 Continuous wavelets on the sphere

Next we consider the continuous wavelet transform on the 2-sphere S2 [3, 4]. For a mother wavelet
φ ∈ H = L2(S2, dµ), define the family of spherical wavelets

φ%,a := R%Daφ, where (%, a) ∈ X := SO(3)× R+.

Here, Da denotes the stereographic dilation operator and Rρ the unitary rotation on S2.
It has been shown in [4, Theorem 3.3] that the operator Sφ is diagonal in Fourier space

(harmonic analysis on the 2-sphere reduces to expansions in spherical harmonics Y m
l , l ∈ N0,m =

−l, . . . , l), thus it is given by a Fourier multiplier Ŝφf(l, n) = sφ(l)f̂(l, n) with the symbol sφ given
by

sφ(l) :=
8π2

2l + 1

∑
|m|≤l

∫ ∞
0

∣∣D̂aφ(l,m)
∣∣2 da

a3
, l ∈ N0.

where D̂aφ(l,m) := 〈Y m
l |Daφ〉 is the Fourier coefficient of Daφ. If m ≤ sφ(l) < ∞ for all l ∈ N0,

it follows that φ is a lower semi-frame and Sφ is densely defined.
The result of the analysis is twofold. First, the wavelet φ ∈ L2(S2, dµ) is admissible if and only

if there exists a constant c > 0 such that sφ(l) ≤ c, ∀ l ∈ N, equivalently, if the frame operator Sφ
is bounded. In addition, for any admissible axisymmetric wavelet φ, there exists a constant d > 0
such that d ≤ sφ(l) ≤ c, ∀ l ∈ N. Equivalently, Sφ and S−1φ are both bounded, i.e., the family of
spherical wavelets {φa,%, (%, a) ∈ X = SO(3)× R∗+} is a continuous frame. One notices, however,
that the upper frame bound, which is implied by the constant c, does depend on φ, whereas the
lower frame bound, which derives from d, does not, it follows from the asymptotic behavior of the
function Y m

l for large l.
However, it turns out [26] that the reconstruction formula converges if d ≤ sφ(l) < ∞ for all

l ∈ {0} ∪ N, and this implies that φ (which is not admissible) is in fact a lower semi-frame and
Sφ is unbounded, but densely defined.

We will apply Theorem 4.1 to investigate the existence of a reproducing partner for φ. First,

we show that Ran T̂φ = H. The operator Mφ defined by M̂φf(l,m) = sφ(l)−1f̂(l,m) is bounded
and constitutes a right inverse to Sφ. Hence, for every f ∈ H, it holds

f = SφMφf = T̂φ[CφMφf ]φ ∈ Ran T̂φ.
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The spherical harmonics Y n
l form an orthonormal basis of L2(S2, dµ). Choosing ξl,m(x, a) :=

Cφ(S−1φ Y m
l )(ρ, a) as a representative of [T̂−1φ Y m

l ]φ yields for every (ρ, a) ∈ R× R+:

∞∑
l=0

∑
|m|≤l

|ξl,m(ρ, a)|2 =
∞∑
l=0

∑
|m|≤l

|Cφ(S−1φ Y m
l )(ρ, a)|2 =

∞∑
l=0

∑
|m|≤l

|〈S−1φ Y m
l |φρ,a〉|2

=

∞∑
l=0

∑
|m|≤l

|Ŝ−1φ φρ,a(l,m)|2 =

∞∑
l=0

∑
|m|≤l

|sφ(l)−1φ̂ρ,a(l,m)|2

≤ 1

d

∞∑
l=0

∑
|n|≤l

|φ̂ρ,a(l, n)|2 =
1

d
‖φρ,a‖2 <∞.

Thus there exists (at least one) function ψ : SO(3) × R+ → L2(S2, dµ) such that (ψ, φ) is a
reproducing pair.

Moreover, as for the wavelets on Rd, it is possible to choose another continuous wavelet system
ψρ,a as reproducing partner if the symbol sψ,φ, defined by

sψ,φ(l) :=
8π2

2l + 1

∑
|m|≤l

∫ ∞
0

D̂aψ(l,m)D̂aφ(l,m)
da

a3
.

satisfies m ≤ |sψ,φ(l)| ≤ M for all l ∈ N0.

7 Outcome: Reproducing pairs and pip-spaces

When trying to generalize the well-known notion of frame, both discrete and continuous, a first
step is to consider semi-frames, both upper and lower ones. The main result is that the two types
are dual of each other. Indeed, if two semi-frames are in duality, either they are both frames, or
at least one is a lower semi-frame.

Then the next step is to drop the restriction imposed by the frame bounds on the two measur-
able functions in duality, and this leads to the notion of reproducing pair. We have seen that the
latter is quite rich. It generates a whole mathematical structure. We have given several concrete
examples in Section 6. These, and additional ones, should allow one to better specify the best
assumptions to be made on the measurable functions or, more precisely, on the nature of the range
of the analysis operators Cψ, Cφ . Let (ψ, φ) be a reproducing pair. By definition,

〈Sψ,φf |g〉 =

∫
X
〈f |ψx〉〈φx|g〉dµ(x) =

∫
X
Cψf(x) Cφg(x) dµ(x) (7.1)

is well defined for all f, g ∈ H (here we revert to the linear maps Cψ, Cφ defined in (2.2)). The r.h.s.
is the L2 inner product, but generalized, since in general Cψf, Cφ need not belong to L2(X, dµ).
Thus clearly the analysis should be made in the context of pip-spaces [5].

The question is, how to embed Ran (Cψ) and Ran (Cφ) into the corresponding assaying sub-
spaces. Next we have to determine how the Hilbert spaces Vψ and Vφ are related to the lat-
ter. This is the topic of a further paper [8]. There we will examine successively the cases of a
rigged Hilbert space (RHS) and a genuine pip-space. Then we will particularize the results to a
Hilbert scale and to a pip-space of Lp spaces. The motivation for the last case is the following.
If, following [24], we make the innocuous assumption that the map x 7→ ψx is bounded, i.e.,
supx∈X ‖ψx‖H ≤ c for some c > 0 (often ‖ψx‖H = const., e.g. for wavelets or coherent states),
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then (Cψf)(x) = 〈f |ψx〉 ∈ L∞(X, dµ) so that a pip-space based on the lattice generated by the
family {Lp(X, dµ), 1 ≤ p ≤ ∞, } may be a good solution.

Another interesting direction consists in considering a whole family G of µ-total, weakly mea-
surable functions φ : X → H, instead of only one. To each φ ∈ G we can associate the pre-Hilbert
space Vφ(X,µ)[‖·‖φ] and take its completion Ṽφ(X,µ)[‖·‖φ]. If φ has a partner ψ ∈ G such that

(ψ, φ) is a reproducing pair, both spaces Vφ(X,µ) = Ṽφ(X,µ)[‖·‖φ] and Vψ(X,µ) = Ṽψ(X,µ)[‖·‖φ]
are Hilbert spaces, conjugate dual to each other. In the general case, however, the question of
completeness of Vφ(X,µ)[‖·‖φ] is open. Can one find conditions under which it holds? Also once
might study the relationship between different pre-Hilbert spaces Vφ(X,µ). When is one contained
in another one?
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[19] Holschneider, M., “General inversion formulas for wavelet transforms,” J. Math. Phys. 34,
4190–4198 (1993).

[20] Hosseini Giv, H., and Radjabalipour, M., “On the structure and properties of lower bounded
analytic frames,” Iran. J. Sci. Technol. 37A3, 227–230 (2013).

[21] Janssen, A.J.E.M., “Gabor representation of generalized functions,” J. Math. Anal. Appl.,
83, 377-394 (1991)

[22] Kaiser, G., A Friendly Guide to Wavelets, Birkhäuser, Boston, 1994.
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