POLYNOMIAL CODIMENSION GROWTH OF ALGEBRAS WITH INVOLUTIONS AND
SUPERINVOLUTIONS

ANTONIO IOPPOLO AND DANIELA LA MATTINA

ABSTRACT. Let A be an associative algebra over a field F' of characteristic zero endowed with a graded involution
or a superinvolution * and let ¢} (A) be its sequence of *x-codimensions. In [4, 12] it was proved that if A is finite
dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite
number of x-algebras: the group algebra of Zs and a 4-dimensional subalgebra of the 4 X 4 upper triangular
matrices with suitable graded involutions or superinvolutions.

In this paper we focus our attention on such algebras since they are the only finite dimensional x-algebras,
up to T5-equivalence, generating varieties of almost polynomial growth, i.e., varieties of exponential growth
such that any proper subvariety has polynomial growth. We classify the subvarieties of such varieties by giving
a complete list of generating finite dimensional *-algebras. Along the way we classify all minimal varieties
of polynomial growth and surprisingly we show that their number is finite for any given growth. Finally we
describe the x-algebras whose *-codimensions are bounded by a linear function.

1. INTRODUCTION

Let F' be a field of characteristic zero and let F'(X) be the free associative algebra on a countable set X over
F. One of the most interesting and challenging problems in combinatorial PI-theory is that of finding numerical
invariants allowing to classify the T-ideals of F(X), i.e., the ideals invariant under all endomorphisms of F(X).
There is a well understood connection between T-ideals of F(X) and varieties of F-algebras: every T-ideal
is the ideal of polynomial identities satisfied by a given variety of algebras. Therefore it is often convenient
to translate a given problem on T-ideals into the language of varieties of algebras. A very useful numerical
invariant that can be attached to a T-ideal is given by the sequence of codimensions. Such numerical sequence
was introduced by Regev in [26] and measures the rate of growth of the multilinear polynomials lying in a given
T-ideal. A celebrated theorem of Regev asserts that if A is an associative Pl-algebra, i.e., it satisfies a non-trivial
polynomial identity, then its sequence of codimensions ¢, (A), n = 1,2,..., is exponentially bounded. Kemer
in [14] proved that for a Pl-algebra A, ¢,(A) is polynomially bounded if and only if the variety of algebras
generated by A does not contain either the Grassmann algebra G of an infinite dimensional vector space or the
algebra UT, of 2 x 2 upper triangular matrices. Hence var(G) and var(UT3) are the only varieties of almost
polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially.

The varieties of polynomial growth were extensively studied in later years (see for instance [5, 7, 8, 16, 17, 18])
also in the setting of varieties of graded algebras, algebras with involution, graded involution and superinvolution
[4, 10, 11, 12, 27].

In this paper we are interested in the study of associative algebras endowed with a graded involution or a
superinvolution. In analogy with the ordinary case, one defines the sequence of *-codimensions of a x-algebra A,
i.e., an algebra endowed with a graded involution or a superinvolution *. It turns out that if a x-algebra satisfies
an ordinary identity, then its sequence of *-codimensions is exponentially bounded (see [4, 12]). Recently, much
interest has been devoted to the study of varieties of x-algebras of polynomial growth. More precisely in [4, 12]
it was proved that a finite dimensional *-algebra has polynomial growth of the #-codimensions if and only if
the corresponding variety does not contain the following algebras: the group algebra of a group of order 2
and a 4-dimensional subalgebra of UT}, both algebras with suitable graded involutions or superinvolutions.
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Such algebras are the only finite dimensional x-algebras, up to T5-equivalence, generating varieties of almost
polynomial growth, i.e., varieties of exponential growth such that any proper subvariety has polynomial growth.

We recall that a variety V is minimal of polynomial growth if c* (V) ~ ¢n* for some k > 1, ¢ > 0, and for
any proper subvariety U ; V we have that ¢} (U) ~ ¢'n' with ¢t < k. In this paper we completely classify all
subvarieties and all minimal subvarieties of the varieties of almost polynomial growth generated by the above
algebras by giving a complete list of finite dimensional *-algebras generating them. Moreover we characterize
varieties of polynomial growth generated by finite dimensional *-algebras by relating them to the module
structure of the multilinear elements in the corresponding relatively free algebras. Finally we describe in detail
the x-algebras whose *-codimensions are bounded by a linear function.

2. PRELIMINARIES AND BASIC RESULTS

Throughout this paper F' will denote a field of characteristic zero and A = Ag$ A, an associative superalgebra
(also called Zo-graded algebra) over F satisfying a non-trivial polynomial identity (PI-algebra). Recall that the
elements of Ay and A; are called homogeneous of degree zero (or even elements) and of degree one (or odd
elements), respectively.

The free associative algebra F/(X) on a countable set X = {x1,x2,...} has a natural structure of superalgebra
as follows: write X = YUZ, the disjoint union of two sets. If we denote by Fy the subspace of F(Y UZ) spanned
by all monomials in the variables of X having even degree in the variables of Z and by JF; the subspace spanned
by all monomials of odd degree in Z, then F(Y U Z) = Fy @ F is a superalgebra called the free superalgebra
on Y U Z over F.

We denote by Id**P(A) = {f e F(YUZ) | f =0 on A} the set of superpolynomial identities of A, which is
a Ty-ideal of the free superalgebra, i.e., an ideal invariant under all graded endomorphisms of F(Y U Z).

It is well known that in characteristic zero 1d**?(A) is completely determined by its multilinear polyno-
mials and we denote by P7“P the vector space of all multilinear polynomials of degree n in the variables
Y1, 215 - - -y Yn, Zn. The non-negative integer

psup
n n>1

() = dimr ey 2 b

is called the n-th supercodimension of A.

Now assume that the superalgebra A is endowed with a graded involution, i.e., an involution preserving the
grading or with a superinvolution that is a graded linear map * : A — A such that (a*)* = aforalla € A
and (ab)* = (—1)(deg@)(degb)p*o* for any homogeneous elements a,b € A. Here deg ¢ denotes the homogeneous
degree of ¢ € Ay U A;.

Notice that if A= Ay ® A; is a superalgebra such that A? =0 (2122 = 0 on A) then the superinvolutions on
A coincide with the graded involutions on A and, in particular, with the involutions on A, if A; = 0.

In what follows we shall denote by * a graded involution or a superinvolution on A and we shall say that A is
a *-algebra. In case A? = 0 we shall call * a gs-involution (i.e., a graded involution and also a superinvolution).

Since charF = 0, we can write A = A @ Ay ® AT @ A, where for i = 0,1, A7 = {a € A; | a* = a} and
A7 ={a € A; | a* = —a} denote the sets of symmetric and skew elements of A;, respectively.

We shall write F(Y'UZ, %) for the free superalgebra with graded involution or superinvolution on the countable
set YU Z over F. It is useful to regard F(Y U Z, *) as generated by even and odd symmetric variables and by
even and odd skew variables, i.e,

F<Y U Z) *> = F<yii_ay1_72zrvzl_7y;ray2_)2;722_7 b '>’

where 4" = yi + 45y =vi— v, 5 =zt 2 and 27 =z —2f, i > 1
We recall that a polynomial

f(yi‘r""?y';;)y1_7"‘7y7:7zi"_7"'7zj721_7"'32;) E F<YUZ7*>
is a *-polynomial identity of A (or simply a *-identity), and we write f = 0, if
fluf, oo ut ur, o et e ) =0

for all uf,...,ut € Al ul,...,u, € Ay, v{,...,v}f € A and vy ,...,v; € A].
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We denote by Id*(A) = {f € F(Y U Z,*) | f =0 on A} the Ti-ideal of *-identities of A, i.e., Id*(A) is an
ideal of F(Y U Z, ) invariant under all graded endomorphisms of F(Y U Z) commuting with =.

As in the super case, it is easily seen that in characteristic zero, every *-identity is equivalent to a system
of multilinear #-identities. Hence if we denote by P = spanp{we) - Wem) | ¢ € Sn, w; = yj or w; =

Y, Or w; = zf or w; = z;, ¢ =1,...,n} the space of multilinear polynomials of degree n in the variables
uiyr 2 s 2, ul,un, 2t 2, the study of 1d*(A) is equivalent to the study of P N1d*(A), for all n > 1.
The non-negative integer
P*
¢ (A) = dimp & n>1,

PrNId*(A)’
is called the n-th *-codimension of A.

If A is a Pl-algebra, then ¢f(A),n =1,2,..., is exponentially bounded (see [4], [12]). Here we are interested
in *x-algebras having polynomial growth of their x-codimensions.

Given V a variety of x-algebras the growth of V is defined as the growth of the sequence of *-codimensions
of any algebra A generating V, i.e., ¥V = var*(A4). Then we say that V has polynomial growth if ¢ (V) is
polynomially bounded.

In [4, 12] the authors characterized the varieties of polynomial growth by exhibiting a finite list of *-algebras
to be excluded from the variety.

Next we are going to describe such algebras.

Let A be a commutative algebra endowed with an automorphism ¢ of order 2. Then we can write A = AJ S AT
where Ay = {a € A| p(a) =a} and A7 = {a € A| p(a) = —a}. It is well known that A can be viewed both as
a superalgebra (because of duality between Z,-gradings and automorphisms of order 2) and as an algebra with
involution with Ag = AT = Af and A; = A~ = AY, where AT and A~ denote the subspaces of symmetric and
skew elements, respectively.

Hence we can regard A as endowed with 2 structures of x-algebras:

1) A is endowed with trivial grading and we treat ¢ as an antiautomorphism (involution);
2) A is endowed with trivial involution and we treat ¢ as an automorphism.

Notice that the involution ¢ on A in 1) is a graded involution and also a superinvolution while the trivial
involution on A in 2) is only a graded involution. We denote by A and by A%“P the algebra A with the first and
with the second structure, respectively. By using the decomposition A = AJ & A, & A} @® A7, we have that
A=A DA @000
and
AP = AP 0@ AV @ 0.

By using the same notation for any commutative algebra B with an automorphism of order 2 we have the
following.
Remark 2.1. B € var*(A) if and only if BP € var*(A%"P).

Proof. The result follows by observing that if f € F(Y U Z, %) and f*“P is the polynomial obtained from f by
exchanging the variables y~’s with the variables 27’s then f = 0 on A if and only if 5% = 0 on A%, (]

Now let D = F @& F be the commutative algebra endowed with the automorphism ¢ of order 2 defined by
v(a,b) = (b,a), for all (a,b) € D.

As above D denotes the algebra D with trivial grading and with (graded) involution * = ¢ (also superinvo-
lution) called the exchange gs-involution and D*“P denotes the algebra D with trivial (graded) involution and
with grading determined by ¢ : Dy = F(1,1) and D; = F(1,—1). We recall that 1d*(D) = ([x1, 22}, 27,27, )1y
and 1d° (D) = (fay, 2],y 2" )z; ([9).

We also consider the following algebra with involution:

M = F(e11 + eas) ® F(eaz + e33) ® Fera @ Feaa,

a subalgebra of UT,, endowed with the reflection involution, i.e., the involution obtained by reflecting a matrix
along its secondary diagonal: if a = a(e11 + eqq) + B(eaz + e33) + ve12 + desq then

a* = afern + eqs) + Bleas + e33) + dera + vesa,
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where the e;;s denote the usual matrix units.

If we regard M as endowed with trivial grading, then the above involution is a graded involution and also a
superinvolution. We recall that 1d*(M) = (y; y5 , 27, 27 )1y ([25]).

Next we consider a non-trivial grading on M: we denote by M?*“P the algebra M with grading My =
F(e11 + e44) ® F(eas + e33) and My = Fejs @ Fegyq. Notice that the reflection involution on M*¥P is a graded
involution and also a superinvolution, since M? = 0. Hence M*“P can be viewed as a *-algebra whose T} -ideal
is 1d*(M*"P) = (y~, z122)7; ([12]).

The above algebras characterize the varieties of x-algebras of polynomial growth.

Theorem 2.1. [4] Let A be a finite dimensional algebra with superinvolution over a field F of characteristic
zero. Then the sequence ci,(A),n =1,2,..., is polynomially bounded if and only if M, M*“?, D ¢ var*(A).

Theorem 2.2. [12] Let A be a finite dimensional algebra with graded involution over a field F' of characteristic
zero. Then the sequence ci,(A),n = 1,2,..., is polynomially bounded if and only if M, M"P D, D%%P ¢ var*(A).

Recall that given two *-algebras A and B, A is T5-equivalent to B and we write A ~7; B in case Id"(A) =
1d*(B).

As a consequence of the above theorems, we have that the algebras M, M*“P, D and D*“P are the only finite
dimensional *-algebras, up to T5-equivalence, generating varieties of almost polynomial growth, i.e., varieties
of exponential growth such that any proper subvariety has polynomial growth.

Now, we are going to study the structure of a generating finite dimensional x-algebra of a variety of polynomial
growth. First we recall some definitions. A subalgebra (ideal) A’ of a *-algebra A is a x-subalgebra (ideal) of A
if it is a graded subalgebra (ideal) and A”* = A’. The algebra A is a simple *-algebra if A% # 0 and A has no
non-trivial x-ideals.

By the Wedderburn-Malcev theorems ([4], [12]), if B is a finite dimensional x-algebra over an algebraically
closed field, we can write

B=B'+J
where B’ is a semisimple *-subalgebra of B and J = J(B) is its Jacobson radical. Moreover
B/:B1®...®Bk

where By, ..., By are simple x-algebras and J is a *-ideal of B which can be decomposed into the direct sum of
graded B’-bimodules

J = Joo @ Jo1 © Jio @ Ji1,

where for ¢ € {0,1}, Ji is a left faithful module or a 0-left module according as ¢ = 1 or i = 0, respectively.
Similarly, J; is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively and for
i,k,I,m € {0,1}, JixJim C 01 Jim where 0y, is the Kronecker delta.
Notice that Joo and Ji; are stable under * whereas J{; = Jo1.

Let A= Ay ® Ay be a *-algebra. We say that A is endowed with the trivial gs-involution if A; =0 and * is
the trivial involution. Clearly this says that A is commutative.

By putting together Theorem 8.3 in [12] and the proof of Theorem 5.1 in [4] we get the following.

Theorem 2.3. Let A be a finite dimensional x-algebra over an algebraically closed field F of characteristic
zero. Then the sequence ci(A),n =1,2,..., is polynomially bounded if and only if

A=A1&- DAL+,
where for everyi=1,...,m, A; 2 F is endowed with the trivial gs-involution and A;JAx =0, for all 1 < i,k <
m, i # k.

We remark that if A is any algebra having the above decomposition then ¢ (A), n = 1,2, ..., is polynomially
bounded also if the field is not algebraically closed.

Lemma 2.1. Let I be the algebraic closure of the field F' and let A be a finite dimensional x-algebra over F such
that dimp A/J(A) < 1. Then A ~1; B for some finite dimensional *-algebra B over F' with dimp A/J(A) =
dimp B/J(B).
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Proof. Since dimp A/J(A) < 1, it follows that either A = F + J(A) or A = J(A) is a nilpotent algebra.

We now take an arbitrary x-basis {w1,...,w,} of J(A) over F' (i.e., consisting of even and odd symmetric
and even and odd skew elements) and we let B be the x-algebra over F' generated by B = {1z, w1,...,wp} or
by B = {w,...,w,} according as A= F + J(A) or A= J(A), respectively.

Clearly dimp B/J(B) = dimp A/J(A) and as F-algebras, Id*(A4) C Id*(B). On the other hand, if f is
a multilinear *-identity of B then f vanishes on the basis B. But B is also a basis of A over F. Hence

Theorem 2.4. Let A be a finite dimensional x-algebra over a field F' of characteristic zero. Then ¢} (A),
n=1,2,..., is polynomially bounded if and only if A ~r; B, where B = By @ -+ ® By, with By, ..., By, finite
dimensional x-algebras over F and dim B;/J(B;) <1, for alli=1,...,m.

Proof. Suppose first that A ~7; B, where B = By @ --- © B, with By, ..., By, finite dimensional x-algebras
over F and dim B;/J(B;) <1, for alli =1,...,m. Then ¢} (A4) = ¢(B) < ¢} (B1)+ -+ ¢ (By,) and the claim
follows since, by the remark after Theorem 2.3, ¢ (B;) is polynomially bounded for all i = 1,...,m.
Conversely, let ¢ (A) be polynomially bounded. Suppose first that F is algebraically closed. Then, by
Theorem 2.3,
A=A, - A+ J,

where for every i = 1,...,1, A; 2 F is endowed with the trivial gs-involution and A;JA; =0, forall 1 < i,k <1,

Set By = Ay+J,..., By = Ai+J. We claim that A ~7; B1®---&B®J. Clearly Id"(A) C Id"(B1®- - -@B;®.J).
Now let f € Id*(B; & --- @ B; & J) and suppose that f is not a *-identity of A. We may clearly assume that
f is multilinear. Moreover, by choosing a *-basis of A as the union of a basis of A; ® --- @& A; and a basis of
J it is enough to evaluate f on this basis. Let uq,...,u; be elements of this basis such that f(uq,...,u:) # 0.
Since f € Id*(J) at least one element, say uy, does not belong to J. Then u; € A;, for some i. Recalling
that AIA] = AjAz' = AlJA] = AjJAi = O, for allj 7é 7;, we must have that U, ..., Ut € AZ U J. Thus
ul,...,us € A; +J = B; and this contradicts the fact that f is a *-identity of B;. This proves the claim. Now
the proof is completed by noticing that dim B;/J(B;) = 1.

In case F is arbitrary, we consider the algebra A = A ®p F, where F is the algebraic closure of F' and
A = A®p F is a x-algebra with the induced superinvolution or graded involution (a ® @)* = a* ® a, for
a € A,a € F. Clearly A is Tj-equivalent to A. Moreover the *-codimensions of A over F coincide with the -
codimensions of A over F. By the hypothesis it follows that the *-codimensions of A are polynomially bounded.
But then by the first part of the proof, A= By & --- & B,,, where By, ..., B, are finite dimensional *-algebras

over F' and dimp B;/J(B;) < 1, for all i = 1,...,m. By the previous lemma there exist finite dimensional
x-algebras C1,...,Cy, over F such that, for all i, C; ~7; B; and dimp C;/J(C;) = dimp B;/J(B;) < 1. Tt
follows that Id*(A) = [d*(A) = 1d*(B1 @ --- @ By,) =1d*(C1 @ - -- ® C,,,) and we are done. O

In some cases we have a stronger result.

Theorem 2.5. Let A = Ay A1 be a x-algebra such that Ay = 0 or x is the trivial involution. Then c},(A), n =
1,2, ..., is polynomially bounded if and only if A is T5 -equivalent to a finite direct sum of algebras By @®- - -@® By,
where By, ..., By, are finite dimensional x-algebras over F and dim B;/J(B;) <1, for alli=1,...,m.

Proof. If A ~r; B, where B = By @® -+ @ By, with By,..., By, finite dimensional x-algebras over F' and
dim B;/J(B;) <1, for all i = 1,...,m, then by the proof of Theorem 2.4, ¢} (A) is polynomially bounded for
alli=1,...,m.

Now suppose that ¢ (A) is polynomially bounded for all ¢ = 1,...,m. Notice that if A; = 0 then A is just
an ordinary algebra with involution and the result follows by [22, Theorem 3].

Finally if * is the trivial involution, then var*(A4) = var**P(A), where var*“? denotes a variety of superalgebras
and the result follows by [6, Proposition 4]. O

Next we shall give characterizations of the varieties of polynomial growth through the behaviour of their
sequences of cocharacters.

Let n > 1 and write n = n; + -+ + ng as a sum of non-negative integers. We denote by P, c P

10004
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the vector space of the multilinear *-polynomials in which the first n; variables are even symmetric, the next
no variables are even skew, the next ns variables are odd symmetric and the last n4 variables are odd skew.
The group Sp, X --- x Sy, acts on the left on the vector space P,, ., by permuting the variables of the
same homogeneous degree which are all even or all odd at the same time. Thus S,, permutes the variables
yf, e ,yﬁl, Sn, permutes the variables y, \1,..., ¥, 1n,, and so on. In this way P, ., becomes a module
over the group Sp, x --- x S,,. Now P,, ,, N1d*(A) is invariant under this action and so the vector space

Pnl,...,m;
P, . . n,NId*(A)

.....

Pﬂ1,~~7n4 (A) =

is an (Sy, X -+ x Sy, )-module with the induced action. We denote by Xn,,....n,(A) its character and it is called
the (nq,...,n4)-th cocharacter of A.

If A= (A1,...,\s) is a partition of n, we write A - n. It is well-known that there is a one-to-one correspon-
dence between partitions of n and irreducible S, -characters. Hence if A - n, we denote by x, the corresponding
irreducible Sy-character. If \(1) - nq, ..., A(4) I n4 are partitions we write (A\) = (A(1),...,A(4)) F (n1,...,n4)
or (A\) Fn and we say that (\) is a multipartition of n =ny + -+ - + ny.

Since char F' = 0, by complete reducibility, Xpn, ... n,(A) can be written as a sum of irreducible characters

(1) Xn,.ona (A) = Z MY XA(L) @ - @ Xa4),
<>\>}—(TL1,...,TL4)

where myy > 0 is the multiplicity of xx(1) ® - -+ ® Xa@1) N Xny,...;n4 (A)-
Now if we set ¢y, ... n,(A) = dimp P, . n,(A) it is immediate to see that

2 a= X (e,

ni+--Fna=n

where (m " M) = m‘ﬂi'm' stands for the multinomial coefficient.
Hence the growth of ¢ (A) is related to the growth of multinomial coefficients and of degrees of irreducible

characters.

Theorem 2.6. Let A be a finite dimensional x-algebra over a field F' of characteristic zero. Then c(A),

n=1,2,..., is polynomially bounded if and only if for every ni,...,ng with ny + --- +ng = n it holds
Xnpems(A) = Y mpyxa@ ® - ® Xaw):
ANF(n1,...,n4)
n—XA(1)1<q

where q is such that J(A)? = 0 and A(1)1 denotes the length of the first row of the Young diagram corresponding
to the partition A\(1).

Proof. This result can be proved following word by word the proof given in [15, Theorem 2.2] for graded
algebras. (I

The following theorem collects results about *-varieties of polynomial growth.

Theorem 2.7. For a finite dimensional x-algebra A the following conditions are equivalent:
1) ¢ (A) is polynomially bounded;

2) A ~Ty B, where B = By & --- & By, with By,...,B,, finite dimensional *-algebras over F and
dim B;/J(B;) <1, foralli=1,...,m;

3) for every ny,...,ng withng + -+ 4+ ny = n it holds

Xni,...na(A) = Z MOYXA1) @ @ Xa4)s
(ME(n1,...,n4)
n—=A(1)1<q
where q is such that J(A)? = 0;
4) M, M"%P, D ¢ var*(A) in case * is a superinvolution and M, M**P D, D*'P ¢ var*(A) in case x is a
graded involution.



POLYNOMIAL CODIMENSION GROWTH OF ALGEBRAS WITH INVOLUTIONS AND SUPERINVOLUTIONS 7

3. CLASSIFYING THE SUBVARIETIES OF VAR*(D) AND VAR*(M)

In this section we classify, up to T5-equivalence, all the x-algebras contained in the variety generated by D
or M. Here x is a graded involution and also a superinvolution.

As we have remarked before, this is equivalent to the classification of the algebras with involution inside
the varieties of algebras with involution generated by D or M. Such a classification was given in [22]. In what
follows we present such results in the language of *-algebras for convenience of the reader.

Next we construct, for any fixed k& > 1, x-algebras belonging to the variety generated by D whose *-
codimension sequence grows polynomially as n*.

For k > 2, let I} be the k x k identity matrix and E; = Zi.:ll €i,i+1, where the e;;s denote the usual matrix
units.

We denote by

Cr ={alr + Z Bl | a,0p € FY CUTy,
1<i<k
a commutative subalgebra of UTy. We also write C} to mean the algebra C} with trivial grading and with
gs-involution given by

(ady, + Z ;B = aly + Z (—1)'a;EL.
1<i<k 1<i<k
We next state the following result characterizing the -identities and the *-codimensions of Cj, (see [22]).
Theorem 3.1. Let k > 2. Then

]‘) Id*(Ck) = <[$1,.’E2], y; T y];v Z+7 27>T2*~
k—1
n 1
2) ¢ (C) = ~—— kL
0 =3 (0) = g
7=0
The following result classifies all the subvarieties of the variety generated by D.

Theorem 3.2. [22] Let A be a *-algebra such that A € var*(D). Then either A ~r; D or A ~p; N or
A~y CON or A ~g; Cp @ N, for some k > 2, where N is a nilpotent x-algebra and C' is a commutative
algebra with trivial gs-involution.

Next we exhibit finite dimensional *-algebras belonging to the variety generated by M whose %-codimension
sequence grows polynomially.

For k > 2, let
Ay = E Ek=2
k= SpanF €11 + e2k:,2]€7 gy , €12, €13, -, €1k, ek}+1,2k¢a ek}+2,2k¢7 ey 62k71,2k 9
k—2
Ny =spang {I,E,...,E* % €12 — €a5_1,2k, €13, - - - €1k, €hp 1,2k » €p 2,2k - - - » €2k—2,2k | »
k—2
U =spanp {I,E,...,E" 7 €12+ €2k—1,2k: €13, - - - » €1k €h1,2ks €h12,2ks - - - » €26—2,2k | »

be subalgebras of UT5y. Here I denotes the 2k x 2k identity matrix and E = Zi:; €iit1 T €2k—i2k—it1. We
also write Ay, Ny and Uy to mean the above algebras with trivial grading and with reflection gs-involution.

We next state the following results characterizing the x-identities and the growth of the x-codimensions of
the above algebras (see [22] for more details).

Theorem 3.3. For every k > 2 we have:
D) Id"(Ar) = iz > 2520 oSt U i Wi Yot U0 YAl U T o) TS
2) i (Ay) = g1, for some ¢ > 0.

Theorem 3.4. The T5-ideal Id"(Ny) is generated by the polynomials [x1,x2), Y1 y3, 27, 27, in case k = 2
and by [y, ... ,y,;tl], Y1 Yy, 2T, 27, in case k > 3. Moreover

k—2
e (Ng) =1+ Z (?) (2i—1)+ <k: ﬁ 1> (k —1) = gn*~1, for some ¢ > 0.
i=1
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Theorem 3.5. The Ty -ideal Id*(Uy,) is generated by the polynomials [x1, 23], y—, 2%, 27, in case k = 2 and
by [Tyt )y Y Ys s 2T, 27, in case k > 3. Moreover ¢ (Usz) = 1 and

k—2
cr(Ug) =1+ Z (?) (2i —1)+ <k T_L 1> (k —2) = qn*~1, for some ¢ >0, fork > 3.
i=1

The following result classifies the subvarieties of var*(M).

Theorem 3.6. [22, Theorem 6 | If A € var*(M) then A is Ty -equivalent to one of the following x-algebras:
M, N, Ny®N, U, ®N, Ny @Up, ® N, A; &N, Ny @A ON, Uy @A &N, Ny U, ® A; © N,
for some k,t > 2, where N is a nilpotent x-algebra.

As a consequence of the previous theorems, we can also get the classification of all x-algebras generating
minimal varieties.

Corollary 3.1. A x-algebra A € wvar*(D) generates a minimal variety of polynomial growth if and only if
A ~1y Cy, for some k > 2.

Corollary 3.2. A x-algebra A € var*(M) generates a minimal variety of polynomial growth if and only if either
A~y Uy or A ~7p Ny or A ~gp Ay, for somer > 2, k> 2.

4. ALGEBRAS WITH 1 OF POLYNOMIAL #-CODIMENSION GROWTH

In this section we classify, up to T5-equivalence, all the x-algebras with 1 contained in the variety generated
by M*"P_ where * is, as we have remarked before, a superinvolution and also a graded involution.
We recall the following result characterizing the (n1,...,n4)-th cocharacter of M*?.

Theorem 4.1 ([12]). If xn,.... n (MP) = Z MOYXA() @ - @ Xy @8 the (ny,...,ng)-th cocharacter
<A>}—(TL1,...,TL4)
of M*"P, ny +---+ng =n, then
1 if (A) = ((n),0,0,0)
g+1 if (N =(p+aqp),
g+1 if (N =(p+ap),
0 otherwise

My =

0,(1),0)
0,0,(1)

where p,q >0 and 2p+q+ 1 =n.

We are going to prove that, in case A € var*(M"P) generates a variety of polynomial growth, then A satisfies
the same *-identities as a finite dimensional *x-algebra.
We start with the following.

Theorem 4.2. If A € var*(M*"P) then var*(A) = var*(B) for some finitely generated x-algebra B.

Proof. Let B be the relatively free algebra of var*(A) with 2 even symmetric, 1 odd symmetric and 1 odd skew
generators. We shall prove that var*(A) = var*(B). Clearly var*(B) C var*(A).

In order to get the opposite inclusion we need to prove that Id*(B) C Id*(A). Let f be a x-identity of B.
Since charF = 0, we may assume that f = f(yi, ...,y  ,¥1 .- Un, 21 - 120y 21 - -+ 2, ) is multilinear.
Let L be the (Sp, X +-+ X Sy, )-module generated by f and let L = L; @ --+ @& L,, be its decomposition into
irreducible components with L; generated by f; as an (S,,, X -+ x Sp,)-module, i =1,...,m. If f; =0 on A for
alli=1,...,m, then also f =0 on A. Hence, without loss of generality, we may assume that L is irreducible.

Let xx(1) ® -++ ® xa@a) be the irreducible character of L, where A(@) b ongy i =1,...,4 and let €Ty =
(ZTEBT T) (EaecT (sgna)a) , i =1,...,4, be the corresponding essential idempotents (see [13, Chapter
(i) (i)

2]).
Notice that, if A(1)s # 0 or A(2) # 0 or A(3) ¢ {0, (1)} or A(4) ¢ {0, (1)} then, from Theorem 4.1 follows
that f =0 on A.
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Therefore, in order to complete the proof, we may assume that A(1)3 = 0, A(2) = 0 and A(3),A(4) € {0, (1)}.

reRy 7') f- Since L is irreducible and g # 0 then f =0 on A if and only if g =0
A(1)

on A. We shall prove that g =0 on A.

Notice that g is symmetric on at most 2 disjoint subsets Y7, Y5 of {yf, Yy, } If we identify all variables of
Y1 with yf and all variables of Y5 with ygr we obtain a homogeneous polynomial ¢t = t(yir , ygr ,2T,27) which is
still a *-identity of B. From the definition of relatively free algebra, it follows that ¢ = 0 on A. But the complete
linearization of ¢ on all even symmetric variables is equal to vg(y; ...,y , 27, 27) where v = A(1)1! A(1)2! # 0.
Hence g =0 on A and so f =0 on A follows. |

Now we consider g = (Z

In order to characterize the varieties of polynomial growth we need to apply the following result.

Theorem 4.3. [1]. If A is a finitely generated algebra with superinvolution over an algebraically closed field F
of characteristic zero then A satisfies the same x-identities as a finite dimensional algebra over F.

As a consequence of Theorems 4.2 and 4.3 we get the following.

Corollary 4.1. Let A € var*(M*"P) be a x-algebra over an algebraically closed field F of characteristic zero.
Then Id*(A) = Id*(B) for some finite dimensional *-algebra B.

In order to study *-identities of algebras A with 1 we define the proper #-polynomials.
We say that a polynomial f € P} is a proper *-polynomial if it is a linear combination of elements of the

type

where wy, . .., w,, are left normed (long) Lie commutators in the variables from Y UZ (here the symmetric even

variables appear only inside the commutators).
We denote by I'} the subspace of P} of proper #-polynomials and I'{; = span{1}.
The sequence of proper *-codimensions is defined as

*
: n
im ——2——
rxnid*(A4)’
For a unitary x-algebra A, the relation between *-codimensions and proper *-codimensions (see for instance
[3]), is given by the following:

(3) qu:i(”)ﬁm), n=0,1,2....

)
i=0

Tn(A) =d n=0,1,2,....

Given two sets of polynomials S,.5" C F(Y U Z, %), we say that S’ is a consequence of S if S" C (S)7;.
Proposition 4.1. For every 1 > 1, I'; ,; is a consequence of T'.
Proof. This result can be proved following closely the proof of Lemma 2.2 in [19, 23]. (]
As a consequence we have the following.
Corollary 4.2. Let A be a *-algebra with 1. If for some k > 2, v;(A) = 0 then v;;,(A) =0 for allm > k.

Let n =n1 4 --- +ng > 1. We denote by I'y,, ... n, € Py,,... .n, the subspace of proper *-polynomials, which
is also an (S,, X --+ x Sy,)-submodule of P, _ ,,. Since 'y,  ,, NId*(A) is invariant under the action of
Sn, X -+ xSy, the vector space

r
Fn N A) = N1y
Lyeees 4( ) Fn17___7n4 n Id*(A)

is an (Sy, X -+ x Sp,)-module with the induced action. We denote by ¥y, .. n,(A) its character and it is called
the (ni,...,n4)-th proper cocharacter of A.
Since char F' = 0, by complete reducibility ¢, ... n,(A) can be written as a sum of irreducible characters

(4) Gy oma(A) = D mpyxa@) @+ @ Xaw),
(AFn
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where myy > 0 is the multiplicity of xx1) ® -+ ® Xa@) 0 Yy, 0y (A).
Now if we set vp,... n,(A) =dimp Ty, . n,(A) it is immediate to see that

) w2 ("

ni+--Fna=n

Next we consider the algebras N and U we have defined before endowed with elementary Z,-gradings.
Recall that if g = (g1, ..., g2x) € Z2F is an arbitrary 2k-tuple of elements of Z, then g defines an elementary
Zo-grading on UTsy, by setting

(UTok)o = span{e;j | gi + g; = 0} and (UTo)1 = span{e;; | g; + g5 = 1}
(recall that equalities are taken modulo 2). If A is a graded subalgebra of UTy the induced grading on A is
also called elementary.
Definition 4.1. Fork > 2, N"" is the algebra N, with elementary Zs-grading induced by g = (0,1,...,1,0,...,0,1)
—— - —
k-1 k—1

and with reflection gs-involution.

The following result characterizes the x-identities and the *-codimensions of N;"".

Theorem 4.4. Let k > 2. Then:
1) Id*(N]jup) = <yia 21722, [ZJrayla e ayk—2]>T2*;

k—2
2) cf(N;"P) =1+ 2122' (7;) + (k i 1) (k—1) = qn*=1, for some q > 0.
Proof. Let I = (y~, z122, [¢%, 51, yk—2])7s. It is easy to see that I C Id*(N;“"). Let now f be a *-identity
of NJ*. We may assume that f is multilinear and, since N;*” is an algebra with 1, we may take f proper.
After reducing the polynomial f modulo I we obtain that f is the zero polynomial if deg f > k, f is a linear
combination of commutators

[zi_,y;,...,yj;iz], 1 < o0 < ig_2
in case deg f = k — 1 and f is a linear combination of commutators
[Z;vy;gv"'ayitfl]v [Z;r,y_;q,~c~,y;71], il << 755717 jl < <jsfl

in case deg f = s < k — 1. Hence, for some s=1,..., k—1,

S S

_ - o+ + + .+ +
f_zai [Zz 7y7;17"'7yis,1] +Zﬁj [Zj 7yj17"'7yj571]'
i=1 j=1

Suppose that there exists ¢ such that a; # 0 (resp. §; # 0). By making the evaluation z; = e12 — eak—1,2k,
z; =0, for all [ # 4, z]+ =0, for j =1,...,s (resp. zf = e13 + €2x—2,2k, zl+ =0, for all I # 7, z;7 =0, for
j=1,...,8)and y; = E for all | = iy,...,is_1, we get that a; = 0 (resp. B; = 0), a contradiction. Hence
a; =03; =0, forall i = 1,...,s. This says that f € I and, so, Id"(N;"?) = I. The argument above also proves
that v} (N;"?) = s for s = k—1, v;(N;"") = 2s for s < k—1 and v} (N;"") = 0 for s > k. Then, by (3) we have

k—2
i (NJP) =1+ Z (?) 2i + (k ﬁ 1) (k—1) = gn*~1, for some ¢ > 0.
i=1

Definition 4.2. Fork > 2, U."" is the algebra Uy, with elementary Zs-grading induced by g = (0,1,...,1,0,...,0,1)
—— N———

and with reflection gs-involution.

The following results characterizing the *-identities and the *-codimensions of U;*" and N;"* @ U;"? can be
proved in a similar way as the previous theorem.
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Theorem 4.5. Let k > 2. Then:
1) Id (U;"™) = (?J_, 21227 (27, U155 Yk—2]) Ty

2) c,(UM) = 1+Z ( >22+ ( ﬁ1> (k—1) ~ qn*~1, for some q > 0.

Theorem 4.6. If k > 2 then:

1) I&" (NP @ U™ = (y~, 2122, [2,91, - Yea])1y s
k—1

2) ¢ (N, 5“p®Uz“p—l+Z<>2z~qn L for some q > 0.
=1
Notice that U™ @ N~y U™ if t > k and U™ @ NP ~pe NP if t < k.
From now until the end of this section we assume that the field F' is algebraically closed.

Theorem 4.7. For any k > 2, N;"" generates a minimal variety of polynomial growth.

Proof. Let A € var*(N,"") be such that ¢;;(A) &~ gn*~*, for some ¢ > 0. We shall prove that A ~z; N;"". Since
A € var*(M*"P) by Corollary 4.1 A satisfies the same *-identities as a finite dimensional x-algebra. Hence, since
¢ (A) is polynomially bounded, by Theorem 2.4 we may assume that
A:Bl@...@Bm7
where By,..., By, are finite dimensional *-algebras such that dim B;/J(B;) < 1, for all ¢ = 1,...,m. This
implies that either B; & F' + J(B;) or B; = J(B;) is a nilpotent x-algebra. Since ¢};(A) < ¢/ (B1)+---+¢(Bm),
then there exists B; such that ¢ (B;) ~ bn*~!, for some b > 0. Hence
var® (N;"") D var*(A) D var*(F + J(B;)) 2 var*(F + Ji1(B;)).

Hence, in order to complete the proof it is enough to show that F + Ji1(B;) ~1y N:“p. Thus, without loss
of generality, we may assume that A is a unitary *-algebra. Since c’(A) =~ gn*~! then ¢’ (A) = Zi:ol (M) (A)
and, by Corollary 4.2, vf(A) #0 foralli =0,...,k — 1.

Forny+ - +ng =n, let Yoy g (A) = 20 0 Moy Xam @ - @Xaw@ and Pny g (NEF) = 20 00, My Xam @

- ® Xa(4) be the (ny,...,n4)-th proper cocharacters of A and N;*”, respectively. Since Id"(A) D Id*(N;""),
we must have my) < m y forall (A)Fn=ni+...+ng
For any i = 2,...,k — 17 let fi =129, ..,y and fo = [27,95,-..,vy5 | be highest weight vectors corre-
sponding to the multipartitions (A\) = ((i — 1), 0, (1), 0) and (u) = ((¢ — 1), 0, 0, (1)) (see [2, Chapter 12]).
It is easily seen that f is not a -identity of N;“ for ¢ = 2,...,k — 2 and f5 is not a x-identity of N;*” for
T

Thus for i = 2,...,k — 2, X-1) ® Xp @ x(1) ® Xp participates in the (i —1,0,1,0)-th proper cocharacter
¥i—1,0,1,0(N;“") with non-zero multiplicity. Also, for i =2,...,k—1, x(;-1) ® xo ® Xp ® x(1) Participates in the
(i —1,0,0,1)-th proper cocharacter 1;_1,,0,1(N; ") with non-zero multiplicity.

Hence, for : = 2,...,k — 2, since

* su . T ]
v (Ng*P) = 2i = <i_1 0’1,()) deg x(i—1) ® X0 ® X(1 )®X@+< ~1.0.0, 1> deg X(i—1) ® X0 ® X0 @ X(1),

by (5) we have that, for ny +-+- +mn4 =1
Xi-1) @ Xp @ X1y @ xp  if (n1,m2,n3,n4) = (1 — 1,0,1,0)
Yny nz,nana (Nliup) =9 X@-1) ®Xp ® Xo ® X(1) if (n1,n2,m3,m4) = (i — 1,0,0,1) .
0 otherwise
Similarly, since

k-1
NP =k —-1= d _ ,
Vi1 (N ) <l<;—2,0,0,1> eg X (k—2) @ X0 ® Xo @ X(1)
we get that

Yr—2,0,0,1 (V") = X(h—2) ® X0 ® X0 @ X(1)
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and
wn17n2,n3,n4 (Nsup) =0if (n17 n2, N3, n4) 7é (k -2,0,0, 1)an1 +ooo+nna=k-1
Since v;_;(A) # 0 and myy < m< NY for any (A\) Fny + -+ + ng, then we get that ¢r_20,01(A4) = X(k—2) @
X0 ®X@ ® X(l) and '(/)m,nz,na,m;(A) =0if (TZ1,TZ2,7’Z3,7’Z4) 7& (k - QaOaOa 1)7”1 +tny = k—1.

Moreover for ny + -+ + ng =4, where i = 2,...,k — 2, we claim that ¥n, ny 15,04 (A) = Vny nongns (Ne ).
In fact, if ¥;_1001(A) = 0, for some 2 < i < k — 2, then the highest weight vector [z ,vys,...,y5]
—
i1
corresponding to the multipartition ((¢ — 1), @, @, (1)) would be a *-identity for A. But this implies that
also [z, 9y ,...,y5 | is a x-identity for A, and 50 x_20,0.1(A) = 0, a contradiction. In a similar way one can
———
k—1
prove that if ;1 0.1,0(4) = 0 we would reach a contradiction.
Hence
=l k=l ;
an=-S (- () £ (=3 (e ()=o)
i=0 =0 mateng=i N LT

Thus A and N;*” have the same sequence of %-codimensions and, since Id*(N;“?) C Id*(A) we get the equality
Id*(N;*?) = 1d*(A) and the proof is complete. O

In a similar way it is possible to prove the following.
Theorem 4.8. For any k > 2, U;"" generates a minimal variety of polynomial growth.
In the following result we classify, up to T5-equivalence, all x-algebras with 1 inside var*(M5“P).

Theorem 4.9. Let A € var*(M*"P) be an algebra with 1 such that c},(A) ~ gn*~! for some ¢ >0, k > 1. Then
either A ~gs C or A vy U™ or A vpy NP or A opy NP @ U™, where Cis a commutative algebra with
trivial gs-involution.

Proof. If k =1 it is immediate to see that A is a commutative algebra with trivial gs-involution.

Let now k > 2. Since ¢ (A) ~ gn*~1, by (3) 7;_,(A) # 0. Hence at least one polynomial among
Ty, ud ol and [27 1, ...,y _,] cannot be a x-identity for A, since otherwise we would have v;_,(A4) =
0, a contradiction.

If [27,yf,...,y} 5] is not a *-identity and [zT,47 ...,y ,] = 0 on A then Id*(N;"?) C Id*(A) and since
¢ (A) ~ qn*~1, by Theorem 4.7, one gets that A ~qy N;*F. Similarly, if [zF,y,...,y/_,] is not a *-identity
and [z7,y;,...,yf_,] =0 on A one gets that A ~q; U;"F.

Finally, suppose that neither of the polynomials [z, 3], ... ,y;:_Q] and [z7, 9], ..., y;_Q] are *-identities for A.
Since ¢, (A) ~ gnF~1, then v} (A) = 0, and so Id*(N,;"? @ U;"?) C Id*(A). As in the proof of Theorem 4.7, for
i=2,...,k—1, we get that:

¥i—1,01,0(A4) = hi—1,010(N,"P @ UP) = X(i—1) ® Xp ® X(1) ® Xp,
Yi~1,0,0,1(A) = ¥i—1,001(N"" @ UZ™) = x(i-1) ® X0 @ X0 ® X(1)
and
¢n1,n2,n3,n4( ) = wnl ,N2,M3,M4 (Nljup D Uljup) =0,

if (n1,n9,n3,n4) ¢ {(¢ —1,0,0,1), (¢ — 1,0,1,0)},n1 + - - + ng = i. Hence A and N;"” & U;"" have the same
sequence of *-codimensions:

—135(?)7 —1+Z2z< > L(NZP @ US™P)

=0

and, since Id" (N @ U;"?) C 1d"(A) we finally get the equality Id*(N."" @ U;*") = Id*(A). O
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5. CLASSIFYING THE SUBVARIETIES OF VAR™(M*"P)

In this section we classify, up to T5-equivalence, all x-algebras contained in the variety generated by M*“P.
We start by constructing *-algebras without unit inside var* (M *“P).

Definition 5.1. Fork > 2, A;"" is the algebra Ay, with elementary Zs-grading induced by g = (0,1,...,1,0,...,0,1)
—— N———
k—1 k—1
and with reflection gs-involution.

Next we describe explicitly the s-identities of A;"".

Theorem 5.1. Let kK > 2. Then
1) Id°(A;") = (Y™, 2122, 91 - Y—12Yk -~ Yok—2) Ty ;

n
2) ¢ (AFP)=1+2 Z <t)(n —t) = qn*! for some q > 0.
t<k—1
nfotT<k
Proof. Write I = (y~, 2122, Y1 - Yh—12Yk - - - Y2k—2)7; - 1t is easily seen that I C Id"(A;""). In order to prove
the opposite inclusion, first we find a set of generators of P modulo P; NI, for every n > 1.
Any multilinear polynomial of degree n can be written, modulo I, as a linear combination of monomials of the
type
(6) R TR A A AR TN VAN TAa A
wherei; < -+ <, 1 < - <jo,t<k—lors<k—-1,m<---<rp,s51<---<sgandp<k—lorg<k-—1
We next show that the above elements are linearly independent modulo Id*(A;""). Let f € Id"(A4;*") be a
linear combination of the above monomials:

F=oul -yl + D > st cutgyl oyl + Y0 Y Burs vl ud syl vl

t<k—1 ], J p<k—1 m,R,S
or or
s<k—1 g<k—1

where t + s =p+¢=n—1 and for any fixed t and p, I = {1,...,4%}, J = {j1,...,4s}, R={r1,...,7p} and
S ={s1,...,84}

By making the evaluation y;7 = --- = y = ej; + €ak,2k, and zfr =z =0,foralll =1,...,n, one gets
d(e11 + e2x,2k) = 0 and, so, 6 = 0.
For fixed t < k — 1,1,1,J the evaluation zl+ = ei2 + eap—1,2k, zl",r =0, for all I’ # I, y;'; = ... = y;: = F,
yjt = :yj =eq1 + eop2r and 2z, =0, for m=1,...,n, gives

o 1,7 €2k—t—1,2k +oq g1 €124+ = 0.
Thus arrg =0Qp g1 = 0.
Similarly, for fixed s < k — 1,1, 1, J the evaluation zl+ = e12 + €2k—1,2k; zl",r =0, for all I’ # 1, y: == y: =
e11 + ez 2k, yj; =...= y;-; =Fand z,, =0, form=1,...,n, gives oy 1,7 = 0.
In a similar way it is proved that the coefficients 3,, r.s = 0, for all m, R and S.

Therefore the elements in (6) are linearly independent modulo P N1d*(A;"”) and, since P NId"(A;"") D
P* N1, they form a basis of P modulo P} NId*(A4;"") and Id*(A;"") = I. By counting, we obtain
x(ASUPY _ [ W7, |
(A7) =142 Z <t>(n t) =~ gn
t<k—1
nfotT<k
for some g > 0. (]

Remark 5.1. Let A= F + J € var*(M*"P). Then
JioJo1 = Jo1J10 = (J11)1J10 = Jo1(J11)1 = 0.
In particular, if A € var*(A;*") then (Ji1)1 = 0.
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Proof. We start by proving that JigJo1 = Jo1J10 = 0. Let a = ag + a1 € Jig, b = by + by € Jo1. Notice that,

since Ay =0, a—a* =a; —a} and b — b* = by — b}. Then, because of z122 =0, (a — a™)(b — b*) = 0 and, so,

ab=a*b* = 0.

Now let a € (J11)1, b = by + b1 € J1g. Then a(b — b*) = 0 and, so, ab = 0.

Finally, if A € var*(A;"?) then A satisfies the *-identity y; -y, 2y} -+ y4._, = 0. Hence, since (J11)1 =

F---F (J11)1 F---F we get the desired result. O
k—1 k-1

Lemma 5.1. Let A = F +J € var*(A;"") with Jig # 0 (hence Jo1 # 0). If ci(A) =~ gqn*~1, for some q > 0,
then A ~Ty Aiup

Proof. Since A € var*(A;""), by the previous remark we must have (J11)1 = Jo1J10 = J1o0Jo1 = 0.
Suppose first that (Jw)l((Joo)ar)k*2 = 0 and, so, ((Joo)g)k*Q(JOl)l = 0. If J™ = 0, it can be proved that,
for any n > m, the multilinear polynomial

f =YYy Yk—22Yk—1 - Yar-ayj, Y5, € 1d7(A),
where [ +t + 2k — 3 =n.
Hence, if Q C Id*(A) is the Ty-ideal generated by f plus the generators of the Ti-ideal Id*(A;"?), it is easy
to see that for any n > m, a set of generators of P(mod P} N Q) is given by the polynomials

+ + ot + o4+t + ot + - ot +
yl ...yn,yil...yit Zl yjl...yjs7 yil-..yit Zl yj]‘...:l/jS

wheret+s=n—1,t<k—-2o0ors<k—2, i1 <--- <1 j1 <---<js. Hence

-1
(A <142 Z (nt >nzan2,

t<07€7‘72
n—t<k—1
a contradiction.
Therefore we must have (Ji0)1((Joo)d)*2 # 0. In order to complete the proof it is enough to show that
Id*(A) C Id"(A;""). Let f € Id"(A) be a multilinear polynomial. By Theorem 5.1, we can write f, modulo
Id* (A7) as

F=oyl o+ D > arsyt vyl oyl + Y0 YD Burs vl vt zayd vl

t<k—-11.1,J p<k—-1 m,R,S
s<k—1 q<k—1

where I = {i1,..., i}, J = {j1,...,Js}» B = {r1,...,7p}, § = {s1,...,84} are such that T U J U {l} =
RUSU{m} ={1,....,n}and i1 < -+ <y, 1 < - < Js, 71 < --- <7rpand s < -+ < 54 It is easy to see
that f must be the zero polynomial and so, f € Id"(A}"?). This says that Id"(A) = Id*(A;"") and the proof is

complete. 0

Now we are in a position to prove the following theorem.
From now until the end of this section we assume that the field F' is algebraically closed.

Theorem 5.2. For any k > 2, A;"? generates a minimal variety of polynomial growth.

Proof. As in the proof of Theorem 4.7 we may assume that A = By @& --- @& B,,, where By, ..., B,, are finite
dimensional *-algebras such that either B; & F + J(B;) or B; = J(B;) is a nilpotent algebra and there exists
B; such that ¢ (B;) ~ bn*~1, for some b > 0. Since k > 2, we must have that Jio(B;) # 0 (hence Jo1(B;) # 0).
If not B; = (F + Ji1) ® Joo and ¢ (B;) = ¢ (F + Ji1), for n large enough. But since C' = F + Jy; € var*(A4;"),
we get that C' is a commutative algebra with trivial gs-involution and, so, ¢ (F + Ji1) = 1, a contradiction.
Therefore, since B; satisfies the hypotheses of Lemma 5.1, we get that B; ~; A" and A ~qp AJ* follows. [

Lemma 5.2. Let A =F + J € var*(M*"P) be a *-algebra. If Jig # 0 (hence Jo1 # 0) then A is Ty -equivalent
to one of the following *-algebras

AP ON, Ny AP ON, U @ AP © N, NP @ U"P @ AP © N,

for some k,u > 2, where N is a nilpotent x-algebra.
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Proof. Since the proof is very similar to that given in [22, Lemma 8] we shall just give a sketch of it for
convenience of the reader. ‘ ‘

Let j > 0 be the largest integer such that JioJJ, # 0 (hence Jj,Jo1 # 0). We shall see that either
A NTZ* A;’j}; @JOO or A NT2* Aj’j}; EBN,Z“I)EBJOO or A NTZ* A;ig EBU;up &) JOO or A NTz* Ajig @NSUP@UiuP@Joo,
for some u > 2.

Suppose first that (J11); = 0.

It is checked that A5V ~7y A/ J3 and so, Id*(A) C 1d™(AZY% @ Joo). In order to prove the opposite inclusion,
it is taken f € 1d"(Aj\Y ® Joo) a multilinear polynomial of degree n. If n < 2j + 2, since f € 1d"(Aj}%), then
f must be a consequence of (y~, z120)7y € Id*(A). Hence f € Id"(A) and we are done in this case. Now let
n > 25 + 2. Tt is checked that f can be written modulo Id*(A35}%) as

J+2
- + +,+ + + + =t +
f= E § QLT Yi Y A Yy YL T § E Bm,R.S Yry " YpyZmYs, * Ys, T 9
thZl 1,1,J ij:l m,R,S

an an
s>j+1 q=j+1

where g € (y~,z120)r; and I = {iy,...,0t}, J = {j1,...,Js}, R ={r1,...,mp}, S = {s1,...,8,} with i; <
<y, g1 < s < Js, 1 < o < 1pand sp < -0 < 540 It is easily seen that f is a *-identity of A and
1d* (A7} ® Joo) € Id*(A). So A ~1y ATV © Joo follows.
Suppose now that (J11)1 # 0.
Let B = F + Jig + Jo1 + Joo- From Remark 5.1 it follows that B is a subalgebra of A and, since (J11(B))1 =0
by applying the first part of the lemma to B we conclude that

sup
B ~Ty Aj+2 SV Joo.

Now let L = F + J11. By Theorem 4.9, either L ~r; F or L ~g; NP or L ~ry UP or L ~qy NP & US"P,
for some r > 2.
It is proved that A ~7y L ® B and this complete the proof. (Il

Now we are in a position to classify all the subvarieties of var*(M*"P).

Theorem 5.3. If A € var*(M?®“P) then A is Ty -equivalent to one of the following *-algebras: M**P, N, C,
NN, U, @N, NNP U@ N, A7 ®N, NN PO A" ON, U, @ A]"P &N, NP U P @ A{"" O N
for some k,t > 2, where N is a nilpotent x-algebra and C' is a commutative algebra with trivial gs-involution.

Proof. If A ~r; M*“P there is nothing to prove. Now let A generates a proper subvariety of M*“P. Since M*"P
generates a variety of almost polynomial growth, var*(A4), has polynomial growth. Hence by Corollary 4.1 and
Theorem 2.4 we may assume that A = By ®--- ® B,,, where By, ..., B, are finite dimensional x-algebras such
that dim B;/J(B;) < 1. This means that for every i, either B; is a nilpotent *-algebra or B; has a decomposition
of the type B; = F +J = F + J11 + J19 + Jo1 + Joo. Now, by applying Theorem 4.9 and Lemma 5.2 we get the
desired conclusion. ]

As a consequence of the previous theorem and of Theorems 4.7, 4.8, 5.2 we can also get the classification of
all x-algebras generating minimal varieties.

Corollary 5.1. A x-algebra A € var*(M*"P) generates a minimal variety of polynomial growth if and only if
either A ~r; U,:up or A~y N,:UP or A ~ry AZ“p, for some k > 2.

6. CLASSIFYING THE SUBVARIETIES OF VAR*(D*®"P)

In this section we classify, up to T4 -equivalence, all the algebras with graded involution contained in the
variety generated by the algebra D*"P| i.e., the algebra F' @ F with grading Dy = F(1,1) and D; = F(1,-1)
and with trivial graded involution.

Since the graded involution is trivial, this is equivalent to the classification of the subvarieties of the super-
variety generated by D**P. Such a classification was given in [20, 21]. Also, by Remark 2.1, the classification
of the subvarieties of var*(D*"P) can be obtained from the classification of the subvarieties of var*(D). In what
follows we present these results in the language of algebras with graded involution for convenience of the reader.
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According to the notation introduced before, C;*? is the algebra
Cv={ali+ > aiBEj|a,0;€F}
1<i<k

with elementary grading induced by g = (0,1,0,1,...) € Z§ and trivial involution.
The following result characterize the *-identities and the *-codimensions of C}"".

Theorem 6.1. Let k > 2. Then
1) 1d"(C}*") = ([x1, 2], zfz,‘:, YT, 27)Ty

2) ¢t (O3 = kf (”> ~ ﬁnk_l.

=0\
The following result classifies all the subvarieties of the variety generated by D*"P.

Theorem 6.2. Let A € var*(D*"P) be an algebra with graded involution. Then either A ~ry D*'P or A ~p; N
or A~py CO®N or A ~py CJP @ N, for some k > 2, where N is a nilpotent algebra with graded involution
and C is a commutative algebra with trivial gs-involution.

As a consequence we get the classification of all algebras generating minimal varieties.
Corollary 6.1. Let A € var*(D*"P) be an algebra with graded involution. Then A generates a minimal variety
of polynomial growth if and only if A ~ry CJ*P, for some k > 2.
7. CLASSIFYING VARIETIES OF AT MOST LINEAR GROWTH

In this section we present a classification, up to T5-equivalence, of the finite dimensional *-algebras generating
varieties of at most linear growth, where % is a graded involution or a superinvolution. Such classification for
the x-algebras with trivial grading was given in [24].

The following lemma follows from [15, Theorem 5.1].

Lemma 7.1. Let A be a finite dimensional x-algebra such that ¢} (A) < an, for some constant a. Then A
satisfies the polynomial identities x1x9 =0, with x1,72 € X \ YT, where YT = {yf‘,y;', .. }

Lemma 7.2. Let A = F'+J be a finite dimensional x-algebra such that c},(A) < an, for some constant a. Then
Ay (F+Jo)® (F+J7) @ (F+J7).
Proof. Since ¢ (A) < an, by Lemma 7.1, A satisfies the polynomial identities 1z = 0. Hence F + Jo, F + Jfr
and F'+ J; are x-subalgebras of A and obviously
Id*(A) CId* (F+Jo) @ (F+J) & (F+J7)).
Conversely, let f € Id* ((F + Jo) @ (F + J{") & (F + J;)) be a multilinear polynomial of degree n. By multi-

homogeneity of T -ideals we may assume, modulo Id*(A), that either

_ + + _ + + + +
f= XS: Colpay Yo O F= D Belaay Y TeYaien Yo
oESy i=1,...,n
where z; € X \Y T, i=1,...,n.
If f is of the first type, in order to get a non-zero value, we should evaluate f on F + Jy. But f € Id*(F + Jy)

by the hypothesis, and so we get that f =0 on A. Similarly, if f is of the second type we get that f =0 on A.
Hence Id* ((F + Jo) @ (F + J;") & (F + J;)) € 1d*(A) and we are done. O

Since F + Jy € var*(M), F + J;*, F + J; € var*(M*"P) we get the following.

Corollary 7.1. Let A = F + J be a finite dimensional x-algebra such that ¢i,(A) < an, for some constant a.
Then A ~1; By or A ~1; By or A ~7; By @ Ba, where By € var*(M) and By € var*(M*"?).

Now we are ready to present the main result of this section.
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Theorem 7.1. Let A be a finite dimensional x-algebra such that ¢, (A) < an, for some constant a. Then
ANT; Bl@"'@Bm@N7
where B; € var*(M) or B; € var*(Ms"P), for alli=1,...,m and N is a nilpotent x-algebra.

Proof. Since ¢} (A) < an, for some constant a, by Theorem 2.4, we may assume that
A=A1®---0 A,

where Ay, ..., A, are finite dimensional x-algebras with dim A;/J(4;) < 1, 1 < i < m. Notice that this says
that either A; 2 F + J(A4;) or A; = J(A;) is a nilpotent x-algebra. Since ¢} (4;) < ¢} (A) then ¢ (A;) < an, for
alli=1,...,m. Now the result follows by applying Corollary 7.1 to each non-nilpotent A;. (]

Finally, by putting together Theorem 7.1 and Theorems 3.6, 5.3, we get a finer classification of the x-algebras
of at most linear codimension growth.

Theorem 7.2. Let A be a finite dimensional x-algebra such that ¢ (A) < an, for some constant a. Then
Ar~gs B1® @B, &N,
where N is a nilpotent x-algebra and for alli=1,...,m, B; is Ty -equivalent to one of the following algebras:
Ni, C® Ni;, Na@® N;, A2 ® Ny, Na® Az & Ny,
N;*P@®N;, US"PeN;, ASPeN;, N,""oU;"PoN;, N3P AJ'PON,;, UsP@AS'PON;, Ny'PoU," P @A O N;,

where C' is a commutative *-algebra with trivial gs-involution and N; is a nilpotent *-algebra.
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