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ABSTRACT

Let � be a bounded smooth domain in R
N . We prove a general existence result of least energy

solutions and least energy nodal ones for the problem

{
−�u = f (x , u) in �

u = 0 on ∂�
(P)

where f is a Carathéodory function. Our result includes some previous results related to special cases of f . 

Finally, we propose some open questions concerning the global minima of the restriction on the Nehari 

manifold of the energy functional associated with (P) when the nonlinearity is of the type f (x, u) = λ|u|s

−2u − μ|u|r−2u, with  s, r ∈ (1, 2) and λ, μ > 0.
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1. Introduction

Let � be a nonempty bounded open set in RN with smooth boundary ∂�. In this paper,
we establish the existence of least energy solutions and least energy nodal ones for the 

following elliptic problem

{
−�u = f (x, u), in �,

u = 0, on ∂�
(P)

where f is a Carathéodory function with subcritical growth conditions explained below.

Our solutions will be always understood in weak sense: by definition, a weak solution of

problem (P) is a function u ∈ W0
1,2(�) such that

I
′

(u)(v) =

∫
�

(∇u(x)∇v(x) − f (x, u(x))v(x))dx = 0 (1)
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for all v ∈ W0
1,2(�), where I

′
(u) ∈ (W0

1,2(�))′ is the Gateaux-derivative at u of the

energy functional I associated to (P), which is defined as follows

I(u)
def
=

1

2

∫
�

|∇u|2dx −

∫
�

(∫ u(x)

0
f (x, t)dt

)
dx, u ∈ W1,2

0 (�). (2)

A weak solution which changes sing in � is called nodal solution. Moreover, a weak

solution is said least energy solution (resp. least energy nodal solution) if it minimizes I on

the set S of all weak nonzero solutions (resp. on the set S± of all nodal solutions).

When I is of class C1, the set

N =

{
u ∈ W1,2

0 (�) \ {0} : I ′(u)(u) =

∫
�

|∇u|2dx −

∫
�

f (x, u)udx = 0

}
,

is the so-called Nehari manifold associated to I . We also introduce the nodal Nehari

manifold N± defined as

N± = {u ∈ W1,2
0 (�) : u+, u− ∈ N }, (3)

where u+(x) = max{u(x), 0}, u−(x) = max{−u(x), 0}.

In what follows, we denote by 2∗ := 2N
N−2 , if N ≥ 3, 2∗ = ∞ if N = 1, 2, the critical

exponent for the Sobolev embedding.

When f (x, t) = λ|t|s−2t, with λ > 0 and s ∈ (1, 2), it is well known that the energy

functional I admits exactly two global minima u1, u2, with u1 positive in � and u2 = −u1.

For s ∈ (2, 2∗), the functional I restricted to the Nehari manifold is coercive and, being N ,

in this case, a weakly closed set, it admits a global minimum u ∈ N . Then, there exists a

Lagrange multiplier ρ ∈ R such that I ′(u)(v) + ρJ ′(u)(v) = 0, for all v ∈ W1,2
0 (�), where

J(u) = I ′(u)(u). Testing this equation with v = u, it is easy to infer ρ = 0. Therefore,

since N ⊃ S, u turns out to be a least energy solution to problem (P).

In [1] (see also [2]) , Grumiau and Parini investigated the existence of least energy nodal

solutions for problem (P) in the more general quasilinear case involving the p-Laplacian

operator (with p > 1) and again for nonlinearities of the type f (x, t) = λ|t|s−2t, with

s ∈ (p, p∗), where p∗ is the critical exponent for the embedding W1,2
0 (�) ⊂ Lp(�). In

particular, they proved the existence of a least energy nodal solution by minimizing the

restriction of the energy functional I on the nodal Nehari manifold. With respect to the

least energy solutions case, it is a bit more delicate proving that the global minimum of

I|N± is a critical point of I (and so a weak solution) and the proof is based, in this case, on

a deformation lemma and on the classical Miranda Fixed Point Theorem.

We want to point out that in the above arguments the Nehari manifold and the nodal

Nehari manifold could be replaced by the sets

A = {u ∈ W1,2
0 (�)\{0} : I ′(u)(u) ≤ 0}, A± = {u ∈ W1,2

0 (�) : u+, u− ∈ A}. (4)

Indeed, a global minimum point u∗ ∈ A of I|A must belong to N , for otherwise u∗ should

belong to the open set {u ∈ W1,2
0 (�)\{0} : I ′(u)(u) < 0} ⊂ A: this means that u∗ should

be a (nonzero) local minimum of I , and so u∗ ∈ S ⊂ N . In the same way, we can see that

a global minimum point u∗ ∈ A± of I|A± must belongs to N±.
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To the best of our knowledge, for sublinear functions near 0 of the type λ|u|s−2u, with

1 < s < 2, the existence of least energy nodal solutions is not yet known. As a corollary of

our main results, we will give a positive answer to this question.

Indeed, our main results apply to even more general nonlinearities of the type f (x, u) =

λ|u|s−2u − μ|u|r−2u with λ > 0, μ ∈ R, and r, s ∈ (1, 2) with r < s. In particular, using

some results from [3,4], we will show that there exists μ0 > 0 such that the problem

{
−�u = λ|u|s−2u − μ|u|r−2u, in �,

u = 0, on ∂�
(Pλ,μ)

admits a least energy solution and a least energy nodal solution for all μ ∈ (−∞, μ0].

An interesting feature of this problem is that the sets A and A± introduced in (4) are not

weakly closed for μ ≤ 0 (in fact we know, by standard results, that for μ ≤ 0 problem

(Pλ,μ) admits a sequence {un} of (sign-changing) weak solutions strongly converging to 0 in

W1,2
0 (�)) but, instead, the sets A and A± are even weakly compact for μ > 0. Nevertheless,

we do not know if the global minima of I|A and I|A± are weak solutions or not. A positive 
answer to this question would allow to get a variational characterization for both of the 
least energy solutions and the least energy nodal ones.

2. Basic definitions and notations

Throughout this paper, we consider a Carathéodory function f : � × R → R such that, 

for some constant C > 0 and  some q ∈ (1, 2∗), it holds

|f (x, t)| ≤ C(1 + |t|q−1), for almost all x ∈ � and for all t ∈ R. (5)

It should be noted that, without loss of generality, we can always assume q > 2.

Moreover, for any m ≥ 1, with m ≤ 2∗ if N ≥ 3, we denote by cm the best constant for

the Sobolev embedding W1,2
0 (�) ↪→ Lm(�), i.e.

cm := sup
u∈W1,2

0 (�)\{0}

‖u‖m

‖u‖
.

where ‖u‖ :=

(∫
�

|∇u|2dx

) 1
2

is the standard norm in W1,2
0 (�), and ‖u‖m :=(∫

�

|u|mdx

) 1
m

is the standard norm in Lm(�). Also, we denote by λ1 the first eigenvalue of

the Laplacian in the domain �, i.e. λ1 = c2
2. Finally, we will consider the energy functional I

defined in (2). By standard results, it is well known that, under condition (5), the functional

I is sequentially weakly lower semicontinuous and of class C1 in W1,2
0 (�).

3. Main results

Let K ⊆ � be a set of positive measure. The following conditions will be considered on 
the nonlinearity f :
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(i) lim inf ξ→0+

∫ ξ
0 f (x,t)dt

ξ2 ≥ λ1
2 , uniformly in �\K , and lim inf ξ→0+

∫ ξ
0 f (x,t)dt

ξ2 > λ1
2 ,

uniformly in K .

(ii) lim inf ξ→0+

∫ ξ
0 f (x,t)dt

ξ2 > −∞, uniformly in �\K , and lim supξ→0+

∫ ξ
0 f (x,t)dt

ξ2 =+∞,

uniformly in K .

(iii) there exists δ > 0 such that f (x, ξ)ξ − 2
∫ ξ

0 f (x, t)dt < 0, for all ξ ∈ [−δ, δ]\{0}, and

for a.e. x ∈ �.

(iv) lim supt→0
f (x,t)

t < λ1, uniformly in �.

(v) lim sup|ξ |→+∞

∫ ξ
0 f (x,t)dt

ξ2 < λ1
2 , uniformly in �;

(vi) there exist c > 2 and M > 0 such that 0 ≤ c

∫ ξ

0
f (x, t)dt ≤ ξ f (x, ξ), for a.a. x ∈ �

and for all ξ ∈ R\(−M, M).

Our main result concerning the existence of the least energy solutions for problem (P) is

as follows.

Theorem 1: Assume that there hold

(a) condition (i) or (ii) and condition (v);

(b) condition (iii) or (iv) and condition (v) or (vi).

Then, if the set S of all nonzero weak solutions is nonempty, there exists u0 ∈ S such that

I(u0) = inf u∈S I(u).

Proof: Assume S �= ∅ and put F(x, ξ) =
∫ ξ

0 f (x, t)dt, for all (x, t) ∈ �×R. Let {un}n∈N be

a sequence in S such that limn→+∞ I(un) = inf S I . We first prove that under condition (v)

or under condition (vi), the sequence {un}n∈N is bounded. Indeed, assume that condition

(v) holds. Then, we can fix ρ ∈ R and δ > 0 such that

ξ−2

∫ ξ

0
f (x, t)dt ≤ ρ <

λ1

2
, for almost every x ∈ � and for all ξ ∈ R\] − δ, δ[.

Consequently, taking (5) into account, for some positive constant C1 and for every u ∈

W1,2
0 (�), one has

I(u) =
1

2
‖u‖2−

∫
�

F(x, u(x))dx =
1

2
‖u‖2−

∫
|u(x)|≤δ

F(x, u(x))dx −

∫
|u(x)|>δ

F(x, u(x))dx

≥
1

2
‖u‖2 −

∫
|u(x)|≤δ

∣∣∣∣∣
∫ u(x)

0
sup
|s|≤δ

|f (x, s)|dt

∣∣∣∣∣ dx −

∫
|u(x)|>δ

ρu(x)2dx

≥
1

2
‖u‖2 − C1 − ρ

∫
�

(u(x))2dx ≥
1

2
‖u‖2

− C1 − ρ
1

λ1
‖u‖2 =

1

λ1

(
λ1

2
− ρ

)
‖u‖2 − C1.

Therefore,

I(u) → +∞, as ‖u‖ → +∞. (6)
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This clearly implies the boundedness of {un}n∈N. The same conclusion is achieved if

condition (vi) holds. Indeed, if we assume (vi), taking again (5) into account, for some

positive constant C2 and for every u ∈ S, one has

0 = I ′(u)(u)

= ‖u‖2 −

∫
�

f (x, u(x))u(x)dx = ‖u‖2 −

∫
|u(x)|≤M

f (x, u(x))u(x)dx

−

∫
|u(x)|>M

f (x, u(x))u(x)dx

≤ ‖u‖2 − C2 − c

∫
|u(x)|>M

F(x, u(x))dx.

Consequently, for some positive constant C3, one has

I(u) =
1

2
‖u‖2 −

∫
�

F(x, u(x))dx =
1

2
‖u‖2 −

∫
|u(x)|≤M

F(x, u(x))dx

−

∫
|u(x)|>M

F(x, u(x))dx

≥

(
1

2
−

1

c

)
‖u‖2 − C3.

In particular, I(u) → +∞ as ‖u‖ → +∞, with u laying in S. Therefore, also under

condition (vi), the sequence {un}n∈N is bounded.

Thus, if (v) or (vi) holds, by the reflexivity of W1,2
0 (�), there exists u∗ ∈ W1,2

0 (�) such

that, up to a subsequence, un → u∗ weakly in W1,2
0 (�) and strongly in Lm(�), for each

m ∈ (1, p∗). To finish, we only have to show that u∗ ∈ S. To this end, we first note that,

being every un a weak solution of problem (P), then, for each fixed v ∈ W1,2
0 (�), one has

∫
�

∇un(x)∇v(x)dx =

∫
�

f (x, un(x))v(x)dx, for each n ∈ N. (7)

Passing to the limit as n → +∞, one has

∫
�

∇u∗(x)∇v(x)dx =

∫
�

f (x, u∗(x))v(x)dx.

Therefore, u∗ is a weak solution of problem (P). Let us to show that u∗ is nonzero. We have

already observed that when condition (v) holds, then the energy functional I is coercive,

i.e. the limit (6) holds. By a routine argument, we infer that I has a global minimizer in

W1,2
0 (�), which is weak solution to problem (P) as well. We now show that if condition (i)

or condition (ii) holds, then inf
W1,2

0 (�)
I < 0 which implies u∗ �= 0. Suppose that condition

(i) holds. Let ϕ1 ∈ C1(�) be the positive eigenfunction associated to λ1, normalized with

respect to the sup-norm. From (i), there exist δ, ρ > 0 such that

F(x, ξ) ≥

(
λ1

2
+ ρ

)
ξ 2, for all ξ ∈ [0, δ] and for almost all x ∈ K , (8)
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F(x, ξ) ≥

(
λ1

2
− σρ

)
ξ 2, for all ξ ∈ [0, δ] and for almost all x ∈ �\K , (9)

where σ = 1
2

(∫
K ϕ1(x)2dx

) (
1 +

∫
�\K ϕ1(x)2dx

)−1
.

Now, put ϕξ = ξ · ϕ1, for all ξ > 0. Then, using the above inequalities, for ξ ∈ [0, δ],

we obtain

I(ϕξ ) =
ξ 2

2
‖ϕ1‖

2 −

∫
K

F(x, ξϕ1(x))dx −

∫
�\K

F(x, ξϕ1(x))dx

≤
ξ 2

2
‖ϕ1‖

2 − ξ 2

(
λ1

2
+ ρ

)∫
K

ϕ1(x)2dx − ξ 2

(
λ1

2
− σρ

)∫
�\K

ϕ1(x)2dx

=
ξ 2

2

(
‖ϕ1‖

2 − λ1

∫
�

ϕ1(x)2dx

)
− ξ 2ρ

(∫
K

ϕ1(x)2dx − σ

∫
�\K

ϕ1(x)2dx

)

≤ −
ξ 2ρ

2

∫
K

ϕ1(x)2dx < 0.

Therefore, inf
W1,2

0 (�)
I < 0. We obtain the same conclusion when condition (ii) holds.

Indeed, from (ii), we can find δ, T > 0 such that

F(x, ξ) ≥ −Tξ2, for all ξ ∈ [0, δ] and for almost all x ∈ �\K .

Now, fix compact set K0 ⊆ K with positive measure and an open set �0 such that K0 ⊂

�0 ⊂ �0 ⊂ � and meas(�0\K0) < 1
2T meas(K0), and let ϕ ∈ C1(�) be a nonnegative

function such that supx∈� ϕ(x) = 1, ϕ ≡ 1 in K0, ϕ ≡ 0 in �\�0. Again from (ii),

choosing δ smaller if necessary, we get

F(x, ξ) ≥ Rξ 2, for all ξ ∈ [0, δ] and for almost all x ∈ K ,

where R = meas(K0)
−1‖ϕ‖2 + 1.

At this point, putting ϕξ = ξϕ for all ξ > 0, and taking into account the above inequality,

we obtain, for ξ ∈ [0, δ],

I(ξϕ) =
ξ 2

2
‖ϕ‖2 −

∫
K0

F(x, ξϕ(x))dx −

∫
�\K0

F(x, ξϕ(x))dx

≤
ξ 2

2
‖ϕ‖2 − Rξ 2meas(K0) + Tξ 2

∫
�0\K0

ϕ(x)2dx

≤ −
ξ 2

2
‖ϕ‖2 − ξ 2meas(K0) + Tξ 2meas(�0\K0)

< −
ξ 2

2
‖ϕ‖2 −

ξ 2

2
meas(K0) < 0.

The proof in the case of assumption (a) is complete.

Now, suppose assumption (b) holds. To conclude we again have to show that u∗ is

nonzero under condition (iii) or (iv). Assume, on the contrary, that u∗ = 0. One has, for

all n ∈ N,
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{
−�un = f (x, un), in �

un = 0 on �

which means that un satisfies equation (7). Testing this equation with v = un, we get

‖un‖
2 =

∫
�

f (x, un(x))un(x)dx. (10)

Now, let q ∈ (2, 2∗) be as in (5). Since un → 0 strongly in Lq(�), then there exists

g ∈ Lq(�) such that |un(x)| ≤ g(x), for almost all x ∈ �. Then, if we put

an(x) =
f (x, un(x))

1 + |un(x)|
,

taking into account that the function t → 1+tq−1

1+t is increasing in [1, +∞), we can obtain,

in view of (5), the estimate

|an(x)| ≤ C
1 + |un(x)|q−1

1 + |un(x)|
≤ a(x) := C

(
1 +

1 + |g(x)|q−1

1 + |g(x)|

)
, for almost all x ∈ �.

Moreover, it is easily seen that a ∈ L
q

q−2 (�) and
q

q−2 > N
2 , and that an(x) → 0 as n → +∞,

almost everywhere in � (this follows from the fact that u∗ = 0 is a solution of problem (P)

if and only if f (x, 0) = 0). Therefore, by the Dominated Convergence Theorem, it follows

lim
n→+∞

‖an‖
L

q
q−2 (�)

= 0. (11)

Since un is a weak solution of the problem

{
−�u = an(x)(1 + |u|) in �,

u = 0 on ∂�,

by standard regularity results (see [5], Appendix B), we have un ∈ C1,β(�), for some

β ∈ (0, 1). By Theorem 8.16 of [6], there exists a constant C > 0 independent of un such

that

‖un‖∞ ≤ C‖an‖
L

q
q−2 (�)

(1 + ‖un‖∞)

Using the limit (11), we infer

lim
n→+∞

‖un‖∞ = 0. (12)

Moreover, being I sequentially weakly lower semicontinuous, we have

0 = I(u∗) ≤ lim inf
n→+∞

I(un) = inf
S

I. (13)
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At this point, in view of (12), we can choose n ∈ N such that ‖un‖∞ < δ. Thanks to (10),

(13) and (iii), we get

I(un) =
1

2
‖un‖

2 −

∫
�

F(x, un(x))dx

=

∫
�

(
1

2
f (x, un)un(x) − F(x, un)

)
dx < 0 = I(u∗) ≤ inf

S
I ,

which is in contradiction with un ∈ S (note that the above strict inequality follows from

being un a non zero function). Consequently, u∗ is nonzero.

Finally, let us suppose that assumption (iv) holds. Let η ∈ (0, λ1) be such that

lim sup
t→0+

f (x, t)

t
< λ1 − η, uniformly in �.

Then, using also (5), we find a positive constant C1 such that

|f (x, t)| ≤ (λ1 − η)|t| + C1|t|
q−1, for almost all x ∈ � and for all t ∈ R. (14)

Recall again that, under condition (v) or condition (vi), every minimizing sequence of I|S
is bounded. Thus, if {un} is a sequence in S which minimizes I|S, there exists u∗ ∈ W1,2

0 (�)

such that un → u∗ weakly in W1,2
0 (�). As noted above, u∗ turns out to be a weak solution of

problem (P). Therefore, if we prove that u∗ is non zero, we get u∗ ∈ S and I(u∗) = minS I .

Using u∗ = 0 and (14), one has

0 = I ′(un)(un) = ‖un‖
2 −

∫
�

f (x, un(x))un(x)dx ≥ ‖un‖
2

− (λ1 − η)

∫
�

|un|
2dx − C1

∫
�

|un|
pdx

≥ ‖un‖
2 − (λ1 − η)

1

λ1
‖un‖

2 − C1

∫
�

|un|
pdx =

=
η

λ1
‖u‖2 − C1

∫
�

|un|
pdx ≥

η

λ1
c−2

q

(∫
�

|un|
pdx

) 2
q

− C1

∫
�

|un|
qdx,

(15)

for each n ∈ N. This implies,

∫
�

|un|
pdx ≥

(
η

λ1C1c2
q

) q
q−2

. (16)

Since the functional u ∈ W1,2
0 (�) →

∫
�

|u|qdx is sequentially weakly continuous, from

(16) one has

∫
�

|u∗|qdx ≥

(
η

λ1C1c2
q

) q
q−2

. Therefore, u∗ is nonzero. The proof of

Theorem 1 is now complete.
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Remark 1: From the proof of Theorem 1, it is clear that, in the conditions (i) and

(ii), ‘lim supξ→0+ ’ and ‘lim inf ξ→0+ ’ can be replaced by ‘lim supξ→0− ’ and ‘lim inf ξ→0− ’,

respectively.

The next result concerns the existence of the least energy nodal solutions for the problem

(P). To state it, we need to introduce the following condition:

(ĩ) there exists δ > 0 such that f (x, t)t ≥ 0, for almost all x ∈ � and for all

t ∈ [−δ, δ].

Theorem 2: Assume (b) of Theorem 1 and the additional condition (ĩ) in the case of (iii)

holds.

Then, if the set S± of all sign-changing weak solutions is nonempty, there exists u0 ∈ S±

such that I(u0) = inf u∈S± I(u).

Proof: Assume S± �= ∅ and let {un} be a sequence in S± which minimizes I|S± . By the

proof of Theorem 1, we know that {un} is bounded in W1,2
0 (�). So, {un} weakly converges

to some u∗ ∈ W1,2
0 (�), with u∗ being a solution of problem (P). Our goal is to show that

u∗ is sign-changing. Suppose, at first, that (iii) and (ĩ) hold. Arguing as in the proof of

Theorem 1, we infer that u∗ is nonzero. Assume that u∗ is not sign-changing. Then, for

instance, we can suppose u∗ nonnegative. Recall that, by standard regularity results, the

weak solutions to problem (P) are at least of class C1,β in �, for some β ∈ (0, 1). Moreover,

condition (ĩ) allows to apply the Strong Maximum Principle of [7] and the classical Hopf

Lemma. Therefore, u∗ is actually strictly positive in �, with ∂u∗
∂ν

< 0 on ∂�, where ν is the

outer unit normal to ∂�. In other words, u∗ belongs to the interior P of the positive cone

of C1(�). At this point, observe that un − u∗ is solution to the problem{
−�u = bn(x)(1 + |u|), in �

u = 0, on ∂�
(Pn)

where

bn(x) :=
f (x, un) − f (x, u∗)

1 + |un(x) − u∗(x)|
→ 0, as n → +∞, for almost all x ∈ �.

Since un − u∗ → 0 strongly in Lq(�), there exists g ∈ Lq(�) such that |un(x) − u∗(x)| ≤

g(x), for all n ∈ N and for almost all x ∈ �. Moreover, since u∗ ∈ C1+β(�), one

has M := sup� |u| < +∞. Then, using condition (5) and the elementary inequality

|a + b|q−1 ≤ 2q−1(|a|q−1 + |b|q−1), we have

|f (x, un(x))−f (x, u∗(x))| ≤ |f (x, un(x))|+|f (x, u∗(x))|≤C(2+|un(x)|q−1+|u∗(x)|q−1)

≤ C(2 + 2q−1|un(x) − u∗(x)|q−1 + (2q−1 + 1)|u∗(x)|q−1)

≤ C1(1 + |un(x) − u∗(x)|q−1)

for almost all x ∈ �, for all t ∈ R and where we put C1 := max{2C + (2q−1 +

1)CMq−1, 2q−1C}. Therefore, taking in mind that the function t → 1+tq−1

1+t is nonde-

creasing in [1, +∞), one has

|bn(x)| ≤ C1
1 + |un(x) − u∗(x)|q−1

1 + |un(x) − u∗(x)|
≤ C1

(
1 +

1 + g(x)q−1

1 + g(x)

)
:= b(x),
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for all n ∈ N and for almost all x ∈ �, with b ∈ L
q

q−2 (�). Then, arguing as in the proof of

Theorem 1, we infer

lim
n→+∞

‖un − u∗‖∞ = 0.

In particular, one has supn∈N
‖un − u∗‖∞ < +∞. Consequently, by Theorem 1 of [8], one

has

sup
n∈N

‖un − u∗‖C1,β(�) < +∞.

for some β ∈ (0, 1). Then, by the Ascoli–Arzelà Theorem, up to a subsequence, one has

lim
n→+∞

‖un − u∗‖C1(�) = 0.

Since u∗ belongs to the interior P of the positive cone of C1(�), we then get un ∈ P, for large

n ∈ N. This is a contradiction with being un sign-changing. The case of u∗ nonpositive can

be treated in an analogous way. There u∗ must be sign-changing.

Now, we pass to consider the case of condition (iv) holds. Let u+
n := max{un, 0} and

u−
n := max{−un, 0}, for each n ∈ N. Then, u+

n , u−
n ∈ W1,2

0 (�) and, up to a subsequence,

u+
n → u+

∗ := max{u∗, 0}, u−
n → u−

∗ := max{−u∗, 0}, a.e. in �. Testing Equation (7) with

u+
n and u−

n and arguing as in (15), we get the inequalities

∫
�

|u+
n |qdx ≥

(
η

λ1C1c2
q

) q
q−2

,

∫
�

|u−
n |pdx ≥

(
η

λ1C1c2
q

) q
q−2

, for all n ∈ N,

Passing to the limit as n → +∞, we get

∫
�

|u+
∗ |qdx ≥

(
η

λ1C1c2
q

) q
q−2

,

∫
�

|u−
∗ |pdx ≥

(
η

λ1C1c2
q

) q
q−2

, for all n ∈ N,

and so u+
∗ �= 0 and u−

∗ �= 0.

4. Some special cases

Our main results apply, in particular, to a nonlinearity of the type f (x, t) = λ|u|s−2u − μ|

u|r−2u, where  λ > 0, μ ∈ R and r, s ∈ (1, 2) with r < s.
Indeed, for each λ > 0, this nonlinearity satisfies all the assumptions (i), (ii), (iii) and (v) 

and (i) if μ ≤ 0, and all the assumptions (iii), (iv) and (v) if μ > 0. It also to be noted that 

from Theorem 3.13 of [3] and from Theorem 1 of [4] there exists μ0 > 0 such that  S �= ∅, 

S± �= ∅ if μ ≤ μ0. This means that, in view of Theorems 1 and 2, the problem{
−�u = λ|u|s−2u − μ|u|r−2u in �,

u = 0 on ∂�
(Pλ,μ)

admits both a least energy solution and a least energy nodal solution, for λ > 0 and μ ≤ μ0.
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As mentioned in the introduction, when μ ≤ 0, there exists a sequence of sign-

changing solutions to problem (Pλ,μ) which strongly converges to the zero function.

As a consequence, the sets A and A± introduced in (4), where in this case I ′(u)(u) =

‖u‖2 − λ‖u‖s
Ls(�)

+ μ‖u‖r
Ls(�)

, are not weakly closed. On the contrary, when μ > 0 we

have the following result:

Theorem 3: Let λ, μ > 0 and r, s ∈ (1, 2), with r < s. Then, the sets

A = {u ∈ W1,2
0 (�)\{0} : ‖u‖2 − λ‖u‖s

Ls(�) + μ‖u‖r
Ls(�) ≤ 0},

A± = {u ∈ W1,2
0 (�) : u+, u− ∈ A}.

are weakly compact.

Proof: Let {un} be a sequence in A. Then, for each n ∈ N, one has

‖un‖
2 ≤ λ‖un‖Ls(�) ≤ cs

sλ‖u‖s
Ls(�).

Therefore, being s < 2, {un} is bounded in W1,2
0 (�). So, up to a subsequence, {un} weakly

converges to some u∗ ∈ W1,2
0 (�). Moreover, passing to the limit as n → +∞ in the

inequality

‖un‖
2 ≤ λ‖un‖Ls(�) − μ‖un‖Lr(�) (17)

we promptly get

‖u∗‖2 ≤ λ‖u∗‖s
Ls(�) − μ‖u∗‖r

Lr(�).

To finish, it remains to prove that u∗ �= 0. Indeed, if we fix m ∈ (2, 2∗), we can find a

constant M > 0 such that λts − μtμ ≤ Mtm, for all t ≥ 0. Consequently, using (17), we

obtain

‖un‖
2
Lm(�) ≤ c2

m‖un‖
2 ≤ c2

m(λ‖un‖
s
Ls(�) − μ‖un‖

r
Lr(�)) ≤ c2

mM‖un‖
m
Lm(�),

from which ‖un‖Lq(�) ≥
(

1
Mc2

m

) 1
q−2

. Passing to the limit as n → +∞ in this last inequality

and taking into account the sequential weak continuity of the functional u ∈ W1,2
0 (�) →

‖u‖m
Lm(�)

, we get ‖u∗‖ ≥
(

1
Mc2

m

) 1
m−2

. Therefore, u∗ �= 0.

The weakly compactness of A± follows at once being A± a weakly closed subset of A.

Corollary 1: Let λ, μ, r, s be as in Theorem 3. Then there exist u0 ∈ N and v0 ∈ N±,

where N and N± are the Nehari manifolds associated to the functional I(u) = 1
2‖u‖2 −

λ
s ‖u‖s

s +
μ
r ‖u‖r

r , u ∈ W1,2
0 (�), such that

I(u0) = inf
N

I , I(v0) = inf
N±

I.

Proof: The sets A = {u ∈ W1,2
0 (�)\{0} : ‖u‖2 − λ‖u‖s

s + μ‖u‖r
r ≤ 0}, A± = {u ∈

W1,2
0 (�) : u+, u− ∈ A} are clearly nonempty. So, being I sequentially weakly lower
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semicontinuous on A and A±, by the Eberlein–Smulian Theorem and Theorem 1, there

exist u0 ∈ A and v0 ∈ A±, such that

I(u0) = inf
A

I , I(v0) = inf
A±

I.

s
s

r
r

s
s

r
r

If ‖u0‖
2−λ‖u0‖ +μ‖u0‖ < 0, then u0 should be a local minimum of I . Thus,  I ′(u0)(u0) =

‖u0‖
2 − λ‖u0‖ + μ‖u0‖ = 0, a contradiction. Therefore, u0 ∈ N . The same argument

shows that v0 ∈ N±.

An open problem Let λ, μ, r, s be as in Theorem 3 and let u0,v0 be as in Corollary 1. From  

Theorem 3.13 of [3] and Theorem 1 of [4], we know that S and  S± are nonempty when the 

nonlinearity f is of the form f (x, t) = λ|t|s−2t − μ|t|r−2t. In the light of Corollary 1, does
u0 and v0 belongs to S and S±, respectively?
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