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Abstract: Brain tumors have a poor prognosis and progress must be made for developing efficacious
treatments, but for this to occur their biology and interaction with the host must be elucidated beyond
current knowledge. What has been learned from other tumors may be applied to study brain tumors,
for example, the role of Hsp60, miRNAs, and extracellular vesicles (EVs) in the mechanisms of cell
proliferation and dissemination, and resistance to immune attack and anticancer drugs. It has been
established that Hsp60 increases in cancer cells, in which it occurs not only in the mitochondria but
also in the cytosol and plasma-cell membrane and it is released in EVs into the extracellular space
and in circulation. There is evidence suggesting that these EVs interact with cells near and far from
their original cell and that this interaction has an impact on the functions of the target cell. It is
assumed that this crosstalk between cancer and host cells favors carcinogenesis in various ways.
We, therefore, propose to study the triad Hsp60-related miRNAs-EVs in brain tumors and have
standardized methods for the purpose. These revealed that EVs with Hsp60 and related miRNAs
increase in patients’ blood in a manner that reflects disease status. The means are now available to
monitor brain tumor patients by measuring the triad and to dissect its effects on target cells in vitro,
and in experimental models in vivo.

Keywords: chaperone system; molecular chaperones; chaperonopathies; Hsp60; miRNAs; extracellu-
lar vesicles; high-grade glioma; glioblastoma; meningioma; liquid biopsy; tumor biomarkers

1. Introduction

Primary brain tumors are among the top 10 causes of cancer-related deaths [1].
Glioblastoma is a common malignant primary brain tumor, representing approximately
57% of all gliomas and 48% of all primary malignant tumors of the central nervous system
(CNS) [2]. Because of the poor clinical outcomes, glioblastoma multiforme (GBM) is among
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the most challenging human tumors for patients and physician alike [3]. The possibility of
long-term survival is remote and much of the focus and treatment decisions are based on
cognitive and quality of life issues. The overall survival is usually around 9–12 months and
the overall 5-year survival is less than 5% [4–7]. The dismal GBM clinical outcome, owing to
highly infiltrative growth, intra-tumor heterogeneity, and high recurrence rates, has made
it an urgent subject of cancer research for identification of novel factors associated with its
development [8,9]. With the advancement in the knowledge of the molecular pathology
of malignant gliomas, it is now evident that epigenetic abnormalities and variations in
gene expression are closely related to the occurrence of these tumors and may provide
key targets for developing novel means for diagnosis, assessing prognosis, and disease
monitoring [8].

Meningiomas are also common primary intracranial tumors and, in most cases, they
are histologically benign (WHO grade I). Due to a lack of prospective, randomized trials,
standardized treatment guidelines are difficult to formulate. A gross total resection (GTR)
remains the gold standard, though a complete removal is not always achievable. A sig-
nificant subgroup of patients (WHO grades II and III) cannot be submitted to GTR, but
less radical resection and postoperative adjuvant radiotherapy and systemic therapies are
indicated. Thus, gliomas and meningiomas constitute a great challenge for physicians and
a hopeless situation for many patients who are still awaiting the development of efficacious
treatments.

In the last several years, cancerology has progressed along several lines, one of which
is the understanding of the chaperone, or chaperoning system (CS) and its role in carcino-
genesis. The CS of an organism is composed of the entire set of molecular chaperones,
some of which are Heat Shock Proteins (Hsps), co-chaperones, chaperone co-factors, and
chaperone interactors, and receptors [10]. The canonical function of the CS is maintenance
of protein homeostasis and, in this, its main collaborators are the ubiquitin–proteasome
system and the chaperone-mediated autophagy [11,12]. In addition, the CS has other
functions that involve interaction with the immune system and pertain to carcinogenesis,
and inflammatory and autoimmune conditions [13]. Therefore, a full understanding of the
biology and pathology of a variety of cancers should include the study of the CS role in
their initiation and progression, as well as in their regression when pertinent. It must be
borne in mind that the CS has multiple components that interact with one another and with
molecules widespread in the body, so a chaperone, for instance, can exit its cell of origin,
reach the intercellular space, and enter in the circulating fluids’ lymph and blood, in which
it can travel to its destination near or far. For instance, the chaperone Hsp60 is increased in
some human brain cancers [14–17], and its depletion in in vivo models of GBM WHO grade
IV tumors is associated with intracranial tumor regression [18]. Hsp60 levels are under
the control of regulatory molecules, such as microRNAs (miRNAs) [19–24], which are
noncoding small RNAs that play various roles in oncogenesis acting as oncogenes or tumor
suppressors in certain tumors, including meningiomas and gliomas [25–27]. The Hsp60
chaperone in its physiological or pathological migrations travels alone or in extracellular
vesicles (EVs), can interact with cells near and far from the cell of origin and may change
their functions [28–35]. For these reasons, Hsp60 and other chaperones can be considered
biomarkers potentially useful in diagnosis, and in assessing prognosis and response to
treatment [36–40].

It is clear from the existing data that the triad Hsp60 and related miRNAs and EVs play
critical roles in tumorigenesis and are promising biomarkers for monitoring patients. Based
on this information and considering the need for precise diagnostic tools applicable to brain
tumors, we have standardized a battery of techniques to measure the three biomarkers in
liquid biopsies from patients with glioblastomas and meningiomas. The methods generate
a set of complementary results that reveal patient status and clues on disease mechanisms.
In this short report, we describe the methods and the kind of information they provide.
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2. Materials and Methods

The procedures described are the result of various standardization efforts done over
time to define the best parameters for each of them and are explained in detail for the
benefit of future users in clinical pathology and research.

2.1. Samples

To test the standardized methods, a total of 34 patients with gliomas (n = 16) or
meningioma (n = 18) were recruited within the period December 2016 to October 2018
(Table 1A,B). The project was approved by the Palermo Ethics Committee I (number
11\2018). Written informed consent was obtained from each subject. The study included
only patients without a systemic infection or other tumors and capable of providing consent
on their own. The GBM patients selected were only those desiring to participate in the
study and in which a maximal safe tumor removal was deemed feasible considering neu-
rological status, including neuroradiological imaging evaluation (Table 1A,B). Brain glial
tumors with corpus callosum infiltration were excluded. For meningiomas, we included
patients with primary diagnosis of meningiomas, without previous radiotherapy. All brain
surgeries were performed by the same neurosurgical team, including the Neurosurgical
Unit Chairman D.G.I., senior author of the manuscript and his collaborator F.G. Blood and
pathological tissue samples were taken from each patient on the day of the surgery. For
each patient, blood samples were collected at different time points, just before surgery
(Before Surgery, BS), and at one week (After Surgery 1, AS1), and one month (After Surgery,
AS2) after surgical tumor resection, and were processed for serum separation. A brain
MRI post-gadolinium within 72 h (when feasible) and at one week, and at three months
from discharge, was performed to verify tumor recurrence for correlation with the results
of our analysis. Patients affected by GBM, after the definitive histopathological analysis,
underwent the STUPP protocol therapy as usual [41,42]. Patients affected by brain menin-
giomas WHO GI or II after complete tumor removal were followed at our Outpatient
Clinic. Patients affected by anaplastic meningiomas underwent oncological management
and radiotherapy.

Table 1. (A) Key data on GMB patients and follow-up. (B) Key data on meningioma patients and follow-up.

(A)

Pt a Sex/Age
(years) Brain Site Histopathology b

Follow-Up

Molecular
BS-AS1-AS2 Clinical/Months

1 M/65 Left temporal-peritrigonal HGG GBM IV WHO NOS: GFAP+, IDH+, Synaptofisin-;
Ki67+ <10% C 14

2 M/57 Right frontal HGG GBM IV WHO NOS: p53+, GFAP+, CAM 5.2-; Ki67 > 60% C 10
3 M/60 Left temporo-parietal LGG II WHO: GFAP+, Synaptofisin+, Ki67+ < 3% C 12
4 M/55 Left fronto-temporal HGG GBM IV WHO NOS: GFAP++, PanCK+, Ki67+ > 30% C 8

5 F/65 Right fronto-temporo-parietal
HGG GBM IV WHO IDH mutant: Framments HGG: GFAP+,

IDH+, p53+ > 3%; Ki67+ > 30%: Framments Anaplastic
Astrocitoma: Ki67+ < 5%

C 9

6 F/70 Left fronto-temporal-peritrigonal

HGG III WHO NOS: High differentiated elements: GFAP +,
S-100+, synaptofisin +, rounded cells. CD57+, vimentin+, GFAP-,

NSE-, synaptofisin- with Ki67 15%, CAM 5.2 -, PanCK -, p53 -,
factor XIII -, desmin -, CD68 -, CD45 -

I 5;D

7 F/58 Right frontal HGG GBM IV NOS: GFAP+; S-100+; Synaptofisin-; NSE-; CD34-;
Ki-67+: 30% C 4; D

8 M/60 Left temporo-parietal HGG GBM IV NOS: GFAP (+/-), S100 (+), p53 (+/-), synaptofisin -,
CD57 -, CD99 -, Cam 5.2-, bcatenin -, CD45-, Ki67 30% C 12

9 M/67 Left frontal HGG GBM IV NOS: GFAP+, Synaptofisin-, NSE+/-, Vimentin +/-;
Ki-67+: 30% S-100+ C 10

10 F/56 Right temporo-parietal HGG GBM IV IDH mutant: GFAP+, S100+, synaptofisin-, PanCK+,
p53+, IDH+; Ki67 > 35% C 14

11 M/68 Left frontal HGG GBM IV NOS: GFAP+, synaptofisin+, PanCK+, Ki67 30% I 5; R
12 F/58 Left frontal HGG GBM IV NOS: GFAP+++; synaptofisin -; Ki67 + 25% I 5

13 M/63 Right temporo-parietal

HGG GBM IV NOS: LARGE CELLS GFAP+, S100+, PanCK+,
p53+/-, synaptofisin-, c-myc-, CD45-, CD20-, CD57-, NSE-,

CD99+/-, neurofilaments-. SMALL CELLS GFAP-, S100 -/+,
PanCK-, p53+/-, synaptofisin-, c-myc-, CD45-, CD20-, CD57-,

NSE-/+, CD99+/-, neurofilaments-

C 18

14 M/72 Right parietal HGG GBM IV IDH wild type: GFAP+, synaptofisin-, Ki-67+ 20%. C 6; R

15 M/59 Left frontal HGG GBM IV IDH MUTANT: GFAP+, synaptofisin-, IDH +,
CD34+, Ki67 30% C 10

16 M/64 Left fronto-parietal HGG GBM IV NOS: GFAP+, CD34-, synaptofisin-, Ki67 30% C 8; R
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Table 1. Cont.

(B)

Pt a Sex/Age
(years) Anatomical Site Histopathological Classification b

Follow-Up

Molecular
BS-AS1-AS2

Clinical
/Months

1 M/60 Right temporal convexity Angiomatous meningioma G I C 14
2 F/55 Right convexity frontal Fibrous meningioma G I C 10
3 M/60 Left parietal convexity Atypical meningioma G II C 12
4 F/54 Fronto-basal/Olfactory groove Angiomatous meningioma G I C 8
5 F/60 Parafalcine parietal convexity Transitional meningioma G I C 9
6 F/70 Temporal CPA Meningothelial meningioma G I C 10
7 M/60 Right convexity frontal Atypical meningioma G II C 12
8 M/68 Occipital/Tentorial Transitional meningioma G I C 12
9 F/62 Left temporal convexity Meningothelial meningioma G I C 10

10 F/50 Occipital-Foramen Magnum Fibrous meningioma G I C 14
11 M/72 Left frontal convexity Atypical meningioma G II C
12 F/65 Right temporal-sphenoid wing Atypical meningioma G II C 5
13 M/68 Fronto-basal/Planum Transitional meningioma G I C 18

14 M/71 Parafalcine frontoparietal
convexity Atypical meningiomas G II C 12; D

15 F/59 Skull base/olfactory groove Atypical meningioma G II C 10

16 M/67 Parafalicine left parietal
convexity Atypical meningioma G II C 8

17 F/48 Temporal-CPA Fibrous meningioma G I C 12
18 M/69 Right frontal convexity Meningothelial meningioma G I C 10

(A) a Abbreviations: GBM, glioblastoma multiforme; Pt, patient; HGG, high-grade glioma; LGG, low-grade glioma; M, male; F, female;
C, complete; I, incomplete; D, Death; R, recurrence; NOS, not otherwise specified; GFAP, Glial fibrillary acidic protein; IDH, Isocitrate-
dehydrogenases; PanCK, Protein kinase; NSE, Neuron-Specific Enolase; BS time 0- before surgery; AS1 time 1- at 1 week from surgery; AS2
time II- at one month from surgery (see text for details). b According to WHO 2016 guidelines. (B) a Abbreviations. Pt, patient; M, male; F,
female; G, grade; CPA, cerebellopontine angle; C, complete; D, death; BS time 0- before surgery; AS1 time 1- at 1 week from surgery; AS2
time II- at one month from surgery (see text for details). b According to WHO 2016 guidelines.

2.2. Histopathology

A basic tenet of our standardization strategy was the histological characterization of
the brain tumors. These were classified following the guidelines of the WHO classifica-
tion 2016.

2.3. Tissue Processing and Immunomorphological Analysis

The samples of pathological tissues were embedded in paraffin and used for immuno-
histochemistry. Hematoxylin-eosin (H&E) staining was applied for pathologic assessment.
Immunohistochemistry was performed on 5 µm thick sections, which were dewaxed in
xylene for 30 min at 60 ◦C and rehydrated at 23 ◦C by sequential immersion in a graded
series of alcohols. For antigen retrieval, the sections were immersed for 8 min in sodium
citrate buffer (pH 6) at 95 ◦C and, afterwards, immersed for 8 min in acetone at −20 ◦C to
prevent the detachment of the sections from the slide. After washing the sections with phos-
phate buffer saline (pH 7.4), protein detection was performed by the streptavidin–biotin
complex method, using a Histostain®-Plus Third Gen IHC Detection Kit (Life Technologies,
Frederik, MD, USA; Cat. No. 85–9073). For the detection of Hsp60, mouse anti-Hsp60
monoclonal antibody (Sigma, St. Louis, MO, USA; catalogue No. H4149, dilution 1:200)
was used by immunohistochemistry as previously described [43]. After deparaffinization,
sections were treated with Peroxidase Blocking Reagent (Cell and Tissue Staining Kit, R&D
Systems, Inc., Minneapolis, MN, USA) to inhibit endogenous peroxidase activity and with
serum-blocking reagent D (Cell and Tissue Staining Kit) to block non-specific antigenic sites.
Then, the sections were treated with avidin-blocking reagent following the kit instructions
(Cell and Tissue Staining Kit), and incubated overnight at 4 ◦C with primary antibody,
as pertinent. After washings, the sections were incubated with biotinylated secondary
antibody (Cell and Tissue Staining Kit) for 60 min and, subsequently, with high-sensitivity
streptavidin-conjugated HRP (HSS-HRP) in the dark for 5 min with the DAB chromogen.
Nuclear counterstaining was carried out using hematoxylin (Hematoxylin REF 05-06012/L
Bio-Optica, Milano, Italy). Finally, the slides were prepared for observation with coverslips,
using a permanent mounting medium (Vecta Mount, Vector, H-5000).
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The examination of the sections was performed with an optical microscope (Leica DM
5000 B) connected to a digital camera (Leica DC 300F), at a magnification of 400X and the
percentage of positive cells was calculated in a high-power field (HPF) and repeated for
10 HPF. From these data, the total percentages of cells positive for Hsp60 were determined.

2.4. EV Isolation and Characterization

Blood samples were collected following a standard procedure as previously de-
scribed [43,44]. EVs isolation from plasma was carried out by several steps of differential
ultracentrifugation and by ultrafiltration. Briefly, 3 mL of plasma were centrifuged at
11,000× g for 30 min to remove cell debris. The supernatant was diluted with PBS, then
filtered through a 0.2 µm filter (Millex GP, Millipore, Darmstadt, Germany), followed by
a two-step ultracentrifugation at 110,000× g for 2 h to pellet the EVs. The EVs were then
washed in cold PBS and resuspended in 100 µl of PBS for morphological evaluations or in
70 µl of RIPA (radioimmunoprecipitation assay) lysis buffer (0.3M NaCl, 0.1% SDS, 25 mm
HEPES pH 7.5, 1.5 mm MgCl2, 0.2 mm EDTA, 1% Triton X-100, 0.5 mm DTT, 0.5% sodium
deoxycholate) for Western blotting (WB) [44].

In order to estimate their morphology, EVs were examined with Transmission Electron
Microscopy (TEM) (JEOL JEM 1220 TEM at 120 kV); Atomic Force Microscopy (AFM),
using a multimode scanning probe microscope driven by a nanoscope V controller (Digital
Instruments, Bruker, Kennewick, WA, USA); and Dynamic Light Scattering (DLS), using a
Brookhaven Instrument BI200-SM goniometer; as previous described [43,44].

Western Blot was performed to detect the EVs markers Alix (mouse anti-Alix, 1A12
clone, Santa Cruz Biotechnology, Inc., Dallas, TX, USA); Hsp70/Hsc70 (mouse anti-
Hsp70/Hsc70, W27 clone, Santa Cruz Biotechnology); and CD81 (mouse anti-CD81, B-11
clone, Santa Cruz Biotechnology) [43,44].

2.5. Western Blot

The EVs Hsp60 was assessed by WB, using equal amounts of protein (50 µg) for
each sample, anti-Hsp60 monoclonal antibody (mouse anti-Hsp60, LK1 clone, Sigma, St.
Louis, MO, USA), and horseradish peroxidase-conjugated sheep anti-mouse antibody
(GE Healthcare Life Science, Milan, Italy). WBs were detected using the Amersham
enhanced chemiluminescence substrate (GE Healthcare Life Science, Marlborough, MA,
USA), following the manufacturer’s instructions. Densitometric analyses of WB were
performed using the National Institutes of Health Image J analysis program (version 1.40.
National Institutes of Health, Bethesda, MD, USA).

2.6. MicroRNAs Extraction and Real-Time PCR

Total RNA, including small RNA, was isolated from EVs using the miRNeasy Mini Kit®

(Qiagen, Hilden, Germany, Cat No: 74104), following the manufacturer’s instructions. The
online public miRNA bioinformatic program, TargetScan (http://www.targetscan.org/;
last accessed on 6 August 2020), was used to predict miRNAs that can potentially bind
to 3′UTR of human Hsp60 mRNA [45]. Next, measurement of miRNAs was performed
with the miScript II RT Kit (Qiagen, Cat No: 218161) and the miScript SYBR Green PCR
Kit (Qiagen). The reactions assessing the miRNAs levels were performed using the Rotor-
gene™ 6000 Real-Time PCR Machine (Qiagen).

The target miRNA expression Ct (Cycle threshold) was normalized with the miR-16
Ct and the mean of Ct values of target and mean of Ct values of miR-16 were compared.
The calculation was based on ∆∆Ct (Livak method), and fold change values of all samples
were calculated as compared to reference [46].

2.7. Statistics

All experimental results are presented as the mean ± S.E.M, with at least three inde-
pendent replications. The statistically significant difference between groups was tested by

http://www.targetscan.org/
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one-way analysis of variance (ANOVA). Values of p ≤ 0.05 were considered statistically
significant.

3. Results

The standardized methods described above were applied to the study of a small set of
clinical samples, and the type of results they provide are reported below:

3.1. Patients Follow-Up

A total of 34 patients were studied, 14 with GBM, 1 with LLG (low-grade glioma),
1 with HGG (high-grade glioma) III and 18 with meningioma (Table 1A,B). Follow-up via
blood sampling was completed in 31 patients. Three GBM and 1 meningioma patients died
within the period of this investigation.

3.2. Immunomorphological Analysis

Hsp60 levels were assessed in healthy cortical brain tissue derived from autopsy, and
in tumor biopsies of GBM and meningioma (Figure 1). As approved by the Palermo Ethics
Committee 1, the healthy cortical brain tissue samples were taken from the histopatholog-
ical archives of the University Hospital Forensic Medicine. Since the samples of healthy
cortical brain tissue were obtained from the autopsy of subjects who had died of causes un-
related to brain disease, they were considered as the control group. The hematoxylin-eosin
stain showed a high proliferation rate and the immunohistochemical reactions showed high
levels of Hsp60 in tumor samples compared with controls. A strong, diffuse cytoplasmic
positivity for the Hsp60 protein was present in 100% of the tumor specimens examined
(Figure 1).

Figure 1. Illustrative examples of the histological and immunohistochemical images provided by the
methods used when applied to the study of control and tumor tissues. Top three panels. Hematoxylin-
eosin (H&E)-stained tissue sections of Control, and GBM IV, and Meningioma II grade tissues. Bottom
three panels. (Hsp60). Immunohistochemical demonstration of Hsp60 in Control, and GBM IV, and
Meningioma II grade. Magnification of 200×; insert magnification of 400× Bar = 100 µm.

3.3. Characterization of EVs from GBM and Meningioma II Grade

EVs obtained from plasma of patients with GBM and meningioma G II, before and
after surgery, were characterized by TEM, AFM, and DLS to assess size and morphology
(Figure 2A–C); and by Western blot to determine the presence of the typical EV markers
(protein Alix, Hsc70, and CD81) (Figure 2D). The results all agreed, demonstrating the
identity of the EVs.
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Figure 2. EV characterization. Representative TEM (A) and AFM (B) images showing the typical characteristics of EVs
isolated from the plasma of patients with GBM IV (left) and Meningioma II grade (right). (C) Table showing the size,
measured by DLS, of the EVs isolated from blood of patients at different times of follow-up: BS, Before Surgery; AS1, 7 days
After Surgery; AS2, 30 days After Surgery. (D) Evaluation by WB of EVs markers in the EVs from patients with GBM IV
(left) and Meningioma II grade (right), at different times of follow-up.

3.4. Hsp60 and Related miRNAs Levels in EVs

The levels of Hsp60 and related miRNAs were assessed in the EVs isolated from the
plasma of patients before and at various times after surgery. Hsp60 levels in EVs from
GBM patients were successfully measured in all the samples, with the results showing high
levels throughout (Figure 3A). The Hsp60 levels in EVs isolated from plasma of patient
with atypical meningiomas (WHO G II) were also successfully measured and the results
showed that the methods applied can distinguish variations in the chaperonin levels in
different patients/situations. For instance, 7 days after surgery, the Hsp60 levels were
significantly lower than before surgery, and at 30 days after surgery, a significant increase
could be detected (Figure 3A1).

TargetScan prediction revealed that the 3′ UTR of HSPD1 (the Hsp60 gene) contains
a putative miR-1 and miR-206 binding site. Therefore, our attention was focused on



Appl. Sci. 2021, 11, 2867 8 of 13

miR-1 and miR-206 (Figure 3B), which are predicted to regulate Hsp60 expression [45]
(confirmed by experimental data [20–24]), and miR-663, considered an in vivo GBM prog-
nostic biomarker [47]. MiR-16 level was used for the normalization of all miRNAs levels
(Table 2). The methods applied measured miRNAs successfully and the results indicated
that they can detect their quantitative variations. For example, in GBM EVs, the levels of
miR-206 and miR-663 did not change during the period tested, whereas the level of miR-1
was increased 30 days after surgery in comparison with the levels at 7 days after surgery
(Figure 3C). Furthermore, in meningiomas, miR1, miR-206, and miR-663 showed different
levels at the various time points tested. miR-1 levels were low at 7 days after surgery but
were again high at 30 days. In contrast, MiR-206 and miR-663 were low at 30 days after
surgery (Figure 3C1).

Figure 3. Measurement of Hsp60 and related miRNAs levels in EVs. Western blots and corresponding histograms showing
the presence and levels of Hsp60 in EVs from patients with GBM IV (A) and in patients with meningioma II grade, at
different times of follow-up (A1). BS, Before Surgery; AS1, 7 days After Surgery; AS2, 30 days After Surgery. Visible are
the high levels of Hsp60 revealed by the standardized procedure in EVs from patients with GBM IV and from patients
with meningioma II grade. In the latter, the method revealed differences of Hsp60 levels before and after surgery that were
statistically significant (data are presented as the mean ± S.D. * p < 0.05; # p < 0.01). (B) Predicted miR-1 and miR-206
binding sites detected in the HSPD1 3′ UTR region by TargetScan and the underlined base pairs indicate the target region
we adopted. (C) Examples of results of our measurements with real-time PCR of the levels of miR1, miR-206, and miR-663
in EVs isolated from blood of GBM IV and from meningioma II grade patients (C1) The data in the horizontal histograms
were normalized with the reference genes, according to the Livak method (2−∆∆CT). Data are presented as the mean ± S.D.
* p < 0.05; # p < 0.01.
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Table 2. Primers used for real-time PCR.

Name Sequence

Hs_miR-1_2 5′-UGGAAUGUAAAGAAGUAUGUAU
Hs_miR-206_1 5′-UGGAAUGUAAGGAAGUGUGUGG

Hs_miR-663b_2 5′-GGUGGCCCGGCCGUGCCUGAGG
Hs_miR-16 5′-AGCAGCACGUAAAUAUUGGCG

4. Discussion

Brain tumors have as a rule a poor prognosis and treatments are mostly of limited
efficaciousness. Therefore, there is a desperate need for disease biomarkers and relevant
methods that can offer insight into pathogenesis and be useful in theranostics [37,48]. To
address this issue, in this work we focused on three elements pertinent to brain tumor
biology, i.e., Hsp60, microRNAs that regulate Hsp60 expression [19–24], and EVs, and we
standardized a battery of techniques for measuring these elements. The standardized meth-
ods provided quantitative and qualitative information on the three elements. For example,
the methods were useful for determining morphology, size distribution, and the presence
of specific EVs markers (Alix, Hsc70, and CD81) in the EVs isolated from plasma. The
purified vesicles showed typical characteristics of small (<100 nm) and medium (<200 nm)
size EVs [49]. The EVs isolated from the plasma of GBM patients were more homogeneous
in size distribution during follow-up compared to EVs from atypical meningioma. This
variation in size of EVs from plasma of patients with atypical meningioma could be due to
disease progression, and is in line with the high variability in biochemical and biophysical
properties of tumor cells-derived EVs [50–53]. The standardized methodology revealed
quantitative variations of Hsp60 during time, for example, before and after ablative surgery,
allowing surveyance of response to treatment.

A major limitation in brain tumor diagnosis stems from the impossibility of molecular
profiling using tissue biopsies. A viable alternative is liquid biopsy, which can be obtained
via a minimally invasive method such as drawing venous blood. This provides enough
material for isolating EVs from plasma to measure their contents in Hsp60 and miRNAs.
However, purification and characterization of EVs must be carefully done for the informa-
tion to be of use to clinicians and surgeons, and to scientists willing to penetrate the secrets
of the malignancy of some brain tumors. There are pitfalls that must be avoided that pertain
to blood collection; plasma extraction; and specimen manipulation, storage, and testing,
and these include type of anticoagulant, sample processing time and temperature, and
number of freeze–thaw cycles, just to name a few. Various strict criteria should be met while
assessing the physical and biochemical characteristics of EVs for the information obtained
to be reliable and reproducible. Currently, the method we recommend for isolating EVs
from plasma is ultracentrifugation, including density gradient-based ultracentrifugation.
This approach, based on the density of the EVs, ensures a high level of purity, higher than
the size-based methods, such as size-exclusion chromatography. Moreover, differential
ultracentrifugation can be complemented with ultrafiltration steps to increase the yield,
but this imposes a pre-established cutoff. These procedures allow the isolation of defined
subpopulations of EVs, such as exosomes, excluding the EVs of larger size. However, the
latter larger EVs can also provide useful biomarkers. The EVs population may be highly
heterogeneous, depending on the type and/or the state of the cell from which the vesicles
derive. Therefore, validation and standardization of the EVs isolation and characterization
methods must be carefully done, before applying them to the management of brain tumors
patients [49]. Furthermore, the EVs cargo includes a wide range of biomarkers that can be
different between EVs subtypes, a diversity not yet fully characterized for all tumors and
conditions [49].

In the present work, we propose a set of standardized methods that produce a plethora
of complementary results, providing a quantitative picture of three key disease players,
Hsp60 and related miRNAs and EVs that can easily be sampled by liquid biopsy (Figure 4).
The methods are now available to study more samples from more patients to reveal the
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quantitative profiles of the triad components comparing results at various times after
surgery with pre-operatory data. In this way, standard curves will be obtained for general
application when the adequate number of cases has been tested.

A limitation of our study is that it focused on only one CS component, namely, Hsp60.
Most likely other CS components such as chaperones of the Hsp70 and Hsp90 families and
other chaperonins, e.g., CCT, also play a role in brain carcinogenesis. Our methodology
can be applied to measure them with the pertinent adaptations, which should easily be
implemented since they will consist mostly of the use of specific antibodies and primers.

Figure 4. Drawing representing the hypothetical dynamics of Hsp60 from the tumor to the peripheral blood that could
be investigated with the methodology described. Hsp60 and related miRNAs can be quantified with the methods used
in this study in liquid biopsies containing EVs released by the tumor. This approach is doable in routine settings and
would provide a wealth of information of practical and scientific interest that could help in finding ways to improve the
management of patients with brain tumors.
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