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In this paper we investigate the complex dynamics originated by a cross-diffusion induced subharmonic
destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system.
The model we consider consists of a two species Lotka-Volterra system with linear diffusion and a nonlinear

cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is
responsible for the onset of complex dynamics. In fact our model does not exhibit any Hopf or wave instability,
and on the basis of the linear analysis one should only expect stationary patterns; nevertheless the presence
of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial
resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the
strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern
albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating
solution (subT -mode) can undergo a sequence of secondary instabilities, generating a transition towards
chaotic dynamics.
Finally we investigate the emergence of subT -mode solutions on 2D domains: when the fundamental mode

describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of
subcritical Turing hexagons solutions, the internal interactions with a subharmonic mode are able to generate
the so-called ’twinkling eyes’ pattern.

PACS numbers: Valid PACS appear here
Keywords: Nonlinear cross-diffusion; Subharmonic instabilities, Oscillatory Turing pattern; Predator-Prey
model, Spatio-temporal chaos

I. INTRODUCTION

In this paper we want to investigate the complex
spatio-temporal dynamics emerging from a subharmonic
destabilization of a primary subcritical Turing pattern in
a simple predator-prey reaction-diffusion system.
Spatio-temporal oscillatory and irregular behavior in

reaction-diffusion systems are generally ascribed to the
interaction between Turing and Hopf instabilities, which
can occur either through a codimension-two Turing-Hopf
bifurcation1–7 or due to different competing bifurcations
of multiple steady states8,9. In particular, the observed
dynamics in the proximity of a codimension-two Turing-
Hopf bifurcation point can be classified in two differ-
ent groups: the first includes the dynamics resulting
from the interplay between a Turing mode and a Hopf
mode. The resulting structures are typified by bista-
bility, localized patterns and mixed modes, i.e. oscil-
lating structures characterized by the presence of one
wavenumber kc and one frequency ωc, with all peaks os-
cillating synchronously (in-phase oscillations). The sec-
ond group consists of dynamical behaviors originated by
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subharmonic instabilities of the Turing and the Hopf
modes. A subharmonic Turing mixed mode (subT mixed
mode), for example, results when the root of the char-
acteristic equation corresponding to the subharmonic of
the Turing mode, with wavenumber kc/2, crosses the
imaginary axis with non-zero imaginary part (ω[kc/2] 6=
0). In this case a resonance between the Turing mode
with wavenumber-frequency couple (kc, 0) and its sub-
harmonic mode (kc/2, ω[kc/2]) originates an oscillating
pattern with two wavenumbers oscillating in time with
one frequency8: the subharmonic then oscillates out-of-
phase with the fundamental mode.

Subharmonic T-modes have been found in the pres-
ence of bulk oscillations, originated either from a Hopf
instability1,5,10, or from spatially uniform external peri-
odic forcing4,11, or in coupled layers of oscillators12–15.

In this paper we propose a simple mechanism able to
generate subharmonic T-modes in absence of Hopf or
wave bifurcations: keeping a simple form of the Lotka-
Volterra type for the kinetic term, we assume that the
movements of the individuals of the predator species are
determined by classical random diffusion and by a taxis
term down the gradient of prey. This model had pre-
viously appeared in16, and we postpone to Section II a
discussion on the physical motivations of the model.

In particular, we show that in a monostable regime
where the linear stability analysis predicts the existence
of a stationary pattern, temporal oscillations and chaos
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emerge. The occurrence of a wide variety of spatiotem-
poral patterns including regular and irregular oscillations
is not new in spatially distributed predator-prey systems
but it is usually induced by the presence of kinetic terms
with a high degree of nonlinearity17–22. Differently from
all these approaches, we adopt a particularly simple form
for the reaction term which does not support any oscil-
latory instability, and prove the nonlinear cross-diffusion
term to be the effective promoting factor for the occur-
rence of a resonant mechanism resulting in regular and
aperiodic oscillations.

We start our analysis on 1D spatial domains where the
cross-diffusion term allows, in the presence of a subcriti-
cal Turing band, for the onset of an internal subharmonic
instability of the critical mode that gives rise to a stable
out-of-phase oscillating mixed state. Furthermore, as the
control parameter is varied, we show that the subT so-
lutions undergo a phase instability, which produces suc-
cessive bifurcations leading to quasi-periodicity, transient
temporal chaos and temporal chaos23,24. A similar tran-
sition has been recently reported in the Barrio-Varea-
Aragon-Maini (BVAM) model25–27, where a detailed nu-
merical investigation had identified in the presence of
competing cubic terms in the kinetics the main ingre-
dient for the observed Ruelle-Takens-Newhouse route to
chaos.

We stress the fact that in our model the spatiotem-
poral patterns are only due to the presence of the non-
linear cross-diffusion term. The crucial role played by
cross-diffusion terms in establishing the emergence of os-
cillatory Turing pattern in absence of any Hopf instability
was pointed out also in28, where linear cross diffusion and
Michaelis-Menten functional response were considered.
It is also noteworthy that recently out-of-phase oscillat-
ing Turing pattern where reported in a bistable reaction-
diffusion system describing enzymatic reactions in a pa-
rameter region where no Hopf bifurcation is expected29.

On 1D spatial domains, increasing the size of the do-
main, we shall also see the emergence of spatio-temporal
chaos.

On 2D domains we show resonant subharmonic in-
teractions of stationary square patterns and subcritical
Turing hexagons. In this latter case, the interplay be-
tween the static and the oscillatory subharmonic insta-
bility originates the ’twinkling eye’ pattern30, first found
theoretically as a resonant interaction between a Turing
and a wave instability31,32.

The plan of the paper is the following: in Section II we
introduce the model and briefly recall the main outcomes
of the linear stability analysis close to the homogeneous
equilibrium. In Section III we discuss the bifurcation
analysis leading to the formation of oscillatory patterns
and the transition to spatio-temporal chaotic dynamics.
In Section IV we extend our investigation to the case
when the spatial domain is 2-dimensional: we perform a
weakly nonlinear analysis close to the bifurcation thresh-
old, derive the normal forms for the Turing patterns and
elucidate the occurrence of oscillatory dynamics, twin-

kling eye patterns and transition to irregular behavior.

II. MODEL AND LINEAR ANALYSIS

The proposed system describes a predator-prey model
such that the predator movement is directed towards ar-
eas of low prey density. Therefore the presence of the
prey affects movements of the predator in such a way
that the latter avoids the zones with high prey density
to enhance its hunting success. In fact, there is evidence
that, for many species, living in aggregation can be an
effective predator-avoidance tactic, so that the hunting
success of predators generally decreases with prey group
size.
The assumption of ’negative aggregation’33 for the

movement of the predators chasing the preys, gives rise in
our model to a nonlinear cross-diffusion term. Density-
dependent self- and cross-diffusion terms were firstly in-
troduced by Shigesada et al. to model spatial segrega-
tion of competing species34. Since then, strongly cou-
pled reaction-diffusion systems with linear and nonlinear
self- and cross-diffusion terms have been extensively ap-
plied to many different physical, chemical and biological
systems and their pattern-forming properties throughly
investigated35–42.
On the other hand, predator-prey systems have been

observed to exhibit complex spatio-temporal dynam-
ics, which includes, other than stationary patterns,
regular and irregular oscillations, propagating fronts,
spiral waves, pulses, patchiness and chaotic oscilla-
tions. In order to elucidate the mechanisms underly-
ing this richness of possible dynamics, different mod-
eling approaches have been proposed: spatial varia-
tions of the environment43–45, Allee effect46–48, predator
invasion49,50, just to name a few.
The model we consider here16, in its nondimensional

form reads:

∂tu = Γu(r − γu− v) +∇2u,

∂tv = Γv(−1 + u) + d21∇ · (v∇u) + d2∇2v,
(1)

where u(x, t) and v(x, t) indicate the population densities
of preys and predators, respectively, and x ∈ Ω, where
Ω is a bounded fixed domain. In this and in the follow-
ing Section we shall assume Ω ⊂ R. The reaction term
of model (1) is of the Lotka-Volterra predator-prey type
with a logistic growth for the preys, where the nonnega-
tive coefficients r and γ denote the growth rate and the
inverse carrying capacity of u, respectively, and Γ is a
measure of the relative strength of the kinetic term.
In the second equation the nonlinear diffusion term

d21∇ · (v∇u) describes the tendency of the predator
species v to keep away from high-density areas of the
prey, preferring low-density areas of preys for hunting.
The positive coefficients d2 and d21 are the diffusion rate
of the predator and the cross-diffusion rate respectively.
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FIG. 1. (a) The Turing instability region r > γ is shown for
the following parameter set Γ = 5, d2 = 1: region I (nodes)
and II (spirals) correspond to the supercritical Turing bifurca-
tion, region III (spirals) and IV corresponds to the subcritical
case. The numerically computed boundary between regions
III and IV corresponds to the locus of the subharmonic bi-
furcation (see Sec.III). (b) Numerically computed bifurcation
diagram of the species u at the central spatial point as γ
is varied: stable and unstable stationary branches are rep-
resented by solid and dashed black lines, respectively; stable
and unstable oscillatory solutions are represented by solid and
dashed gray lines, respectively.

We shall impose homogeneous Neumann boundary con-
ditions, as we assume that no external input is imposed
from the outside.
The only spatially homogeneous stationary solution of

(1) is (u0, v0) = (1, r − γ) which has biological relevance
only if r−γ > 0, condition that will be supposed to hold
throughout the rest of the paper.
Linearizing the system around (u0, v0) one gets:

wt = ΓJw +D∇2
w, w =

(

u− u0
v − v0

)

, (2)

where

J =

(

−γ −1
r − γ 0

)

, D =

(

1 0
d21v0 d2

)

. (3)

The equilibrium point is linearly stable, being an at-
tractive node for γ < r < γ+γ2/4 or an attractive spiral
for r > γ + γ2/4. Since tr(J) = −γ is always negative,
this system does not support any Hopf bifurcation, which
would require tr(J) = 0.
To investigate the conditions for diffusion-driven in-

stability, we construct the matrix A(k) = ΓJ − k2D. If
there is an eigenvalue λ ofA(k) with positive real part, for
some k 6= 0, then the spatially homogeneous equilibrium
is destabilized by a periodic perturbation of wavelength
2π/k, exponentially growing with time.
We observe that tr(A(k)) = −Γγ − k2(d2 + 1) < 0,

therefore the system does not support oscillations with
k 6= 0 either. Therefore, according to the linear stability
analysis, oscillations are prohibited.
Choosing d21 as bifurcation parameter, in16 a station-

ary (Turing) bifurcation was found to occur at the fol-
lowing critical values:
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FIG. 2. Dispersion relation for the regions I-IV. The real and
the imaginary part of the eigenvalues are plotted by gray solid
lines and by black dashed lines respectively: All the curves
have Γ = 5, d2 = 1. (a) Region I: r = 1.1, γ = 1, d21 = 19. (b)
Region II: r = 1, γ = 0.5, d21 = 5.(c) Region III: r = 0.5, γ =
0.1, d21 = 2.6.(d) Region IV: r = 1, γ = 0.1, d21 = 2.28.

dc21 =
γd2 + 2

√

det(J) det(D)

det(J)
, (4)

k2c = Γ

√

det(J)

d2
. (5)

In Fig.1(a), in the parameter space (γ, r) we report the
zone r > γ where Turing instability can develop. This
region is further divided into four distinct domains: in re-
gion I, the stable equilibrium point is a node, in regions
II, III and IV it is a spiral. The numerically computed
boundary between regions II and III separates the super-
critical Turing instability, i.e. region II, from the sub-
critical case, regions III and IV. The boundary between
regions II and III is computed imposing the Landau co-
efficient of the amplitude equation to be zero, see next
Section for more details. In region IV , subharmonic in-
stability leads to oscillations, see next Section.
In Figs.2(a)-2(d) the real and imaginary part of the

eigenvalues is plotted as a function of k in the four dif-
ferent regions of the (γ, r)-parameter space: in regions I
and II, one has a supercritical Turing band (positive real
part of the maximum eigenvalue and zero imaginary part
in correspondence to a band of positive wavenumbers),
while in regions III and IV the Turing band is subcriti-
cal. In all the four regions, the k = 0-mode has negative
Reλ, corresponding to the absence of uniform oscillatory
instabilities.
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FIG. 3. Depencence of maximum of Re(λ) at k = kc on the
cross-diffusion coefficient in the regions I-IV. The parameter
values are chosen as in Figs.2(a)-(d) respectively.

In Fig.3 the dependence of the maximum of Re(λ) on
the cross-diffusion coefficient d21 is reported: one can ob-
serve that, moving from region I towards region IV, the
critical value of the bifurcation parameter dc21 decreases,
while the maximum value of the real part of the eigen-
value becomes larger.

III. SUBHARMONIC INSTABILITY AND

BIFURCATION ANALYSIS

A. Subharmonic resonance

In16 a detailed weakly nonlinear analysis investigat-
ing the resulting patterns in the parameter regions cor-
responding to both the supercritical and the subcritical
Turing bifurcation was performed. Here we shall focus
on the region lying on the left of the boundary between
regions II and III of the (r, γ)-parameter space shown in
Fig.1(a) where, according to the weakly nonlinear anal-
ysis, one should expect a subcritical stationary Turing
pattern. It is worth recalling that the kinetic term of
(1) does not exhibit any Hopf bifurcation so that, in the
whole region, the equilibrium point is a stable spiral in
absence of diffusion. On the basis of the linear stability
analysis one should therefore expect a pure Turing in-
stability, giving rise to a stationary pattern. As pointed
out in16, this is not the case if the system parameters are
chosen well inside the subcritical region, i.e. in region IV
of Fig.1(a). Fixing the parameters d21, d2 and r so that
a subcritical Turing pattern is obtained and decreasing
the parameter γ, the stationary pattern is destabilized
by disturbances twice its wavelength so that time oscilla-
tions of the periodic structure are observed. Such oscil-
lations are to be ascribed to the resonance between the
fundamental subcritical Turing mode and its 1/2 subhar-
monic: with decreasing γ, in fact , there exists a critical
value of the amplitude of the critical mode beyond which
the instability triggers an efficient transfer of energy to
the 1/2-mode, which oscillates with frequency ω[kc/2],
out-of-phase with the fundamental.

We shall therefore investigate the system dynamics us-
ing γ as a control parameter. The system is numeri-
cally solved with a finite difference scheme based on the
method of the lines, where the equations are first dis-
cretized with respect to the spatial variable. The result-
ing semi-discrete ODE system is then integrated in time.
A standard second-order centered difference scheme is
adopted to approximate the Laplacian term while the
nonlinear diffusion term is approximated by a second or-
der finite difference algorithm. For the time integration
we used the CVODE stiff integrator included in the XP-
PAUT computational software package. We set error tol-
erances of 10−10, used a time-step ∆t = 10−3 and a spa-
tial mesh size with N = 50 nodes on the interval [0, 2π],
where Neumann boundary conditions are imposed.

We choose the following parameter values: r =
0.85,Γ = 5, d2 = 1, d21 = 2.269, in a way that, on the ba-
sis of the weakly nonlinear analysis, the stationary Turing
pattern is expected to bifurcate subcritically from the ho-
mogeneous steady state at γ ≃ 0.03217. The linear anal-
ysis and the imposed boundary conditions predict that
the most rapidly growing mode is kc = 2. In fact, for
γ > 0.03217, a stable spatially periodic stationary pat-
tern is formed, which displays the expected wavelength.
To illustrate the outcomes of the simulations and inves-
tigate the system dynamics far from the primary bifur-
cation, in Fig.1(b) we report the numerical bifurcation
diagram, obtained with the software AUTO.

In Fig.1(b) one can see the subcritical Turing branch
bifurcating from the homogeneous equilibrium. At γ ≃
0.06153, the Turing branch loses stability due to a sub-
harmonic resonance: the resonant interaction between
the fundamental mode and its subharmonic, determines
the birth of oscillating-in-time, periodic-in-space struc-
tures. A representative numerical simulation, for γ =
0.05383, is reported in Fig.4(a): on the left the space-
time map of the resulting oscillatory Turing pattern is
shown, which corresponds to a limit cycle in the phase
space of the central points (reported in the middle col-
umn). The Poincaré section at u(27) = 2 is displayed
on the right column, showing a fixed point steady state.
We notice that, at each spatial location, the system os-
cillates with one frequency but, because of the presence
of the two wavenumbers kc and kc/2, the minima of the
pattern are shifted one wavelength every half period of
oscillation (a subharmonic mixed mode or subT -mode).
This behavior can also be discerned from Fig.4(b), where
the u-profiles obtained at two different times separated by
T/2 are depicted. In Fig.4(c) we report the anti-phase os-
cillations at two neighboring Turing extrema (separated
by λc = π). In Fig.4(d) we report the dispersion relation
at the onset of the subT -mode: it shows that both the
fundamental (kc = 2) and its 1/2-subharmonic are sub-
critical, so that in the proposed model out-of-phase os-
cillations can arise at negative Re(λ). The Fourier spec-
trum of the spatial profile of the two species (not shown
here) displays two significantly non-zero amplitudes cor-
responding to the excited modes oscillating in time: the
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FIG. 4. Out-of-phase oscillatory Turing patterns: (a) The parameter values are chosen as in Fig.1(b) and γ ≃ 0.05383. Left:
space-time evolution of u with x ∈ [0, 2π] on the horizontal axis and time increasing from bottom to top. Center: phase portrait
of v(25) vs. u(25). Right: Poincaré section at u(27) = 2. (b) Black and gray curves are two antiphase patterns separated
in time by T/2 ≃ 1.21; (c) Black and gray curves are two-phase oscillations at locations separated in space by λc = π; (d)
Dispersion relation at the Hopf bifurcation: γ = 0.0615. The real and the imaginary part of the eigenvalues are plotted by gray
solid lines and by black dashed lines respectively.

critical mode kc and the mode kc/2. The numerically
computed value of the period of oscillations fits quite well
with the expected value T = 2π/ω(kc/2), where ω(kc/2)
is the imaginary part of the eigenvalue at k = kc/2.
We have numerically computed the bifurcation dia-

gram corresponding to the onset of the subT -mode, for
different values of the parameter r, therefore obtaining,
in the (γ, r)-Turing space, the locus of subharmonic in-
stability threshold. The corresponding curve is plotted in
Fig.1(a), separating region III, where a stationary Tur-
ing pattern is observed, from region IV, where spatio-
temporal oscillations emerge.

B. Temporal and spatio-temporal chaos

In this subsection we explore the possibility of chaotic
temporal and spatio-temporal dynamics: in fact, as the
parameter γ is decreased while maintaining all the other
parameters fixed as in Subsection IIIA, one observe the
occurrence of successive bifurcations which eventually
lead to temporal chaotic solutions. At γ ≃ 0.05273 the
oscillatory subT -mode undergoes to a torus bifurcation,
which introduces a second frequency in the temporal dy-
namics of system (1). The corresponding numerical sim-

ulation for γ = 0.05202 is reported in Fig.5(a), showing
also the expected limit cycle in the Poincaré section. In
Fig.6 we report the corresponding power spectrum, where
sharp peaks are identified, each of which can be matched
to a linear combination of the two frequencies character-
istic of the motion on a 2-torus.

As γ is further decreased, a period-doubling bifurcation
occurs at the value γ = 0.03938, after which the system
exhibits quasi-periodic behavior (see Fig.5(b)). Further
decrease of the parameter γ induces the occurrence of
temporal chaotic dynamics. Indeed the chaotic behav-
ior is not asymptotically stable: after some time, in fact,
it collapses, evolving towards a periodically oscillating
solution. This scenario is exemplified in Figs.5(c)-5(d),
where we report the system behavior at γ = 0.02975: the
dynamics is initially characterized by the presence of tem-
porally aperiodic oscillations, which are shown in the left
panel of Fig.5(c) and can also be deduced from the com-
plex nested pattern of the phase-space plot (middle panel
of Fig.5(c)) and from the scattered points displayed in the
Poincaré section (right panel of Fig.5(c)). The temporal
chaos persists up to approximately 60 time units, after
which the system settles in a stable periodically oscillat-
ing pattern. The dynamics from t ≃ 500 is shown in
Fig.5(d): both the phase-space and the Poincaré section
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FIG. 5. Dynamical behaviors at different values of γ: transition to temporal chaos. Left: space-time evolution of u with
x ∈ [0, 2π] on the horizontal axis and time increasing from bottom to top. Center: phase portrait of v(25) vs. u(25). Right:
Poincaré sections at u(27) = 2. (a) γ = 0.05202: dynamics on a torus which corresponds to a limit cycle in the Poincaré map;
(b) γ = 0.03505: quasi-periodic motion; (c) γ = 0.02975, up to t = 20: transient temporal chaos; (d) γ = 0.02975 from t = 500:
the system has settled in a stable oscillatory motion; (e) γ = 0.02792: temporal chaos.
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FIG. 6. Fourier power spectrum for γ = 0.05116 at t = 300
(after 300000 iterations), displaying the typical peaks of a
torus dynamics. Inset: Broadband continuous power spec-
trum obtained for γ = 0.02819, characteristic of chaotic be-
havior.

indicate the presence of a periodic-in time orbit.

As the control parameter is further decreased, the os-
cillating subharmonic pattern becomes in fact phase un-
stable, giving rise to a transition to temporal broadband
turbulence (see Fig.5(e) and the inset of Fig.6). This
transition has also been observed in other systems pre-
senting subharmonic instabilities1,23.

The transient nature of chaotic dynamics described
above and shown in Figs.5(c)-5(d) is not new and has
been found in several reaction-diffusion systems51–57.
Since it is known that the chaos lifetime increases ex-
ponentially with system size58, in the rest of this Sub-
section we shall investigate the system size dependence
of the chaotic dynamics by considering different system
sizes.

We choose the following parameter values: r = 1.5, γ =
0.22, d2 = 1, d21 = 2.269, which on the basis of the weakly
nonlinear analysis, prescribe the presence of a subcritical
Turing pattern. We then consider different domain sizes
by varying the parameter Γ, whose square is proportional
to the linear size of the domain.

For small system sizes (small values of Γ), the oscil-
lating pattern induced by the subharmonic instability is
stable. This is shown in Fig.7(a), where the space-time
plot for Γ = 3.535 is displayed, which corresponds to a
system size equal to 4 times half of the spatial wavelength
λ of the pattern. In the case of small domain sizes, stable
oscillatory patterns are also found when the value of Γ
is such that the domain size is not an integer multiple
of λ/2. Increasing the value of Γ corresponds to the oc-
casional missing of a beat or to periodic movements of
the maxima of the pattern, as it is shown in Fig.7(b),
where Γ = 7.955 has been selected, which corresponds
to a domain size equal to 6 times λ/2. A critical value
of Γ ≃ 14.14 has been identified, which corresponds to a
domain size approximately equal to 8 times λ/2, above
which the system presents spatio-temporal chaotic be-

(a) (b)

(c) (d)

FIG. 7. Space-time plots for different system sizes. All the
plots have r = 1.5, γ = 0.22, d2 = 1, d21 = 2.269 and different
values of Γ. (a) Γ = 3.535, corresponding to a ratio between
the domain size and λ/2 of 4: the out-of-phase oscillating
pattern is stable. (b) Γ = 7.955, corresponding to a ratio be-
tween the domain size and λ/2 of 6: the oscillatory structure
is destabilized by occasional irregularities. (c) Γ = 43.31, cor-
responding to a ratio between the domain size and λ/2 of 14:
the pattern displays merging, splitting and phase slips phe-
nomena, typical of spatio-temporal chaos. (d) Γ = 83.388,
corresponding to a ratio between the domain size and λ/2 of
20: fully chaotic spatio-temporal dynamics.
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havior. This is displayed in Figs.7(c)-7(d), obtained for
Γ = 43.31 (corresponding to a domain size equal to 14
times λ/2) and Γ = 83.388 (corresponding to a domain
size equal to 20 times λ/2), respectively. The space-time
plot of the corresponding dynamics shows the presence
of merging and splitting of maxima, and of phase slips,
all elements that characterize spatio-temporal chaos.54

IV. 2D PATTERNS

To investigate the formation and stability of coher-
ent solutions to the system (1) on the two-dimensional
rectangular domain Ω = [0, Lx] × [0, Ly] we perform
a weakly nonlinear (WNL) analysis so to derive a re-
duced description of the resulting patterns in terms of
their amplitude59,60. Restricting our analysis to the cases
where the homogeneous steady state bifurcates at a sin-
gle or a double eigenvalue, we are able to characterize the
type of supported patterns as follows:

(i) rolls and square-rhombic patterns when the bifur-
cation occurs via a single eigenvalue;

(ii) mixed-modes patterns when the bifurcation occurs
via a double eigenvalue and the no-resonance con-
dition holds;

(iii) hexagonal patterns when the bifurcation occurs via
a double eigenvalue and the resonance condition
holds.

Here we skip the technical details of the analysis in all
the above considered cases (see59 for a full description),
and simply report the resulting normal forms.
In the case (i), there exists a unique couple of integers

(m,n) such that:

k2c ≡ φ2 + ψ2 where φ ≡ mπ

Lx

, ψ ≡ nπ

Ly

.

The WNL multiple scale analysis leads to find the evolu-
tion equation for the amplitude of the pattern, which is
the following Stuart-Landau equation:

dA

dT2
= σA − LA3 . (6)

When the model parameters are such that bifurcation is
supercritical (i.e. L > 0), the emerging solution of the
reaction-diffusion system (1) close to the onset is given
by:

w = ερA∞ cos(φx) cos(ψy) +O(ε2), (7)

where ε measures the square root of the distance of the
control parameter from the bifurcation value, A∞ is the
stable stationary state of the Stuart-Landau equation (6)
and ρ ∈ Ker(ΓJ−k2cD). The solutions in (7) are rhombic
spatial patterns, whose special cases are the rolls (when
either φ or ψ is zero) or the squares (when φ = ψ).

FIG. 8. (Color online) The numerical solution of (1) asymp-
totically converges to the subcritical hexagonal pattern pre-
dicted by the WNL analysis. The parameters are chosen as
Γ = 45, r = 0.85, d2 = 1, γ = 0.21, d21 = 2.8281.

In the case (ii), there exist two couples of integers
(mi, ni), i = 1, 2 such that:

k2c ≡ φ2i + ψ2
i where φi ≡

miπ

Lx

, ψi ≡
niπ

Ly

, (8)

and the following no-resonance condition holds:

φk + φj 6= φj or ψk − ψj 6= ψj

and (9)

φk − φj 6= φj or ψk + ψj 6= ψj

with k, j = 1, 2 and k 6= j. Performing the WNL analysis,
one finds that the two different amplitudes A1 and A2

which characterize the resulting pattern are governed by
the following system of two coupled Landau equations:

dA1

dT
= σA1 − L1A

3
1 +R1A1A

2
2, (10a)

dA2

dT
= σA2 − L2A

3
2 +R2A

2
1 A2. (10b)

If the system (10) admits at least one stable equi-
librium (A1∞, A2∞), the emerging asymptotic solution
of the reaction-diffusion system (1) is correctly approxi-
mated by:

w = ερ
2

∑

i=1

Ai∞ cos(φix) cos(ψiy) +O(ε2). (11)

The solutions in (11) describe the so-called mixed-mode
patterns, complex structures arising due to the interac-
tion of different modes φi, ψi. They reduce to the rhom-
bic spatial patterns found in the case (i) when either one
between A1∞ and A2∞ is zero.
Finally, in the case (iii), there exist two couples of inte-

gers such that (8) is satisfied and the following resonance
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FIG. 9. Twinkling-eye hexagons: (a) All the parameter values are chosen as in Fig.7 except γ, whose value is γ = 0.2. Snapshots
of the hexagonal pattern taken at successive times. Left: at time t. Center: at time t + T/3. Right: at time t + 2T/3. (b)
Black, light gray and gray curves are three sections of the pattern at x̄ = 2.27, y = 3.8 separated in time by T/3 ≃ 0.12 and
showing out-of-phase oscillations; (c) Black, light gray and gray curves are three sections of the pattern at y = 3.8 at locations
separated in space by λc/3 = π/9 showing three-phase oscillations; (d) Dispersion relation. The real and the imaginary part of
the eigenvalues are plotted by gray solid lines and by black dashed lines respectively.

condition holds:

φk + φj = φj and ψk − ψj = ψj

or (12)

φk − φj = φj and ψk + ψj = ψj

with k, j = 1, 2 and k 6= j. Through the WNL asymp-
totic analysis, we recover at O(ε2) a dynamical system
governing the evolution of the pattern amplitudes which
does not admit stable equilibria in any parameter regime:
this returns a subcritical transition. Pushing the analysis
at O(ε3), we find the following system for the amplitudes
A1 and A2:

dA1

dT
= σ1A1 − L1A1A2 +R1A1A

2
2 + S1A

3
1,

dA2

dT
= σ2A2 − L2A

2
1 +R2A

2
1 A2 + S2A

3
2.

(13)

Assuming, without loss of generality, that the second
condition in (12) holds with i = 2 and j = 1, and taking
into account the relation in (8), it follows that φ2 = 2φ1,

ψ2 = 0, ψ1 =
√
3φ1, φ1 = kc/2 and Ly =

√
3Lx. If the

system (13) admits at least one stable equilibrium, the
emerging asymptotic solution of the reaction-diffusion

system (1) at the leading order is approximated by:

w = ερ(A1∞ cos(φ1x) cos(ψ1y)+

A2∞ cos(φ2x) cos(ψ2y)) +O(ε2),
(14)

where (A1∞, A2∞) is a stable stationary state of the sys-
tem (13). These solutions are hexagonal patterns or, in
the case when A1∞ = 0, rolls.

The outcomes of the WNL analysis constitute the
starting point for the investigation of 2D oscillatory pat-
terns. As in the case of the 1D domain, the oscillatory
instability is generated by subharmonic resonances, in-
volving secondary modes with lower wavenumber. We
start considering the oscillatory instability of the sub-
critical hexagons. On the rectangular domain Lx = 2π
and Ly = 2

√
3π, we choose the parameter set such that

the only unstable discrete mode is k2c = 36, which corre-
sponds to the two mode pairs (6, 18) and (12, 0) satisfy-
ing the condition (8). Numerical simulations, performed
choosing as initial condition a small random perturba-
tion of the equilibrium, show the evolution towards the
stationary solution given in Fig.8.

Its explicit form is captured by the following hexagonal
pattern, predicted by the WNL analysis to be a stable
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subcritical solution of the system (1):

w = ερ

(

A1∞ cos (3x) cos

(

9√
3
y

)

+A2∞ cos(6x)

)

+O(ε2),

(15)

where (A1∞, A2∞) is a stable equilibrium of the system
(13).
Assuming now as initial condition the stationary pat-

tern depicted in Fig.8 and decreasing the value of γ to 0.2
(while maintaining all the other parameter values fixed),
the numerical solution loses its stability and starts to
oscillate in time. The snapshots of the twinkling-eye
hexagons are shown in Fig.9(a). The observed time oscil-
latory behavior is determined by the resonant interaction
between the fundamental subcritical Turing mode, whose
wavenumber is kc = 6 and which gives rise to a station-
ary hexagonal lattice and its subharmonic mode. The
subT has wave number ksub = kc/

√

(3) ≃ 3.46, and lies

within the Hopf domain, i.e. Im(λ) = ω(kc/
√

(3)) 6= 0
(see Fig.9(d)). Although the subT has negative Re(λ),
the strong intrinsic coupling with the steady mode is able
to induce a destabilization of the fundamental, which re-
sults in the development of a temporally oscillating sub-
hexagonal lattice11. The hexagonal array of spots thus
separates into three sets, each forming a hexagonal sub-
lattice with wavelength

√

(3) times the wavelength of
the original lattice and shifted in phase by 2π/3 from the
other sublattices.
A further decrease in the value of γ induces secondary

(Hopf) instabilities of the subT solution with the conse-
quent birth of chaotic dynamics.
To show the emergence of oscillating square patterns,

we consider the square domain Lx = Ly = π, and select
the following parameter values Γ = 60.78, r = 0.85, d2 =
1, γ = 0.2, d21 = 2.7884. The most unstable discrete
mode is given by k2c = 49 and the condition (8) is satisfied
by the two mode pairs (7, 0) and (0, 7). This parameter
set returns a pattern belonging to the case (ii) above; the
WNL analysis then predicts that the system admits only
the stable equilibria:

P (±,±) ≡



±

√

σ(L2 +Ω1)

L1L2 − Ω1Ω2
,±

√

σ(L1 +Ω2)

L1L2 − Ω1Ω2



 ,

(16)
so that the expected solution is the following square pat-
tern:

w = ερ (A1∞ cos (7x) +A2∞ cos (7y)) +O(ε2). (17)

where (A1∞, A2∞) are the coordinates of the point
P (±,±). Starting from the random periodic perturba-
tion of the equilibrium, the numerical solution of the full
system (1) in fact evolves to the square pattern whose
amplitude is predicted by the WNL analysis and shown
in Fig.10(a). Assuming as initial condition the square

(a) (b)

FIG. 10. (Color online) (a) Snapshot of the stationary square
pattern predicted by the WNL analysis. The system param-
eters are Γ = 60.78, r = 0.85, d2 = 1, d21 = 2.7884, γ = 0.2.
(b) Snapshot of the oscillatory pattern. The values of the
parameters are as in (a), except γ = 0.19.

pattern depicted in Fig.10(a) and decreasing the value of
γ to γ = 0.19 (while maintaining all the other parame-
ter values fixed), the numerical solution loses its stabil-
ity and jumps to a large amplitude subcritical solution,
which, after a short transient, starts to oscillate in time.
The snapshots of the spatio-temporal periodic pattern
are shown in Fig.10(b). In this case, therefore, the sub-
critical mode resonantly interacting with its subharmonic
is not the critical mode predicted by the WNL analysis.
In fact we conjecture that, with decreasing the value of
γ, one induces a change in the expression of the coeffi-
cients of the normal form derived in the case (ii), which
now admits only unstable solutions. To predict the re-
sulting critical mode (and its subharmonic) it would be
then necessary to push the weakly nonlinear analysis to
the fifth order and derive the explicit expression of the
stable solutions to the quintic amplitude equations. This
will be the subject of a subsequent paper.

V. CONCLUSIONS

In this paper we have investigated the complex dynam-
ics supported by a novel predator-prey system with non-
linear cross-diffusion term and quadratic Lotka-Volterra
reaction kinetics. The nonlinear cross-diffusion term de-
scribes the tendency of the predators to move in response
to a spatially decreasing prey density to maximize prey
suppression. The model was presented in16, where it
was shown how the introduction of the cross-diffusion
is critical to the formation of periodic structures, also in
the presence of a trivializing kinetics. Moreover the de-
tailed theoretical and numerical analysis performed in16

on 1D domains allowed to distinguish between supercriti-
cal and subcritical transitions to stationary periodic pat-
terns. The occurrence in the numerical experiments of
oscillating-in-time pattern solutions was also reported.
In this paper we have deeply investigated the secondary
instabilities induced by subharmonic resonance phenom-
ena, leading to the spatio-temporal oscillating solutions
and to the consequent transition to chaotic dynamics.
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With the aid of the numerical bifurcation diagram we
have identified the region, in the parameter space, where
the subcritical Turing branch undergoes a subharmonic
destabilization, resulting in oscillations of the underlying
periodic structure. This behavior is unexpected on the
basis of the linear analysis and contradicts the belief that
oscillations in a reaction-diffusion system can be obtained
only in the presence of either a Hopf bifurcation in the lo-
cal dynamics or a wave instability. In the proposed model
the spatio-temporal periodic solutions are generated by a
spatial resonance of the fundamental Turing mode with
its subharmonic, whose corresponding growth rate has a
non-zero imaginary part. Remarkably, the subharmonic
mode is able to resonantly interact with the subcritical
fundamental Turing mode, generating time oscillations,
although its growth rate as predicted by the linear analy-
sis, is negative. We have therefore detected the presence
of a sequence of self-induced subharmonic instabilities,
corresponding to the emergence of transient temporal
chaos and fully chaotic-in-time solutions. Exploiting the
dependence of the supported dynamics on the domain
size, we have illustrated the transition from subharmonic
induced oscillations to spatio-temporal chaotic solutions
as the domain size exceeds a critical value.
In the case of a 2-dimensional spatial domain, we have

derived the normal forms of the bifurcating stationary
spatially periodic solutions, classifying the different re-
sulting pattern as the parameters are varied in the Tur-
ing space. We have proved that the presence of the cross-
diffusion term in a simple reaction-diffusion system is re-
sponsible for the formation of the twinkling-eye hexagons
and other oscillating Turing patterns.
These results emphasize the need of further investiga-

tion of simple systems to better understand the mech-
anisms underlying the generation of complex dynamics.
In particular we believe it would be of interest, for the
proposed model, to derive the normal forms of the res-
onant interaction, both in the case of 1D and 2D do-
mains and investigate through the formalism of the am-
plitude equations, the phase instabilities which originate
the chaotic dynamics61. These subjects will be investi-
gated in a forthcoming paper.
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