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Abstract. The existence of two positive solutions for a nonlinear parameter-
depending algebraic system is investigated. The main tools are a finite dimensional
version of a two critical point theorem and a recent weak-strong discrete maximum
principle.

1. Introduction

Let N be a positive integer. Consider the following parameter-depending system
of nonlinear algebraic equations

Au = λf(u) (Aλ,f )

where u = (u(1), ..., u(N))t, f(u) := (f1(u(1)), f2(u(2)), ..., fN(u(N)))t ∈ RN are two
column vectors, fk : R → R is a continuous function for every k = 1, 2, ..., N , λ is a
positive parameter and A = [aij]N×N is a positive definite symmetric Z−matrix. As
special case, we consider the tridiagonal nonlinear symmetric systems

TN(a, b, b) = λf(u), (Tλ,f )

where the matrix A takes the shape of a tridiagonal matrix

TN(a, b, b) :=


a b 0 ... 0
b a b ... 0

... ... ...
0 ... b a b
0 ... 0 b a


N×N

where a, b ∈ R with b < 0 and

a > 2|b| cos

(
π

N + 1

)
, (1)

which plays an important role to develop numerical schemes to find approximations
of solutions of differential boundary value problems, as the finite element method
or the finite difference method, see for instance [15] and the therein references. For
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instance, we can reduce to our setting the following second order nonlinear discrete
Dirichlet boundary value problem, namely{

−∆2u(k − 1) = λfk(u(k)), k ∈ [1, N ],
u(0) = u(N + 1) = 0,

(2)

where [1, N ] denotes the discrete interval {1, ..., N}, for every k ∈ [1, N ], ∆u(k) :=
u(k + 1)− u(k) is the forward difference operator, ∆2u(k− 1) := u(k + 1)− 2u(k) +
u(k − 1) is the second order difference operator and fk(u(k)) = f(k, u(k)), being
f : [1, N ] × R → R a continuous function. Indeed, by computations we can show
that problem (2) is a particular case of system (Tλ,f ) where the matrix A is given by

TN(2,−1,−1).
It is worth noticing that, in general, in the right hand-side of (2) as well as in that of

(Aλ,f ), the function fk(s) are not restrictions of the same function f : [1, N ]×R→ R.
To investigate the existence of two positive solutions, we combine variational

methods with truncation techniques. Roughly speaking, we solve the algebraic sys-
tem (Aλ,f ) looking for nontrivial critical points of the so called energy function

Iλ : RN → R defined by putting

Iλ(u) :=
1

2
utAu− λ

N∑
k=1

∫ u(k)

0

f+
k (t)dt, ∀ u ∈ RN ,

where, for all k ∈ [1, N ] and for all s ∈ R,

f+
k (s) =

{
fk(s), if s ≥ 0;
fk(0), if s < 0.

(3)

Clearly, standard arguments ensure that Iλ is a C1 functional in RN with gradient
given by

∇Iλu = Au− λf+(u), ∀ u ∈ RN ,

being f+(u) := (f+
1 (u(1)), f+

2 (u(2)), ..., f+
N (u(N)))t ∈ RN . Hence, the directional

derivative of Iλ at the point u ∈ RN in the direction v ∈ RN is given by

∂Iλ(u)

∂v
= 〈∇Iλu, v〉 = vtAu− λ

N∑
k=1

f+
k (u(k))v(k), ∀u, v ∈ RN . (4)

Therefore, we have that ∇Iλu ≡ 0 if and only if

vtAu− λ
N∑
k=1

f+
k (u(k))v(k) = 0, ∀v ∈ RN . (5)

So, it is by now evident that (5) can be considered as the weak formulation of problem
(Aλ,f ) and it is the key to study the nonlinear system (Aλ,f ) via variational methods.
More precisely, we have that the critical points of Iλ are nonnegative solutions of
problem (Aλ,f ) (see the proof of Theorem 3.1).
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Finally, to guarantee that such solutions are positive, we apply a discrete strong
maximum principle for problem (Aλ,f ) contained in [8]. However, with respect to [8],
here we are able to obtain the existence of two positive solutions without requiring
the additional assumption

fk(0) 6= 0, for some k ∈ [1, N ].

In other words, we assume that

(j1) : fk(0) ≥ 0 for every k ∈ [1, N ],

hence the system (Aλ,f ) can admit the trivial solution.
In particular, our aim is to describe suitable intervals of parameters for which the
system (Aλ,f ) admits two positive solutions (Theorem 3.1). To this end, we use

a finite dimensional version of a two critical point theorem established in [9], see
Theorem 2.2 below.

Arguing in a similar way, we can see that other difference boundary value problems,
as for instance, Neumann problem, three-point problem, etc., can be considered as
special cases of system (Aλ,f ), for more details we refer to [1, 2, 17, 24].

Variational methods are used to study algebraic nonlinear equations and nonlinear
difference problem in many directions, as for instance: the existence of at least three
solutions for systems with indefinite coefficient matrices [19]; positive and negative
solutions in [27]; existence and multiplicity solutions for difference equations with
different boundary conditions [4-8], [10-12] and difference equations with discontin-
uous nonlinearities in [13]. For general references on nonlinear algebraic systems we
refer the reader to [20-26]. In particular, in [24] and in therein references, among the
other results, you can find a review on many problems related to nonlinear algebraic
systems of type (Aλ,f ) which includes also compartmental systems, strongly damped
lattice system and the discrete periodic boundary value problems.

2. Mathematical Background

In the N -dimensional Banach space RN , we consider the two equivalent norms

‖u‖2 :=
( N∑
k=1

u(k)2
)1/2

and ‖u‖∞ := max
k∈[1,N ]

|u(k)|,

for which we have

‖u‖∞ ≤ ‖u‖2 ≤
√
N‖u‖∞. (6)

Let be u ∈ RN , we say that u is nonnegative (u ≥ 0), if u(k) ≥ 0 for every k ∈ [1, N ],
while we say that u is positive (u > 0), if u(k) > 0 for every k ∈ [1, N ]. We recall that
a matrix A = [aij]N×N is said: positive definite, if utAu > 0 for all u 6= 0; positive
semidefinite, if utAu ≥ 0 for all u ∈ RN . It is easy to show that the diagonal entries of
any positive semidefinite matrix are nonnegative. Moreover, if A = [aij]N×N denotes
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a positive semidefinite matrix with eigenvalues λ1, ..., λN ordered as λ1 ≤ . . . ≤ λN ,
we know that

λ1‖u‖2
2 ≤ utAu ≤ λN‖u‖2

2, ∀u ∈ RN , (7)

from which we have that a real matrix A is positive definite if and only if its eigen-
values are all positive.

We say that a matrix A = [aij]N×N is a Z−matrix, if aij ≤ 0 for every i 6= j; a
Z−matrix (da cancellare it) is a strongly Z−matrix iff for each k ∈ [2, N ], one has

• there exists jk < k such that akjk < 0;
• there exists ik < k such that aikk < 0.

For more details on these topics see also [16]. Putting together Theorems 2.1 and
2.2 of [8], we have the following weak-strong maximum principle for problem (Aλ,f )

Theorem 2.1. Let A = [aij]N×N be a positive definite real Z−matrix. If u ∈ RN

satisfies the following condition:

(i) either u(k) > 0 or (Au)(k) ≥ 0, for each k ∈ [1, N ].

Then, one has u ≥ 0. If in addition, A is a strongly Z−matrix, then, either u ≡ 0
or u > 0.

Our main tool is a two non-zero critical points theorem established in [9], that
we recall here for the reader’s convenience. To introduce such result, we need the
definition of the well known Palais-Smale condition, in brief (PS). If X is a real
Banach space, we say that Iλ : X → IR satisfies the (PS)-condition whenever one
has that any sequence {un} such that

1. {Iλ(un)} is bounded;
2. {I ′λ(un)} is convergent at 0 in X∗

admits a subsequence which is convergent in X.

Theorem 2.2. Let X be a real Banach space and let Φ, Ψ : X → IR be two functionals
of class C1 such that inf

X
Φ = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ IR and

ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (8)

and, for each

λ ∈ Λ =

Φ(ũ)

Ψ(ũ)
,

r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

 ,
the functional Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded from
below.
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Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points
uλ,1, uλ,2 such that I(uλ,1) < 0 < I(uλ,2).

Remark 2.1. It is worth noticing that the previous result guaranties the existence
of two non-zero critical points for an appropriate class of differentiable functionals.
In particular, a careful reading of its proof shows that uλ,1 is a local minimum for Iλ,
while uλ,2 is a mountain pass critical point, see also [3].

Next proposition is dedicated to study the (PS)-condition for the energy functional
Iλ. To this end, we put

L∞(k) := lim inf
s→+∞

Fk(s)

s2
L∞ := min

1≤k≤N
L∞(k),

L∞(k) := lim sup
s→+∞

Fk(s)

s2
L∞ := max

1≤k≤N
L∞(k),

Ψ(u) :=
N∑
k=1

Fk(u(k)), ∀ u ∈ RN , (9)

where Fk(s) :=

∫ s

0

f+
k (t)dt for all s ∈ R and for all k ∈ [1, N ]. We read 1

+∞ = 0

whenever this case occurs.

Proposition 2.1. Let A = [aij]N×N be a positive definite, symmetric real Z-matrix.
Assume that (j1) hold and either λ < λ1

2L∞
or λN

2L∞
< λ. Then, the energy functional

Iλ satisfies the (PS)− condition. Moreover,

(ps1) if λN
2L∞

< λ, then Iλ is unbounded from below;

(ps2) if λ < λ1
2L∞

, then Iλ is coercive, i.e. lim
‖u‖2→+∞

Iλ(u) = +∞;

Proof. Fix a positive λ as in the assumptions. Clearly, it is enough to show that any
(PS) sequence of Iλ is bounded in RN . Let {un} be a (PS) sequence of Iλ, that is

lim
n→+∞

Iλ(un) = c, c ∈ R lim
n→+∞

sup
‖v‖2≤1

〈∇Iλ(un), v〉 = 0. (10)

Consider the vectors u±n defined by putting u±n (k) := max{±un(k), 0}, for every n ∈ N
and k ∈ [1, N ] and, first, let us verify that {u−n } is bounded. By (6), (7), (j1), using
the decomposition un = u+

n −u−n and recalling that A is a Z-matrix, we can estimate
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the derivative of Iλ at un, in the direction of −u−n

〈∇Iλ(un),−u−n 〉 = (−u−n )tAun + λ

N∑
k=1

fk(0)u−n (k)

≥ (−u−n )tAu+
n + (u−n )tAu−n

≥
N∑

i,k=1

(−aij)u−n (i)u+
n (j) + λ1‖u−n ‖2

2

≥ λ1‖u−n ‖2
2,

that is,

λ1‖u−n ‖2 ≤ 〈∇Iλ(un),
−u−n
‖u−n ‖2

〉, ∀n ∈ N. (11)

Thus, by (10), we get lim
n→+∞

‖u−n ‖2 = 0, which implies that {u−n } is bounded in Rn.

In addition, by (6), there exists M > 0 such that

0 ≤ u−n (k) ≤M, for all k ∈ [1, N ] and n ∈ N. (12)

Now, we also prove that {u+
n } is bounded. Distinguish the cases:

a) λ > λN
2L∞

b) λ < λ1
2L∞

Suppose a) holds. We only consider the case 0 < L∞ < +∞; if L∞ = +∞ one can
work in analogy. Fix ρ = ρ(λ) > 0 such that

λN
2λ

< ρ < L∞. (13)

For every k ∈ [1, N ], there is δk > 0 such that

Fk(s) > ρs2, ∀ s > δk.

A direct computation shows that for every k ∈ [1, N ] there exists ηk > 0 such that

Fk(s) > ρs2 − ηk, ∀ s ∈ R+. (14)

Fix n ∈ IN. Clearly, the previous inequality ensures

Ψ(u+
n ) =

N∑
k=1

Fk(u
+
n (k)) ≥ ρ

N∑
k=1

|u+
n (k)|2 −

N∑
k=1

ηk = ρ‖u+
n ‖2

2 − η.

On the other hand, from (12) one has

Ψ(−u−n ) =
N∑
k=1

Fk(−u−n (k)) = −
N∑
k=1

fk(0)u−n (k) ≥ −M
N∑
k=1

fk(0).
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Hence, since ‖un‖2
2 = ‖u+

n ‖2
2 + ‖u−n ‖2

2, bearing in mind also (6), (7) and (12), one has

Iλ(un) =
1

2
utnAun − λ

(
Ψ(u+

n ) + Ψ(−u−n )
)

≤ λN
2
‖u+

n ‖2
2 − λρ‖u+

n ‖2
2 + λ

(
η +M

N∑
k=1

fk(0)

)
+
λN
2
NM2

=

(
λN
2
− λρ

)
‖u+

n ‖2
2 + λ

(
η +M

N∑
k=1

fk(0)

)
+
λN
2
NM2.

Therefore, by contradiction, if ‖u+
n ‖2 → +∞, then one would have that limn→+∞ Iλ(un) =

−∞, against (10). Hence, {u+
n } is bounded and our conclusion follows.

Suppose b) holds. Fix ρ = ρ(λ) > 0 such that

L∞ < ρ <
λ1

2λ
. (15)

For every k ∈ [1, N ], there is δk > 0 such that

Fk(s) < ρs2, ∀ s > δk.

Observing that Fk(s) ≤ 0 for every s ≤ 0, we can find some η > 0 such that for every
k ∈ [1, N ]

Fk(s) ≤ ρs2 + η, ∀ s ∈ R. (16)

Therefore, for every u ∈ RN , by (6) and the previous inequality, we have that

Iλ(u) =
1

2
utAu− λ(Ψ(u+) + Ψ(−u−))

≥ λ1

2
‖u‖2

2 − λΨ(u+)

≥
(
λ1

2
− λρ

)
‖u+‖2

2 +
λ1

2
‖u−‖2

2 − λNη.

Obviously, if ‖u‖2 → +∞ at least one between ‖u+‖2 and ‖u−‖2 tends to +∞.
Hence, Iλ is coercive and, in view of (10), it is obvious that any (PS) sequence is
bounded. In particular, (ps2) holds.
We conclude the proof verifying (ps1). Fix {un} in IRN such that un = u+

n for every
n ∈ IN and ‖un‖2 → +∞. Reasoning as in case a), one has

Iλ(un) ≤
(
λN
2
− λρ

)
‖un‖2

2 + λη.

Namely, Iλ is unbounded from below. �
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3. Main results

In this section, we present our main results, where we obtain the existence of two
positive solutions for problem (Aλ,f ) provided that A is a positive symmetric real

strongly Z−matrix and the continuous vector field f satisfies condition (j1).

Theorem 3.1. Let A be a positive definite symmetric real strongly Z−matrix and
let f be a continuous vector field fulfilling condition (j1). Let c be a positive constant

and let w ∈ RN be a vector with 0 < wtAw < λ1c
2. Assume that

(j2)

N∑
k=1

max
s∈[0,c]

Fk(s)

c2
< λ1 min



N∑
k=1

Fk(w(k))

wtAw
,
L∞
λN

.

Then, for each λ ∈ Λ1 :=


1

2
max


wtAw

N∑
k=1

Fk(w(k))

,
λN
L∞


,
λ1

2

c2

N∑
k=1

max
s∈[0,c]

Fk(s)

, prob-

lem (Aλ,f) admits at least two positive solutions.

Proof. Obviously, by (j2) the interval Λ1 is well-posed. We apply Theorem 2.2 by
putting

X = RN , ũ = w, Φ(u) :=
1

2
utAu, ∀u ∈ RN , (17)

and Iλ := Φ − λΨ, where Ψ is the function introduced in (9). Clearly, Φ and Ψ are

two functions of class C1 with inf
X

Φ = Φ(0) = Ψ(0) = 0. Taking r =
λ1

2
c2, by (6)

and (7), we observe that
Φ(u) ≤ r =⇒ ‖u‖∞ ≤ c. (18)

Therefore, we have that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤ 2

λ1

N∑
k=1

max
s∈[0,c]

Fk(s)

c2
. (19)

On the other hand, we observe that,

Ψ(w)

Φ(w)
= 2

N∑
k=1

Fk(w(k))

N∑
i,j=1

aijw(i)w(j)

. (20)
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Hence, owing to (j2), combining (19) and (20), we get

sup
Φ(u)≤r

Ψ(u)

r
<

Ψ(w)

Φ(w)
,

being in particular Λ1 ⊂ Λ.
Clearly, one has 0 < Φ(w) < r. Thus, for every λ ∈ Λ1, owing to (ps1) of

Proposition 2.1, we get that the function Iλ = Φ − λΨ satisfies the (PS)-condition
and it is unbounded from below. Therefore, Iλ admits at least two non-zero critical
points uλ,1, uλ,2.

Fixed k ∈ [1, N ], one has that either uλ,i(k) > 0 or (Auλ,i)(k) ≥ 0, i = 1, 2, owing
to (j1). So also condition (i) of Theorem 2.1 is verified and this implies that such
solutions are positive. So, the proof is completed. �

Remark 3.1. In the proof of Theorem 3.1, exploiting that A is a positive Z-matrix,
we can obtain that uλ,1, uλ,2 are two non-negative solutions of problem (Aλ,f ), testing

the weak formulation (5) with −u−λ,i, i = 1, 2, without using condition (i) of Theorem
2.1.

Let A be a positive definite symmetric real strongly Z−matrix and let f be a
continuous vector field fulfilling condition (j1). Put,

σ(A) :=
N∑

i,j=1

aij,

some useful consequences of Theorem 3.1 are the following results.

Corollary 3.1. Assume that σ(A) > 0. Let c and d be two positive constants with
d < c such that

(j3)

N∑
k=1

max
s∈[0,c]

Fk(s)

c2
< λ1 min



N∑
k=1

Fk(d)

σ(A)d2 ,
L∞
λN

.

Then, for each λ ∈ Λ2 :=


1

2
max


σ(A)d2

N∑
k=1

Fk(d)

,
λN
L∞


,
λ1

2

c2

N∑
k=1

max
s∈[0,c]

Fk(s)

, problem

(Aλ,f) admits at least two positive solutions.

Proof. We apply Theorem 3.1 by choosing w(k) = d for every k ∈ [1, N ]. Clearly,

to get our conclusion it is enough to verify that wtAw < λ1c
2, that is d <

√
λ1

σ(A)
c.
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Arguing, by contradiction, we have that c > d ≥
√

λ1

σ(A)
c, from which it follows that

N∑
k=1

max
s∈[0,c]

Fk(s)

c2
≥

N∑
k=1

Fk(d)

c2
≥ λ1

d2

N∑
k=1

Fk(d)

σ(A)
,

which contradicts our assumption (j3). �

Corollary 3.2. Let c and d be two positive constant with d < c such that

(j4)

N∑
k=1

max
s∈[0,c]

Fk(s)

c2
< λ1 min

{
Fk(d)
akkd

2 ,
L∞
λN

}
, for some k ∈ [1, N ].

Then, for each λ ∈ Λ3 :=


1

2
max

{
akkd

2

Fk(d)
,
λN
L∞

}
,
λ1

2

c2

N∑
k=1

max
s∈[0,c]

Fk(s)

, problem (Aλ,f)

admits at least two positive solutions.

Proof. We apply Theorem 3.1 arguing as in the proof of Corollary 3.1, by choosing
w(k) = d and w(k) = 0 for every k ∈ [1, N ] with k 6= k. �

Corollary 3.3. Assume that

(j5) inf
c>0

N∑
k=1

max
s∈[0,c]

Fk(s)

c2
<

λ1

λN
L∞.

(j6) There exists k ∈ [1, N ] such that lim sup
s→0+

Fk(s)

s2
= +∞.

Then, for each λ ∈ Λ4 :=


1

2

λN
L∞

,
λ1

2
sup
c>0

c2

N∑
k=1

max
s∈[0,c]

Fk(s)

, problem (Aλ,f) admits at

least two positive solutions.

Proof. We apply Corollary 3.2. For simplicity, we give the proof only for L∞ <
+∞. If L∞ = +∞, the proof is analogous. By (j5) there exists c > 0 such that
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N∑
k=1

max
s∈[0,c]

Fk(s)

c2
<

λ1

λN
L∞. In force of (j6), there exists d < c such that,

Fk(d)

d2
> akk

L∞
λN

.

Thus, condition (j4) of Corollary 3.2 is verified. So, the proof is completed. �

Now, we point out some consequences of the previous results for the tridiagonal
system (Tλ,f ) when the diagonal field f is super-linear at +∞ and it is with separable

variables, i.e. fk : [1, N ]× R→ R is defined by putting, for all k ∈ [1, N ] and s ∈ R,

fk(s) := α(k)g(s), lim
s→+∞

g(s)

s
= +∞, (21)

where α : [1, N ]→ R+ and g : R→ R is a continuous function. To simplify notations
we put

Σ(α) :=
N∑
k=1

α(k), G(s) =

∫ s

0

g(t)dt, s ∈ R.

Corollary 3.4. Let a, b, c and d be four constants with a > 0, b < 0, c > 0 and
0 < d < c. Let g : R → R be a continuous function fulfilling (21) with g(s) ≥ 0 for
every s ∈ [0, c]. Assume that (1) holds. In addition, suppose that

(γ1)
G(c)

c2
<
a+ 2b cos(π/(N + 1))

aN + 2(N − 1)b

G(d)

d2
.

Then, for every λ ∈
]
aN + 2(N − 1)b

2Σ(α)

d2

G(d)
,
a+ 2b cos(π/(N + 1))

2Σ(α)

c2

G(c)

[
, system

(Tλ,f) admits at least two positive solutions.

Proof. Since the tridiagonal matrix TN(a, b, b) has eigenvalues given by

λk = a+ 2b cos

(
kπ

N + 1

)
, k = 1, 2, ..., N, (22)

as you can see, for instance in [18, Theorem 2.2], by (1) it turns out to be a positive
definite symmetric strongly Z−matrix being b < 0. By (21), we have L∞ = +∞ and
our conclusion follows at once by applying Corollary 3.1. �

Corollary 3.5. Let a, b, c and d be four constants with a > 0, b < 0, c > 0 and
0 < d < c. Let g : R → R be a continuous function fulfilling (21) with g(s) ≥ 0 for
every s ∈ [0, c]. Assume that (1) holds. In addition, suppose that

(γ2)
G(c)

c2
<
α(k) (a+ 2b cos(π/(N + 1)))

aΣ(α)

G(d)

d2
.
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Then for every λ ∈
]

a

2α(k)

d2

G(d)
,
a+ 2b cos(π/(N + 1))

2Σ(α)

c2

G(c)

[
, system (Tλ,f) admits

at least two positive solutions.

Proof. Arguing as in the proof of Corollary 3.4, our goal is achieved by applying
Corollary 3.2. �

An interesting consequence of Corollary 3.3 is the following

Corollary 3.6. Let g : R→ R be a continuous function fulfilling (21) with g(s) ≥ 0
for every s ∈ [0, c]. Assume that (1) holds. In addition, suppose that

(γ3) lim
s→0+

g(s)

s
= +∞.

Then, for every λ ∈
]
0,
a+ 2b cos(π/(N + 1))

2Σ(α)
sup
c>0

c2

G(c)

[
, system (Tλ,f) admits at

least two positive solutions.

Remark 3.2. We highlight that a careful reading of the proofs of Corollaries 3.4, 3.5
and 3.6 shows that the sign condition on the function g can be removed just replacing
G(c) with maxs∈[0,c] G(s). Indeed, it is useful only to guarantee that maxs∈[0,c] G(s) =
G(c), however in this way the typical behaviour of the functions that could satisfy
the assumptions (γ1) and (γ2) should be more clear. Roughly speaking, the function

s→ G(s)
s2

has a peak near the point d.
Moreover, we would like to observe that we obtain at least two positive solutions,

even though the algebraic system investigated admits the trivial solution, i.e. if
g(0) = 0. In particular, if g(0) > 0, then is evident that (γ3) is verified and we obtain
the same interval of parameter described in [8, Theorem 3.3].

Finally, we give an application of Corollary 3.6 to the difference Dirichlet boundary
value problem (2). See, also [7, Theorem 1.1] where at least one positive solution is
obtained when g(0) > 0.

Example 3.1. Let g : R→ R be a continuous function fulfilling (21) with g(s) ≥ 0
for every t ∈ [0, c]. Assume that

(γ3) lim
s→0+

g(s)

s
= +∞.

Then, applying Corollary 3.6 with the tridiagonal matrix T (2,−1,−1), for every

λ ∈
]
0,

1− cos(π/(N + 1))

N
sup
c>0

c2

G(c)

[
, problem{

−∆2u(k − 1) = λg(u(k)), k ∈ [1, N ],
u(0) = u(N + 1) = 0,

(23)

admits at least two positive solutions.
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Remark 3.3. We remark that [14, Theorem 1.1] gives a larger interval of parameters
for the existence of two solutions for problem (23) where the energy functional Iλ is
constructed exploiting an equivalent norm in RN involving the forward difference
operator ∆u(k) := u(k + 1)− u(k).

In the one dimensional case, a nice application of Corollary 3.6 is contained in the
following

Example 3.2. Let g : R→ R be a positive continuous function fulfilling (21). Then,
one has that the equation

x = λg(x), x ∈ R,

admits at least two positive solutions for every λ ∈
]
0,

1

2
sup
c>0

c2

G(c)

[
, provided that

condition (γ3) holds.
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[15] I. Faragó, S. Korotov, T. Szabó, On continuous and discrete maximum principles for elliptic
problems with the third boundary condition, Appl. Math. Comput. 219 (2013), no. 13, 7215-
7224.

[16] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, (1985).
[17] W. G. Kelly, A.C. Peterson, Difference Equations: An Introduction with Applications, Academic

Press, San Diego, New York, Basel, (1991).
[18] D. Kulkarni, D. Schmidt, S. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear

Algebra Appl. 297 (1999), 63-80.
[19] M. You, Y. Tian, M. Chen, Y. Yue, Multiple solutions for the nonlinear algebraic system with

the indefinite coefficient matrix, Appl. Math. Lett. 107 (2020), 106353, 6 pp.
[20] Y. Yang, J. Zhang, Existence results for a nonlinear system with a parameter, J. Math. Anal.

Appl. 340 (2008), no. 1, 658–668.
[21] Y. Yang, J. Zhang, Existence and multiple solutions for a nonlinear system with a parameter,

Nonlinear Anal. 70 (2009), no. 7, 2542–2548.
[22] G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear

Anal. 66 (2007), no. 6, 1410–1416.
[23] Q. Q. Zhang, Existence of solutions for a nonlinear system with applications to difference

equations, Appl. Math. E-Notes 6 (2006), 153–158.
[24] G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system, Discrete Dyn. Nat.

Soc. 2009, Art. ID 785068, 28 pp.
[25] G. Zhang, S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math.

Anal. Appl. 314 (2006), 311-319.
[26] G. Zhang, W. Feng, Eigenvalue and spectral intervals for a nonlinear algebraic system, Linear

Algebra Appl. 439 (2013) 1–20.
[27] J. L. Zhang, G. Wang, Elementary variational approach to positive and negative solutions of a

nonlinear algebraic system, Adv. Difference Equ. 2017, Paper No. 322, 13 pp.

(P. Candito) Department Diceam, University of Reggio Calabria, Via Graziella
(Feo Di Vito), 89122 Reggio Calabria, Italy

Email address: pasquale.candito@unirc.it
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