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Abstract Many industrial sectors face increasing pro-

duction demands and need to reduce costs, without

compromising the quality. Whereas mass production

relies on well-established protocols, small production

facilities with small lot sizes struggle to update their

highly changeable production at reasonable costs. The

use of robotics and automation has grown significantly

in recent years, but extremely versatile robotic manipu-

lators are still not commonly used in small factories. Be-

side of the investments required to enable efficient and

profitable use of robot technology, the efforts needed

to program robots are only economically viable in case

of large lot sizes. Generating robot programs for spe-

cific manufacturing tasks still relies on programming

trajectory waypoints by hand. The use of virtual sim-

ulation software and the availability of the specimen
digital models can facilitate robot programming. Nev-

ertheless, in many cases, the virtual models are not

available or there are unavoidable differences between

virtual and real setups, leading to inaccurate robot pro-

grams and time-consuming manual corrections. This
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could be avoided by measuring the real-geometry and

the position of the specimen, which creates the para-

dox of having to plan robot paths for surface mapping

purposes, before the originally intended robot task can

be approached. Previous works have demonstrated the

use of robotically manipulated optical sensors to map

the geometry of samples. However, the use of simple

user-defined robot paths, which are not optimized to

the part geometry, typically causes some areas of the

samples to not be mapped with the required level of

accuracy or to not be sampled at all by the optical sen-

sor. This work presents an autonomous framework to

enable adaptive surface mapping, without any previous

knowledge of the part geometry being transferred to

the system. The article gives an overview of the related

work in the field, a detailed description of the proposed

framework and a proof of its functionality through both

simulated and experimental evidences.

Keywords View planning · 3D reconstruction ·
Adaptive mapping · Metrology · Inspection · Robotics

1 Introduction

1.1 Motivation

In recent years, the use of robotics has increasingly pen-

etrated the manufacturing and the construction indus-

tries [1–3]. Besides being attractive to make production

phases more cost-effective, robotics and automations

have been used to speed up quality inspections [4, 5]

and to operate in hazardous environment precluded to

human access [6, 7]. Many industrial automated sys-

tems are based on robotic arms that manipulate ac-

tuators and sensors through predefined tool paths in
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structured environments. The robot tool paths are typ-

ically defined on the digital Computer-Aided Design

(CAD) models of the parts to be machined, assem-

bled, disassembled and/or inspected. The process of

generating robot tool-paths using simulation software

is known as Off-Line Path-planning (OLP) [8]. Unfor-

tunately, the digital models often differ from their re-

spective real counterparts and time-consuming human

intervention is required to correct the software OLP

robot paths and ensure they meet the required lev-

els of accuracy [9]. Therefore, highly versatile robotic

arms that could be used for flexible autonomous sys-

tems are still mainly used to automate repetitive tasks

in large industries with well-structured environments.

Indeed, besides of the investments required to enable

efficient and profitable use of robot technology, the ef-

forts needed to program robots are only economically

viable in case of large lot sizes. Research efforts have

been put into developing more intuitive programming

methods to reduce the programming time [10]. In some

specific scenarios (e.g. robotic welding), the path in-

accuracy is corrected by seam tracking based on laser

profiling sensors for real-time program adaptation [11].

However, the adaptation strategy is limited to simple

workpiece geometries. More promising approaches use

computer vision to reconstruct the real workpiece ge-

ometry and automatically generate robot programs for

each new part [12]. Besides three-dimensional (3D) ob-

ject reconstruction becoming important in numerous

industrial applications such as smart manufacturing,

industrial automation and Industry 4.0 [13], there ex-

ists a wide variety of applications that would benefit

from real-time computer vision systems, capable of au-

tonomous object reconstruction. It is the case of virtual

reality (VR) games and simulations, augmented reality

(AR) applications or systems that include obstacle de-

tection [14].

1.2 Related work

A plethora of methods and systems have been proposed

for the acquisition of the geometry of real-life objects,

ranging from those which employ active sensor tech-

nology, passive sensor technology or a combination of

various techniques. The data produced by a 3D scanner

is point cloud of the object surface. A well-established

classification of the sensors used for 3D reconstruction

divides them into two types: contact and non-contact

sensors [15]. Contact 3D scanners probe the subject

through physical touch, while the object is firmly held

in place. A Coordinate Measuring Machine (CMM) is

an example of a contact 3D scanner [16]. CMMs can

be very precise, but they require contact with the ob-

ject being scanned and the act of scanning the object

might modify or damage it. Non-contact solutions can

be further divided into two main categories, active and

passive. Passive 3D scanning solutions rely on detect-

ing reflected ambient radiation. Most solutions of this

type detect visible light because it is a readily available

ambient radiation, but other types of radiation (e.g.

infra-red) could also be used. Passive methods can be

very cheap, because in most cases they do not need

particular hardware but simple digital cameras. On the

other hand, active scanners emit some kind of radiation

or light and detect its reflection or radiation passing

through the object. Possible types of emissions used in-

clude light, ultrasound or x-ray [17]. Regardless of the

deployed technique, 3D scanners have much in common

with cameras. Like most cameras, they have a cone-like

field of view and can only collect information about

surfaces that are not obscured. While a camera col-

lects colour information about surfaces within its field

of view, the main objective of a 3D scanner is to col-

lect distance information about the surfaces within its

field of view. Many types of 3D scanning sensors have

been designed and used in real applications. Among the

scanning sensors, the ones that can be easily integrated

with robotic arms to perform automated object recon-

struction, can be divided into two categories. The first

category comprises the depth cameras (also known as

3D cameras). Conventional digital cameras return 2D

data (photos). They are equipped with complementary

metal-oxide semiconductor sensors (CMOS) that mimic

the transduction process of human eyes [18]. CMOS

sensors have photosites (pixels) arranged in a rectan-

gular grid, which capture incoming light photons and

convert their energy to voltage values to obtain the dig-

ital red, green and blue (RGB) colour components at

each pixel. Depth cameras are designed to return point

clouds. Such devices can consist of two conventional

grey-scale cameras (stereo-cameras [19]) or sensors that

provide RGB colour and depth for each pixel (RGB-D

cameras [20]). The second category comprises all those

devices that use the controlled emission and reception

of light signals (laser beams) as fundamental measure-

ment tool [21]. In the reception phase, a laser scanner

can use different techniques for calculating the distance

between the laser source and the point hit by the laser

beam. According to the technique used, laser scanners

are based on trigonometric calculation (triangulation),

time-of-flight (when they calculate the distance through

the time elapsed between the emission of the laser and

the reception of the return signal [22]), or on phase

difference (when the calculation is performed by com-

paring the phase of the emitted signal and the return
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signal [23]). For most practical situations, a single ac-

quisition from one point of view will not produce a com-

plete model of the subject of interest. Multiple scans,

even hundreds, from many different directions are usu-

ally required to obtain information about all sides of

the subject. Several works have advanced the process

of bringing the point clouds, originating from multi-

ple scans, into a common reference system (a process

that is usually called alignment or registration). The

merged point clouds create the complete 3D model.

This whole process, going from the single range map

to the whole model, is usually known as the 3D scan-

ning pipeline [24, 25]. Complete 3D reconstruction of

a scene is typically achieved by establishing a relative

motion between the scanning system and the object

to reconstruct, while data is captured by the system.

Hand-held 3D scanners rely on the user to move slowly

around the object, visiting all object areas of interest,

while data is acquiring. When a scanning system is ma-

nipulated by a robotic arm, the problem of determining

the scanning path arises. Previous works have obtained

good automated 3D reconstructions of parts by moving

a robot-manipulated 3D scanner around a given compo-

nent through a predefined path, along which multiple

views of the scene are collected. In [26], the authors

proposed using a robot arm to move a non-contact pas-

sive 3D scanning system, following spiral paths lying

on paraboloid primitives and stopping at regular in-

tervals with the camera pointing at the centre of the

paraboloid, to collect photogrammetric views of rela-

tively small industrial parts. Although this may be an

acceptable scanning path for some objects, it can cause

some portions of the part to not be scanned at all, some

other areas to not be scanned to a satisfactory or ac-

ceptable extent and/or, on the contrary, some remain-

ing areas to be over-sampled. Fixing the path trajectory

and the spacing with which data is captured produces

sub-optimal 3D reconstructions, since the acquisition

path is not targeted to any specific object. Manual de-

termination of optimal view poses for surface scanning

is a time-consuming and expert-dependent task and,

despite of the efforts, redundant views are usually de-

ployed. OLP software allows simulating the reachability

of view poses and avoiding collisions, when the approxi-

mate CAD model of the part to reconstruct is available.

Nevertheless, finding the optimum set of view poses for

a robot-manipulated 3D scanning system, in order to

efficiently reconstruct a given scene using the minimum

number of views is still an open problem. It is known

under the name of View Pose Planning (VPP) [17,27].

1.3 Contribution

This work presents a mathematical framework for adap-

tive and incremental 3D reconstruction of specimens,

through the use of a robot-manipulated optical 3D scan-

ner. It allows computing the next optimal view pose

after each measurement view. Compared with previ-

ous works [28, 29], we do not make a priori assump-

tions about the shape of the object, meaning that the

formulation creates a best-guess representation of the

subject of the 3D scanning and updates it after each

measurement data. Crucially, the method is suitable

to obtaining measurable/quantitative results, since it

takes a user-defined target sampling density as fun-

damental input parameter. Such sampling density is

expressed as number of points per surface unit (e.g.

points/mm2). The framework is accompanied by the

definition of meaningful stopping criteria, whose fulfil-

ment leads to the termination of the iterative compu-

tation of the next view pose and the output of the final

result in the form of merged point cloud and recon-

structed tessellated model (triangular mesh surface).

The framework has not been developed to work with

specific sensor hardware and is adaptable to operate

with data streams obtained through a generic range

scanning sensor, either depth-camera or 3D laser scan-

ner type sensor. The framework functionality has been

tested through MATLAB-simulated data, obtained from

synthetic views of a computer graphics 3D test model

developed at Stanford University [30]. The MATLAB-

based framework code is made openly available (https:

//doi.org/10.5281/zenodo.4646850) and can be used

by the research community for future developments. In

order to validate the framework in experimental sce-

narios, the control computer has been interfaced with a

robot arm and a low-cost RGB-D camera to reconstruct

the geometry of a 3D printed version of the Stanford

University test model and of an additional industrial

test piece.

1.4 Article structure

The remaining of the article is structured as follows.

Section 2 describes the theoretical foundations of the

framework. Section 3 illustrates the experimental setup,

the hardware components and the interfacing platforms

utilized for the validation tests. The results arising from

simulations and synthetic data sets are illustrated in

Section 4. The results obtained through real sensor data

sets are presented in Section 5. Finally, Section 6 draws

the conclusions and a prospect of future work.

https://doi.org/10.5281/zenodo.4646850
https://doi.org/10.5281/zenodo.4646850
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2 Theoretical foundations

This section starts defining all the metrics of 3D scan-

ning sensors and of point clouds, which are used herein

to describe the theoretical foundations of the approach

presented in this work and discuss the simulations and

the experimental results. Then, it describes the approach

used for incremental merging of the point clouds ac-

quired from different view poses. Finally, this section

focuses on explaining the method elaborated to select

the next best acquisition view pose and suitable stop-

ping criteria for adaptive incremental 3D reconstruc-

tion.

2.1 Definition of metrics

Before any algorithm can be described, it is necessary to

define all the parameters and variables that intervene in

the mathematical formulation of the problem of inter-

est. Figure 1a and Figure 1b show, respectively, point

clouds collected through a depth-camera type sensor

and a laser scanner type sensor.

An orthogonal reference system is centred at the sensor

data origin. Like a conventional RGB camera, a depth-

camera has a pyramidal sampling volume, whose di-

mension depends on the horizontal field-of-view angle

(ϑ) and on the vertical field-of-view angle (θ). These an-

gles are bisected by the −→w vector. Like in conventional

RGB cameras, depth-cameras allow obtaining equally

spaced 3D point samples arranged in a rectangular grid,

whose number is equal to the product of the sensor hori-

zontal and vertical pixel resolution (respectively Rh and

Rv), when sampling a flat surface parallel to the −→u −−→v
plane. The total surface area sampled on such plane, at

distance d from the −→u −−→v plane, is equal to:

Adepth−camera = a ∗ b =(
2d ∗ tan

(
ϑ

2

))(
2d ∗ tan

(
θ

2

))
=

= 4d2 ∗ tan
(
ϑ

2

)
tan

(
θ

2

)
(1)

Assuming that the Cartesian coordinates of the sam-

pled point Pi ≡ [xi, yi, zi] are given with respect to

the reference system (−→u , −→v , −→w ) of the 3D scanning,

the distance di between the plane −→u −−→v and the par-

allel plane for a sampled point, is di = zi. A laser-

based 3D scanner, schematically represented in Figure

1b, operates the deflection of the sampling laser beam

in polar coordinates: azimuth (ϑ) and elevation (θ).

Typically, the user can set the desired scanning range

defining a lower and upper limit for the azimuth (ϑmin
and ϑmax) and for the elevation (θmin and θmax), with

−π ≤ ϑmin < 0, 0 ≤ ϑmax ≤ π, −π ≤ θmin < 0 and

0 ≤ θmax ≤ π. Moreover, the user can typically set

the number of points to be captured in such angular

ranges. As a result, when sampling the detectable por-

tion of the inner surface of the sphere with radius r

centred at the sensor origin, a laser scanner allows ob-

taining equally spaced 3D point samples arranged in a

rectangular spherical grid. The total area sampled on

such portion of the spherical surface is equal to:

Alaser−scanner = r2 ∗
∫ ϑmax

ϑmin

dϑ ∗
∫ θmax

θmin

cosθ dθ =

= r2 ∗ (ϑmax − ϑmin) ∗ [sin (θmax) − sin (θmin) ] (2)

For the purposes of this work, it is crucial to define

the local sampling density, given as sampled number

of points per squared unit of length (e.g. points/mm2),

for every sampled point. Figure 1c and Figure 1d rep-

resent the points captured by a depth-camera and a

laser-based sensor through scanning a generic surface.

A sampling vector (−→s i) is defined for the ith sampled

point (Pi), as the unitary vector normal to that surface

for Pi where the sensor would acquire equally spaced

samples. Whereas −→s i is always perpendicular to the

flat surface parallel to the −→u −−→v plane at distance di
for the depth-camera type sensor, it is always normal

to the surface of sphere centred at the sensor origin

with radius ri, for the laser-scanner type sensor. There-

fore, in the case of a depth-camera, −→s i is equal to −−→w ,

while it is always the radial vector pointing to the sen-

sor origin (−→s i = O−Pi), in the case of a laser scanner.

Indicating with −→n i the vector normal to the scanned

surface and with γi the angle that this vector forms

with −→s i, the local sampling density (ρi) at the ith sam-

pled point, in case a depth-camera or a laser scanner is

used, is herein defined as:

ρi =
RhRv

Adepth−camerai

∗ cos (γi) =

=
RhRv

4d2i ∗ tan
(
ϑ
2

)
tan

(
θ
2

) ∗ −→s i−→n i
|−→s i| |−→n i|

(3)

ρi =
RhRv

Alaser−scanneri

∗ cos (γi) =

RhRv
r2i (ϑmax − ϑmin) [sin (θmax) − sin (θmin) ]

∗
−→s i−→n i
|−→s i| |−→n i|

(4)

It is worth highlighting that Rh, Rv, ϑ, θ, ϑmax, ϑmin,

θmax and θmin are known working parameters of the

sensor and di, ri and −→s i can be easily computed using

the coordinates of the acquired point and the known

pose of the scanning device. The only variable that must
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Fig. 1 Fundamental working parameters for a depth-camera sensor (a) and a laser scanner sensor (b), representation of the
vectors for the computation of the local sampling density on an example surface (c-d), local sampling densities (e-f) and
centrality factors (g-h) computed for all points collected by the generic depth-camera and laser scanner.

be approximated is −→n i, which is the local normal of the

scanned surface at the point Pi. Indeed, the surface is

not analytically known before the scan and the objec-

tive of the scan is to reconstruct the shape of the sur-

face. In this work, the local normal is inferred through

fitting a local plane to neighbouring points [31], in order

to approximate its perpendicular vector. The orienta-

tion of the normal is set based on the knowledge of the

sensor pose, making sure that the absolute value of γi
(the angle formed by −→n i with −→s i) is smaller than π/2.

Figure 1e and Figure 1f give a representation of the local

sampling densities computed for all points collected on

the example surface by the generic depth-camera and

laser scanner. Referring to the notation given in Figure

1a and Figure 1b, the same scanning resolutions and

angular ranges are used for the depth-camera and laser

sensor (Rh = 6, Rv = 4, ϑ/2 = ϑmax = −ϑmin = π/6

and θ/2 = θmax = −θmin = π/9). The same colormap

and colour bar limits have been set in Figure 1e and

Figure 1f to facilitate the comparison of the different

local sampling densities relative to the points sampled

through the depth-camera and the laser scanner. As

expected, the low values (∼ 10−3) are due to the low

horizontal and vertical resolution used for the sake of

producing clear schematic representations. Much higher

resolutions are typically used to obtain useful results in

real applications. The last metric used by this work is

named as centrality factor (σ). The centrality factor is

a nondimensional parameters, whose value is comprised

between 0 and 1, being σ = 1 for a point measured at

the centre of the sensor field-of -view and σ = 0 for

points measured at the boundary of the field-of-view.

This factor is computed as in Equ. (5) and (6) for depth-

cameras and laser scanners, respectively:

σi = min
(

1−
∣∣∣tan−1

(
xi

zi

) ∣∣∣ ( 2ϑ) , 1−
∣∣∣tan−1

(
yi
zi

) ∣∣∣ ( 2θ ))
(5)

σi = min

 1−
∣∣∣tan−1

(
xi

zi

)
− ϑmax+ϑmin

2

∣∣∣ ( 2
ϑmax−ϑmin

)
,

1−
∣∣∣tan−1

(
yi
zi

)
− θmax+θmin

2

∣∣∣ ( 2
θmax−θmin

) 
(6)

2.2 Incremental down-sampling and merging

As it was said in the introduction, in most situations,

the acquisition of a single point cloud from one point

of view cannot produce a complete 3D reconstruction

of an object. Multiple point clouds, collected with dif-

ferent sensor poses are typically required. The align-

ment/registration process of bringing the multiple point

clouds into a common reference system is quite straight-

forward, when the accurate position and orientation of

each sensor pose are available, which is always the case
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for robot-manipulated 3D scanners. In this work, it is

assumed that the sensor data origin is accurately cali-

brated as robot Tool Central Point (TCP) and all col-

lected points clouds get registered into the manipula-

tion robot base reference system, using the sensor pose

(position Cartesian coordinates and orientation Euler

angles), obtained as feedback from the robot controller.

Therefore, the resulting merged point cloud may be in-

tended as the set of all points collected through all sen-

sor views. At first glance, it would be possible to think

the sensor should be positioned at a distance from an

object surface that allows capturing as many points as

are needed to reach the desired target density. If such

target density is denoted with ρ∗, expressed as num-

ber of points per surface unit (e.g. points/mm2), the

optimum sensor view distance (d∗g) or view radius (r∗g)

can be extrapolated from Equ. (7) and (8), for depth-

cameras and laser scanners respectively:

d∗g =
1

2

√
RhRv

ρ∗tan
(
ϑ
2

)
tan

(
θ
2

) (7)

r∗g =

√
RhRv

ρ∗ (ϑmax − ϑmin) [sin (θmax)− sin (θmin) ]
(8)

The subscript “g” is given to d∗g and r∗g , since they

purely derive from geometrical considerations. Placing

a depth-cameras at distance d∗g or a laser scanner at

radial distance r∗g allows reconstructing the object ge-

ometry exactly at target density only when a planar

(for depth-cameras) or a spherical surface (for laser

scanners) is the surface under inspection. This is far

from any real applications, when a generic surface is

to be mapped. Moreover, most manufacturers of 3D

scanners specify that the sampling inaccuracy/noise of

their sensors depends on the distance of the captured

points. Assuming the expected measurement noise of a

3D scanner is defined as a percentage of sampling dis-

tance (ε = noise/d or ε = noise/r), it is possible to

compute the maximum distance that allows mapping a

surface with measurement noise smaller than or equal

to n∗:

d∗n =
n∗

ε
or r∗n =

n∗

ε
(9)

These limit values are denoted with the “n” subscript,

since they originate from measurement noise considera-

tions. Thus, in practical application, the optimum view

distance (d∗ or r∗) is chosen as the lower value between

d∗g and d∗n (d∗ = min(d∗g, d
∗
n)) or r∗g and r∗n (r∗ = min(r∗g ,

r∗n)). Some sensors with high values of percentual noise

(ε) force mapping objects/environments at distances

that lead to sampling densities much higher than the

target density (e.g. when d∗n � d∗g or r∗n � r∗g). More-

over, due to the overlap between the field-of-view of

the 3D scanning sensor positioned at different locations,

simply appending all collected points to a comprehen-

sive point cloud may lead to vast regions with too many

redundant points. This means that many more points,

compared to those required to fulfil the target sam-

pling density, are collected in some regions of an object,

making the merged point cloud difficult to process in

timely fashions and to store in physical memories. For

these reasons, solutions to down-sample the collected

points and obtain a uniform point density across the

resulting point cloud are typically found in many works

[14,32]. Although down-sampling algorithms have been

presented elsewhere, it is worth describing what down-

sampling and merging algorithms were implemented in

this work, for the sake of making the entire incremental

3D reconstruction pipeline as clear as possible. Figure

2a gives an explanatory scene, showing an initial state

point cloud (originating from two sensor data sets cap-

tured at O1 and O2) and a dense point cloud, newly

received from the sensor at O3. The new point cloud

is intentionally assumed to have a point density much

higher than the target sampling density and captured

with a noticeable spatial overlap with the field of view

of the sensor in O1 and O2. Therefore, referring to this

scene, it is possible to describe the process of merging

the jth point cloud data set with the initial state point

cloud, originating from all previously acquired data sets

(from the 1st to the (j − 1)
th

sensor pose). The aver-

age distance between any point of an ideal point cloud,

which maps the surface of an object with the target

density (ρ∗), and its closest neighbour point should be

equal to l = ρ∗−1/2. Indeed, any square of area l2 lying

on the surface of the object should contain only one of

the sampled points. This assumes that approximating

the object surface to a plane is acceptable, in the neigh-

bourhood of the square. In these terms, down-sampling

a point cloud to meet the target density requirement

would consist in finding all squares with side equal to l

that lie on the reconstructed object surface and contain

more than one sampled point. Wherever multiple points

are detected within a square, only one point should be

kept as a representative of them. This process is quite

computationally expensive for large point clouds.

In this work, a much more efficient sub-optimal al-

gorithm has been found, which uses cubic containers

rather than squares. The area of the largest planar

surface that can be inscribed in a cube is
√

2 times

larger than area of the square face of the cube. There-

fore, in this work the volume containing the points

of both the initial and new cloud is partitioned with

cubes of side l∗ =
(√

2ρ∗
)−1/2

. Indicating with Pi ≡
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Fig. 2 Initial state points and new incoming points (a).
Grouping points into cubes of side equal to the target sam-
pling density (b). Example of selection of maximum sampling
density point in a cube containing only one old point, only
new points and both old and new points (c). Resulting merged
and down-sampled new initial state (d).

[pxi , p
y
i , p

z
i ] the ith point of the initial state cloud and

with Qk ≡ [qxk , q
y
k , q

z
k] the kth point of the new cloud,

being k ∈ N | 1 ≤ k ≤ (Rh ∗ Rv), the local normals

(−→n i and −→n k) are computed as described in Section 2.1

through fitting a local plane to the six closest neigh-

bouring points, taken from the whole set of points (old

and new), before the down-sampling of the new cloud is

performed. Thus, the stack indices, along the x, y and

z direction (axi , ayi , azi , b
x
k, byk and bzk ∈ Z), of the re-

spective cubes (Ai and Bk) that contain the two points

are calculated, dividing their Cartesian coordinates by

l∗ and rounding to the closest integer numbers. As it is

illustrated in Equ. (10) and (11), working with arrays,

a computer can efficiently compute the set of all cubes

comprising the initial state points (A) and the set of

cubes for new points (B). Through the intersection of

A and B (Equ. (12)), it possible to identify the set C

of cubes that contain both initial state points and new

points. The set Aold (subset of A), which contains cubes

with only one initial state point, is defined as the dif-

ference between set A and set C (Equ. (13)). Finally,

the set Bnew (subset of B), which contains cubes with

only new points, is defined as the difference between set

B and set C (Equ. (14)). The cubes belonging to these

sets are represented in Figure 2b.

The merged initial state point cloud is assumed to be

already down-sampled, since it is intended to be the re-

sult of the down-sampling and merging operations per-

formed right after the acquisition of the (j−1)
th

point

cloud. Figure 2c gives close up examples of the points

found within cubes belonging to Aold, Bnew and C,

where the points from the initial state cloud are dis-

played as circles, the points from the new cloud are

showed as squares and the colour of the points is re-

lated to their respective local sampling densities (ρ).

A =


. . .

Ai−1

Ai
Ai+1

. . .

 =


. . . . . . . . .

axi−1 a
y
i−1 a

z
i−1

axi ayi azi
axi+1 a

y
i+1 a

z
i+1

. . . . . . . . .

 =

=




. . . . . . . . .

pxi−1 p
y
i−1 p

z
i−1

pxi pyi pzi
pxi+1 p

y
i+1 p

z
i+1

. . . . . . . . .

/l∗


(10)

B =


. . .

Bk−1

Bk
Bk+1

. . .

 =


. . . . . . . . .

bxk−1 b
y
k−1 b

z
k−1

bxk byk bzk
bxk+1 b

y
k+1 b

z
k+1

. . . . . . . . .

 =

=




. . . . . . . . .

qxk−1 q
y
k−1 q

z
k−1

qxk qyk qzk
qxk+1 q

y
k+1 q

z
k+1

. . . . . . . . .

/l∗


(11)

C = A ∩B = {x | (x ∈ A) ∧ (x ∈ B)} (12)

Aold = A− C = {x | (x ∈ A) ∧ (x/∈B)} (13)

Bnew = B − C = {x | (x ∈ B) ∧ (x/∈A)} (14)

The down-sampled and merged point cloud, which will

constitute the updated initial state cloud, will have a

number of points equal to the sum of the cubes in all

three sets, since only one point per cube is to be se-

lected. This allows a computer to allocate the memory

space required for such point cloud. Each cube of Aold

contains one and only one initial state point, which is

transferred to the updated initial state. Every cube in

Bnew comprises points of the new cloud and the point

which presents the maximum local sampling density is

selected to become part of the updated initial state.

Finally, each of the cubes in C always contains one

point from the old cloud and one or more points from
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the new cloud; among them, the point with the max-

imum local sampling density is selected as representa-

tive. Therefore, in this work, the point representative

of each volumetric partition is not randomly selected

among those present in every cube, but the local sam-

pling density (ρ) is used as a quality propriety to select

the best point. This typically allows only the points that

carry lower measurement noise levels to be transferred

to the updated initial state cloud and to progress along

the 3D reconstruction pipeline. It should be noted that

the approach used in this work performs efficient in-

cremental down-sampling and merging in a single pass,

since merging takes place during down-sampling. Fur-

thermore, the indexing of the points, operated through

Equ. (10) and Equ. (11), minimizes the computational

effort. Figure 2d shows the updated initial state point

cloud.

2.3 Next best view pose computation

In order to automate the acquisition of data for object

reconstruction, it is necessary to be able to select the

sensor poses through a suitable algorithm. Assuming

the first sensor pose is human-defined and no additional

information about the object geometry is provided to

the algorithm, this work introduces an approach able to

maximize the 3D reconstruction of the object surface,

while minimizing the number of sensor poses required

to achieve this objective. The 3D geometry mapping

is operated incrementally, meaning that the system up-

dates the object reconstruction, in the form of a merged

point cloud and a tessellated triangular surface, right af-

ter each new point cloud is acquired by the sensor from

a new pose. Following the acquisition of the J th point

cloud from the sensor at pose OJ , the set of all visited

sensor poses (O1, O2, . . . , OJ) and the updated initial

state point cloud (as illustrated in Section 2.2) are used

to compute the next best view pose (OJ+1). This is the

pose that allows maximizing the mapping information

that can be retrieved from the sensor to reconstruct the

real geometry.

In this work, a tessellated mesh that reconstructs the

mapped object surface (with a level of detail corre-

sponding to the user-defined target sampling density) is

computed at each step, by applying the Poisson-based

surface reconstruction algorithm described in [33] to the

updated initial state point cloud. As example, the sub-

plots in Figure 3 show the reconstructed surface relative

to the updated initial state point cloud given in Figure

2d.

Therefore, it is checked if line-of-sight exists between

the barycentre of each mesh triangle and every vis-

ited sensor pose. For the barycentres that are within

the field-of-view of the sensor at a given pose, the ray

casting method presented in [34] is used, determining

whether the line segment that links each barycentre to

the sensor pose has only one intersection with the mesh

and if this intersection is at the barycentre. Therefore,

the sampling densities relative to each sensor pose are

computed according to Equ. (3) for depth cameras and

Equ. (4) for laser scanners (see Figure 3a-c). Indicating

with ρi,j the sampling density of the ith barycentre, rel-

ative to the jth sensor pose, the cumulative value (see

Figure 3d) at the ith barycentre is computed as:

ρ̂i,J = min

(
ρ∗ ,

J∑
1

ρi,j

)
(15)

The selection of the minimum value between ρ∗ and∑J
1 ρi,j , which is operated in Equ. (15), should not

surprise the reader, since it is promptly justifiable as

the mathematical consequence of the down-sampling

described in Section 2.2.

2.3.1 Objective function definition

In this work, it has been observed that all values of ρ̂i,

with 1 ≤ i ≤ T (where T is the number of triangles in

the Poisson reconstruction mesh), may exceed the tar-

get sampling density ρ∗ even when some areas of the

object are still to be mapped. This is likely to hap-

pen when the object surface is sampled with a stand-

off distance smaller than d∗g (for depth cameras) or r∗g
(for laser scanners). In such case, it is difficult to use

ρ̂i alone to formulate an objective function, which is

suitable to determine the next best sensor pose (OJ+1)

and valid stopping criteria for the incremental 3D re-

construction. Moreover, it is important that the next

sensor pose does not coincide with any of the previously

visited poses (O1, O2, . . . , OJ). However, ρ̂i does not

convey enough information about such previous poses.

This problem is solved by defining the cumulative cen-

trality factor σ̂i (see Figure 3h) as:

σ̂i,J = max(σi,1, σi,2, . . . , σi,J) (16)

where σi,j is the centrality factors of the ith barycentre,

relative to the jth sensor pose, as it is defined in Equ.

(5) for depth cameras and Equ. (6) for laser scanners

(see Figure 3e-g). The value of the cumulative central-

ity factor is always comprised between 0 and 1, being

equal to 0 at the boundary of the cumulative surface

mapped from all sensor poses and equal to 1 at the in-

tersection between the sensor pose view directions and

the mapped surface (see Figure 3h). As a result, σ̂i is

rich of information about all previous sensor poses.

Therefore, a parameter herein named as corrected cu-

mulative sampling density (λi,J) is introduced for the
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Fig. 3 Sampling density relative to each sensor pose (a-c),
cumulative sampling distance (d), centrality factor relative to
each sensor pose (e-g), cumulative centrality factor (h) and
corrected cumulative sampling density (i).

definition of the objective function. λi,J is the prod-

uct of the cumulative sampling density and centrality

factor (λi,J = ρ̂i,J ∗ σ̂i,J) (see Figure 3i). The cor-

rected sampling density inherits its unit from ρ̂i (e.g.

points/mm2), since σ̂i is nondimensional. Whereas the

colour of the triangles in the surface reconstruction mesh

shown in Figure 3a-d depends on the barycentres sam-

pling density and cumulative sampling density, it de-

pends on the centrality factor and cumulative centrality

factor in Figure 3e-h and on the corrected cumulative

sampling density in Figure 3i. It is worth highlighting

that the same colormap and colour bar limits ([0, ρ∗]

for Figure 3a-d and Figure 3i and [0,1] for Figure 3e-h)

are used to facilitate the comparison of the plots.

Thus, this work defines the objective function F (OJ+1)

as the difference between the theoretical number of points

necessary to map the surface represented by the recon-

structed mesh, with uniform target density equal to ρ∗,

and the prediction of number of points sampled at the

(J + 1)
th

step. Indicating with ai the area of the ith tri-

angle of the mesh, calculated through Heron’s formula,

we have:

F (OJ+1) =

(
ρ∗

T∑
1

ai

)
−

(
T∑
1

λi,J+1ai

)
(17)

where
∑T

1 ai is, recognisably, the total mesh area and

λi,J+1 is the cumulative corrected sampling density, in-

ferred through assuming a new point cloud is collected

with the sensor positioned at the pose OJ+1.

2.3.2 Searching through the multi-dimensional space

The best next sensor pose is the pose that minimizes the
objective function, given in Equ. (17). A sensor pose is a

vector with six coordinates (O = [ox, oy, oz, oA, oB , oC ]),

being ox, oy and oz the Cartesian coordinates of the

sensor origin and oA, oB and oC the Euler angles of

the sensor reference system. Since F (OJ+1) is a non-

continuous function of six variables, it is not possible to

find its minimum analytically. In this work, the multi-

dimensional search space is probed through comput-

ing the value of the objective function at several test

poses. The test poses are chosen conveniently, to speed

up the selection of the optimum next sensor pose. The

approach deployed in this work consists in offsetting

the barycentres of the mesh triangles, where λi,J < ρ∗,

along the triangles normals by d∗ (for depth cameras) or

r∗ (for laser scanners). The resulting points are sorted

according to the ascending order of the corrected cumu-

lative sampling density of their parent triangles and the

first K points are selected as suitable positions. This

defines the poses in Cartesian coordinates. Figure 4a

shows the first five test positions for the example mesh



10 Carmelo Mineo et al.

Fig. 4 The first five test view point and direction (a) and
illustration of the selection of four sensor orientations for each
selected test direction (b).

surface. The definition of the Euler angles, which de-

scribe the orientation of the test sensor poses, requires

particular attention. Indeed, since the field-of-view of

depth-cameras and laser scanners does not present ax-

ial symmetry, the amount of surface a sensor can map

is affected by the rotation of the sensor around its view

axis. Therefore, a number (H) of different orientations

of the field-of-view with respect to the view axis are

considered for each test position, for the sake of bet-

ter probing the search space. Adopting the opposite of

the parent triangle normal vector as view axis direction

(−→w k) for the kth test position, the other two vectors
−→u k,h and −→v k,h (relative to the hth orientation of the

sensor pose reference system with respect to −→w k) are

computed through Rodrigues’ formula [35]. Indicating

with αh the angle that defines the hth orientation, it

is possible to assume that the orientation at αh and at

αh±π would map the same amount of surface, for depth

cameras and laser scanners. It is worth noting that this

assumption implies −ϑmin = ϑmax and −θmin = θmax,

for laser scanner type sensors. Therefore, in this work,

αh has been defined as:

αh = π ∗ (h− 1)

H
(18)

with 1 ≤ h ≤ H. This produces constant-spaced test

orientations in the range [0 , π). This concept is illus-

trated in Figure 4b. Once the vectors of the sensor pose

orthogonal reference system are known, it is straight-

forward to extract the Euler angles from the relative

rotation matrix (Rk,h =
[−→u k,h −→v k,h −→w k

]
) [36].

Thus, the total number of test poses is equal to K ∗H,

since we have H sensor orientations for each of the

K positions. The experimental validation undertaken

by this work has led to determine that K = 20 and

H = 5 are good values for practical applications, re-

sulting in a total of up to 100 test poses. All constraints

given by real physical setups are considered by discard-

ing any positions that cannot be reached by the sensor

manipulator, due to kinematic limitations and or col-

lisions. There, unsuitable positions are prevented from

Fig. 5 Evaluation of the objective function value at the test
poses (a) and illustration of the determined next best pose
for the given example (b).

being used as test poses. Therefore, the number of items

belonging to the set of test poses (T ) may be limited

by the physical constraints (robotic reachability and/or

collision avoidance).

Figure 5a shows the evaluation of the objective func-

tion value at the test poses for the given example. The

minimum function value is obtained at the 45th test

pose, relative to k=9 and h=5 (αh= 4
5π radians). Then,

this is taken as the next best pose (OJ+1). Figure 5b

illustrates the sensor fiend of view at OJ+1. Interest-

ingly, this approach conveniently defined the next best

pose to map the portion of the objective surface that

has been sampled the least by previous poses, due to

the high local surface gradient. Undoubtedly, selecting

the best next pose among a large but finite number of

test poses, used to probe the objective function in the

multidimensional search space, may lead to choosing a

pose corresponding to a local minimum of the objective

function rather than the absolute minimum. This has

been deemed acceptable for the scope of this work.
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2.4 Stopping criteria

Once the next best pose is defined, it is used to con-

trol the sensor manipulation system and acquire a new

point cloud at the specified location. Then, the new

point cloud is down-sampled and merged with the ini-

tial state point cloud and these steps can repeat again,

incrementally generating a 3D reconstruction of the ob-

ject of interest. Hence, it is immediate to understand

the need of defining suitable stopping criteria, which

regulate the interruption of the iterative reconstruction

process. The described framework exposes meaningful

variables that are suitable for this scope. In this work, it

was deemed satisfactory to stop the iterative data cap-

ture and 3D reconstruction when the objective function

(evaluated at OJ) is null or when the set of test poses

is empty.

F (OJ) = 0 ∨ T = {} (19)

3 Experimental setup

The presented framework has been validated through

simulated and real data sets. The experimental setup

consists of an Intel® RealSense™ Depth Camera D435i.

It is a low-cost 3D active infrared stereo camera with

expected measurement noise ε = 0.02 (2% of distance),

a minimum depth distance of 280mm at maximum res-

olution (1280×720) and of 175mm at lower resolution

(640×480). The depth camera is manipulated through a

KUKA KR10-R1100-2 robot. The robot has six degrees

of freedom, a reach of up to 1100mm and a stated pose

repeatability of ±0.02mm. Given the limited working

envelope of the robot in use, the depth-camera was used

with a depth frame resolution of 640×480 points, in or-

der to allow all-round mapping of small objects. The

sensor horizontal and vertical field-of-view angles were,

respectively, ϑ = 74◦ and θ = 62◦. A bespoke data ac-

quisition software module was developed, using the In-

terfacing Toolbox for Robotic Arms (ITRA) [37, 38], to

synchronize the robotic sensor manipulation with data

collection. The depth-camera data origin was calibrated

as robot TCP, using the hand-eye calibration procedure

described in [39]. Collision avoidance was ensured for all

the robotic trajectories, to move from any actual robot

pose to the next pose, implementing the effective so-

lution proposed in [40]. A MATLAB-based simulation

environment was developed through integrating the vir-

tual CAD model of the camera with the virtual model

of the robot. In order to make the results of this work

replicable and comparable with the outcomes of future

investigations, an openly available computer graphics

3D test model, developed in 1994 at Stanford University

Fig. 6 Real (a) and virtual (b) experimental setup, showing
the Intel® RealSense™ Depth Camera D435i, mounted onto
the KUKA KR10-R1100-2 robot, and the 3D printed Stanford
Bunny test model.

[30, 41], was used. The model, often referred as Stan-

ford Bunny consists of a tessellated surface with 69451

triangles, determined by 3D scanning a ceramic figurine

of a rabbit. The model was imported in the virtual sim-

ulation environment. Figure 6 shows the real and the

virtual experimental setup used for the investigations

of this work.

Both the robot and a true-scale 3D printed version of

the reference sample are placed onto a levelled optical

table. The robot manipulator is firmly bolted onto the

table by means of a 20mm thick steel flange. The sample

is supported and raised from the table surface through

an 80mm high plinth that positions the barycentre of

the Stanford Bunny base at an offset of 435mm along

the x-axis and the y-axis and an offset of 60mm along

the z-axis, with respect to the robot base reference sys-

tem. The simulation environment is a virtual twin ver-

sion of the real environment.

4 Simulations

A MATLAB-based function was developed to generate

a synthetic sensory point cloud for any given pose of the

sensor. This was achieved by implementing a ray casting

algorithm (based on [34]) to find the intersection points

between the sampling directions (originating from the

sensor) and the triangular mesh of the reference sam-

ple. The simulations of this work have the objective of

validating the robustness of the 3D reconstruction ap-

proach. Given the stated maximum measurement noise

of the sensor (2% of distance), the distance between the

test poses and the target surface was limited to 200mm,

which gives an expected maximum deviation of 4mm
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between the sampled point clouds and the real geom-

etry. Figure 7 shows the simulated incremental 3D re-

construction of the Stanford Bunny, using the presented

framework to meet a user-specified target sampling den-

sity of ρ∗ = 0.05 points/mm2 (5 x 104 points/m2).

This value of target density was chosen, since it corre-

sponds to a length of a down-sampling cube side edge

l∗ = 3.76mm, which is similar to the expected ampli-

tude of the measurement noise of the sensor in use,

when mapping surfaces at average distance of 200mm.

Indeed, measurement noise much higher than the aver-

age distance between the points may negatively affect

the accurate estimation of the surface normals. Only

the first pose was defined a priori. All following poses

were autonomously defined as best next poses, using

the approach described in Section 2. The sensor poses

were constrained to stay above the base of the sam-

ple (oz > 60mm), in order to avoid collisions between

the robot and the optical table and map the visible sur-

face of the object (the whole surface excluding the sam-

ple base). Figure 7 illustrates the achieved reconstruc-

tion process, which was simulated using the pose given

in Figure 7a as starting pose. The simulation demon-

strates the possibility enabled by the presented frame-

work to reconstruct complex surface geometries, with

a minimum number of effective and autonomously cho-

sen sensor poses. The simulation was repeated using

four other starting poses. All simulated reconstructions

met the first stopping condition in Equ. (19), effectively

reaching the target sampling density throughout the

surface of the reference sample. Although the screen-

shots relative to these additional simulations are not

presented here, in order to limit the length of this arti-

cle, all relevant quantitative results are summarized in

Table 1. As it was expected, some user-specified initial

poses are more convenient than others and this influ-

ences the whole reconstruction process. This causes the

number of necessary sensor poses to vary. Nevertheless,

it is interesting to note that all simulated reconstruc-

tions led to very similar results, in terms of number

of points in the down-sampled cloud, number of trian-

gles in the reconstruction mesh and extension of the

mapped surface, despite of the difference in the start-

ing pose and consequent next best poses used in the

reconstruction pipeline. The values of the mapped sur-

face extension are very close to the area of the Stan-

ford Bunny surface (excluding its base), which is 51954

mm2, as measured from the reference sample original

tessellated mesh. The small deviation between the ex-

tension of the reconstructed surface and the reference

area is thought to be caused by the fact that the ref-

erence virtual model and the reconstructed model are

not represented by the same set of triangulated points.

Fig. 7 Simulated full 3D reconstruction of Stanford Bunny
with target density ρ∗ = 0.05 points/mm2, through an ini-
tial starting pose (a) and four autonomously generated sensor
poses (b-e).
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Table 1 Simulations quantitative results. The first column
relates to the simulation illustrated in Figure 7. The following
columns regard the other simulations, which were run using
different starting poses.

Initial pose
(coordinates
in [mm] and
angles in
[deg])

x=435 x=635 x=435 x=235 x=435
y=435 y=435 y=635 y=435 y=235
z=350 z=150 z=150 z=150 z=150
A=95 A=-90 A=0 A=90 A=180
B=0 B=0 B=0 B=0 B=0

C=180 C=90 C=90 C=90 C=90

Num. poses
required

5 5 4 6 7

Num. raw
points

231707 227070 191858 297023 343165

Down-sampled
points

5131 5234 5109 5242 5256

Num. mesh
triangles

35433 35313 35133 37459 36389

Reconstructed
surface [mm2]

51163 52106 51206 51824 51904

5 Sensor data results

Real-data reconstructions were undertaken by means

of the physical laboratory setup described in Section

3. Figure 8 illustrates the reconstruction of the Stan-

ford Bunny, with target sampling density ρ∗ = 0.05

points/mm2, using the first pose in Figure 7 as ini-

tial sensor pose. The real system required a total of

seven poses to obtain the full reconstruction of the ref-

erence sample, which exceed the respective simulation

by two poses. This is caused by the fact that the real

sensor typically fails to return all surface points that are

within the sensor field of view. The variable reflectivity

of the sample causes some areas of the surface to reflect
too little or too much light, impeding accurate sampling

(within the sensor acceptance thresholds). This leads to

the deviation of the real deployed sensor poses from the

simulated poses. It is worth pointing that more sophis-

ticated sensors, capable of returning less compromised

point clouds, would produce better adherence with sim-

ulated pose coordinates and pose sequencing. Never-

theless, the real data reconstructions performed in this

work proved the capability of the proposed framework

to flexibly adapt to real scenarios and different starting

poses and to be used with low-cost sensors. In order

to further demonstrate the flexibility of the proposed

framework, an industrial specimen was reconstructed

using the same data acquisition setup. The specimen

was a 4mm thick carbon fibre reinforced plastic (CFRP)

shell sample, moulded into a curved contour by the au-

tomotive industry. Composite parts often suffer geome-

try distortion due to their elastic spring back when they

are extracted from the curing mould, which makes ge-

ometry mapping a requirement for dimensional assess-

Fig. 8 Full 3D reconstruction of Stanford Bunny with target
density ρ∗ = 0.05 points/mm2, through an initial starting
pose (a) and six autonomously generated sensor poses (b-g).
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Fig. 9 CFRP automotive sample used as additional test
case.

ment or for programming successive robotic machining.

The sample had a rectangular size of circa 250 x 600mm

(Figure 9). For the curvatures of the sample surface,

this specimen was deemed representative of the chal-

lenging geometries often found in composite samples,

where the mapping of the lateral surface of stiffening

stringers and ribs requires bespoke sensor view pose

planning. Figure 9 shows the contour of the sample

surface for the section corresponding to the maximum

geometry height.

The sample was uniformly sprayed with a removable

white matte powder (Spray-Rotrivel U, manufactured

by CGM s.r.l), which gave an approximately Lamber-

tian finish with a reflectance spectrum flat in the visible

spectral region [42]. This maximized the mapping per-

formance of the depth-camera in use. Figure 10 shows
the reconstruction of the test sample through the ap-

proach presented in this work. The first point cloud

was acquired through a user-defined pose, capturing

the central part of the sample (Figure 10a). The tar-

get sampling density (0.05 points/mm2) was achieved

throughout the sample surface, through eleven succes-

sive autonomously computed poses (Figure 10b-l).

The resulting reconstructed surface was compared with

the ground-truth point cloud, which was acquired by

a Hexagon ROMER Absolute Arm RA-7520SE (Fig-

ure 11). This is a metrology tool, based on a passive

arm equipped with a laser profiler and high-accuracy

encoders. The stated precision of the scanning system

is 53µm. Figure 11b shows the deviation map, between

the reconstructed geometry and the ground-truth point

cloud. The deviations are within the expected range of

0-4mm, since the sensor had an accuracy of 2% and the

average sensor standoff used for the data collection was

set to 200mm. Nevertheless, the discontinuities in the

error distribution in the deviation map seems to suggest

that it may also be partially caused by the propagation

of the inaccuracy in the calibration of the robot TCP

(the camera centre) onto the registration of the point

clouds.

6 Conclusions and future work

Several applications require a digital model of an ob-

ject to create a virtual twin of the part and/or to in-

form automated systems that need to interact with it.

In most situations, the acquisition of a single point

cloud from one point of view cannot produce a complete

3D reconstruction of an object. Multiple point clouds,

collected from different poses are typically required.

Manual determination of optimal view poses for sur-

face scanning is time-consuming and expert-dependent.

Moreover, when the scanning sensor is manipulated by

a robotic arm, it is necessary to consider the robot kine-

matic constraints and avoid collisions. Finding the op-

timum set of view poses for a robot-manipulated 3D

scanning system, in order to efficiently reconstruct a

given object using the minimum number of views, is

still an open problem. This article presented a mathe-

matical framework for automating the 3D reconstruc-

tion of specimens. The approach is suitable to be used

with two large families of 3D scanners: depth-cameras

and laser scanners. Compared with previous works, the

presented framework does not need a priori information

about the shape of the object, since it incrementally cre-

ates and updates the digital reconstruction of the part.

The method allows mapping the surface of an object

to meet a user-defined target sampling density. Effi-

cient incremental down-sampling and merging is per-

formed in a single pass, through an indexing algorithm

that minimizes the computational effort. The frame-

work code is made publicly available, at https://doi.

org/10.5281/zenodo.4646850, and can be used by the

research community for future developments. The ro-

bustness of the approach was tested through simulated

data. In order to validate the framework in experimen-

tal scenarios, a computer was interfaced with a robot

arm and an RGB-D camera to reconstruct the geometry

of a 3D printed version of a reference test model and of

an industrial test piece. The investigations proved the

capability of the proposed framework to flexibly adapt

to real scenarios and different starting view poses and

to be used with low-cost sensors.

The selection of the best next pose among a large but

finite number of test poses, used to probe the objective

function in the multidimensional search space in this

work, may lead to choosing a pose corresponding to a

local minimum of the objective function rather than the

https://doi.org/10.5281/zenodo.4646850
https://doi.org/10.5281/zenodo.4646850
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Fig. 10 Full 3D reconstruction of CFRP automotive test sample with target density ρ∗ = 0.05 points/mm2, through an initial
starting pose (a) and eleven autonomously generated sensor poses (b-l).

absolute minimum. Although this has been deemed ac-

ceptable for the scope of this work, future work should

focus on enhancing the ability to converge to deploy-

able poses corresponding to the absolute minimum of

the objective function for all sampling steps.

Declarations

Conflict of interest

The authors declare that they have no conflict of inter-

est.

Availability of data and material

Reference model available through the Stanford 3D Scan-

ning Repository (http://graphics.stanford.edu/data/

3Dscanrep/#bunny)

Code availability

https://doi.org/10.5281/zenodo.4646850

Authors’ contributions

C.M. conceived and developed the theory, performed

data acquisition and processing and wrote the article

manuscript. D.C. supervised the findings of this work

at all stages. V.R. performed the acquisition of the

ground-truth point cloud of the industrial CFRP speci-

men. B.R. provided the industrial CFRP specimen. All

authors discussed the results and contributed to the re-

view of the final manuscript

Ethics approval

This work did not involve human subjects and/or ani-

mals. Thus, no ethical approval was required.

Consent to participate

This work did not involve collection of information from

human subjects.

http://graphics.stanford.edu/data/3Dscanrep/#bunny
http://graphics.stanford.edu/data/3Dscanrep/#bunny
https://doi.org/10.5281/zenodo.4646850


16 Carmelo Mineo et al.

Fig. 11 Acquisition of ground-truth point cloud through the
Hexagon ROMER Absolute Arm (a) and map of deviation
between the reconstructed geometry and the ground-truth
(b).

Consent for publication

This work did not involve collection of information from

human subjects. All authors of this work have expressed

consent for their names and affiliations to appear in this

journal publication.

References

1. A. Kumar (2018) Methods and materials for smart manu-
facturing: additive manufacturing, internet of things, flex-
ible sensors and soft robotics. Manufacturing Letters,
15:122-125

2. A. Willette, S. Brell-Cokcan, J. Braumann (2014) Robotic
fabrication in architecture, art and design 2014. Springer,
Cham. https://doi.org/10.1007/978-3-319-04663-1

3. T. Ingrassia, V. Nigrelli, V. Ricotta, C. Tartamella (2017)
Process parameters influence in additive manufacturing. In:
Advances on Mechanics, Design Engineering and Manufac-
turing, Springer, pp 261-270

4. C. Mineo, S. Pierce, B. Wright, I. Cooper, P. Nichol-
son (2015) PAUT inspection of complex-shaped compos-
ite materials through six DOFs robotic manipulators.
Insight-Non-Destructive Testing and Condition Monitor-
ing, 57:161-166

5. C. Mineo, S. G. Pierce, P. I. Nicholson, I. Cooper (2016)
Robotic path planning for non-destructive testing – A cus-
tom MATLAB toolbox approach. Robotics and Computer-
Integrated Manufacturing, 37:1-12

6. N. Marturi et al (2016) Towards advanced robotic manipu-
lations for nuclear decommissioning. In: 2016 International

Conference on Robotics and Automation for Humanitarian
Applications (RAHA), IEEE, Amritapuri (India)

7. T. Burrell, C. West, S. D. Monk, A. Montezeri, C. J. Tay-
lor (2018) Towards a cooperative robotic system for au-
tonomous pipe cutting in nuclear decommissioning. In: 2018
UKACC 12th International Conference on Control (CON-
TROL), IEEE, Sheffield (United Kingdom)

8. H. Ahmad (2004) Feasibility study on robot off-line pro-
gramming and simulation using matlab tools: simmechanics
and simulink packages. Dissertation, Universiti Tun Hussein
Onn

9. C. Mineo, S. G. Pierce, P. I. Nicholson, I. Cooper
(2017) Introducing a novel mesh following technique for
approximation-free robotic tool path trajectories. Journal
of Computational Design and Engineering, 4:3:192-202

10. R. S. Andersen, S. Bøgh, T. B. Moeslund, O. Madsen
(2015) Intuitive task programming of stud welding robots
for ship construction. In: International Conference on In-
dustrial Technology (ICIT), IEEE, Seville (Spain)

11. Z. Fang, D. Xu, M. Tan (2010) A vision-based self-tuning
fuzzy controller for fillet weld seam tracking. IEEE/ASME
Transactions on mechatronics, 16:3:540-550

12. Z. Bi, B. Kang (2014) Sensing and responding to the
changes of geometric surfaces in flexible manufacturing and
assembly. Enterprise Information Systems, 8:2:225-245

13. M. Bitzidou, D. Chrysostomou, A. Gasteratos (2012)
Multi-camera 3D object reconstruction for industrial au-
tomation. In: IFIP International Conference on Advances
in Production Management Systems, Springer, Rhodos
(Greece)

14. A. Kulikajevas, R. Maskeliūnas, R. Damaševičius, E. S.
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