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Abstract. In this paper, we study some local spectral properties of
operators having form JTJ , where J is a conjugation on a Hilbert space
H and T ∈ L(H). We also study the relationship between the quasi-
nilpotent part of the adjoint T ∗ and the analytic core K(T ) in the
case of decomposable complex symmetric operators. In the last part
we consider Weyl type theorems for triangular operator matrices for
which one of the entries has form JTJ , or has form JT ∗J . The theory
is exemplified in some concrete cases.
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1. Introduction

In this paper we will continue the analysis undertaken in [15,16] on the gen-
eral problem of studying the local spectral properties of complex symmetric
operators on separable Hilbert spaces H. Recall that a conjugation on H is
conjugate-linear operator J : H → H which satisfies

〈Jx, Jy〉 = 〈y, x〉 for all x, y ∈ H

and J is involutive, i.e., J2 = I. Evidently, J is isometric and T J := JTJ ∈
L(H) for every T ∈ L(H). If T ∗ denote the Hilbert adjoint of T ∈ L(H),
we say that T is J-complex symmetric, with respect to the conjugation J ,
if T J = T ∗, i.e., T = JT ∗J , or equivalently, JT = T ∗J , or JT ∗ = TJ . If
T is J-symmetric for some conjugation J we say simply that T is complex
symmetric. The terminology is due to fact that T is complex symmetric ex-
actly when T is unitarily equivalent to a symmetric matrix with complex
entries, regarded as an operator acting on an l2-space of appropriate dimen-
sion, cf. [12]. The class of symmetric complex operators is rather large and
includes some important classes of operators, for instance normal operators,
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Hankel operators, compressed Toeplitz operators on Hardy spaces, the clas-
sical Volterra integration operator, every idempotent operator, and nilpotent
operator of order two, see [13]. In [15,16] the authors have investigated some
aspects of local spectral theory for complex symmetric operators, for instance
the transmission from T to T ∗ of Dunford property (C), property (δ), prop-
erty (β), and decomposability. In this paper we consider the transmission of
these properties from T to T J , where J is any conjugation. In particular we
extend some results obtained in [17].

Other results concern the relationship between the quasi-nilpotent part
H0(T ∗) of T ∗ and the analytic core K(T ) in the case of decomposable oper-
ators, in general, and in the particular case where T is complex symmetric
decomposable operator.

In the last part we give some other results, concerning Weyl type theo-
rems in the framework of operator matrices. Weyl type theorems for operator
matrices have been studied by several authors, see for instance Duggal [9].
In this paper we study Weyl type theorems for f(T ), where f is an analytic
function defined on an open neighbourhood of the spectrum, in the case that
the upper triangular operator matrix T has an entry of the form T J , where
J is a conjugation. Such operator matrices have been also investigated by
Jung et al. [17], and some of the results here obtained may be thought as
complementing their results.

2. Local Spectral Theory and Conjugations

Throughout this paper H denotes a separable complex Hilbert space and,
given a subset F ⊆ C, by F we always denote the set {z̄ : z ∈ F}. Let J be
any conjugation on H. It is easily seen that JT JJ = JJTJJ = T and

T = T J ⇔ TJ = JT, (1)

so, if T is J-complex symmetric then

T is selfadjoint ⇔ TJ = JT. (2)

The operator T ∗J = JT ∗J has been called the J-transpose of T by some
authors. For every x, y ∈ H we have;

〈JTJx, y〉 = 〈JTJx, J2y〉 = 〈Jy, TJx〉 = 〈T ∗Jy, Jx〉 = 〈J2T ∗Jy, Jx〉 = 〈x, JT ∗Jy〉,
so (T J)∗ = (JTJ)∗ = JT ∗J = T ∗J . It is easily seen that σ(T J) = σ(T ) ,
from which we conclude that if TJ = JT then σ(T ) ⊂ R. Moreover,

TT J = T JT ⇔ (TJ)2 = (JT )2.

The following property, the single-valued extension property, which dates
back to the early days of local spectral theory, has been introduced by Dun-
ford [10,11]. In the sequel we consider the following localized version of this
property.

Definition 2.1. An operator T ∈ L(X), X a Banach space, is said to have
the single valued extension property at λ0 ∈ C, in short T has the SVEP
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at λ0, if for every open disc Dλ0 centered at λ0 the only analytic function
f : Dλ0 → H which satisfies the equation

(λI − T )f(λ) = 0 (3)

is the constant function f ≡ 0. T is said to have the SVEP if T has the SVEP
for every λ ∈ C.

The SVEP has a crucial role in local spectral theory consequently, it has
a certain interest to find conditions for which an operator has, or does not
have, the SVEP. Observe first that in general the SVEP from an operator T
on a Banach space is not transmitted to the dual T ′, or to the adjoint T ∗ in
the case of Hilbert space operators. Furthermore, if T ∈ L(H), T ′ has SVEP
at λ if and only if T ∗ has SVEP at λ̄.

For instance the unilateral right shift R on l2(N) has SVEP while its
adjoint L, which coincides with the left unilateral shift, does not satisfies
SVEP, see [2, page 135]. A complex symmetric operators may fail SVEP. For
instance, if T := R ⊕ L then T is complex symmetric on l2 ⊕ l2 by [24], but
T does not satisfy SVEP by [2, Theorem 2.15]. However we have:

Theorem 2.2. Let T ∈ L(H) and let J be any conjugation. Then the following
statements are equivalent:

(i) T has SVEP at λ0;
(ii) T J has SVEP at λ̄0.

Proof. (i) ⇒ (ii). Suppose that T has SVEP at λ0. Let D0 be an open disc
centered al λ0, so D0 is an open disc centered at λ̄0. Suppose that f : D0 → H
is an analytic function for which (λ̄I − T J)f(λ̄) = (λ̄I − JTJ)f(λ̄) = 0 for
all λ̄ ∈ D0. Then

(λ̄I − JTJ)f(λ̄) = (λ̄J2 − JTJ)f (̄λ) = J(λI − T )Jf(λ̄) = 0.

Since J is injective then (λ̄J −T )Jf(λ̄) = 0 for λ̄ ∈ D0. Define h(λ) := Jf(λ̄)
for λ ∈ D0. h(λ) is still an analytic function on the disk D0. Indeed, write

f(λ̄) =
∞∑

n=0

an(λ̄ − λ̄0)n,

then

h(λ) := Jf(λ̄) =
∞∑

n=0

Jan(λ̄ − λ̄0)n.

Hence (λI−T )h(λ) = 0 and the SVEP of T at λ0 entails that h(λ) = Jf(λ̄) =
0, hence Jh(λ) = J2f(λ̄) = f(λ̄) = 0, so T J has SVEP at λ̄0.

Conversely, if T J has SVEP at λ̄0 then, by the first part of the proof,
T = JT JJ has the SVEP at λ0. �

If T is J-complex symmetric we have T ∗ = JTJ , so we have:

Corollary 2.3. T ∈ L(H) has SVEP if and only if T J has SVEP. If T ∈ L(H)
is complex symmetric, then both operators T, T ∗ have SVEP if one of them
has SVEP.
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Hence, for symmetric operators T , either T and T ∗ have SVEP, or nei-
ther has SVEP. It is known that if for an operator T ∈ L(X), X a Banach
space, both T and T ′ have SVEP then σ(T ) = σap(T ) = σs(T ), see [2, The-
orem 2.68], where σap(T ) and σs(T ), denote the approximate point spectrum
and the surjectivity spectrum, respectively. These equalities hold for any com-
plex symmetric operator, even if it does not have SVEP, see [16]. Corollary
2.3 is very useful to show that an operator T is not complex symmetric. For
instance, the right shift R on �2(N) has SVEP, but its adjoint, the left shift
L does not have SVEP, so R cannot be complex symmetric. Trivially, also
every left shift is not complex symmetric, since it has not the SVEP, while
its adjoint R has SVEP. Two less trivial cases are given in the sequel.

Let f ∈ H∞(D), the Banach algebra of all bounded analytic functions
on the open disc D of C. The multiplication analytic Toeplitz operator Tf is
defined on the classical Hardy space H2(D) by the assignment Tfg := fg for
all g ∈ H2(D).

Corollary 2.4. Every non-invertible symmetry on a Hilbert space, as well as
the multiplication analytic Toeplitz operator on H2(D), is not complex sym-
metric.

Proof. If T is a non-invertible symmetry then T has SVEP, while SVEP
fails fo T ′ at the points |λ| > 1, see [2, Theorem 4.72]. Consequently, T ∗

fails SVEP at the points |λ̄| = |λ| > 1. The multiplication Toeplitz operator
Tf has SVEP, while its dual Tf ‘ fails SVEP at the points λ which do not
belong to the range of f , see [2, Theorem 4.75]. Therefore, the adjoint T ∗

f

fails SVEP and hence, by Corollary 2.3, Tf cannot be complex symmetric.
Note that JTfJ has SVEP for every conjugation J . �

For an operator T ∈ L(X), X a Banach space, we denote by σT (x)
the local spectrum of T at the point x ∈ X, see [2] or [20] for definition and
properties. An important class subspace in local spectral theory is given by
the local spectral subspace associated with a subset F ⊆ C, defined as

XT (F ) := {x ∈ X : σT (x) ⊆ F}.

A variant of the concept of local spectral subspace, which is more useful in
the case when T does not have SVEP is defined as follows: if F is a closed
subset of C, the glocal subspace XT (F ) is defined as the set of all x ∈ X for
which there exists an analytic function f : C\F → X such that

(λI − T )f(λ) = x for all λ ∈ C\F.

Note that XT (F ) ⊆ XT (F ) for every closed subset F of C, and that T has
SVEP if and only if XT (F ) = XT (F ) for every closed subset F of C, see [2,
Theorem 2.23].

In the case of a Hilbert space H, for the glocal subspaces HT (F ) we
have:

Theorem 2.5. Let T ∈ L(H) and J any conjugation on H.

HT (F ) = J(HTJ (F̄ )) and HTJ (F̄ ) = J(HT (F )), (4)

for every closed subset F ⊆ C.
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Proof. Let x ∈ HT (F ). Then there exists an analytic function f : C\F → H
such that

(λI − T )f(λ) = x, for all λ /∈ F. (5)
Set y := Jx. Then Jy = J2x = x. We prove that y = Jx ∈ HJTJ(F̄ ). From
(5) we obtain

Jx = J(λI − T )f(λ) = (λ̄J − JTJ2)f(λ) = (λ̄I − T J)Jf(λ)

The function g(λ̄) := Jf(λ), is clearly defined for λ̄ /∈ F̄ . Moreover, g(λ̄) is
analytic on C\F̄ . Therefore

(λ̄I − T J)g(λ̄) = Jx = y, for all λ̄ /∈ F̄ ,

so y ∈ HTJ (F̄ ), and hence x = Jy ∈ HTJ (F̄ ). Consequently, HT (F ) ⊆
J(HTJ (F̄ )).

To show the reverse inclusion observe that, since JT JJ = T , from the
previous argument applied to T j we then have HTJ (F̄ ) ⊆ JHTJ (F ), and
hence

JHTJ (F̄ ) ⊆ J2HTJ (F ) = HTJ (F ),

so the first identity in (4) is proved. The second equality in (4) is immediate
from the first one. �

For every T ∈ L(H) let ρT (x) := C\σT (x) be the local resolvent of T at
x.

Lemma 2.6. If T ∈ L(H) and J is a conjugation then σTJ (Jx) = σT (x) and
σT (Jx) = σTJ (x) for all x ∈ H.

Proof. Let λ0 ∈ ρT (x). Then there exists an analytic function f : D0 → H,
defined on an open disc D0 centered at λ0 such that (λI − T )f(λ) = x for all
λ ∈ D0. Then J(λI − T )f(λ) = Jx, and for all λ ∈ D0 we then have

Jx = J(λI − T )f(λ) = (λ̄J − JT )f(λ) = (λ̄J − JTJ2)f(λ) = (λ̄I − T J)Jf(λ).

Since g(λ̄) := Jf(λ) is analytic for all λ̄ ∈ D0, it then follows that λ̄0 ∈
ρTJ (Jx), so σTJ (Jx) ⊆ σT (x) .

Conversely, if λ0 ∈ ρTJ (Jx) there exists an analytic function f : D0 → H
defined on an open disc D0 centered at λ0 such that (λI − T J)f(λ) = Jx for
all λ ∈ D0. Hence

(λ̄I − T )Jf(λ) = (λJ − J2TJ)f(λ) = J(λ̄ − T J)f(λ) = J2x = x,

for all λ̄ ∈ D0, so λ̄ ∈ ρT (x), and hence σT (x) ⊆ σTJ (Jx). The second
equality may be proved in a similar fashion. �

The quasi-nilpotent part of an operator T ∈ L(X) is defined as

H0(T ) := {x ∈ X : lim sup
n→∞

‖Tnx‖ 1
n = 0},

while the analytic core K(T ) is the set of all x ∈ X such that there exists a
sequence (un) in X and a constant δ > 0 such that x = u0, Tun+1 = un and
‖un‖ ≤ δn‖x‖ for every n = 0, 1, . . . . Observe that H0(λI − T ) = XT ({λ},
and K(T ) = {x : 0 ∈ ρT (x)} see [2, Chapter 2].



   89 Page 6 of 20 P. Aiena et al. MJOM

Theorem 2.7. Let T ∈ L(H) and suppose that J is a conjugation. Then

(i) H0(T ) = JH0(T J) and H0(T J) = JH0(T ).
(ii) K(T ) = JK(T J ) and K(T J ) = JK(T ).
(iii) J ker(λI − T )n = ker(λ̄I − T J)n for every n ∈ N and λ ∈ C.

Proof. The equalities (i) are a consequence of Theorem 2.5, since H0(T ) =
HT ({0}) and H0(T J) = HTJ ({0}).

(ii) To prove the equality K(T ) = JK(T J ), observe first that K(T ) =
HT (C\{0}), by [2, Theorem 2.20]. Let x ∈ K(T ). Then the local spectrum
σT (x) ⊆ C\{0}. Since σTJ (Jx) = σT (x) then σTJ (Jx) ⊂ C\{0}. Hence
Jx ∈ K(T J ) = HTJ (C\{0}). Conversely, if y ∈ K(T J ) then σTJ (y) ⊆ C\{0}
implies that σTJ (y) ⊆ C\{0}, from which σT (y) ⊆ C\{0}. Hence Jy ∈ K(T ),
so y = J2y = J(Jy) ∈ JK(T ). Thus K(T ) = JK(T J ). The equality
K(T J) = JK(T ) may be obtained from the first part, since T = JT JJ .

(iii) Since J2 = I it easily seen, via the classical Newton’s binomial
formula, that

J(λI − T )n = (λ̄I − T J)nJ for each n ∈ N, (6)

and analogously

J(λ̄I − T J)n = (λI − T )nJ for each n ∈ N.

To show (iii), let x ∈ ker (λI − T )n. Then

(λ̄I − T J)nJx = J(λI − T )nx = 0,

thus Jx ∈ ker (λ̄I −T J)n, i.e., J ker (λI −T )n ⊆ ker(λ̄I −T J)n. To show the
reverse inclusion, let x ∈ ker(λ̄I − T J)n. Then (λ̄I − T J)nx = 0 from which
we obtain

(λI − T )nJx = J(λ̄I − T J)nx = 0,

so Jx ∈ ker(λI − T )n, hence x = J(Jx) ∈ J ker(λI − T )n. �

The ascent of T ∈ L(X) is the smallest positive integer p = p(T ),
whenever it exists, such that ker T p = ker T p+1. If such p does not exist
we let p = +∞. Analogously, the descent of T is defined to be the smallest
integer q = q(T ), whenever it exists , such that T q+1(H) = T q(H). If such
q does not exist we set q = +∞. Note that if p(T ) and q(T ) are both finite
then p(T ) = q(T ). Moreover λ is a pole of the resolvent if and only if 0 <
p(λI − T ) = q(λI − T ) < ∞.

Corollary 2.8. Let T ∈ L(H) and suppose that J is a conjugation. Then

(i) p(λI − T ) < ∞ ⇔ p(λ̄I − T J) < ∞.
(ii) q(λI − T ) < ∞ ⇔ q(λ̄I − T J) < ∞.

Proof. (i) Suppose that ker (λI − T )n = ker (λI − T )n+1. Then, from (iii) of
Theorem 2.7, we have

ker (Ī − T J)n = J ker (λI − T )n = J ker (λI − T )n+1 = ker (λ̄I − T J)n+1.
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The converse follows in a similar way.
(ii) Assume that (λI −T )n(H) = (λI −T )n+1(H) and let y ∈ (λ̄I −T J)n(H).
Then y = (λ̄I − T J)n(x) for some x ∈ H, so by (6) we have

Jy = J(λ̄I − T J)n(x) = (λI − T )nJx ⊆ (λI − T )n(H) = (λI − T )n+1(H).

Hence, there exists z ∈ H such that Jy = (λI − T )n+1(z), from which we
obtain

y = J(Jy) = J(λI − T )n+1(z) = (λ̄I − T J)n+1(Jz) ∈ (λ̄I − T J)n+1(H),

and, consequently, (λ̄I−T J)n(H) ⊆ (λ̄I−T J)n+1(H). The converse inclusion
is true for every operator, so the equality holds. The opposite implication
follows by using a similar method. �

Let iso F denote the set of all isolated points of F ⊆ C. An operator T ∈
L(X) is said to be polaroid, (respectively, a-polaroid), if every λ ∈ iso σ(T )
(respectively, every λ ∈ iso σap(T )) is a pole of the resolvent. If T is complex
symmetric then, since σ(T J) = σ(T ) = σap(T ), see [16, Lemma 4.1], we have
,

T is polaroid ⇔ T isa − polaroid.

Theorem 2.9. Let T ∈ L(H) and let J be a conjugation. Then T is polaroid
if and only if T J is polaroid.

Proof. Suppose that T is polaroid and let λ ∈ iso σ(T J). Then λ̄ ∈ iso σ(T ),
so λ̄ is a pole of the resolvent of T and hence 0 < p(λ̄I −T ) = q(λ̄I −T ) < ∞.
From Corollary 2.8 it then follows that 0 < p(λI −T J) = q(λI −T J) < ∞, so
λ is a pole of the resolvent of T J . Conversely, if T J is polaroid then T = JT JT
is polaroid, by the first part of the proof.
�

Definition 2.10. T ∈ L(X) has property (Q) if H0(λI − T ) is closed for all
λ ∈ C, while T ∈ L(X) is said to have property H(p) if there exist a natural
p := p(λ) such that:

H0(λI − T ) = ker(λI − T )p for all λ ∈ C.

The class of H(p)-operators is very large, it includes every generalized
scalar operator, hyponormal operators, several generalization of hyponormal
operators, and totally paranormal operators on Banach spaces, see [2, §4.3].
Every H(p)-operator is polaroid, see [2, Chapter 4].

Corollary 2.11. Let T ∈ L(H) and J a conjugation. Then T has property
H(p) if and only if T J has property H(p). In particular, if T is complex
symmetric then T has property H(p) if and only if T ∗ does.

Proof. Suppose that T has property H(p) . Then H0(λI −T ) = ker(λI −T )p,
so JH0(λI − T ) = J ker(λI − T )p. By Theorem 2.7 it then follows that
H0(λ̄I − T J) = ker(λ̄I − T J)p, i.e., T J has property H(p). Conversely, if T j

has property H(p) then T = JT JJ has property H(p). The second assertion
is clear. �
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Recall that T ∈ L(X) on a Banach space X has Dunford property (C)
if the analytic spectral subspace XT (F ) is closed for all closed F ⊆ C. Note
that if the quasi-nilpotent part H0(λI − T ) is closed then T has SVEP at λ,
by [2, Theorem 2.79] , so

property (C) ⇒ property (Q) ⇒ SVEP,

and examples of operators which have property (Q) but not property (C) may
be found among convolution operators on group algebras, see [2, Chapter 2]
and [20, Chapter 4]. Since property (C) entails SVEP, if T has property
(C) then XT (F ) = XT (F ) for every closed subset F ⊆ C, in particular
H0(λI − T ) = XT ({λ}) = XT ({λ}). Evidently, from Theorem 2.7, for every
conjugation J we have

T has property (Q) ⇔ T J has property (Q).

Furthermore, fromTheorem 2.5 we also have that

T has property (C) ⇔ T J has property (C).

In the sequel for every subset V ⊆ C we shall denote by V cl the closure of V .
Recall that T ∈ L(X) has property (δ) if X = XT (V cl) + XT (W cl) for

every open cover {V,W} of C. An operator T ∈ L(X) is said to have Bishop’s
property (β) if for every open subset G ⊆ C and every sequence fn : G → H
such that (λI−T )fn(λ) converges uniformly to 0 in norm on compact subsets
of G, then fn converges uniformly to 0 in norm on compact subsets of G.

Property (δ)and property (β), are dual to each other, see [20], in the
sense that T has property (β) (respectively, property (δ)) if and only if T ′

has property (δ) (respectively, property (β)). Recall that T ∈ L(X) is decom-
posable if has both properties (δ) and β).

For a complex symmetric operator T we have, see [15, Theorem 2.1],

T has property (δ) ⇔ T has property (β) ⇔ T is decomposable. (7)

Remark 2.12. The proof of [15, Theorem 2.1] uses the fact that T ∗ has prop-
erty (β) if and only if T has property (δ). There is a certain inaccuracy in [15],
concerning some local spectral properties of the adjoint T ∗. Indeed, many lo-
cal spectral properties claimed in [15] have been established for the dual T ′ of
a Banach space operator, see for instance [20, Theorem 2.5.5], and not for the
adjoint T ∗. Anyway these claims are correct, and in order to show that we
recall the relationship between T ∗ and the dual T ′. By the Frechét-Riesz rep-
resentation theorem there exists a conjugated-linear isometry U : H → H ′,
H ′ the dual of H, that associates to every y ∈ H the linear form defined
fy(x) := 〈x, y〉. Moreover, the dual and the adjoint of T satisfy the equality

(λ̄I − T ∗) = U−1(λI − T ′)U for every λ ∈ C.

Hence

U(λ̄I − T ∗) = (λI − T ′)U and (λ̄I − T ∗)U−1 = U−1(λI − T ′). (8)

Let x ∈ HT ∗(F ), for some closed F ⊆ C. Then there exists an analytic
function f : C → H such that (λI − T ∗)f(λ) = x for all λ ∈ C\F . From (8)
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we know that U(λI − T ∗) = (λ̄I − T ′)U , so

Ux = U(λI − T ∗)f(λ) = (λ̄I − T ′)U f(λ) for all λ ∈ C\F.

The function g(λ̄) := U f(λ) for λ̄ ∈ C\F̄ is analytic, so Ux ∈ HT ′(F̄ ).
This shows that UHT ∗(F ) ⊆ UHT ′(F̄ ). Analogously, it can be shown that
HT ′(F ) ⊆ HT ′(F̄ ) for every closed set F ⊆ C, so HT ′(F ) = HT ′(F̄ ).

Now, if T ∗ has property (δ) then H = HT ∗(V cl) + HT ∗(W cl) for every
cover {V,W} of C, so

H = UH = UHT ∗(V cl) + UHT ∗(W cl) = HT ′(V̄ cl) + HT ′(W̄ cl),

and hence, T ′ has property (δ). An analogous argument shows that if T ′ has
property (δ) then T ∗ has property (δ), so we have.

T ′ has property (δ) ⇔ T ∗ has property (δ), (9)

By duality, T ′ has property (β) ⇔ T = (T ∗)∗ has property (δ), and hence,
by (9), if and only if (T ∗)′ has property (δ), from which we conclude that

T ′ has property (β) ⇔ T ∗ has property (β).

Consequently,

T ′ is decomposable ⇔ T ∗ is decomposable.

�

Theorem 2.13. Let T ∈ L(H) and J a conjugation on H. Then T has prop-
erty (δ) (respectively, property (β), decomposable) if and only if T J has prop-
erty (δ) (respectively, property (β), decomposable). In particular, a complex
symmetric operator T has property (δ) (respectively, property (β), decompos-
able) if and only if T ∗ does.

Proof. Suppose that T has property (δ) and let {V,W} be a cover of C. Then
{V ,W} is an open cover of C, and by Theorem 2.5,

H = JH = JHT (V
cl

) + JHT (W
cl
) = HTJ (V cl) + HTJ (W cl),

so T J has property (δ). In the same way, property (δ) for T J entails that
JT JJ = T has property (δ) .

Suppose that T has property (β). Then T ′ and hence T ∗ has property
(δ), so T ∗J = (T J)∗ has property (δ), by the first part of the proof. Con-
sequently, T J has property (β). The reserve is clear, if T J has property (β)
then T = JT JJ has property (β) .

The equivalence of decomposability for T and T J is clear, since the
decomposability is the union of the properties (β) and (δ). �

The result concerning property (β) in Theorem 2.13 has been observed
in [17], see the claim II in the proof of Theorem 3.7. The equivalence of
property (β) for symmetric operators for T and T ∗ has been established in
[15], see the proof of Theorem 2.1. Our proof is more simple.

Lemma 2.14. Let T ∈ L(X), X a Banach space, and λ ∈ ρ(T ). Then λ(λI −
T )−1x → x for every x ∈ X as |λ| → +∞.
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Proof. Fix x ∈ X and define f(λ) := (λI − T )−1x : ρ(T ) → X. It is known
that f(λ) → 0 when |λ| → +∞. We have

λ(λI − T )
−1

x − x = λ(λI − T )
−1

x − (λI − T )(λI − T )
−1

x = T (λI − T )
−1

x for λ ∈ ρ(T ),

hence λ(λI − T )−1x − x → 0, so λ(λI − T )−1x → x as |λ| → +∞. �

Theorem 2.15. Let T ∈ L(H), then H0(T ∗) ⊆ K(T )⊥.

Proof. Let x ∈ H0(T ∗) = HT ∗({0}) and fix an arbitrary y ∈ K(T ). We have
to show that 〈x, y〉 = 0. As already observed K(T ) = {x : 0 ∈ ρT (x)}, so
there exist two analytic functions f : C\{0} → H and g : D0 → H, D0 an
open disc centered at 0, such that

(λ̄I − T �)f(λ̄) = x, λ ∈ C\{0}, and (λI − T )g(λ) = y, λ ∈ D0.

Both the functions f(λ) and g(λ are defined in D0\{0} and for μ ∈ D0\{0}
we have

〈f(μ̄), y〉 = 〈f(μ̄), (μI − T )g(μ)〉 = 〈(μ̄I − T ∗)f(μ̄), g(μ)〉 = 〈x, g(μ)〉.
Define

h(μ) :=
{ 〈f(μ̄), y〉 if μ �= D0,

〈x, g(μ)〉 if μ ∈ D0,

The function h(μ) is well-defined and is analytic on C. Since f( μ̄) = (μ̄I −
T ∗)−1x for all μ̄ ∈ ρ(T ∗), see [2, Remark 2.11] and f(μ̄) → 0 for |μ̄| → +∞,
then h(μ) → 0 as |μ| → +∞, so, by the classical Liouville theorem, h ≡ 0 on
C. From Lemma 2.14 we have also have μ̄(μ̄I − T ∗)−1x = −x, as |μ| → +∞,
μ̄ ∈ ρ(T ∗), hence

〈x, y〉 = lim
|μ|→+∞

〈μ̄(μ̄I − T ∗)−1x, y〉 = lim
|μ|→+∞

〈μ̄f(μ̄), y〉 = μh(μ) = 0,

so x ∈ K(T )⊥, as desired. �

Next we want to show that if T is decomposable then H0(T ∗) = K(T )⊥.
To do this we need some preliminary results. Suppose that M is a closed T -
invariant subspace of a Banach space X and denote by T/M : X/M → X/M
the canonical quotient mapping defined on the quotient X/M by (T/M)(x+
M) := Tx + M .

For an open disc D of C centered at 0, let D denote its closure.

Lemma 2.16. Suppose that T ∈ L(X), X a Banach space, is decomposable.
If M := XT (C\D) then σ(T/M) is contained in D.

Proof. This follows as a particular case of Theorem 1.2.23, part (b), of [20],
by taking F = C\D. �

If Y is a closed T -invariant subspace by T |Y we denote the restriction
of T to Y .

Lemma 2.17. Suppose that T ∈ L(H) is decomposable. If D is an open disc
centered at 0 then HT (C\D)⊥ ⊆ HT ∗(D).
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Proof. Let M := XT (C\D). Recall that M is a closed invariant subspace of
T , since a decomposable operator has property (C), while M⊥ is a closed
subspace invariant under T ∗. We show first that

σ(T ∗|M) ⊆ D (10)

If S : M⊥ → H/M is defined by S(x) = x + M for every x ∈ M⊥ , then S
is bijective and an isometry. It is easily seen that S(T ∗|M⊥) = (T/M)∗S, so
T ∗|M⊥ and (T/M)∗ are similar. Therefore,

σ(T ∗|M⊥) = σ(T/M)∗ = σ(T/M).

By Lemma 2.16 then

σ(T ∗|M⊥) = σ(T ∗|XT (C\D)⊥) ⊆ D,

since D is the closure of D = D. Thus, the inclusion (10) is proved. From part
(e) of [20, Proposition 1.2.16] we then obtain HT (C\D)⊥

= M⊥ ⊆ HT ∗(D). �
Theorem 2.18. Let T ∈ L(H) be decomposable then H0(T ∗) = K(T )⊥ and
H0(T ) = K(T ∗)⊥ .

Proof. To show the equality H0(T ∗) = K(T )⊥, let {Dα}α denote the set of
all closed discs of C centered at 0. Since T has SVEP we have

H0(T ∗) = HT ∗({0}) = HT ∗({0}) =
⋂

α

HT ∗(Dα),

see [2, Theorem 2.13, part (iv)]. To show the equality H0(T ∗) = K(T )⊥ we
need to prove, by Theorem 2.15, the inclusion K(T )⊥ ⊆ H0(T ∗), and for
this it suffices to prove that K(T )⊥ ⊆ HT ∗(D), where D is any closed disc
centered at 0. Evidently,

HT (C\D) ⊆ HT (C\{0}) = K(T ),

so K(T )⊥ ⊆ HT (C\D)⊥ and HT (C\D)⊥ ⊆ HT ∗(D), by Lemma 2.16, so the
proof of the first equality is complete. The second equality is clear, since T ′,
and hence T ∗, is decomposable, by Remark 2.12, we have

H0(T ) = H0((T ∗)∗) = K(T ∗)⊥.

�
Remark 2.19. It should be noted that the identity K(T ) = H0(T ∗)⊥ in gen-
eral does not hold even if T is decomposable. For instance, if T ∈ L(H)
is Riesz operator which has infinite spectrum then T is decomposable, but
K(T ) is not closed, since in this case σ(T ) would be finite, see [21]. Hence
K(T ) �= H0(T ∗)⊥, since H0(T ∗)⊥ is closed.

Corollary 2.20. Suppose that T ∈ L(H) has property (δ). If T is J-complex
symmetric, then H0(T ) = JK(T )⊥. If K(T ) is closed then K(T ) = JH0(T )⊥.

Proof. Observe first that for every subset A ⊆ H we have JA⊥ = (JA)⊥.
Indeed, if z ∈ JA⊥ then z = Jx where 〈x, a〉 = 0 for every a ∈ A. Thus
Jz = x and hence

〈z, Ja〉 = 〈J2z, Ja〉 = 〈a, Jz〉 = 〈a, x〉 = 〈x, a〉 = 0



   89 Page 12 of 20 P. Aiena et al. MJOM

so z ∈ (JA)⊥. Conversely, if y ∈ (JA)⊥ then 〈y, Ja〉 = 0 for every a ∈ A, so

0 = 〈y, Ja〉 = 〈J2y, Ja〉 = 〈a, Jy〉,
hence 〈Jy, a〉 = 〈a, Jy〉 = 0. Thus, Jy ∈ A⊥ and hence J2y = y ∈ JA⊥.

Now, T is decomposable, by Theorem 2.13, so, by Theorem 2.18, H0(T ) =
K(T ∗)⊥. By Theorem 2.7 we have K(T ∗) = JK(T ), hence H0(T ) =
[JK(T )]⊥ = JK(T )⊥. The second equality is clear: K(T ) = H0(T ∗)⊥ =
[JH0(T )]⊥ = JH0(T )⊥. �

It is known that for every operator on a Banach space 0 ∈ isoσ(T ) if
and only if both H0(T ) and K(T ) are closed and H = K(T )⊕H0(T ), see [2,
Theorem 2.46]. Evidently, if T is decomposable then T has property (Q), so
H0(T ) is closed. From Corollary 2.20 we readily obtain:

Corollary 2.21. Suppose that T ∈ L(H) is J-complex symmetric and has
property (δ). Then 0 ∈ isoσ(T ) if and only if K(T ) is closed and H =
K(T )⊕JK(T )⊥, or if and only if K(T ) is closed and H = H0(T )⊕JH0(T )⊥.

3. Weyl Type Theorems for Operator Matrices

In this section we give some results concerning Weyl type theorems for com-
plex symmetric operators. According [8] an operator T ∈ L(X) is said to
be hereditarily polaroid if any restriction on a closed invariant subspace is
polaroid. Since the restriction T |M on a closed invariant subspace M of an
operator T which has property H(p) has also property H(p), it then follows
that every H(p)-operator is hereditarily polaroid.

Let H(σ(T )) denote the set of all analytic functions defined on an open
disc which contains the spectrum and let f(T ) be defined by means of the
classical functional calculus.

Theorem 3.1. Le T ∈ L(H) be complex symmetric. If T has property (δ),
then both f(T ) and f(T ∗) have property H(p) for every f ∈ H(σ(T )),

Proof. A remarkable result of [18] shows that if T is J-complex symmetric
and T has property (δ) then there exists a scalar extension of T , hence T
is subscalar. By Theorem 4.40 of [2] it then follows that T has the property
H(p). A result due to Oudghiri shows that if T has the property H(p), then
f(T ) has property H(p) for everyf ∈ H(σ(T )), see [22]. Since property (δ)
from T is transferred to T ∗ = T J , the same argument above shows that f(T ∗)
has property H(p) for every f ∈ H(σ(T )). �

Denote by σw(T ) and σuw(T ) the Weyl and upper semi-Weyl spectra, re-
spectively, (see [2] for definitions). The Weyl type theorems are defined as fol-
lows: an operator T ∈ L(X) is said to verify Weyl’s theorem if σ(T )\σw(T ) =
π00(T ), where π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞}. The operator
T ∈ L(X) is said to verify a-Weyl’s theorem if σap(T )\σuw(T ) = πa

00(T ),
where πa

00(T ) := {λ ∈ iso σap(T ) : 0 < α(λI − T ) < ∞}, while T ∈ L(X)
is said to verify property (ω) if σap(T )\σuw(T ) = π00(T ). Either a-Weyl’s



MJOM Local Spectral Properties Under Conjugations Page 13 of 20    89 

theorem and property (w) entails Weyl’ s theorem, see [2, Chapter 6]. In [15]
it has been proved for a complex symmetric operator that

T satisfies Weyl’s theorem ⇔ T ∗ does,

and in [17], see the Claim in the proof of Theorem 3.24, it is shown that all
Weyl type theorems are equivalent for a complex symmetric operator T . The
following result improves that of [16, Theorem 3.7].

Recall that an operator T ∈ L(H) is said to be algebraic if there exists a
polynomial h such that h(T ) = 0. The SVEP is preserved under commuting
algebraic perturbations, see [5], and is also preserved under the functional
calculus, see [2, Chapter 2], i.e., if T has SVEP then f(T ) has SVEP for
every f ∈ H(σ(T )). Moreover, if T is polaroid then f(T ) is polaroid for every
f ∈ H(σ(T )), see [1].

Theorem 3.2. Let T ∈ L(H) be complex symmetric and suppose that T has
property (δ), K ∈ L(H) an algebraic operator which commutes with T . Then

(i) both f(T + K) and f(T ∗ + K∗) satisfy all Weyl type theorems for every
f ∈ H(σ(T + K)).

(ii) f(T ) + K and f(T ∗) + K∗ satisfy all Weyl type theorems for every
f ∈ H(σ(T )).

In particular, T + K and T ∗ + K∗ satisfy all Weyl type theorems.

Proof. (i) We already have observed that T is subscalar and hence hereditar-
ily polaroid. Since TK = KT this implies, see [2, Theorem 4.32], that T +K
is polaroid, so f(T + K) is polaroid. Furthermore since T has SVEP, then
T +K has SVEP, and hence f(T +K) has SVEP for every f ∈ H(σ(T +K)).
Finally, from [2, Theorem 6.13] we conclude that f(T + K) satisfies all Weyl
type theorems. Since T is complex symmetric, the SVEP for T entails the
SVEP for T ∗, and hence the SVEP for f(T ∗ + K∗). Moreover, as above,
f(T ∗ + K∗) is polaroid, so, f(T ∗ + K∗) satisfy all Weyl type theorems.

(ii) It follows by using similar arguments, �
We now give some results concerning Weyl type theorems for operator

matrices
(

A B
C D

)
, complementary to those given in [15] and [17].

Lemma 3.3. Let A,B,C,D ∈ L(H) and T :=
(

A B
0 D

)
or S :=

(
A 0
C D

)
. If

both A and D have property (β) then T has property (β). If both A and D
have property (δ) then S has property (δ). In particular, this holds if D = AJ ,
for every conjugation J on H, and A has property (β) (respectively, property
(δ)).

Proof. The assertion concerning property (β) for T has been proved in [17],
see Claim 1 in the proof of Theorem 3.7. If both A and D have property (δ),

then A∗ and D∗ have property (β), so, S∗ =
(

A∗ C∗

0 D∗

)
has property (β), by

the first assertion, and hence S has property (δ). The last assertion is clear,
by Theorem 2.13. �
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Define, for A,B ∈ L(H) and for a conjugation J on H, the operator
matrices

T1 :=
(

A B
0 AJ

)
, T2 :=

(
A B
0 A

)
, T3 :=

(
A B
0 B

)
, T4 :=

(
A B
0 BJ

)
.

Lemma 3.4. Suppose that A and B are complex symmetric. If A has SVEP
then T1 and T2 have SVEP. If both A and B have SVEP, then T3 and T4

have SVEP.

Proof. An upper triangular operator matrix has SVEP if all the operators
on the main diagonal have SVEP. �

In the sequel, for any conjugation J on H we set

J :=
(

0 J
J 0

)
.

Evidently, J is a conjugation on H ⊕ H.

Theorem 3.5. Let A,B ∈ L(H) be J-complex symmetric and let Ti, i =
1, 2, 3, 4 be the operator matrices defined above.

(i) If A is decomposable then all Weyl type theorems hold for f(Ti) and
f(T∗

i ), i = 1, 2, for every f ∈ H(σ(Ti)).
(ii) If A and B are decomposable then all Weyl type theorems hold for f(Ti)

and f(Ti)∗, i = 3, 4, for every f ∈ H(σ(Ti)).
(iii) If AJ = JA then T1 = T2 and all Weyl type theorems hold for f(T1)

and f(T1)∗, for every f ∈ H(σ(T1)).

Proof. Observe first that all Ti are J-complex symmetric. For instance, AJ =

A∗, so T∗
1 =

(
A� 0
B∗ A∗

)
, and it is easy to check that T1J = JT∗

1. Analogously,

T2, T3 and T4 are J-complex symmetric.
(i) If A is decomposable then A has property (β), so, by Lemma 3.3, T1

has property (β), or equivalently has property (δ), hence Theorem 3.2
applies. The same reasoning may be used for T2, since AJ = A∗ is also
decomposable, and hence, by Lemma 3.3, T2 has property (β).

(ii) If A and B are decomposable then Ti, i = 1, 2 have property (β), and
hence we are in the same situation of part (i).

(iii) The condition AJ = JA entails, by (2), that A is selfadjoint, so A is
decomposable. �

We now consider the case where D is the transpose A∗J = JA∗J . Set

T :=
(

A B
0 JA∗J

)
and S :=

(
A 0
C JA∗J

)
.

Theorem 3.6. Let A,B,C ∈ L(H),
(i) If A is decomposable, and B is J-complex symmetric, then all Weyl

type theorem hold for f(T) and f(T∗) for every f ∈ H(σ(T)).
(ii) If A is decomposable, and C is J-complex symmetric, then all Weyl

type theorem hold for f(S) and f(S)∗ for every f ∈ H(σ(S)).
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Proof. (i) The adjoint of T is the operator T∗ :=
(

A∗ 0
B∗ JAJ

)
and it is easily

seen that TJ = JT∗, so T is J-complex symmetric. Since A is decomposable
then A∗ is decomposable, so, by Theorem 2.13, also JA∗J is decomposable.
In particular, A and JA∗J have property (β). and hence, by Theorem 3.3, T
has property (β). Being T complex symmetric then, by Theorem 2.13, T has
property (δ). By Theorem 3.2, we then conclude that Weyl type theorems
hold for f(T) and f(T)∗ for all f ∈ H(σ(T)).

(ii) We have S∗ =
(

A∗ C∗

0 JAJ

)
, and since C is J-complex symmetric we

easily have SJ = JS∗, hence S is J-complex symmetric. As above JA∗J is
decomposable and this implies that JAJ = (JA∗J)∗ is decomposable. Since
decomposability entails property (δ), by Lemma 3.3 then S has property
(δ) and hence, by Theorem 3.2, both f(S) and f(S∗) satisfy all Weyl type
theorems for all f ∈ H(σ(S)). �

It should be noted that in Theorem 3.6 the assumption that B or C is
J-complex symmetric is not needed in order to get the decomposability of T,
see also [17, Theorem 3.7].

Example 3.7. Let H2(Γ) denote the classical Hardy space, where Γ denote
the unit circle, and H∞(Γ) = L∞(Γ) ∩ H2(Γ). For φ ∈ L∞(Γ), let Tφ be the
Toeplitz operator with symbol φ, defined by

Tφf := P (φf) for all f ∈ H2(Γ),

where P is the orthogonal projection of L2(Γ) onto H2(Γ). Define Mφ :
L2(Γ) → L2(Γ) by Mφf = φf for all f ∈ L2(Γ), where φf is the point-wise
product. It is known that φ ∈ H∞(Γ), then Tφ is subnormal, since is the
restriction of the normal operator Mφ to H2(Γ). Every subnormal operator
is hyponormal, see Conway [6, Proposition 2.4.2], and hence Tφ has property
H(p), see [2, Chapter 4]. We also have that, for every φ ∈ H∞(T), Tφ has
property (β), see [20, Theorem2.4.4]. In [3] it is shown that if φ ∈ H∞(Γ)
then f(Tφ)∗ satisfies Weyl type theorems for every f ∈ H(σ(Tφ)).

In general, a Toeplitz operator is not complex symmetric and in [19]
some conditions are given in order a Toeplitz operator to be J-complex sym-
metric with respect a suitable conjugation J . Let Tψ, with ψ ∈ L∞(Γ) be
J-complex symmetric, and consider the matrix operator

S :=
(

Tφ Tψ

0 JTφ̄J

)
, where φ ∈ H∞(Γ).

As observed above the Toeplitz operator Tφ̄ has property (β), and hence
also JTφ̄J has property (β). By Theorem 3.3 then S has property (β). Since
Tφ̄ = T ∗

φ , the argument in the proof of Theorem 3.6, shows that S is J-
complex symmetric. Consequently, from the equivalences (7), we deduce that
S has property (δ) and hence has property H(p). From that we conclude that
S satisfies all Weyl type theorems.

Example 3.8. Let us consider on the classical Hardy space H2(D) the com-
position operator Tγ := f ◦ γ, where γ : D → D is an automorphism. The
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automorphism γ is called parabolic if

γ(z) =
az + b̄

bz + ā
for all z ∈ D

where a, b ∈ C satisfy |a|2−|b|2 = 1 and Im a = |b|, while γ is said to be elliptic
if Im a > |b|. By [23] we know that parabolic or elliptic composition operators
are generalized scalars, hence decomposable and have property H(p). Define
(Jf)(z). = f(z̄). Then J is a conjugation on H2(D), and the only composition
operators J-complex symmetric are normal operators, see Remark 3.4 of [17].
As observed in [17, Corollary 3.8], if γ is either parabolic or elliptic and φ is

an analytic selfmap of D then T :=
(

Tφ Tψ

0 JTγ
∗J

)
is decomposable. Suppose

now that Tψ is J-complex symmetric, i.e. Tψ is normal. By Theorem 3.6 then
T is J-complex symmetric and f(T) satisfies all Weyl type theorems for every
f ∈ H(σ(T)).

Theorem 3.9. Suppose that T ∈ L(H ⊕ H) is the main diagonal matrix

T :=
(

A 0
0 B

)
= A ⊕ B. Then T has property (C) if and only if both A,B

have property (C). Analogous statements hold for property (Q) property (δ),
property (β). Moreover, if A,B are H(p)-operators then T is a H(p)-operator.

Proof. Set X := H ⊕ H and F be any closed subset of C. If x ∈ HA(F )
and y ∈ HB(F ), then there exist two analytic functions f1, f2 : C\F → H
such that (λI − A)f1(λ) = x and (λI − B)f2(λ) = y. It is immediate to
see thay (λI − T)(f1(λ) ⊕ f2(λ)) = x ⊕ y, so x ⊕ y ∈ HT(F ). Therefore,
HA(F ) ⊕ HB(F ) ⊆ XT(F ). The opposite inclusion may be proved by using
a similar argument, hence

XT(F ) = HA(F ) ⊕ HB(F ) for every closed subset of C. (11)

Suppose that A,B have property (C), so both HA(F ) and HB(F ) are closed.
Consequently, XT(F ) is closed, and hence T has property (C). From the
equality (11) we deduce also the converse.

By considering the case where F := {λ} we deduce that if both A,B ∈
L(H) have property (Q) if and only if T has property (Q).

Suppose that A and B, have property (δ). Then H = HA(V cl) +
HA(W cl) and H = HB(V cl) + HB(W cl) for every open cover {V,W} of
C. From this we obtain

X = H ⊕ H = [HA(V cl) + HA(W cl)] ⊕ HB(V cl) + HB(W cl)

= [HA(V cl) ⊕ HB(V cl)] + [HA(W cl) ⊕ HB(W cl)]

= HT(V cl) + HT(V cl),

hence T has property (δ) and the converse is also true, i.e., property (δ) for
T entails property (δ) for A and B.
Suppose that A and B have property (β). By duality then A∗ and B∗ have
property (δ), so, A∗ ⊕ B∗ = (A ⊕ B)∗ has property (δ) and hence A ⊕ B has
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property (β).
Finally suppose that A and B are H(p)-operators. If λ ∈ C then

H0(λI − A ⊕ B) = H0(λI − A) ⊕ H0(λI − B) = ker(λI − A)p ⊕ ker(λI − B)q

for some p, q ∈ N. If ν := max{p, q} then

H0(λI − A ⊕ B) = ker(λI − A)ν ⊕ ker(λI − B)ν = ker(λI − A ⊕ B)ν ,

thus T = A⊕B has property H(p). It is easy to check that also the converse
holds. �
Corollary 3.10. Let A,C ∈ L(H) and suppose that C is J- complex sym-

metric. If T :=
(

A 0
C A

)
, then f(T) satisfies all Weyl type theorems for all

f ∈ H(σ(T)).

Proof. We have T∗ :=
(

A∗ C∗

0 A∗

)
and TJ = JT∗ hence T is J-complex

symmetric. If A is decomposable then T is decomposable, and in particular
has property (δ), so Theorem 3.2 applies. �

The case of the operator matrices having form T :=
(

0 A
B 0

)
is little

more complicated. Recall first that if X is a Banach space and f : U → C an
analytic function defined on a open set U ⊆ C containing the spectrum of T .
Then

Xf(T )(F ) = XT (f−1(F )) for all closed sets F ⊆ C, (12)
see [20, Theorem 3.3.6].

Theorem 3.11. Let A,B ∈ L(X) be such that AB = BA and T :=
(

0 A
B 0

)
.

Then we have:
(i) AB has SVEP if and only if T has SVEP.
(ii) AB has property (C) if and only if T has property (C).
(iii) AB has property (δ) if and only if T has property (δ).
(iv) AB has property (β) if and only if T has property (β).
(v) AB is a H(p) operator if and only if T is a H(p) operator.

Proof. (i) We have T2 == AB ⊕ AB. If AB has SVEP then T2 has SVEP,
see [2, Theorem 2.15] and this implies, by [2, Corollary 2.89], that T has
SVEP. Conversely, if T has SVEP then T2 = AB ⊕ AB has SVEP, always
by [2, Corollary 2.89]. This implies that AB has SVEP, again by [2, Theorem
2.15].

(ii) According Theorem 3.9, we know that T2 = AB ⊕AB has property
(C). Let F be any closed subset of C and let G be the set {z2 : z ∈ F}. Clearly,
G is closed, since the function f(λ) = λ2 is continuous. If X := H ⊕ H, from
the equality (12) we have

XT2(G) = XT(f−1(G)) = XT(F ).

Since, by [20, Theorem 3.3.9], T2 has property (C) then XT2(G) is closed, and
hence the glocal subspace XT(F ) is closed, so T has property (C). Conversely,
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if T has property (C), then T2 = AB ⊕ AB has property (C), see [20,
Theorem 3.3.6], and this easily implies that AB has property (C), since XT2 =
HT (AB) ⊕ HT (AB).

(iii) T2 = AB ⊕ AB has property (δ), byTheorem 3.9. Thus T has
property (δ), by [20, Theorem 3.3.9]. Conversely, if T has property (δ), then
T2, has property (δ), always by [20, Theorem 3.3.9], and hence AB has the
same property.

(iv) If AB has property (β) then its dual (AB)′ has property (δ) and
hence (AB)∗ = B∗A∗ has property (δ). From part (iii) it the follows that

T∗ :=
(

0 B∗

A∗ 0

)
has property (δ) and hence T has property (β). The reverse

follows similarly.
(v) From T2 = AB ⊕ AB we have H0(λI − T2) = H0(λI − AB) ⊕

H0(λI −AB). If AB is a H(p)-operator then H0(λI −AB) = ker(λI −AB)p

for some p ∈ N, so

H0(λI − T2) = ker(λI − AB)p ⊕ ker(λI − AB)p = ker(λI − T2)p,

hence T2 has property H(p). In [22] it is shown that an operator T has
property H(p) if and only if there exists an analytic function f on a disc
containing the spectrum such that f(T ) has property H(p). This implies
that also T has property H(p). The converse follows in a similar way. �

Corollary 3.12. Let A,B ∈ L(H) be J-complex symmetric and suppose that

AB = BA. If T :=
(

0 A
B 0

)
, then T is complex symmetric. If AB has

property (δ) then both T and T∗ are decomposable and H(p). Furthermore,
all Weyl type theorems holds for f(T) for every f ∈ H(σ(T)).

Proof. J is a conjugation for T and TJ = JT∗, so T is J-complex symmetric.
If AB has property (δ) then T has property (δ), by Theorem 3.11, and hence,
by Theorem 3.2, T is decomposable. Furthermore, Weyl type theorems holds
for f(T) for every f ∈ H(σ(T). �

Example 3.13. Let Tφ and Tψ be two Toeplitz operators, and consider the

matrix operator S :=
(

0 Tφ

Tψ 0

)
, where φ, ψ ∈ H∞(Γ). We have TφTψ = Tφψ,

see [7, Proposition 7.5], and since φψ ∈ H∞(Γ) then Tφψ is subnormal and
hence, as observed in Example 3.7, has property (β). Obviously, Tφ and Tψ

commutes. By Theorem 3.11 then S has property (β). Suppose now that Tφ

and Tψ are complex symmetric with respect to the same conjugation J . Then
S is J-complex symmetric, so property (β) for S is equivalent to property (δ).
By Theorem 3.2, S satisfies all Weyl type theorems. �

Example 3.14. If g ∈ H2(D), let Tg denote the multiplication analytic Toeplitz

operator by g. If g, h ∈ H2(D), consider the matrix T :=
(

0 Tg

Th 0

)
. Both the

operators Tg, Th have property (β), see [20, Example 1.6.11], TgTh = ThTg

and also TgTh = Tgh has property (β). By Theorem 3.11 then T has property
(β). Observe that every multiplication analytic Toeplitz operator Tg cannot
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have property (δ), see again [20, Example 1.6.11], hence Tg cannot be complex
symmetric, as already observed in Corollary 2.4. �

Acknowledgements

The authors wish to thank the referee for a careful reading and comments
for the original draft.

Funding Open access funding provided by Universitá degli Studi di Palermo
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