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SIGN-PRESERVING SOLUTIONS FOR A CLASS OF
ASYMPTOTICALLY LINEAR SYSTEMS OF SECOND-ORDER

ORDINARY DIFFERENTIAL EQUATIONS

Francesca Dalbono

Abstract. We study multiplicity of solutions to an asymptotically linear
Dirichlet problem associated with a planar system of second order ordinary
differential equations. The existence of two sign-preserving component-
wise solutions is guaranteed when the Morse indexes of the linearizations
at zero and at infinity do not coincide, and one of the asymptotic problems
has zero-index. The proof is developed in the framework of topological and
shooting methods and it is based on a detailed analysis and characterization
of the phase angles in a two-dimensional setting.

1. Introduction

This paper is devoted to the study of existence of a pair of sign-preserving
component-wise solutions to the planar Dirichlet problem

(1.1)
{

u′′(t) +A(t, u(t))u(t) = 0, t ∈ [0, π],

u(0) = u(π) = 0,

where A : [0, π] × R2 → GLs(R2) is a continuous function satisfying asymp-
totically linear conditions at the origin and at infinity, and GLs(R2) denotes
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the group of real symmetric matrices of order 2. In particular, there exist two
continuous functions Ai(·) : [0, π] → GLs(R2), i ∈ {0,∞}, such that

lim
|x|→0

A(t, x) = A0(t) uniformly in t ∈ [0, π],(1.2)

lim
|x|→∞

A(t, x) = A∞(t) uniformly in t ∈ [0, π].(1.3)

We also assume uniqueness of solutions of Cauchy problems associated with
the system

(1.4) u′′(t) +A(t, u(t))u(t) = 0.

Multiplicity of sign-preserving solutions occurs when the nonlinearity crosses
the first eigenvalue, and a sign-preserving condition on the non-diagonal entries
of the nonlinearity A(t, x) is imposed. As expected, the existence of one positive
and one negative solution is guaranteed in the cooperative setting, while the
existence of two solutions with opposite-sign components is ensured when the
non-diagonal entries are negative. Our result is stated in terms of the Morse
indexes. Denoting by i(A0) and i(A∞) the Morse indexes associated with the
linearizations of problem (1.4) at zero and infinity, respectively, multiplicity is
attained when only one of the indexes is non-zero.

This paper represents a first step in the direction of studying multiplicity
of solutions to asymptotically linear planar Dirichlet systems, in absence of a
Hamiltonian structure and in absence of symmetric assumptions on the space
variable, via phase angles and conjugate points theory. The ultimate goal is
considerably more ambitious. Instead of focusing on pairs of sign-preserving
solutions, we would hope to be able to determinate at least 2|i(A0) − i(A∞)|
nontrivial solutions of problem (1.1), under suitable extra assumptions involving
the sign of the non-diagonal entries of the matrix A(t, x). Our aim consists also
in characterizing the solutions by their nodal properties. This paper should be
considered as a first step in this program.

We emphasize that, in the scalar setting, no extra hypotheses beyond the
asymptotically linear assumptions (1.2)-(1.3) and a nondegenerancy condition
are needed to ensure the existence of 2|i(A0) − i(A∞)| solutions for problem
(1.1) (cf., among others, [7, 17, 52] and reference therein; see also [48] and [30]
dealing with first order planar periodic Hamiltonian systems).

On the contrary, in the higher dimensional situation additional assumptions
(such as convexity, symmetry in the space variable, sign conditions on all the
entries of the matrix A(t, x), or restriction to an autonomous context) have been
imposed in the literature in order to prove that |i(A0)−i(A∞)| represents a lower
bound for the number of non-trivial solutions of (1.1). Actually, in the vecto-
rial case, the presence of a gap between the Morse indexes of the asymptotical
problems can just ensure the existence of at most two solutions.
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In this context, we wish to mention the pioneering works [1] and [12], dealing
with periodic solutions of asymptotically linear Hamiltonian systems in R2N . In
[1] the authors show the existence of at least one periodic solution assuming that
the Maslov-type indexes of the autonomous linearizations at zero and at infinity,
are different. The presence of a second periodic solution under a nondegenerancy
condition has been proved in [12] in a non autonomous setting. Starting with the
innovative papers [1] and [12], a vast literature has arisen. Existence of one or
two solutions for asymptotically linear elliptic systems has been extensively in-
vestigated. Among the various possible references regarding two-point boundary
value problems, we wish to quote the contributions of [25] dealing with second
order Hamiltonian systems, [24, 41, 44, 45] related to first order Hamiltonian
systems, [18, 27, 28, 46] focusing on planar cooperative gradient partial differ-
ential systems, and [15, 34, 36, 38, 43, 55] concentrating on variational planar
elliptic systems of PDEs. Very recent contributions can be found in the papers
[32, 33], which, according to a suitable choice of the index, are able to guaran-
tee existence of nontrivial solutions to asymptotically linear systems, without
imposing the symmetry condition on the asymptotic matrices A0(t) and A∞(t).

Inspired by the classical papers [10] and [20], dealing with suitable classes
of elliptic systems, an extensive literature has been developed on the study of
positivity of solutions for the Dirichlet problem associated with planar second
order partial differential systems, under the crucial assumption that the nonlin-
earity crosses the first eigenvalue. In this direction, we wish to quote [22], [40]
and [58] providing the existence of a positive solution for non-variational planar
elliptic systems under some additional structure conditions, in the absence of
the symmetry assumption on the matrices A0(t) and A∞(t). Note that in [40]
a positive and a negative solution have been found simultaneously. Positivity
of solutions for a planar system of ODEs has been investigated in [21] under a
non-negativity assumption on both the components of the nonlinear vector. Of
particular relevance are the papers [56, 57] by Sirakov and [9] by Chang, which
prove the existence of a positive solution for elliptic systems of n second-order
partial differential equations via first eigenvalues, adopting a fixed-point theorem
and sub-supersolutions methods, respectively. It is worth noting that in [56, 57]
the main assumptions involve either the first eigenvalues of the scalar differential
operators of each equation of the system or the largest and the smallest among
the first eigenvalues of the irreducible blocks of the vectorial differential oper-
ator of the system in a cooperative setting. We also emphasize that in [9] the
nonlinearity is assumed to be quasi-monotonic, and each asymptotic matrix Ai,
i ∈ {0,∞}, is cooperative, fully coupled and satisfies a suitable hypothesis which
somehow involves the sign of one of its eigenvalues.
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As mentioned at the beginning of the Introduction, as many as |i(A0)−i(A∞)|
solutions can be attained under suitable additional conditions. The most com-
monly considered extra-assumptions are symmetric conditions in the space vari-
able on the potential for both first order and second order Hamiltonian systems
(as far as two-point boundary value problems are concerned, see, among others,
[44, 53, 54] and [23], respectively). In the PDE’s setting, symmetric assumptions
lead to multiple solutions of Dirichlet problems associated with planar second
order systems (cf., among others, [42, 50, 59]).

No symmetry conditions have been required in the works [5, 8, 16, 47], which,
by means of topological and shooting methods, provide multiplicity results for
asymptotically linear, not necessarily Hamiltonian systems. In particular, the
paper [8] adopts the notions of generalized polar coordinates associated with
linear systems to get multiple solutions for a class of Dirichlet problems in RN

satisfying some diagonal and non-emptiness assumptions, while the paper [16]
focuses on the planar problem (1.1) and, taking into account the bidimensional
structure of the system, obtains multiplicity results when all the entries of the
nonlinearity A(t, x) preserve their sign, and both the diagonal entries are negative
(which implies that A cannot be positive definite).

Inspired by [8], we use the concepts of generalized polar coordinates and their
relation with the Malsov index in order to get multiple solutions to (1.1) in a
no diagonal context. To our knowledge, very few studies have explored the fea-
ture of generalized polar coordinates and, especially, their role to solve nonlinear
boundary value problems for second order elliptic systems. As observed in [4]
and recalled in Remark 2.28 below, the generalized phase angles associated with
an uncopuled linear system differ from the “natural” angular functions obtained
as the angular coordinates of the solutions of each uncoupled equation in the
phase plane. In order to gain a more in-depth undestanding of the generalized
polar coordinates, we carry out a detailed study of the phase angles associated
with the linear problems through basic tools of phase plane analysis. Taking
advantage of the bidimensional setting, we determine an explicit expression of
the two phase angles in terms of suitable auxiliary functions (cf. Proposition
2.22 and Definitions (2.21)-(2.23) below). This intrinsic characterization of the
phase angles allows us to visualize their reciprocal motions in the phase plane
and interpret their behaviour. Moreover, taking into account the relation be-
tween polar coordinates and the auxiliary functions, we show that the associated
linear Dirichlet problem does not admit any solution whose initial data belong
to certain regions.

The idea of finding out forbidden regions for initial data in order to solve
nonlinear problems of the form (1.1) is due to [16] and [47] (cf. [16, Proposition
2.6 and Lemma 2.7] for its implicit use and [47, assumption (H)] for its straight
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formalization). Once we have detected the forbidden initial data for Dirichlet
linear problems, in the spirit of [16] we embed the nonlinear system (1.4) into
a two-parameters family of linear equations and we extract the initial data cor-
responding to the required sign-preserving solution of (1.1) from the continuum
of parameters whose associated linear problems have first eigenvalue equal to
zero, via Leray-Schauder continuation theorem combined with a shooting type
argument.

Our final aim would consist in improving the results achieved in the paper [16]
by exploiting the properties of the generalized phase angles, so that multiplicity
results for (1.1) could be achieved in absence of negativity assumptions on the
diagonal terms of the matrix A(t, x). Although, for now, we have only focused
on the crossing of the first eigenvalue (cf. condition (3.3) or (3.5)), we are eager
to extend the result to any eigenvalue crossing, obtaining as many solutions as
the number of eigenvalues which have been crossed.

Now we are in position to state our main result. Consider a continuous path
of symmetric matrices A : [0, π]× R2 → GLs(R2) of the form

A(t, x) =

[
a11(t, x) a12(t, x)

a12(t, x) a22(t, x)

]
.

Theorem 1.1. Assume that A satisfies (1.2)-(1.3). Suppose, moreover, that

(1.5)
i(A0) = ν(A0) = 0 and i(A∞) ≥ 1

or
i(A∞) = ν(A∞) = 0 and i(A0) ≥ 1.

If a12(t, x) > 0 for every (t, x) ∈ [0, π]×R2, then the Dirichlet problem (1.1)
admits two solutions u1 = (x1, y1) and u2 = (x2, y2) satistying

x1(t) > 0 , y1(t) > 0, x2(t) < 0 , y2(t) < 0 ∀t ∈ (0, π).

If a12(t, x) < 0 for every (t, x) ∈ [0, π]×R2, then the Dirichlet problem (1.1)
admits two solutions u1 = (x1, y1) and u2 = (x2, y2) satistying

x1(t) > 0 > y1(t) , x2(t) < 0 < y2(t) ∀t ∈ (0, π).

Note that in the cooperative case, a12(t, x) > 0 in [0, π]×R2, we just require
the nonlinearity to cross the first eigenvalue in order to get one positive and one
negative solution of the asymptotically linear problem (1.1). No sign assumptions
on the diagonal terms aii(t, x) are needed. Analogously, in the case a12(t, x) < 0

in [0, π] × R2 we can find two solutions whose components have opposite signs
without imposing any restiction on the diagonal terms aii(t, x).

To our knowledge, very few results concerning the existence of sign-preserving
solutions are known in the setting a12(t, x) < 0. An interesting result in this
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direction has been obtained by Liu in [40], providing the simultaneous existence
of different types of sign-definite solutions for an autonomous planar system
of PDEs. The algebraic sign of the solution components of weakly coupled
bidimensional linear elliptic systems has been determined in the valuable work
[14] by Cosner and Schaefer, by decoupling techniques.

The paper is organized as follows. Section 2 is devoted to the study of the
linear Dirichlet problem

(1.6)
{

u′′(t) +B(t)u(t) = 0, t ∈ (0, π)

u(0) = u(π) = 0,

where B : [0, π] → GLs(R2) represents a path of symmetric 2× 2 matrices.
The first part of the Section collects the preliminary definitions of Morse

index, conjugate points and phase angles, the respective properties and reciprocal
relations.

The second part of the Section contains original results which originate from
a detailed, specific analysis of the phase angles in the planar context. For any two
given linearly independent solutions of the system in (1.6), we define five auxil-
iary functions a, b, c, d, l (see Definitions (2.21)-(2.25)), from which the explicit
expression of the cotangent of the phase angles (2.30) follows. Elementary, but
useful properties of these five functions are highlighted in order to illustrate their
mutual interactions with the angular rotations. We prove that the phase angles
obtained through the expression (2.30) are ordered between them (cf. Proposi-
tion 2.27) and turn together closely, chasing each other according to Atkinson’s
Definition [3], in particular, they do not need to be arranged in increasing order
to satisfy (2.11). Taking into account that clockwise half turns of a phase angle
correspond to the zeros of a+ c, we finally show the non-existence of nontrivial
solutions u of the Dirichlet problem (1.6) corresponding to eigenfunctions of the
first zero eigenvalue when u′(0) lies in the first or third (resp. second or fourth)
quadrant and the non-diagonal entries of the matrix B(t) are negative (resp.
positive), cf. Proposition 2.30.

In Section 3 we prove our main theorem, by combining the analysis developed
in Section 2, with degree theory and shooting techniques.

Notation. By Idn we mean the n× n identity matrix, and by AT we mean the
transpose of the matrix A. We denote by

◦
Y the interior of a set Y ⊆ R. Moreover,

we set Q1 := [ 0,+∞)× [ 0,+∞) and Q1 := (0,+∞)× (0,+∞), representing the
first quadrant and its interior part, respectively. Analogous notations are used
for the third quadrant Q3 and its interior part Q3.
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2. Linear Problem

The first part of this Section is devoted to review some preliminary definition
and well-known results concerning the second order linear problem (1.6).

Let us first recall the definitions of index and of nullity of a path of symmetric
matrices. We reformulate Proposition 2.1 proved in [23], according to the version
stated in [16].

Proposition 2.1 ([16, 23]). Given B ∈ L∞([0, π];GLs(R2)) there exists a
sequence of eigenvalues of B, λ1(B) ≤ λ2(B) ≤ . . . ≤ λj(B) → +∞ as j → +∞
such that, for each j ∈ N, there exists a space of dimension one of nontrivial
solutions of the problem

(2.1)
{

u′′(t) + (B(t) + λj(B)I2)u(t) = 0

u(0) = u(π) = 0.

Moreover H1
0 ([0, π];R2) := {u : [0, π] → R2 |u(·) is continuous on [0, π], satisfies

u(0) = 0 = u(π), and u′ ∈ L2([0, π];R2)} admits a basis of eigenvectors of B.

Definition 2.2. Given B ∈ L∞([0, π];GLs(R2)), its index i(B) is defined
as the number of negative eigenvalues and its nullity ν(B) the number of zero
eigenvalues.

Observe that in the sequence of the eigenvalues of a matrix B we cannot
have the same value repeated more than twice. In the case it is repeated twice,
we say that the corresponding eigenvalue λ(B) = λj(B) = λj+1(B), for some
j ∈ N, is double and has a space of eigenvectors of dimension two. Otherwise,
we say that the eigenvalue is simple and the corresponding space of eigenvectors
has dimension one.

Remark 2.3. We remark that i(B) is the Morse index associated with the
linear boundary value problem (1.6), cf. e.g. [23, 26], since it coincides with the
sum of the dimensions of the eigenspaces of negative eigenvalues.

Note that each eigenvalue λj depends continuously from the path B, due to
its variational characterization (cf. [16, 19]).

Proposition 2.4 ([16]). Fixed M > 0, for each j = 1, . . . ,+∞, B → λj(B)

is continuous in {B ∈ L1([0, π];GLs(R2)) : ∥B(t)∥ < M for a.e. t ∈ (0, π)}.

In case the linear system depends continuously on a parameter, there exists
a continuous branch of eigenvectors when the eigenspace has dimension one, and
some initial data are forbidden for the eigenfunction.

Proposition 2.5 ([16]). Let C be a continuum of R2 and assume that B :

[0, π] × C → GLs(R2) is continuous. Suppose that zero is an eigenvalue of
B(·, ᾱ) for each ᾱ ∈ C, and that there exists (a, b) ∈ S1 such that the solution
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of u′′ + B(t, ᾱ)u = 0 with u(0) = 0 and u′(0) = (a, b) does not vanish at t = π.
Then, it is possible to define a continuous function V : C → (C1([0, π],R2))2 such
that V(ᾱ) = (vᾱ(·), v′ᾱ(·)), where vᾱ is an eigenfunction of B(·, ᾱ) associated with
the zero eigenvalue for every ᾱ ∈ C.

To portray the Morse index in geometrical terms, we need to introduce the
notion of conjugate point. Consider the second-order linear system

(2.2) u′′(t) +B(t)u(t) = 0, t ∈ (0, π),

where B : [0, π] → GLs(R2) represents a path of symmetric 2× 2 matrices.

Definition 2.6. A point t0 ∈ [0, π] is conjugate to 0 for (2.2) with multi-
plicity νt0 if the Dirichlet problem

(2.3)
{

u′′(t) +B(t)u(t) = 0, t ∈ [0, t0],

u(0) = u(t0) = 0

admits νt0 linearly independent solutions.

Remark 2.7. We remark that a conjugate point t0 with respect to 0 can be
equivalently called “moment of verticality” (see e.g. [8]) or “crossing instant”
(see e.g. [6]).

It is easy to check that conjugate points to 0 are isolated, hence finite in
number on any bounded interval. We are now ready to provide a geometric
interpretation of the Morse index.

Theorem 2.8 ([26], Theorem 6; [31], Theorem 8.2). The Morse index
i(B) is equal to the number of conjugate points to 0 for (2.2) in the interval
(0, π), each counted with multiplicity:

(2.4) i(B) =
∑

0<t0<π

νt0 ,

where the summation runs over all conjugate points t0.

Remark 2.9. The Maslov index is a semi-integer homotopy invariant with
fixed endpoints of paths l of Lagrangian subspaces of a standard symplectic vec-
tor space (R2N , ω) which gives an algebraic count of nontransverse intersections
of the family {l(t)}t∈[a,b] with a given Lagrangian subspace l0 (we refer to [51]
for a detailed definition). In particular, the Maslov index µ(B) associated with
the linear boundary value problem (1.6) counts the nontransverse intersections in
[0, π] of the symplectic path Ψ(·) given by the fundamental matrix corresponding
to (1.6) with the “vertical Lagrangian” l0 := {0} × R2.

It is possibile to establish a relation between the Masolv index µ(B) and
number of conjugate points to 0 (see, e.g., [2, 4]). Let us emphasize that the
difference between Morse and Maslov indexes consists in the fact that the Maslov
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index µ(B) computes the conjugate points in the closed interval [0, π], while the
Morse index i(B) computes the conjugate points in the open interval (0, π).

We conclude this note by mentioning the papers [6, 49] which define the
Maslov index m(B) associated with (1.6) as the semi-integer homotopy invariant
counting the nontransverse intersections between Ψ(·) and l0 in [ε, π], where ε > 0

is chosen in such a way that there are no conjugate instants in [0, ε]. According
to this definition, in the non-degenerate case in which the nullity of B vanishes
(i.e. ν(B) = 0), the Morse and Maslov indexes coincide: m(B) = i(B), see [6,
Remark 3.7].

A phase angle analysis.
This paragraph presents the notion of phase angles and illustrates their relation
with the Morse index. Our basic references are [3, 8, 31]. We wish to underline
the contribution of the paper [39], which has introduced in the literature the
concept of generalized polar coordinates for linear systems (cf. also [29, 35]) and
of the already mentioned work [3], which has proposed the definition of angular
coordinate we are going to adopt.

We now concentrate on the second-order linear system (2.2). Setting

v(t) := u′(t), z(t) := (u(t), v(t)),

we can rewrite system (2.2) into the following form

(2.5) Jz′ = SB(t)z,

where

J =

(
0 −Id2
Id2 0

)
and SB(t) =

(
B(t) 0

0 Id2

)
.

Consider two linearly independent solutions z1(t) := (u1(t), v1(t)) and z2(t) :=

(u2(t), v2(t)) of (2.5) satisfying the initial condition

(2.6) u1(0) = 0 = u2(0).

For each j ∈ {1, 2}, the components of zj can be explicited by the following
expression:

(2.7) uj(t) = (xj(t), yj(t)), vj = (x′
j(t), y

′
j(t)).

We now define the two 2× 2 matrices

(2.8) X(t) =

(
x1(t) x2(t)

y1(t) y2(t)

)
and X ′(t) =

(
x′
1(t) x′

2(t)

y′1(t) y′2(t)

)
.

Since X ′(t)− iX(t) is invertible, we can set

(2.9) Θ(t) :=
(
X ′(t) + iX(t)

) (
X ′(t)− iX(t)

)−1
.
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Note that Θ(0) = Id2 as an immediate consequence of the initial condition (2.6)-
(2.7). It is also well-known that Θ(t) is a unitary symmetric 2×2 matrix, whose
spectrum is given by s(Θ(t)) = {λ̃1(t), λ̃2(t)}. There exists a unique continuous
map ϑj : [0, π] → R such that for every t ∈ [0, π] and j ∈ {1, 2}

(2.10) λ̃j(t) = e2iϑj(t) and ϑj(0) = 0.

The choice of arranging continuously ϑ1(t) and ϑ2(t) in increasing order leads to
a rearrangement of the eigenvalues λ̃1(t) and λ̃2(t), from which the definition of
angular coordinates follows.

Definition 2.10 ([3]). We term phase angles of the system (2.2) the unique
two continuous functions θj : [0, π] → R satisfying for every t ∈ [0, π] and j ∈
{1, 2}

λj(t) = e2iθj(t), θj(0) = 0,

(2.11) θ1(t) ≤ θ2(t) ≤ θ1(t) + π,

where s(Θ(t)) = {λ1(t), λ2(t)}.

The relation between conjugate points to 0 and phase angles is established
by the following proposition:

Proposition 2.11 ([8], Proposition 3.13). The following facts are equiv-
alent:

(1) t0 ∈ [0, π] is a conjugate point to 0 of geometric multiplicity ν ∈ {1, 2};
(2) dimkerX(t0) = ν;
(3) 1 is an eigenvalue of algebraic multiplicity ν for the matrix Θ(t0);
(4) if ν = 2, there exist h1, h2 ∈ N such that

θ1(t0) = h1π, θ2(t0) = h2π,

if ν = 1, there exist i ∈ {1, 2} and h ∈ N such that

θi(t0) = hπ and θl(t0) ̸∈ πN when l ̸= i, l ∈ {1, 2}.

For each t ∈ [0, π] and j ∈ {1, 2}, we write the phase angles in the following
form

(2.12) θj(t) = kj(t)π + αj(t), with kj(t) ∈ N and αj(t) ∈ (0, π].

We are finally in position to express the link between the Morse index and
the angular coordinates.

Proposition 2.12 ([8, 13, 31]). The Morse index i(B) is given by

(2.13) i(B) = k1(π) + k2(π),

where the natural numbers kj have been defined in formula (2.12).
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Remark 2.13. Let θ1(·, λj) and θ2(·, λj) be the phase angles of the eigenvalue
problem (2.1). Combining (2.11) with Proposition 2.12, we easily see that

θ2(π, λ2k−1) = kπ, θ1(π, λ2k) = kπ ∀ k ∈ N.

Thus, if θ1 and θ2 are the phase angles of (2.2), it follows that

λ2k−1(B) = 0 ⇐⇒ θ2(π) = kπ

λ2k(B) = 0 ⇐⇒ θ1(π) = kπ.

Taking into account (2.8), we introduce the auxiliary 2 × 2 matrix M , by
setting

(2.14) M(t) := X ′(t)X−1(t).

We are interested in proving that the eigenvalues of M correspond to the cotan-
gents of the phase angles.

Proposition 2.11 ensures that M(t) is well-defined whenever t is not a con-
jugate point to 0.

It is well-known that the fundamental solution associated with (2.5)-(2.6) is
a Lagrangian plane, i.e.

(2.15) X
′ T (t)X(t) = XT (t)X ′(t) ∀ t ∈ [0, π],

or, equivalently,

(2.16) −y′1(t)y2(t) + y′2(t)y1(t)− x′
1(t)x2(t) + x′

2(t)x1(t) = 0 ∀ t ∈ [0, π].

As an immediate consequence of (2.15), we deduce that M is a symmetric matrix:

MT = (X−1)TX
′ T = (X−1)TX

′ TXX−1 = (X−1)TXT X ′ X−1 = M.

The eigenvalues of the matrices M and Θ are related to each other.

Lemma 2.14. Let η be an eigenvalue of M , then λ̃ :=
(η + i)2

|η + i|2
is an eigenvalue

of Θ.

Proof. Let η1 and η2 be the eingevalues of the matrix M . There exists an
orthogonal matrix U satisfying

M = U−1DU, where D =

(
η1 0

0 η2

)
.

According to the definition (2.9) of Θ, we obtain

Θ =
(
M + i Id

) (
M − i Id

)−1
= U−1 (D + i Id)(D − i Id)−1 U.

Taking into account that

(D + i Id)(D − i Id)−1 =

(
η1+i
η1−i 0

0 η2+i
η2−i

)
=

(
(η1+i)2

|η1+i|2 0

0 (η2+i)2

|η2+i|2

)
,
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the proof is complete. �

The link between the eigenvalues of M and the phase angles follows by com-
bining Lemma 2.14 with (2.10).

Proposition 2.15. Let ϑ1, ϑ2 be the phase angles of (2.2) and η1, η2 be the
eigenvalues of M , then

(2.17) cotϑ1(t) = η1(t), cotϑ2(t) = η2(t) ∀ t ∈ [0, π].

Let us now recall some monotonicity properties of the phase angles.
On the lines of [11], we first observe that the auxiliary matrix M associated

with two linearly independent solutions of u′′(t)+B(t)u(t) = 0, u(0) = 0 satisfies
the Riccati matrix equation:

M ′(t) = −B(t)−M2(t).

For each j ∈ {1, 2}, let ηj be an eigenvalue of M and let vj be the column matrix
of a corresponding unit eigenvector (i.e. Mvj = ηjvj , ∥vj∥ = 1), then

(2.18) η′j(t) = −µj(t)− η2j (t),

where

(2.19) µj(t) = vT
j (t)B(t)vj(t).

Taking into account (2.17), we obtain the corresponding equations for the
phase angles.

Proposition 2.16 ([11]). For each j ∈ {1, 2}, let ϑj be a phase angle of
(2.2) and vj be the eigenvector of M corresponding to the eigenvalue ηj. Then,

(2.20) ϑ′
j(t) = µj(t) sin

2 ϑj(t) + cos2 ϑj(t),

where µj(t) is defined in (2.19).

The monotonicity of the phase angles in a neighbourhood of a conjugate
point to 0 immediately follows.

Corollary 2.17 ([11, 31]). Let ϑj be a phase angle of (2.2). Then, θj(t0)
is strictly increasing if θj(t0) is a multiple of π.

Remark 2.18. Let ϑj be a phase angle of (2.2). Then, θj(t0) is strictly
increasing if the matrix B(t0) is positive definite.
Note that in [16] the authors obtain multiplicity results for an asymptotically
linear problem of the form (1.1) by assuming that one eigenvalue of A(t, x) is
negative for every (t, x) ∈ [0, π] × R2, which means that A is never positive
definite in [16].
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Corollary 2.19. If the matrix B(t) is negative definite in [0, π], then (1.6)
does not admit any solution.
Analogously, if the path of matrixes A(t, x) is negative definite for every (t, x) ∈
[0, π]× R2, then (1.1) does not admit any solution.

Our next aim consists in providing an explicit expression for the cotangents
of the phase angles, taking advantage of the planar context.

To this purpose, we introduce some auxiliary continuous functions depending
on two linearly independent solutions z1 and z2 of (2.5)-(2.6):

az1,z2(t) := x′
1(t)y

′
2(t) + x1(t)y2(t) − x′

2(t)y
′
1(t)− x2(t)y1(t),(2.21)

cz1,z2(t) := −x′
1(t)y

′
2(t) + x1(t)y2(t) + x′

2(t)y
′
1(t)− x2(t)y1(t),(2.22)

bz1,z2(t) := x′
1(t)y2(t) + x1(t)y

′
2(t)− x′

2(t)y1(t)− x2(t)y
′
1(t),(2.23)

dz1,z2(t) := −x′
1(t)y2(t) + x1(t)y

′
2(t) + x′

2(t)y1(t)− x2(t)y
′
1(t).(2.24)

According to (2.16), we also set

(2.25) lz1,z2(t) := x1(t)x
′
2(t) − x′

1(t)x2(t) = y′1(t)y2(t) − y1(t)y
′
2(t).

We will omit the subscripts when no ambiguity arises. Note that

(2.26)
(
a+ c

2

)
= x1y2 − x2y1 = detX, b =

(
a+ c

2

)′

.

The next lemma easily follows.

Lemma 2.20. Let t0 ∈ (0, π] be a conjugate point to 0 of multiplicity νt0 .

νt0 = 1 ⇐⇒ a(t0) + c(t0) = 0,

νt0 = 2 ⇐⇒ a(t0) + c(t0) = 0 and b(t0) = 0.

We are now interested in writing the phase angles in function of a, b and c.
As a first step, we state the following result.

Lemma 2.21. The functions

η1 :=
b+

√
d2 + 4l2

a+ c
and η2 :=

b−
√
d2 + 4l2

a+ c

are eigenvalues of M .

Proof. From (2.8) and (2.14), it is immediate to check that

(2.27) M =
2

a+ c

(
x′
1 x′

2

y′1 y′2

)(
y2 −x2

−y1 x1

)
=

1

a+ c

(
b− d 2l

2l b+ d

)
,
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whose eingenvalues η satisfy the equation(
b

a+ c
− η

)2

− d2 + 4l2

(a+ c)2
= 0.

The thesis easily follows. �

An easy calculation leads to

b2 + c2 − a2 = d2 + 4(x1x
′
2 − x′

1x2)(y
′
1y2 − y1y

′
2),

and, consequently,

(2.28) b2 + c2 − a2 = d2 + 4l2 ≥ 0.

Thus, the eigenvalues of M might be expressed in terms of the functions
a, b, c as follows:

(2.29) η1 =
b+

√
b2 + c2 − a2

a+ c
and η2 =

b−
√
b2 + c2 − a2

a+ c
.

According to Proposition 2.15, we achieve our goal.

Proposition 2.22. Let ϑ1, ϑ2 be the phase angles of (2.2) defined according
to (2.10), then

(2.30) cotϑ1 =
b+

√
b2 + c2 − a2

a+ c
and cotϑ2 =

b−
√
b2 + c2 − a2

a+ c
.

From (2.27) and (2.28), we easily observe that

detM =
a− c

a+ c
.

Expressions (2.30) show us how the sign of the functions b, a+ c, a− c does
affect the rotation of the phase angles.

Remark 2.23. Consider an interval I ⊂ (0, π] such that b(t) > 0 for every
t ∈ I. Due to the positivity of b+

√
b2 + c2 − a2 in I, we can rewrite the angular

coordinates in the following way:

(2.31) cotϑ1 =
b+

√
b2 + c2 − a2

a+ c
and cotϑ2 =

a− c

b+
√
b2 + c2 − a2

.

In particular, ϑ1(t0) ̸∈ π
2 + πN and ϑ2(t0) ̸∈ πN whenever t0 ∈ I. This means

that I admits at most one conjugate point to 0.

Analogously, consider an interval J ⊂ (0, π] such that b(t) < 0 for every
t ∈ J . Due to the negativity of b −

√
b2 + c2 − a2 in J , we can rewrite the

angular coordinates in the following way:

(2.32) cotϑ1 =
a− c

b−
√
b2 + c2 − a2

and cotϑ2 =
b−

√
b2 + c2 − a2

a+ c
.



Sign-preserving solutions for asymptotically linear systems 15

In particular, ϑ1(t0) ̸∈ πN and ϑ2(t0) ̸∈ π
2 + πN whenever t0 ∈ J . This means

that J admits at most one conjugate point to 0.

We finally note that

b(t0) = 0 and a(t0)+c(t0) ̸= 0 =⇒ cotϑ1 = sign(a+c)

√
c− a

a+ c
= − cotϑ2 in t0,

which, according to (2.11), implies that θ1(t0) and θ2(t0) lies in two different and
consecutive quadrants provided that c(t0) ̸= a(t0). In particular,

(2.33) (k − 1)π

2
≤ θ1 ≤ (k + 1)π

2
⇐⇒ kπ

2
≤ θ2 ≤ (k + 2)π

2
, k ∈ N.

Taking into account Corollary 2.17 and the relation between the Morse index
and the phase angles given in (2.13), it is possible to prove the existence of at
least i(B) zeros in (0, π) of the function b, at which b changes sign.

From (2.31)-(2.32), we immediately see that

∃ j ∈ {1, 2} : ϑj(τ0) ∈
π

2
+ πN ⇐⇒ a(τ0)− c(τ0) = 0,

∀ j ∈ {1, 2} : ϑj(τ0) ∈
π

2
+ πN ⇐⇒ a(τ0)− c(τ0) = 0 and b(τ0) = 0.

We need some preliminary lemmas to show that the angles ϑ1 and ϑ2 defined
in (2.30) are ordered, i.e. one of the following two alternatives holds:
(2.34)

ϑ1(t) ≤ ϑ2(t) ≤ ϑ1(t) + π or ϑ2(t) ≤ ϑ1(t) ≤ ϑ2(t) + π ∀ t ∈ [0, π].

Lemma 2.24. It does not exist s∗ ∈ [0, π] such that b(s∗) = a(s∗) = c(s∗) = 0.

Proof. Assume, by contradiction, that b(s∗) = a(s∗) = c(s∗) = 0, for some
s∗ ∈ [0, π]. From (2.28), we get d(s∗) = l(s∗) = 0. According to (2.21)-(2.25),
we notice that

b+ d = 0 =⇒ x1y
′
2 = x2y

′
1, b− d = 0 =⇒ x′

1y2 = x′
2y1,

a+ c = 0 =⇒ x1y2 = x2y1, a− c = 0 =⇒ x′
1y

′
2 = x′

2y
′
1,

l = 0 =⇒ x1x
′
2 = x2x

′
1, y1y

′
2 = y2y

′
1.

Thus, u1 = (x1, y1, x
′
1, y

′
1) is proportional to u2 = (x2, y2, x

′
2, y

′
2) in s∗ and,

consequently, in [0, π], which contradicts the linear independence of u1 and u2.�

Taking into account that ui = (xi, yi) solves u′′(t) + B(t)u(t) = 0, where
B(t) is a symmetric matrix of the form

(2.35) B(t) =

(
α(t) β(t)

β(t) γ(t)

)
,
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and recalling the definitions given in (2.21)-(2.25), by a simple computation we
get

(2.36) b′ = −(α+ γ)
a+ c

2
+ (a− c).

As immediate consequence, we can state the following result.

Lemma 2.25. The zeros of the function (a + c) are isolated and they have,
at most, multiplicity 2.

Proof. Proposition 2.11 and Lemma 2.20 guarantee that the zeros of (a+c)

are the conjugate points to 0 for (2.2). They are isolated by Corollary 2.17.
Let s∗ be a zero of (a+ c). From (2.26) and(2.36), we know that

(2.37) (a+ c)′(s∗) = 2b(s∗) and (a+ c)′′(s∗) = 2b′(s∗) = (a− c)(s∗).

Thus, according to Lemma 2.24, the first and second derivative of (a+ c) cannot
simultaneously vanish in s∗. This completes the proof. �

Remark 2.26. Observe that the Morse index i(B) of (1.6) is given by the
sum of the zeros of (a+ c) in (0, π), counted with their multiplicity.

Combining (2.21)-(2.23) with (2.6)-(2.7), we observe that

(2.38) b(0) = a(0) + c(0) = 0.

Hence, b′(0) = a(0)− c(0) never vanishes, by Lemma 2.24.
We are finally in a position to prove inequalities (2.34).

Proposition 2.27. Let ϑ1 and ϑ2 be the phase angles of (2.2) defined by
(2.30).
Assume that b′(0) > 0, then ϑ1(t) ≤ ϑ2(t) ≤ ϑ1(t) + π for every t ∈ [0, π].
Assume that b′(0) < 0, then ϑ2(t) ≤ ϑ1(t) ≤ ϑ2(t) + π for every t ∈ [0, π].

According to Definition 2.10, we emphasize that θi ≡ ϑi if b′(0) > 0, while
θi ≡ ϑj with i ̸= j ∈ {1, 2} if b′(0) < 0.

Proof. We prove the Proposition under the assumption b′(0) > 0. Being
the complementary case analogous, we will omit the details of the corresponding
proof.

The idea of the proof consists in dividing [0, π] in subintervals in which the
function (a+ c) preserve its sign, and estimating the phase angles in each subin-
terval according to (2.30).

According to Lemma 2.25, we can enumerate the m zeros of (a+c). Adopting
the convention that a zero with multiplicity 2 is counted twice, we denote by sj
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the j-th zero of the function (a + c) in (0, π]. Define the intervals having two
consecutive zeros as endpoints, by setting
(2.39)
J1 := (0, s1], J2 := [s1, s2], . . . , Jj := [sj−1, sj ], . . . , Jm+1 := [sm, π].

If sj−1 = sj is a double zero, then Jj ≡ {sj}.
Suppose that b′(0) > 0. Taking into account that (a+ c)(0) = b(0) = 0 and

(a+ c)′ = 2b, it follows that

(2.40) (a+ c)(t) > 0 ∀ t ∈
◦
J1 = J1 \ {s1}.

We wish to prove that the sign of (a + c) alternates between positive in the
interior part of the even intervals and negative in the interior part of the odd
ones, by showing that

(2.41) (a+ c)(t) < 0 ∀ t ∈
◦
J2k and (a+ c)(t) > 0 ∀ t ∈

◦
J2k+1.

We proceed by induction on n. Suppose that for every k ∈ N, with k ≤ n,

(2.42) (−1)k(a+ c)(t) < 0 ∀ t ∈
◦
Jk.

We are interested in proving that

(2.43) (−1)n+1(a+ c)(t) < 0 ∀ t ∈
◦
Jn+1.

The interior part of Jn+1 is non-empty if one of the following two alternatives
occurs: either sn−1 = sn, or sn is a simple zero of (a+ c).
If sn−1 = sn, then sn−2 < sn−1, and (a+c)(sn−1) = b(sn−1) = (a+c)′(sn−1) = 0.
Thus, combining Lemma 2.24 with (2.37), we deduce that (a+c)′′(sn−1) ̸= 0. In
particular, there exists a neighborhood U of sn−1 such that (a+ c)(a+ c)′′ > 0

in U \ {sn−1}. Since (−1)n−1(a + c)(t) < 0 for every t ∈ (sn−2, sn−1), we infer
that (−1)n−1(a+ c)(t) < 0 for every t ∈ (sn−1, sn+1) = (sn, sn+1), which proves
(2.43).

Alternatively, if sn is a simple zero of (a+ c), then sn−1 < sn, and 2b(sn) =

(a+c)′(sn) ̸= 0. Since (−1)n(a+c)(t) < 0 for every t ∈ (sn−1, sn), we deduce that
(−1)n(a+c)′(sn) > 0. Consequently, (−1)n(a+c)(t) > 0 for every t ∈ (sn, sn+1),
which proves (2.43).

This completes the proof of (2.41).

Our final aim consists in demonstrating that

(2.44) ϑ1(t) ≤ ϑ2(t) ≤ ϑ1(t) + π ∀ t ∈ [0, π].

Let us proceed by iteration. Let us, first, concentate our attention on J1. We
claim that

(2.45) 0 < ϑ1(t) ≤ ϑ2(t) < π < ϑ1(t) + π ∀ t ∈
◦
J1.
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Taking into account (2.10) and Corollary 2.17, we begin by observing that

(2.46) ϑj(0) = 0 and ϑ′
j(0) > 0 ∀ j ∈ {1, 2}.

As an immediate consequence of (2.40), we obtain that
(2.47)

b(t) +
√
b2(t) + c2(t)− a2(t)

a(t) + c(t)
≥

b(t)−
√

b2(t) + c2(t)− a2(t)

a(t) + c(t)
∀ t ∈

◦
J1.

Hence, according to (2.30), we conclude that

0 < ϑ1(t) < π, 0 < ϑ2(t) < π and cotϑ1(t) ≥ cotϑ2(t) ∀ t ∈
◦
J1,

which leads to the required claim (2.45). If J1 = (0, π], the proof of the Propo-
sition is complete, and i(B) = 0 by Remark 2.26.

Our ultimate goal consists in proving the following inequalities
(2.48)

(k − 1)π < ϑ1(t) < kπ < ϑ2(t) < (k + 1)π, ϑ2(t) ≤ ϑ1(t) + π ∀ t ∈
◦
J2k,

s2k−1 = s2k =⇒ ϑ1(s2k) = ϑ2(s2k) = kπ;

(2.49)
kπ < ϑ1(t) ≤ ϑ2(t) < (k + 1)π < ϑ1(t) + π ∀ t ∈

◦
J2k+1,

s2k = s2k+1 =⇒ ϑ1(s2k) = kπ and ϑ2(s2k) = (k + 1)π.

Note that (2.49) represents the extension of (2.45) to any odd interval.
Let us follow an inductive approach. We first concentrate on the even inter-

vals. We are interested in deducing (2.48) from the inductive assumption:
(2.50)

(k − 1)π < ϑ1(t) ≤ ϑ2(t) < kπ < ϑ1(t) + π ∀ t ∈
◦
J2k−1,

s2k−2 = s2k−1 =⇒ ϑ1(s2k−1) = (k − 1)π and ϑ2(s2k−1) = kπ.

If J2k = {s2k−1} = {s2k}, then (2.50) and Corollary 2.17 lead to ϑ1(J2k) =

ϑ2(J2k) = kπ, which verify (2.48).
Otherwise, assume that

◦
J2k ̸= ∅. Two alternatives arise: either s2k−2 =

s2k−1 or s2k−1 is a simple zero of (a+ c).
Let us first observe that in both cases ϑ2(s2k−1) = kπ. In particular, if

s2k−2 = s2k−1, from (2.50) we know that ϑ1(s2k−1) = (k− 1)π and ϑ2(s2k−1) =

kπ.
If s2k−1 is a simple zero of (a+ c), from (2.30), (2.41), (2.50), and Corollary

2.17, we deduce that b(s2k−1) < 0, and ϑ1(s2k−1) < kπ = ϑ2(s2k−1).
Moreover, in both cases it follows that

(2.51) (k − 1)π < ϑ1(t) < kπ, kπ < ϑ2(t) < (k + 1)π ∀ t ∈
◦
J2k.
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To complete the proof of (2.48), it remains to show that ϑ2 ≤ ϑ1 + π in
◦
J2k.

Due the negativity of (a+ c) in
◦
J2 established by (2.41), we immediately see

that
(2.52)

b(t) +
√
b2(t) + c2(t)− a2(t)

a(t) + c(t)
≤

b(t)−
√
b2(t) + c2(t)− a2(t)

a(t) + c(t)
∀ t ∈

◦
J2k.

According to (2.30), we notice that

cot(ϑ1(t)) ≤ cot(ϑ2(t)) = cot (ϑ2(t)− π) ∀ t ∈
◦
J2k,

which combined with (2.51) leads to ϑ1(t) ≥ ϑ2(t) − π for every t ∈
◦
J2. This

completes the proof of (2.48).

We now focus on the odd intervals. Our next aim consists in deducing (2.49)
from the inductive assumption (2.48).

If J2k+1 = {s2k} = {s2k+1}, then by combining Corollary 2.17 with (2.48),
we infer that ϑ1(J2k+1) = kπ and ϑ2(J2k+1) = (k + 1)π, which satisfy (2.49).

Otherwise, assume that
◦
J2k+1 ̸= ∅. Two alternatives arise: either s2k =

s2k−1 or s2k is a simple zero of (a+ c).
Let us first observe that in both cases ϑ1(s2k) = kπ. In particular, if

s2k = s2k−1, inductive assumption (2.48) immediately ensures that ϑ1(s2k) =

ϑ2(s2k) = kπ.
If s2k is a simple zero of (a + c), from (2.30), (2.41), (2.48), and Corollary

2.17, we obtain that b(s2k) > 0, and ϑ1(s2k) = kπ < ϑ2(s2k) < (k + 1)π.
Moreover, in both cases it follows that

(2.53) kπ < ϑ1(t) < (k + 1)π, kπ < ϑ2(t) < (k + 1)π ∀ t ∈
◦
J2k+1.

Due the positivity of (a+ c) in
◦
J2k+1, we immediately see that (2.47) holds true

in the odd interval
◦
J2k+1. Hence, (2.30) guarantees that

cotϑ1(t) ≥ cotϑ2(t) ∀ t ∈
◦
J2k+1,

which, combined with (2.53), proves (2.49) and completes the proof of the Propo-
sition.

We remark that denoting by Jm+1 = [sm, π] the last interval with sm < π,
then i(B) = m by Remark 2.26. �

Remark 2.28. We wish to mention the interesting Remark 2.3 in [4] which
shows an example of a planar system of uncoupled second order equations, where
the phase angles ϑi obtained through Atkinson’s construction and satisfying
one of the altenative inequalities in (2.34) do not coincide with the “natural”
angular functions obtained as the angular coordinates φi of the solutions of each
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uncoupled equation in the phase plane. Actually, the polar angles φ1 and φ2 can
be obtained by “interchanging” ϑ1 and ϑ2 when b2 + c2 − a2 = 0.

The last part of the section is devoted to the study of sign-preserving solutions
to the Dirichlet problem associated with the linear system (2.2). Let zi = (ui, vi)

be two linearly independent solutions of (2.5) satisfying the initial conditions

(2.54) ui(0) = (xi(0), yi(0)) = 0 and vi(0) = (x′
i(0), y

′
i(0)) := ᾱi ∈ S1.

Due to the uniqueness of solutions of Cauchy problems associated with the sys-
tem (2.5), z1 and z2 are linearly independent if and only if ᾱ1 and ᾱ2 are linearly
independent. Therefore, without loss of generality, we may replace the subscripts
z1 and z2 in the definitions (2.21)-(2.25) by the corresponding initial slopes ᾱ1

and ᾱ2.
According to (2.23), it is not restrictive to choose ᾱ1 and ᾱ2 such that

(2.55) b′ᾱ1,ᾱ2
(0) > 0.

As an immediate consequence of Proposition 2.27, ϑ2(t) = θ2(t) for every t ∈
[0, π], where we refer to (2.30) for the definition of ϑ2. Taking into account
(2.36), (2.38) and (2.21)-(2.22), we easily see that

b′ᾱ1,ᾱ2
(0) = (a− c)(0) = 2 (x′

1(0)y
′
2(0)− x′

2(0)y
′
1(0)) .

Remark 2.29. The positivity of b′ᾱ1,ᾱ2
(0) establishes a relation between the

reciprocal positions of the initial slopes: if we fix ᾱ1 in S1, then ᾱ2 lies in the
unitary semicircle which originates in ᾱ1 and ends at −ᾱ1 moving counterclock-
wise.

Recalling that B(t) is a symmetric matrix of the form (2.35), and taking into
account (2.25), a simple computation leads to

l′ᾱ1,ᾱ2
(t) = x1(t)x

′′
2(t) − x′′

1(t)x2(t) = −β(t) (x1(t)y2(t) − x2(t)y1(t)) ,

which, combined with (2.26), implies that

(2.56) l′ = −β
a+ c

2
.

Observe that l is strictly monotone whenever the non-diagonal entries β of
the matrix B preserve their sign and θ2 < π. By (2.54), it is also clear that
lᾱ1,ᾱ2(0) = 0.

The following crucial proposition ensures the non-existence of sign-preserving
component-wise solutions to the Dirichlet problem associated with the system
(2.2) for initial slopes belonging to suitable regions.

Proposition 2.30. Consider the problem

(2.57)
{

u′′ + B(t)u = 0, t ∈ [0, π]

u(0) = u(π) = 0,
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where B ∈ L∞([0, π];GLs(R2)) is a symmetric matrix of the form (2.35). Assume
that

(2.58) β(t) > 0 ∀ t ∈ [0, π] ( or β(t) < 0 ∀ t ∈ [0, π] ).

Then, ν(B) ≤ 1 and problem (2.57) does not admit any eigenfuncion u associated
with the first zero eigenvalue such that u′(0) lies in the second or fourth (resp.
first or third) quadrant.

Moreover, both the components of the solution of (2.57) corresponding to the
first zero eigenvalue preserve their sign.

Note that an analogous of Proposition 2.30 can be found in [14] (cf. [14,
Theorem 2.4 and Theorem 2.7]) under additional decoupling conditions on the
matrix B(t). In particular, Cosner and Schaefer in [14] focus on planar linear
partial differential systems, where either the diagonal entries of B coincide (i.e.
α = γ in (2.35)) or the non-diagonal entries of B (which could differ from each
other) are multiples of the difference (α− γ) between the diagonal terms.

Proof. Let u = (x1, y1) be a nontrivial solution of (2.57) with u′(0) =

ᾱ1 ∈ S1, corresponding to the first eigenfunction associated with the eigenvalue
λ1(B) = 0. According to Remark 2.13, θ2(π) = π, and θ1(π) ≤ π.

Consider an arbitrary ᾱ2 ∈ S1 verifying (2.55). Since i(B) = 0, there are
no conjugate points in (0, π), and, consequently, by Lemma 2.20, aᾱ1,ᾱ2 + cᾱ1,ᾱ2

preserves its sign in (0, π). Taking into account (2.26) and (2.38), we immediately
conclude that

(2.59) aᾱ1,ᾱ2(t) + cᾱ1,ᾱ2(t) > 0 ∀ t ∈ (0, π).

• Let us treat the case β(t) > 0 for every t ∈ [0, π]. By (2.56), it follows that

(2.60) lᾱ1,ᾱ2
(t) < 0 ∀ t ∈ (0, π].

Denote, as usual, u2 = (x2, y2) the solution of (2.2) satisfying u2(0) = 0 and
u′
2(0) = ᾱ2.

Recalling the definition of l in (2.25) and (2.60), we calculate lᾱ1,ᾱ2
at the

time π:

(2.61) lᾱ1,ᾱ2
(π) = −x′

1(π)x2(π) < 0, lᾱ1,ᾱ2
(π) = y′1(π) y2(π) < 0.

Note that the zeros of each component of the solution u are simple at t = π, and
ν(B) = 1. Hence, by combining Lemma 2.20 with (2.26) and (2.59) we conclude
that

(2.62) bᾱ1,ᾱ2
(π) < 0.

Moreover, (2.61) implies that

(2.63) y2(π) = − x′
1(π)

y′1(π)
x2(π),
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which means that all the solutions u2 of (2.2) with u2(0) = 0 whose initial slope
ᾱ2 verifies (2.55) lie on a half-line passing through the origin. Finally, from an
easy combination of the previous relations (2.62)-(2.63) with the definition of b
(2.23), it follows that

−x2(π)

y′1(π)

(
(x′

1(π))
2 + (y′1(π))

2
)
< 0,

which leads to

(2.64) x2(π)

y′1(π)
> 0.

According to (2.61), y2(π) has opposite sign with respect to x2(π), x′
1(π) and

y′1(π).

Assume now, by contradiction, that ᾱ1 belongs to the fourth quadrant (the
second quadrant case reduces to the fourth quadrant one, due to the linearity of
the problem).

We claim that u(t) remains in the fourth quadrant for every t ∈ (0, π).
Suppose, by contradiction, that there exists t0 ∈ [0, π) such that

x1(t0) > 0, y1(t0) = 0, y′1(t0) > 0.

From (2.59) and (2.26), we obtain x1(t0) y2(t0) > 0, which implies that

(2.65) y2(t0) > 0.

Furthermore, (2.60) and (2.25) lead to y′1(t0) y2(t0) < 0, whence it follows
y2(t0) < 0, which contradicts (2.65).

Analogously, assume, by contradiction, that there exists τ0 ∈ [0, π) such that

x1(τ0) = 0, x′
1(τ0) < 0, y1(τ0) < 0.

By (2.59) and (2.26), we get −x2(τ0) y1(τ0) > 0, and, consequently,

(2.66) x2(τ0) > 0.

Moreover, (2.60) and (2.25) ensures that −x′
1(τ0)x2(τ0) < 0, whence it follows

that x2(τ0) < 0, contradicting (2.66). This proves the claim.
Therefore, taking into account that u = (x1, y1) remains in the fourth quad-

rant in (0, π), and that, according to (2.61), the zeros of each component of the
solution u are simple at t = π, we deduce that

(2.67) x′
1(π) < 0 and y′1(π) > 0.

If we combine (2.67) with (2.61) we get x2(π) < 0, whereas if we combine (2.67)
with (2.64) we obtain x2(π) > 0, an absurd.
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We have so proved that problem (2.57) with β > 0 does not admit any
eigenfuncion u associated with the first zero eigenvalue such that u′(0) lies in
the fourth or second quadrant.

Let ᾱ2 be a point of the fourth (resp. second) quadrant which satisfies (2.55).
Observe that (2.55) ensures that ᾱ2 is forbidden to lie in the second (resp. fourth)
quadrant if ᾱ1 lies in the third (resp. first) quadrant. Exactly as before, by a
symmetric argument, we see that u2(t) remains in the fourth (resp. second)
quadrant for every t ∈ (0, π).

In particular, if ᾱ1 lies in the third quadrant and ᾱ2 in the fourth one, then
x2(π) > 0 and y2(π) < 0, which, according to (2.61), imply that x′

1(π) > 0

and y′1(π) > 0. It turns out that both the components of the solution u of
the Dirichlet problem (2.57) are negative in (0, π): indeed if, by contradiction, u
entered the second or fourth quadrant, it would remain inside, and, consequently,
x′
1(π) y

′
1(π) < 0, an absurd.

Analogously, by the linearity of the problem, if ᾱ1 lies in the first quadrant
and ᾱ2 in the second one, then both the components of u are positive in (0, π).

• We now briefly focus on the case β(t) < 0 for every t ∈ [0, π], which can be
handled in an analogous way. First of all, relations (2.56) and (2.59) guarantee
that

(2.68) lᾱ1,ᾱ2
(t) > 0 ∀ t ∈ (0, π],

whence it follows that

−x′
1(π)x2(π) > 0 and y′1(π) y2(π) > 0.

In particular, ν(B) = 1, and the zeros of each component of u are simple at t = π.
Moreover, (2.62) holds, which, in turns, implies (2.64). As an easy consequence,

(2.69) x′
1(π) has opposite sign with respect to x2(π), y2(π) and y′1(π).

As before, from the positive sign of (a+ c) and l, it is easy to show that once
u is in the first or third quadrant, it should remain inside. The same property
holds true for u2.

Proceeding as in the previous case, we can prove that problem (2.57) does
not admit any eigenfuncion u associated with the first zero eigenvalue such that
u′(0) lies in the first or third quadrant: indeed if, by contradiction, ᾱ1 belonged
to the first or third quadrant, it would follow that x′

1(π) y
′
1(π) > 0, contradicting

(2.69).
Furthermore, notice that if ᾱ1 lies in the second quadrant and ᾱ2 in the third

one, then x2(π) < 0, y2(π) < 0, and, consequently, x′
1(π) > 0 and y′1(π) < 0,

whence we easily conclude that x1(t) > 0 and y1(t) < 0 for every t ∈ (0, π). This
completes the proof. �
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Note that the proof of Proposition 2.30 is based on the simple study of the
signs of (a + c) and l. It can be adapted to describe the situation at the first
conjugate point t0 ∈ (0, π) to 0 for (2.2), illustrating the evolution in [0, t0] of all
the solutions of the Cauchy problems associated with (2.2).

Taking into account the relation (2.4) between Maslov index and conjugate
points, we would be interested in extending Proposition 2.30 to the next conju-
gate points. Careful attention should be devoted to the possible changes of sign
of the function l.

3. Main result

We consider the Cauchy problem associated with (1.4)

(3.1)


u′′(t) + A(t, u(t))u(t) = 0

u(0) = 0

u′(0) = ᾱ ∈ R2,

and we denote by uᾱ(·) its unique solution. Condition (1.3) guarantees the
boundedness of A and, consequently, the continuability of the solutions of the
Cauchy problem (3.1).

Inspired by [8, 16, 47], we focus on the linear, parameter-dependent system

(3.2) u′′(t) + A(t, uᾱ(t))u(t) = 0,

where ᾱ ∈ R2 \ {(0, 0)}.
The following lemma, adopted in [8, 16, 47] to obtain multiplicity results

in an asymptotically linear setting, describes the asymptotic behaviour of the
parameter-dependent matrix of (3.2).

Lemma 3.1. (cf. [8]) Suppose that the continuous function A : [0, π]×R2 →
GLs(R2) satisfies assumptions (1.2) and (1.3), then

A(t, uᾱ(t)) → A∞(t) in L1([0, π]) if |ᾱ| → +∞,

A(t, uᾱ(t)) → A0(t) in L1([0, π]) if |ᾱ| → 0.

We are now ready to prove Theorem 1.1. Since the proof is similar in spirit
to the one exhibited in [16], some details will be omitted. The interested reader
is referred to [16] for a more detailed proof.
Proof of Theorem 1.1 We concentrate on the case i(A0) = ν(A0) = 0 and
i(A∞) ≥ 1. By the Definition 2.2 of the Morse index and nullity, λi(A0) > 0

for all i ∈ N, and there are exactly i(A∞) negative eigenvalues λj(A∞) with
j ∈ {1, . . . , i(A∞)}. In particular,

(3.3) λ1(A∞) < 0 < λ1(A0).
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• Assume first that a12(t, x) > 0 for every (t, x) ∈ [0, π]× R2.
We focus on the search of solutions of (1.1) whose initial slope belongs to

Q1, the interior part of the first quadrant.
Lemma 3.1, Proposition 2.4 and inequalities (3.3) lead to

(3.4) lim
|ᾱ|→+∞

λ1(A(·, uᾱ(·))) < 0 < lim
|ᾱ|→0

λ1(A(·, uᾱ(·))).

In particular, there exist R1, R2 satisfying 0 < R1 < R2 such that λ1(A(·, uᾱ(·))) <
0 for every α ∈ Q1 with |ᾱ| = R2 and λ1(A(·, uᾱ(·))) > 0 for every ᾱ ∈ Q1

with |ᾱ| = R1. By a simple application of the Leray-Schauder continuation
theorem [37] (cf. the proof exhibited in [16] for more details), we deduce the
existence of a closed connected set C ⊂ {ᾱ ∈ Q1 : R1 < |ᾱ| < R2} such that
C ∩ ({0} × (R1, R2)) ̸= ∅, C ∩ ((R1, R2)× {0}) ̸= ∅ and

λ1(A(·, uᾱ(·))) = 0 ∀ᾱ ∈ C.

Proposition 2.30 ensures that there are no eigenfuntions u associated with
the eigenvalue λ1(A(·, uᾱ(·))) = 0 such that u′(0) lies in the second or the fourth
quadrant. This enables us to employ Proposition 2.5 with B(t, ᾱ) = A(t, uᾱ(t)).
Thus, we infer the existence of a continuous function V defined on C such that
V(ᾱ) = (vᾱ(·), v′ᾱ(·)), where vᾱ is an eigenfunction A(·, uᾱ(·)) associated with
the zero eigenvalue.

Setting σ(ᾱ) := v′ᾱ(0) ∈ Q1 ∪ Q3, we notice that vᾱ is a nontrivial solution
of the system

u′′ + A(t, uᾱ(t))u = 0

u(0) = u(π) = 0

with u′(0) = σ(ᾱ). By linearity of the problem, we can restrict ourselves to the
case σ(ᾱ) ∈ Q1.

Let us write any γ ∈ R2 in the polar coordinates (ω(γ), ρ(γ)), given by γ1 =

ρ cosω, γ2 = ρ sinω. Consider the continuous function g : C → (−π
2 ,

π
2 ) defined

by g(ᾱ) := ω(σ(ᾱ)) − ω(ᾱ). As a consequence of the Leray-Schauder theorem,
there exist α̃ = (0, α̃2) and α̂ = (α̂1, 0) ∈ C. Observe that g(α̃) = ω(σ(α̃))− π

2 < 0

and g(α̂) = ω(σ(α̂)) > 0. Hence, recalling that C is a connected set, we infer
the existence of ᾱ1 ∈ C ∩ Q1 such that ω(σ(ᾱ1)) = ω(ᾱ1). In particular, there
exists C > 0 such that σ(ᾱ1) = C ᾱ1, from which we get uᾱ1 =

uσ(ᾱ1)

C and,
consequently, uᾱ1

(π) = 0.
Notice that uᾱ1

solves the Dirichlet problem (1.1).
Moreover, since λ1(A(·, uᾱ1

(·))) = 0, by Proposition 2.30 we conclude that
both the components of uᾱ1

are positive in (0, π).

With an analogous procedure, we find ᾱ3 ∈ C∩Q3 such that λ1(A(·, uᾱ3
(·))) =

0, and uᾱ3
(π) = 0. In particular, uᾱ3

is a solution of the Dirichlet problem (1.1),
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whose components are both negative in (0, π). The cooperative case has been
demonstrated.

• Analogous arguments apply to the study of the case a12(t, x) < 0 for every
(t, x) ∈ [0, π] × R2. We are able to find two solutions of the Dirichlet problem
(1.1), whose initial slopes belong to the second and fourth quadrant, respectively.
The components of each solution have opposite sign in (0, π).
This completes the proof in the case i(A0) = ν(A0) = 0 and i(A∞) ≥ 1.

The case i(A∞) = ν(A∞) = 0 and i(A0) ≥ 1 yields the reverse inequalities

(3.5) λ1(A0) < 0 < λ1(A∞),

and it can be treated analogously; the details of the proof will be omitted for
brevity. �

We believe that our approach might allow extensions to the case of multiple
eigenvalue crossings.
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