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ABSTRACT

One of the most challenging problems in the study of complex dynamical systems is
to find the statistical interdependencies among the system components. Granger
causality (GC) represents one of the most employed approaches, based on modeling
the system dynamics with a linear vector autoregressive (VAR) model and on
evaluating the information flow between two processes in terms of prediction error
variances. In its most advanced setting, GC analysis is performed through a state-
space (SS) representation of the VAR model that allows to compute both conditional
and unconditional forms of GC by solving only one regression problem. While this
problem is typically solved through Ordinary Least Square (OLS) estimation, a viable
alternative is to use Artificial Neural Networks (ANNs) implemented in a simple
structure with one input and one output layer and trained in a way such that the
weights matrix corresponds to the matrix of VAR parameters. In this work, we
introduce an ANN combined with SS models for the computation of GC. The ANN
is trained through the Stochastic Gradient Descent L1 (SGD-L1) algorithm, and a
cumulative penalty inspired from penalized regression is applied to the network
weights to encourage sparsity. Simulating networks of coupled Gaussian systems, we
show how the combination of ANNs and SGD-L1 allows to mitigate the strong
reduction in accuracy of OLS identification in settings of low ratio between number
of time series points and of VAR parameters. We also report how the performances
in GC estimation are influenced by the number of iterations of gradient descent
and by the learning rate used for training the ANN. We recommend using some
specific combinations for these parameters to optimize the performance of GC
estimation. Then, the performances of ANN and OLS are compared in terms of GC
magnitude and statistical significance to highlight the potential of the new approach
to reconstruct causal coupling strength and network topology even in challenging
conditions of data paucity. The results highlight the importance of of a proper
selection of regularization parameter which determines the degree of sparsity in the
estimated network. Furthermore, we apply the two approaches to real data scenarios,
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to study the physiological network of brain and peripheral interactions in humans
under different conditions of rest and mental stress, and the effects of the newly
emerged concept of remote synchronization on the information exchanged in a ring
of electronic oscillators. The results highlight how ANNs provide a mesoscopic
description of the information exchanged in networks of multiple interacting
physiological systems, preserving the most active causal interactions between
cardiovascular, respiratory and brain systems. Moreover, ANNs can reconstruct the
flow of directed information in a ring of oscillators whose statistical properties can be
related to those of physiological networks.

Subjects Algorithms and Analysis of Algorithms, Data Science, Optimization Theory and
Computation, Scientific Computing and Simulation, Theory and Formal Methods

Keywords Granger causality, State-space models, Vector autoregressive model, Artificial neural
networks, Stochastic gradient descent L1, Multivariate time series analysis, Network physiology,
Remote synchronization, Chaotic oscillators, Penalized regression techniques

INTRODUCTION

A fundamental problem in the study of dynamical systems in many domains of science
and engineering is to investigate the interactions among the individual system components
whose activity is represented by different recorded time series. The evaluation of the
direction and strength of these interactions is often carried out employing the statistical
concept of causality introduced by Wiener (1956) and formalized in terms of linear
regression analysis by Granger (1969). Wiener—Granger causality (GC) was firstly
introduced in the framework of linear bivariate autoregressive modeling in its
unconditional form for which a generic time series X is said to Granger-cause another
series Y if the past of X contains information that helps to predict the future of Y above and
beyond the information already contained in the past of Y (Granger, 1969). In the presence
of more than two interacting system components, to take into account the presence of
other time series which can potentially affect the two time series under analysis the
bivariate formulation has been extended to the multivariate case through the use of vector
autoregressive (VAR) models, leading to the computation of a conditional form of GC
(Geweke, 1984). Due to its linear formulation, GC is very easy to implement, with very few
parameters to be estimated if compared with model-free approaches and with a reduced
computational cost (Porta e Faes, 2015).

GC from a driver to a target time series is typically quantified by comparing the
prediction error variance obtained from two different linear regression models: (i) the “full
model”, in which the present sample of the target series is regressed on the past samples of
all the time series in the dataset; (ii) the “restricted model”, in which the present of the
target is regressed on the past of all the time series excluding the driver (Barnett ¢ Seth,
2014). However, this formulation does not take into account that, from a theoretical
point of view, the order of the restricted model is infinite, leading to a strong bias or a very
large variability associated with the estimation of GC, depending on the model order
selected (Stokes & Purdon, 2017; Faes, Stramaglia & Marinazzo, 2017; Barnett, Barrett &
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Seth, 2018). To overcome the latter problem, an approach based on state-space (SS)
modeling of the observed VAR process has been introduced (Barnett ¢» Seth, 2015); SS
models provide a closed-form SS representation of the restricted VAR model and thus,
starting from the identification of the full model only, GC in its conditional and
unconditional form can be retrieved with high computational reliability directly from the
SS parameters (Solo, 2016; Barnett ¢ Seth, 2015; Faes, Stramaglia ¢ Marinazzo, 2017).

The literature provides different methodologies for VAR model identification, such as
the solution of the Yule-Walker equations through Levison’s recursion or the Burg
algorithm (Kay, 1988) by using the closed-form solution of Ordinary least squares (OLS)
estimator, or more sophisticated such as those based on Artificial Neural Networks
(ANNs). ANNs have become very popular in recent years, and they have been extensively
used as a modeling tool because they are data-driven self-adaptive methods and can
work as universal functional approximators (Hornik, Stinchcombe & White, 1989; Hornik,
1991). The ANN structure used for linear regression comprises one input layer and
one output layer which are linked by a matrix of weights obtained after training the
network. During the training process, the inputs are presented to the network and the
weights are adjusted to minimize the distance between the real and predicted output using
error backpropagation techniques (Bishop, 1995).

However, regardless of the methodology used to approach the regression problem,
the estimation may be problematic in the setting of many observed processes and short
time series available (Antonacci et al., 2019a). The literature reports that the stability
and the existence of the solution for a linear regression problem are ensured when the
number of data points is an order of magnitude greater than the number of VAR
coefficients to be estimated (Schlogl ¢» Supp, 2006; Liitkepohl, 2013). To cope with the
issues arising in GC estimation when the ratio between data size and number of unknown
parameters is low, different approaches have been proposed such as the use of time-
ordered restricted VAR models (Siggiridou & Kugiumtzis, 2015), or the so-called partial
conditioning (Marinazzo, Pellicoro ¢ Stramaglia, 2012), and of penalized regression
techniques based on the /;-norm (LASSO regression) (Antonacci et al., 2020b; Tibshirani,
1996; Pagnotta, Plomp & Pascucci, 2019). In the latter case, the solution of the linear
regression problem is found adding a constraint to the cost function to be minimized,
usually the Mean Squared Error (MSE), that induces variable selection of the VAR
parameters with a consequent reduction of the MSE associated with the estimation
process. Based on /;-constrained problems, in recent years, different [;-regularized
algorithms have been developed to avoiding overfitting during the training of ANNS.
Moreover, the I;-norm can be applied directly on the weights of the network during the
training phase in an efficient way through stochastic gradient descent [; (SGD-I;)
(Tsuruoka, Tsujii ¢ Ananiadou, 2009). While the use of ANNs as a VAR model for
GC estimation has been proposed in both linear (Talebi, Nasrabadi ¢» Mohammad-
Rezazadeh, 2018) and non-linear frameworks (Montalto et al., 2015; Attanasio & Triacca,
2011; Duggento, Guerrisi ¢» Toschi, 2019), the implementation of SGD-I; has never been
tested for the purpose of reducing the effects of data paucity on the estimation of GC.
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In the present work, an ANN used as a VAR model is embedded in the SS framework
for the computation of GC (conditional and unconditional) and compared with the
traditional OLS regression both in benchmark networks of simulated multivariate
processes and in real-data scenarios. In simulations, we show how training parameters that
are typically chosen in a heuristic way (i.e., learning rate and the number of iterations of
gradient descent) can affect the estimation of GC in conditions of data paucity; after
optimizing these parameters, we test the performance in the quantification of GC
magnitude and statistical significance, reflecting respectively coupling strength and
structure of the investigated directed functional network, comparatively with standard
OLS identification. In real data analysis, we compare the two approaches first in
physiological time series, reporting the evaluation of information flow and topology of
the network of interactions between brain and peripheral systems probed in healthy
subjects in different conditions of mental stress elicited by mental arithmetic and sustained
attention tasks (Antonacci et al., 2020b; Zanetti et al., 2019), and then in signals produced
by electronic circuits, showing how GC measures can describe the effect of remote
synchronization previously observed in a ring of coupled chaotic oscillators (Gambuzza
et al., 2013; Minati, 2015a; Minati et al., 2018).

The algorithms for the training of ANNs based on SGD-I; algorithm with the
subsequent computation of GC by exploiting the SS framework are collected in the
ANN-GC MATLAB toolbox, which can be downloaded from https://github.com/
YuriAntonacci/ANN-GC-Toolbox.

METHODS

Vector autoregressive model identification

Let us consider a dynamical system ) whose activity is mapped by a discrete-time
stationary vector stochastic process composed of M real-valued zero-mean scalar
processes, Y = [Y; -+ Y)]. Considering the time step # as the current time, the present and
the past of the vector stochastic process are denoted as Y,, = [Y;,, -+ Yar,,] and

Y, = [Y,-1Y,—2 - -], respectively. Moreover, assuming that Y is a Markov process of
order p, its whole past history can be truncated using p time steps, i.e., using the Mp-
dimensional vector Y? such that Y, ~ Y/ = [Y,_; ---Y,_,]. Then, in the linear signal
processing framework, the dynamics of Y can be described by the vector autoregressive

(VAR) model:

M~

Yn = Ynkak + Ui’h (1)

T

1

where Ay is an M x M matrix containing the VAR coefficients, and U = [U; - Up/] is a
vector of M zero-mean white processes, denoted as innovations, with M x M covariance
matrix > = E[UTU,] (E is the expected value).

Let us now consider a realization of the process Y involving N consecutive time steps,

collected in the N x M data matrix [y;;---;yx], where the delimiter “;” stands for row
separation, so that the i row is a realization of Y, i.e., Yi = [yri---yails i = 1,..,N, and the
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j™ column is the time series collecting all realizations of Y, ie, [yi1-.-yjn] Li=1,..,M,.
The Ordinary least squares (OLS) identification finds an optimal solution for the problem
(1) by solving the following linear quadratic problem:

A = argminy||y —yPAHg, (2)

YW= yp+1, -3 y&] is the (N — p) x Mp matrix of the regressors and A = [ A;--+; Ap] is the
Mp x M coefficient matrix. The problem has a solution in a closed form

A = ([y*]"y*) "' [y*]"y for which the residual sum of squares (RSS) is minimized
(Ltitkepohl, 2013).

Artificial neural networks as a vector autoregressive model
Let consider a generic ANN described by the function y = fiw;x) which takes as input a
vector x € R% and outputs a scalar value y € R;. In the following, we consider networks with
a single output for the sake of simplicity, but all the treatments can be extended to the
case of multiple outputs. The output of the network depends on a set of Q adaptable
parameters (i.e., the weights connecting the layers), that are collected in a single vector w €
R? to be optimized during the training process.

Given a training data set of N input/output pairs S = {X;; }, the learning task aims at
solving the following regularized optimization problem:

N
w= argminW%; I(yi, f(W;x;)) + Ar(w), (3)

where I(-,-) is a convex function € C, i.e, continuously differentiable with respect to w,
while r(-) is a convex regularization term with a regularization parameter A € R*. A typical
loss function used for the linear regression problem is the squared error of the regression
analysis. Inspired by the LASSO algorithm, a way to enforce sparsity in the vector of
weights is to penalize the cumulative absolute magnitude of the weights by using the /;
norm as regularization term:

Q
r(w) = [lwll, = > [wl- (4)
k=1

Then, a possible way to solve the problem (3) is to use Stochastic Gradient Descent
(SGD) that exploits a small randomly-selected subset of the training samples to
approximate the gradient of the objective function. The number of training samples used
for this approximation is the batch size. In the present work, we adopt a full batch
approach in which all samples are considered, so that SGD simply translates into gradient
descent. For each training sample i, the network weights are updated as follows:

0
wl = w + nfaw(l(y” W:X;)) Z [wkl), (5)
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where j is the iteration counter and #; is the learning rate at each iteration. The difficulty
with [; regularization is that the last term on the right-hand side in (5) is not differentiable
when the weight is zero. To solve this issue, following the procedure introduced in
Tsuruoka, Tsujii & Ananiadou (2009) I, regularization with cumulative penalty is applied
directly on the weights of the network during the training process.

Let u; be the absolute value of the total /; penalty received by each weight. Since the
absolute value of the [; penalty does not depend on the weight and on the regularization
parameter A, it is the same for all the weights and is simply accumulated as:

A\
b= 2 (6)

At each training sample i, the weights of the network are updated as follows:

T ; Ol(y;, f(w; x;
WJk 2 W;C + ”Ij% |w:wf7 (7)
j+3 j+1 j+3 i—1
if w, 2>0 thenw, = max(0,w, > — (ux+q, )), (8)

1 1
+5 ; _ +5
else if w]k 2 <0 then w],' = min(0, w]k 2

— (=g ), ©)
where qik is the total [;-penalty that wy has actually received:

o 3
q, = z:(w]t:rl —w, ). (10)

t=1

This method for updating the weights penalizes the weight according to the difference
between u; and qﬁc_l and is called SGD-I,.

Generalizing the whole procedure to a network with multiple outputs, in the linear
signal processing framework the optimization problem (3) can be solved by using a linear
function f(-;+) linking the input layer with the output layer. In particular, the structure of
the neural network necessary for solving the regularized problem (3) in the linear
framework is reported in Fig. 1 for the n™ training sample. The input layer shows Mp
neurons representing the past history of the considered stochastic process, truncated at p
lags (Y?).The output layer is composed of M neurons representing the present state of the
whole system (Y,,). The Mp x M matrix W contains the weights of the networks that
describe the relationships existent between the output and the input layer. Considering all
the (N — p) training samples, the loss function I(-,-) becomes:

Iy, y¥'W) = |ly — W[5, (11)

which highlights that the weight W corresponds to the matrix A containing the
parameters of the VAR model (1). Thus, the described ANN is completely equivalent to a
VAR model, except for the fact that the training process induces sparsity into the weight
matrix W. A feed-forward neural network with no hidden layers, like the one described
above, is a generalized linear model that can be identified with an equivalent least squares
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Input Layer Output Layer

Figure 1 Schematic representation of the architecture of the Neural Network used as VAR model.
The input and the output of the network are represented by the lagged variables and by the present
states of all processes included in the analysis. Full-size K&l DOTI: 10.7717/peerj-cs.429/fig-1

optimization problem with /; regularization applied to the estimated coefficients. If this
regularization is not applied, and by using the loss function (11), the problem stated in (3)
is completely equivalent to an OLS regression (Sun, 2000).

Determination of the regularization parameter

The determination of the regularization parameter A is a key element of the estimation
process, as its selection strongly influences the performance of resulting regression. For a
high value of A, the SGD-I; algorithm provides a matrix of weights W in which all entries
are zero. On the other hand, when A — 0, the weights stored in W are all different
from zero and the solution corresponds to the OLS solution (Tibshirani, 1996). In this
work, the optimal value for A has been tested in the range [A;, A,], where A; and A, are the
values leading to maximum density (no zero elements) and maximum sparseness (all zero
elements) of the weight matrix. Subsequently, following the procedure described in Sun
et al. (2016), with a hold out approach, we independently draw 90% of the samples
available (rows of y and y”) as the training set and kept the remaining 10% for testing.
Training and test sets were then normalized and, for each assigned A, the number of
non-zero weights was counted in the matrix W estimated on the training set, and the RSS
was computed on the test set as well. This procedure was iterated for each A, and the
optimal A was taken as the value minimizing the ratio between RSS and the number of
non-zero weights (Sun et al., 2016; Antonacci et al., 2020b; Tibshirani ¢ Taylor, 2012). The
weight matrix W obtained with the selected optimal A was then used for the subsequent
GC analysis.

Measuring Granger causality
Given the vector process Y = [Y} «++ Y], let us assume Y] as the target process and Y; as the
source process, with the remaining M — 2 processes collected in the vector Y, where
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s={L,....M Ny} Con51der1ng the past of the source process and the past of the target
process Y]p , we state that the i’ i process G-causes the ;" process (condltlonal on the other s
processes), if Yf , conveys information about Y, above and beyond the information
contained in YJP » and in all other processes YZ . This definition is implemented regressing
the present of the target on the past of all processes (full regression) and on the past of all
processes except the driver (restricted regression), to yield respectively the prediction
errors Ejjjis = Yj, — B[Y;,|YP] and Ejj;, = Y, — B ]n|Y]pn,YP] The resulting
prediction error variances, ), = E[E ]Zl i, o) and N\ = B[E; i, ,) are then combined to
obtain the definition of GC (in its conditional form) from Y; to Y; (Geweke, 1982):
Fijs = ln%. (12)
lijs

Following a similar reasoning, the GC in its original form (unconditional) from Y; to Y;
is defined as (Granger, 1969):

A
Fij=In2l (13)
A
where \j; = E[E; in ] and \;; = E[E; i ) are the prediction error variances of the linear
regression of Y, on Yp and on [Y? ]ﬂ Y ,n] respectively obtained from the errors
Ejjjin = Yjn — El Jv"| j,n] and Ejjjjy = Yjn — [ ‘ jm zn]

The prediction error variances needed for the determination of the GC measures can be
computed from the identification of the model (1) or by the training of the presented
neural network, i.e., from the parameters (Aj,.. A,0) estimated using OLS or from the
weights (W,0) estimated through the SGD-/; training algorithm. Given that Ejj;;s,, = U
the error variance of the full regression can be obtained as the j* diagonal element of the
error covariance matrix Aj;;s = 0(j,j). The other partial variances in (12) and (13) can be
retrieved, starting from the identification of the full model, by exploiting the theory of
State-Space (SS) models (Barnett & Seth, 2015; Faes, Marinazzo ¢ Stramaglia, 2017),
according to which the VAR model (1) can be represented as an SS model relating the
observed process Y to an unobserved process Z through the equations (Barnett ¢ Seth,
2015; Solo, 2016):

Z,., =Z,A+EK, (14)
Y, =2,C+E,, (15)

where the innovations E, = Y, — E[Y,|YZ] are equivalent to the innovations U,, in (1)
and thus have covariance matrix ® = E[ETE,] = . This representation, typically denoted
as “innovation form” SS model (ISS) (Barnett ¢ Seth, 2015), also evidences the Kalman
Gain matrix K, the state matrix A and the observation matrix C, which can all be computed
from the original VAR parameters in (1) as reported in (Faes, Marinazzo ¢ Stramaglia,
2017). The advantage of this representation is that it allows to form “submodels” which
exclude one or more scalar processes from the observation Eq. (15) leaving the state

Eq. (14) unaltered. In particular, the submodels excluding the driver process Y}, the group
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of s processes Y, or the the driver process Y; and the group of s processes Y, have the
following observation equations:

Yjs,n = ZnC(]s) + Ejs,na (16)
Yiin = Z,C%) + Eji,,, (17)
Y, = Z,CY +E;, (18)

where the superscripts (js), (ji) and (j) denote the selection of the columns with indices (js),
(ji) and (j) in a matrix. As shown by (Barnett ¢ Seth, 2015), the submodels (14,16), (14,17)
and (14,18) are not in ISS form, but can be converted into ISS by solving a Discrete
Algebraic Riccati equation (DARE). Then, the covariance matrices of the innovations Ej; ,,
Ej;, and E;,, include the desired error variances Aj;;, Ajj;; and A;; as the first diagonal
element.

In order to establish the existence of a direct link from the i node to the /" node of the
network represented by the observed vector process, the statistical significance of the
conditional GC computed after OLS identification of the VAR model was tested using
surrogate data. Specifically, one hundred sets of surrogate times series were first generated
using the Iterative Amplitude Adjusted Fourier Transform (IAAFT) procedure (Schreiber
¢ Schmitz, 1996); then, for each directed link (i,j pair), the conditional GC Fi_js
was estimated for each surrogate set, a threshold equal to the 95™ percentile of its
distribution on the surrogates was determined, and the link was considered as statistically
significant when the estimated F;_;; was above the threshold. In the case of ANN
identification, the statistical significance of the estimated conditional GC values was
determined in a straightforward way exploiting the sparseness of the weights matrix W
resulting from the training through SGD-/;.

Simulation experiments

This section reports three simulations designed to evaluate the performances of the
proposed estimator of the GC based on ANNs trained with SGD-/; in comparison with the
traditional VAR identification based on OLS. The first simulation evaluates the conditional
GC computed by the ANN estimator in known structures of networks assessed with
different amount of data samples, for different values of learning rate (1) and for different
values of iterations of the SGD-/; algorithm. blueln the second and in the third simulation
studies, after having extracted the best combination of learning rate and the number of
iterations of the gradient descent to be used in ANN-based estimation, we compare it
with OLS estimation as regards the ability to retrieve the true values of the conditional GC
and to reconstruct the assigned network topology. The effects of different values of
signal-to-noise ratio (SNR) and of simulating a denser network structure are evaluated
respectively in the second and in the third study. In all simulations, the topology is
representative of the interaction of a ten-variate VAR process exhibiting a random
interaction structure with two different values of density of connected nodes (Toppi et al.,
2016a; Antonacci et al., 2020b; Pascucci, Rubega ¢ Plomp, 2020).
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Figure 2 Graphical representation of one of the ground-truth networks of the simulation study.
Arrows represent the causal links randomly assigned between two network nodes via nonzero VAR
coefficients. The thickness of each arrow is proportional to the strength of the causal connection assessed
by the conditional GC, with minimum and maximum values equal to 0.0069 and 0.4. The number of
connections for each network is set to 14 out of 90. Full-size K&] DOT: 10.7717/peerj-cs.429/fig-2

Simulation studies I-ll

Simulated multivariate time series (M = 10) were generated as a realization of a VAR(16)
model fed by zero-mean independent Gaussian noise with variance equal to 0.1. The
simulated networks have a ground-truth structure with a density of connected nodes equal
to 15%, where non-zero AR parameters of values chosen randomly in the interval

[-0.8, 0.8] were set at lags assigned randomly in the range (1-16) (Anzolin & Astolfi, 2018).
The knowledge of the true AR parameters allows computing the theoretical values of the
conditional GC and the true network topology, as illustrated for an exemplary case in
Fig. 2. Simulations were generated for different values of: (1) the parameter K defined as
the ratio between the number of data samples available (N x M) and the number of AR
coefficients to be estimated (M* x p); (2) the signal-to-noise ratio (SNR) defined as the
ratio between the squared amplitude of the signal and the square amplitude of additive
white noise. One hundred networks were generated for each value of K in the range
(1,3,10,20); the length of the simulated time series was N = 160 when K = 1 and N = 3,200
when K = 20. When additive noise was considered in the simulation study, SNR varies in
the range (0.1, 1, 5, 10, 10°).

First, considering ANN estimation performed for each value assigned to K and for each
realization, the learning rate 7 and the number of iterations for the SGD-/; during the
training process were varied respectively in the range (107>,10%,107°) and in the range
(100,1000,2000). Importantly, for each network structure a different neural network was
trained initializing the weights according to the method described in Glorot ¢ Bengio
(2010) that guarantees a faster convergence of the gradient descent algorithm. After
training, the conditional GC between each pair of processes was estimated from the matrix
of the weights W using the SS approach. Then, in order to assess which combination of
learning rate—number of iterations of the gradient descent is the best for a regression

Antonacci et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.429 10/44


http://dx.doi.org/10.7717/peerj-cs.429/fig-2
http://dx.doi.org/10.7717/peerj-cs.429
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 3 Graphical representation of one of the ground-truth networks of the simulation study III.
Arrows represent the causal links randomly assigned between two network nodes via nonzero VAR
coefficients. The thickness of each arrow is proportional to the strength of the causal connection assessed
by the conditional GC, with minimum and maximum values equal to 0.03 and 0.31. The number of
connections for each network is set to ~38 out of 90. Full-size 4] DOT: 10.7717/peerj-cs.429/fig-3

problem different measures of performances were computed as explained in the following
subsection. Second, by using the best combination of learning rate\ number of iterations of
the gradient descent, the effects of K ratio and SNR were assessed by comparing the
performances of ANN and OLS in estimating conditional GC. In the latter case, the same
multivariate time series generated for the purposes of the first simulation study were used,
by simply adding white noise with amplitude tuned to get the desired SNR value.

Simulation study Il

Simulated multivariate time series (M=10) were generated as a realization of a reduced
VAR(6) process in which coefficients of a VAR(1) model were placed in the first lag for the
diagonal elements, while coefficients of a VAR(2) model were placed randomly with a
variable delay (up to 6) for the off-diagonal elements (Rodrigues & Andrade, 2015).
One-hundred surrogate networks were created assuming links in 80% of all possible
connections and directed interactions were placed in a subset of existing links (50%),
with a final value of density of connected nodes ~40%. Interactions were generated by
randomly assigning both positive and negative values to the VAR(2) coefficients outside
the diagonal. The magnitude of AR coefficients was randomly determined (range: 0.15-0.5
in steps of 0.01) (Pascucci, Rubega & Plomp, 2020). For each simulated dataset, the
stochastic generation of a VAR model was reiterated until the system reached the
asymptotic stability for which the real eigenvalues are lower than zero (Barnett ¢ Seth,
2014). The knowledge of the true AR parameters allows computing the theoretical
values of the conditional GC and the true network topology as illustrated in Fig. 3.
Simulations were generated for different values of the K ratio, as defined in the previous
section, in the range (1, 3, 10, 20) with a resulting time series length N = 60 when K =1 and
N = 1200 when K = 20. In order to evaluate the differences between ANN and OLS
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estimation approaches, different measures of performance were computed as explained in
the following subsection. For the ANN case we used the best combination of learning
rate number of iterations of the gradient descent obtained from simulation study I.

Performance evaluation

Performances were assessed both in terms of the accuracy in estimating the strength of the
network links through the absolute values of the conditional GC measure, and in terms of
the ability to reconstruct the network structure through the assessment of the statistical
significance of the GC.

The bias of GC was computed comparing the estimated and theoretical GC values. For
each pair of network nodes represented by the processes Y; and Y}, the theoretical GC
obtained from the true VAR parameters, F;_j;, was compared with the corresponding
estimated GC value, F;_,;; through the absolute bias measure (Kim ¢ Kim, 2016):

bias = |Fl—>]‘$ — ﬁl_)]|5| (19)

The bias was assessed separately for null links and non-null-links, corresponding
respectively to zero and non-zero values of the conditional GC, yielding the measures bias,
and bias;. For each network, these two measures were averaged across the non-null
links (15 for the simulations I-II and 38 for the simulation III) and across the null links
(75 for the simulations I-II and 52 for the simulation III) to get individual measures,
denoted as BIAS,; and BIAS,. Finally, the distributions of the two parameters were
obtained across the 100 simulated network structures.

The ability of ANN and OLS to detect the absence or presence of a network link based
on the statistical significance of the GC was tested comparing two adjacency matrices
representative of the estimated and theoretical network structures. This can be seen as a
binary classification task where the existence (class 1) or absence (class 0) of a causal
connection is estimated using surrogate data for OLS and looking at the presence/absence
of non-zero weights for ANN, and is then compared with the underlying ground-truth
structure. Performances were assessed through the computation of false-negative rate
(FNR, measuring the fraction of non-null links with non-significant estimated GC), false-
positive rate (FPR, measuring the fraction of null links with significant estimated GC) and
Area Under Curve (AUC) that summarizes the information provided by FNR and FPR
(Toppi et al., 2016b; Antonacci et al., 2019a). In particular, the AUC parameter is obtained
by applying a trapezoidal interpolation between a point on the Receiver Operating
Characteristic (ROC) space, extracted knowing false positives and true positives, and the
two extremes of the ROC space (0,0) and (1,1). These performance measures were
computed across the network links for each assigned network, and the corresponding
distribution across the 100 simulated network structures was then obtained separately for
OLS and ANN. In the case of ANNs, the computation time (in seconds) required for the
training of the ANN for different values of learning rate, number of iterations of the
gradient descent and data samples available was also considered as a performance
parameter. The average computation times over the 100 realizations were calculated using
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an implementation of the algorithms in MATLAB' environment on a PC with a six cores
Intel Xeon (CPU clock speed 3.7 GHz), 128-GB DDR4 RAM.

To establish which combination of learning rate and number of iterations of the
gradient descent guarantees the most accurate results for each value of the K-ratio, an
indicator of the overall performance (parameter S) was defined as the average of the two
following performance parameters: (i) the bias as defined in (19) for non-null links,
normalized with respect to the theoretical GC value; (ii) the complement to 1 of the AUC
parameter, 1-AUC. These two parameters are both null in the case of perfect estimation,
and increase when the estimated GC values deviate from the theoretical (non-zero)
values or when the estimated network topology differs from the true topology. Both
parameters were averaged across values of the K-ratio, and then the S parameter was
computed as their average.The distribution of S across the 100 realizations was investigated
as a function of learning rate and number of iterations of SGD-I;.

Statistical analysis

For the first simulation, a three-way repeated-measures ANOVA was carried out for
each performance parameter (BIAS,,BIAS;,FNR,FPR,AUC), in order to evaluate the effects
on the computed performance parameters of different values of K (in the range [20, 10, 3,
1]), different values of the learning rate LR (in the range [107°,107%,107°]) and different
values of the number of iterations of SGD-I; (N4, in the range [100, 1000, 2000]).
Furthermore, with the aim of defining the best combination of learning rate and number of
SGD-1, iterations independently of the data size, a two-way repeated-measures ANOVA
was carried out for the parameter S using LR and Ny,,;, as factors and grouping data from
all values of K, so as to evaluate the effects of these two parameters on the overall
performance.

For the second simulation, five different three-way repeated-measures ANOVA tests,
one for each performance parameter (BIAS,,BIAS,,FNR,FPR,AUC), were performed to
evaluate the effects on the performance of different values of K (in the range [20, 10, 3]), of
different values of SNR (in the range [0.1, 1, 5, 10, 10°]) and of the two estimation methods
([OLS, ANNJ).

For the last simulation, five different repeated measures two-way ANOVA tests, one for
each performance parameter (BIASy,BIAS,,FNR,FPR,AUC), were performed to evaluate
the effects on the performance different values of K (in the range [20, 10, 3]) and different
estimation methods ([OLS, ANN]).

The Greenhouse-Geisser correction for the violation of the spherical hypothesis was
used in all analyses. The Tukey’s posthoc test was used for testing the differences between
the sub-levels of the ANOVA factors. The Bonferroni-Holm correction was applied for
multiple ANOVAs computed on different performance parameters.

Results of the simulation study |

The results of the three-way repeated-measures ANOV As, expressed in terms of F-values
and computed separately on all the performance parameters considering K, LR and N4,
as main factors, are reported in Table 1.
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Table 1 F-values and corresponding degrees of freedom (DoF) of the three-way repeated measures
ANOVA. **p < 107% **107° < p < 0.01; *0.01 < p < 0.05.

Factors DoF BIAS, BIAS, FNR FPR AUC
Nirain (2, 198) 7.8%%* 711%%* 467*** 68*** 609%**
LR (2,198) 69.6%* 461%%* 325% 171%% 656%*
Nirain X LR (4, 396) 110.4%** 101%** 279%*** 156%** 97.2%**
Nirain X K (6, 594) 139.7%%* 2.6* 4475 98 05
LR x K (6, 594) 200.9%%* 13%%* 47%5 1327 2.5%
Nirain X LR X K (12, 1,188) 28.2%%* 71.6%%* 20%** 15%%* 3.6
a) b)
103 LR=102 LR=10"* LR=10" LR=10" LR=10* LR=10"
12 | [-@=k=20] {} {t 1 oush [~@=x=20
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Figure 4 Distributions of the bias of conditional GC (value and 95% confidence interval across 100
simulated networks) estimated using ANNs for the first simulation study. Bias parameters computed
for the null links (BIASO), (A) and for the non-null links (BIAS1), (B) are plotted as a function of the
number of iterations of the gradient descent (Ntrain) for different values of the ratio between data
samples and model coefficients to be estimated (K) and of the learning rate (LR) of ANN training.
Full-size K&l DOI: 10.7717/peerj-cs.429/fig-4

The three-way ANOV As revealed a strong statistical influence of the main factors Ny, 4y,
LR and K and of their interaction on all the performance parameters analyzed. The only
non-significant effect was that of the interaction between N,,,;, and K on the AUC
parameter.

Figure 4 reports the distribution of the parameters BIAS, and BIAS; according to the
interaction Ny, X LR x K. In the analysis of the error associated with the estimation of
the conditional GC along the null links (BIAS,, Fig. 4A), an increase of the bias was
observed at decreasing the number of data samples available (factor K), regardless of the
learning rate (factor LR) and of the number of iterations of gradient descent (Ny4:,)-

Except for the case LR = 107, increasing the number of iterations N,,;, reduced the bias
for LR = 10> and for LR = 10™*, but not for LR = 10~> when the opposite behavior
was observed. The bias analysis of the GC values computed along the non-null links
(Fig. 4B) showed more clear patterns of the error, evidencing a decrease of BIAS; at
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Figure 5 Distributions of the parameters assessing the quality of network reconstruction performed
using ANNs for the first simulation study. Plots depict the distributions of FNR (A), FPR (B) and AUC
(C) expressed as mean value and 95% confidence interval across 100 simulated networks as a function of
the number of iterations of the gradient descent (Ntrain) for different values of the ratio between data
samples and model coefficients to be estimated (K) and of the learning rate (LR) of ANN training.
Full-size 4] DOT: 10.7717/peerj-cs.429/fig-5

increasing Ny, at increasing K, and at decreasing LR. The lowest mean values of BIAS,;
were obtained setting LR = 10 and N,ui, equal to 1,000 or 2,000.

Figure 5 reports the distributions of the parameters FNR, FPR and AUC according
to the interaction Ny, X LR x K. The portion of non-null directed links incorrectly
classified as null (FNR, Fig. 5A) was lower than 20% in all cases except for Ny,,;, = 100 and
K < 3. The rate of false negative detections decreased at increasing K regardless of LR and
Nirain- A strong effect of the number of iterations on the FNR was observed in the
most challenging condition of K = 1 (purple lines), especially when LR = 10~°. The portion
of null links incorrectly classified as non-null (FPR, Fig. 5B) was always lower than 20%.
The rate of false positive detections showed a tendency to increase at decreasing K,
while it was almost stable at varying LR and Ny,,;,. The best scenario appears LR = 1073,
showing a mean FPR under 0.1 for each value of K > 1. The overall accuracy measured
by AUC (Fig. 5C) reached the highest values for LR = 10> and N,,,;, € {1,000, 2,000}.
In these conditions, a very accurate reconstruction of the network structure was obtained,
as the accuracy was equal to 95 % for K = 20 and above 85% even when K = 1. The
performance showed a tendency to degrade at decreasing K, increasing LR and decreasing
Nirain-

Table 2 reports the computation time required for the training of the neural network in
different conditions of K ratio, learning rate and number of SGD-/; iterations averaged
across the 100 realizations. As expected, the computation time increases with the number
of iterations of the gradient descent and with the number of data samples available (K
ratio). The least and most time-consuming settings were Nyi, = 100, K = 1 and Ny =
2,000, K = 20, respectively taking ~2 s and ~210 s.

Figure 6 reports the distribution of the overall performance parameter S computed as a
function of the learning rate for different number of iterations of SDG-I; (interaction N4,
x LR). The results show how the performance is affected significantly by both factors, with
values of S that tend to decrease while increasing the learning rate and the number of
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Table 2 Average computation time (in seconds, measured for 100 simulated networks) required to
train the ANN for different values of K ratio, learning rate and number of iteration of gradient

descent.
Nirain LR=10" ILR=10"* LR=10"°
100 1,000 2,000 100 1,000 2,000 100 1,000 2,000
K =20 12.08 107.7 213.66 12 107.7 214.36 11.91 107.8 213.72
K =10 7.6 72.8 145.1 7.68 72.8 145.1 7.61 72.88 145.28
K= 3.4 33.12 65.9 3.44 33.25 66.1 3.4 33.18 66.22
K= 2.6 25.9 51.7 264 2598 51.69 2.6 26 51.82
1 : . ;
09 1
0.8
0.7 |
06 |
L 05 |
04 |
03 | =@— Nirain=100
02 b == Nirain=1000
0.1 Nirain=2000
0 | | I

LR=107 LR=10"

LR=10"

Figure 6 Distributions of S parameter considering the interaction factor Ni.,;,XLR, expressed as
mean value and 95% confidence interval of the parameter computed across 100 realizations of the
first simulation study (F(4,396) = 128.09, p < 107°).

Full-size K&l DOT: 10.7717/peerj-cs.429/fig-6

iterations of the gradient descent. The lower values of S, indicating lowest bias of the
estimated GC values and/or highest AUC in the classification of the network structure,
were observed for LR = 10 and N, = 1,000 or Ny, = 2,000. As the improvement from
Nirain = 1,000 to Ny, = 2,000 was not statistically significant, we infer that the best setting

is the least computationally onerous combination, i.e., LR = 1072, Nyyain = 1,000.

Results of the simulation study Il

After the extraction of the best combination of the training parameters of the ANN, in the

second simulation study we compare the performance of OLS and ANN at varying the

proportion between number of data samples available and parameters to be estimated

(K-ratio) as well as at varying the amplitude of white noise added to the original time series
(SNR). The results of the three-way repeated-measures ANOVAs, expressed in terms

of F-values and computed separately on all the performance parameters considering K,
SNR and TYPE (i.e., the method used: OLS or ANN) as main factors, are reported in

Table 3.
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Table 3 F-values and corresponding degrees of freedom (DoF) of the three-way repeated
measures ANOVA investigating the effects of the factors K (ratio between data samples and
number of model parameters), SNR (ratio between the squared amplitude of the signal and the
square amplitude of the noise) and TYPE (estimator used, i.e., OLS or ANN) on the performance
parameters of GC estimation (BIASO, BIAS1) and of network reconstruction (FNR, FPR, AUC).
¥ < 107% % 107 < p < 0.01.

Factors DoF BIAS, BIAS, FNR FPR AUC
TYPE (1, 99) 5,901*** 77.8%** 68.87%"* 27.4%* 36.9%*
SNR (4, 396) 328.1%"* 1,621.4*"* 6451 173.37%%* 761.27%
K (2, 198) 9,785.37%** 0.2 2,118.7%** 10.27%%* 1881.17**
TYPE x SNR (4, 396) 85.6*"* 199.7%** 2.6%* 46.27%* 10.5%%*
TYPE x K (2, 198) 8,578 99.97%** 1,093 *** 280.8™* 570.17%*
SNR x K (8,792) 33.3%* 167.4*** 50.4*** 19.4%% 30.37%*
TYPE x K x SNR (8, 792) 26.17%* 128.8%** 65.4%%* 13.3%%* 4547
a) OLS ANN b) OLS ANN
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Figure 7 Distributions of the bias relevant to the estimation of GC on the null links (BIAS,), (A) and
on the non-null links (BIAS1), (B) plotted as a function of the ratio between data samples available
and number of parameters to be estimated (K) and of the ratio between signal amplitude and noise
amplitude (SNR), for OLS estimation and ANN estimation.

Full-size k4] DOT: 10.7717/peerj-cs.429/fig-7

The three-way ANOVA highlights a strong statistical influence of the main factors K,
SNR and TYPE and of their interactions on all the performance parameters analyzed in
this study. In this case the level K = 1 was not considered in the statistical comparison due
to the non-convergence of the DARE equation for the OLS case.

Figure 7 reports the distribution of the parameters BIAS, and BIAS, according to the
interaction factor TYPE x K x SNR. The comparison of OLS and ANN shows that the
two estimation approaches have very different performance: in the computation of GC
over the null links, the error of ANN is very close to zero even in the most challenging
condition of K = 1, while OLS shows an increasing bias with the decrease of the number of
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Figure 8 Distributions of the parameters assessing the performance of network reconstruction, i.e.
the rate of false negatives (FNR), (A) and of false positives (FPR), (B) and of the area under the curve
(AUC), (C) plotted as a function of the ratio between data samples available and number of
parameters to be estimated (K) and of the ratio between signal amplitude and noise amplitude
(SNR), for OLS estimation and ANN estimation. Full-size k] DOT: 10.7717/peerj-cs.429/fig-8

data samples available for the estimation of GC values (Fig. 7A); in the computation of GC
over the non-null links, the estimation bias is low but shows a tendency to increase for
OLS, while it is remarkable but stable for the ANN. Concerning the additive noise, its
impact is much more noticeable for the OLS case which shows a large increase of the bias
measures with the decrease of SNR values; on the other hand, the trends of the two
measures of bias for the ANN case seem to be rather constant. Only the bias in the
computation of the GC on non-null links shows a slight reduction with increasing SNR.
However, in a condition of sufficient data samples available (K = 20) and a high value of
signal-to-noise ratio (SNR = 10°), OLS shows a bias associated with the non-null links
which is very close to zero and considerably lower than that associated with ANN.
Figure 8 reports the distributions of the parameters FNR, FPR and AUC according to
the interaction TYPE x K x SNR. When the value of SNR is equal to 10 the analysis of
false negative detections of directed links (panel a) shows that the error committed
increased with decreasing the number of data samples available. The error was comparable
for OLS and ANN when K = [20,10], and then increased more markedly for OLS, while it
remained lower than 10% even when K = 1 for ANN. On the other hand, the analysis
of false positive detections (panel b) showed an error quite low and stable with K in the
case of OLS, and an error slightly growing with K up to 15% in the case of ANN. The
overall performance evaluated through AUC showed high classification accuracy and
absence of statistically significant differences between the two estimation methods for K =
[20,10], and a better performance of ANN compared with OLS for lower values of K; a
high AUC value (~85%) was reported for ANN even when K = 1. The situation becomes
very different when the value of SNR decreases. Both false negatives and false positives
increase with the amplitude of the additive noise; the increase of FNR is remarkable for the
OLS method. The analysis of AUC trends for OLS case (panel c) highlights that when
SNR is very low and the number of data samples available is very scarce (K = 3, green line)

Antonacci et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.429 18/44


http://dx.doi.org/10.7717/peerj-cs.429/fig-8
http://dx.doi.org/10.7717/peerj-cs.429
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Average computation time (in seconds, measured for 100 simulated networks) required by
the OLS and ANN methods for the estimation of GC at different values of K ratio (SNR = 103).

Method OLS ANN
K =20 9.1-10° 142.18
K=10 45.10° 107.28
K=3 1.3.10° 67.6
K=1 - 60.38

Table 5 F-values and corresponding degrees of freedom (DoF) of the two-way repeated measures
ANOVA investigating the effects of the factors K (ratio between data samples and number of
model parameters) and TYPE (estimator used, i.e., OLS or ANN) on the performance parameters
of GC estimation (BIASO, BIAS1) and of network reconstruction (FNR, FPR, AUC). ***p < 1075
*107° < p < 0.01.

Factors DoF BIAS, BIAS, FNR FPR AUC

TYPE (1, 99) 1,295%** 3,518 105.7%** 4917 174.4%%*
K (2, 198) 7,454 1,196.27%* 968.2%** 111.1%% 1,468***
TYPE x K (2, 198) 6,770.5%** 15.8** 268.5%"* 69.5%* 102.8%**

AUC is less than 70 %. This is not the case for ANN which shows an average value of
AUC greater than 70 % even when K = 1 (purple line) and SNR = 0.1 which represents the
worst simulated scenario. Using a quantile-based thresholding criteria approach for the
AUC computation, as introduced in (Pascucci, Rubega & Plomp, 2020), yields substantially
overlapping trends of the performance measures (results reported in Fig. SI as
Supplementary Material).

Table 4 reports the computation time required for the entire process of GC computation
using the two estimation approaches for different values of the K ratio when SNR = 10°.
OLS analysis includes SS model identification and the subsequent evaluation of the
null-case distribution for each couple of nodes as described in the Methods section. ANN
analysis includes SS model identification plus the training process at Ny, = 1,000,

LR = 107, The analysis highlights the expected decrease of the computation times with
decreasing the K ratio and, more importantly, a strong reduction of the time requested for
the entire process when ANN is used in place of OLS. The computation time of OLS
identification is not reported for K = 1 due to the non-convergence of the solution to the
DARE equation necessary for SS model identification.

Results of the simulation study Il

In the last simulation study, we compare the performance of OLS and ANN at varying
the proportion between the number of data samples available and parameters to be
estimated (K-ratio). The results of the two-way repeated-measures ANOVAs, expressed
in terms of F-values and computed separately on all the performance parameters
considering K and TYPE (i.e., the method used: OLS or ANN) as main factors, are reported
in Table 5. The two-way ANOVA analysis highlights a strong statistical influence of the
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Figure 9 Distributions of the bias relevant to the estimation of GC on the null links (BIAS,), (A) and
on the non-null links (BIAS;), (B) plotted as a function of the ratio between data samples available
and number of parameters to be estimated (K), for OLS estimation (blue) and ANN estimation (red).
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main factor K and TYPE and of their interaction (TYPE x K) on all the performance
parameters analyzed. Also in this case the level K = 1 was not considered in the statistical
analysis due to the non-convergence of the DARE equation for the OLS case.

Figure 9 reports the distribution of the parameters BIAS, and BIAS; according to the
interaction factor K x TYPE. The comparison of OLS (blue line) and ANN (red line)
confirms the trends obtained for the case SNR = 10° in the Simulation study II. In fact,
the bias associated with ANN in the computation over null links is very close to zero even
in the most challenging condition of K = 1 with OLS showing a very different trend with a
strong increase associated with decreasing K-ratio values (panel a); in the computation
over the non-null links for ANN, the estimation bias displays a tendency to be stable but
remarkable if compared with OLS case.

Figure 10 reports the distribution of FNR, FPR, and AUC according to the interaction
K x TYPE. The analysis of both false negatives (panel a) and false positives (panel b)
shows a decrease with the increase of the number of data samples available. The false
negative rate is comparable for OLS and ANN when K = [20,10], and then increases
particularly for OLS while for ANN it assumes an average value around 30% in the
most challenging situation (K = 1). The analysis of false positives (panel b) shows a
quite low and stable trend for the OLS case for all values of K, and an increasing trend for
ANN up to 20% (K = 1). Even in the best scenario of K = 20 the false positive rate
assumes an average value of ~10%. The overall performance evaluated through AUC
indicates high classification accuracy (295%) with a statistically significant difference
between the two methods when K = [20,10] and a comparable performance when K = 3
with no statistically significant differences highlighted by the post-hoc test. However, in the
most challenging situation of K = 1 the ANN method leads to an AUC value greater
than 75 %. As a general remark, there is a worsening of the performance in reconstructing
the GC network if compared with a sparser simulated network (Study II) that is more
evident in the ANN case.
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Figure 10 Distributions of the parameters assessing the performance of network reconstruction, i.e.,
the rate of false negatives (FNR), (A) and of false positives (FPR), (B) and of the area under the curve
(AUC), (C) plotted as a function of the ratio between data samples available and number of
parameters to be estimated (K) for OLS estimation (blue) and ANN estimation (red).

Full-size K&l DOL: 10.7717/peerj-cs.429/fig-10

APPLICATION TO PHYSIOLOGICAL TIME SERIES

This section reports the application of the conditional GC, defined as in Eq. (12) and
computed using OLS and ANN estimators, to the analysis of physiological networks
formed by several time series reflecting the variability of heart rate, respiration, blood pulse
propagation time, and of the amplitudes of different brain waves detected from EEG
signals. The dataset used for the analysis was collected in a previous study on the
interactions between various organ systems during different levels of mental stress (Zanetti
et al., 2019).

Data acquisition and pre-processing

The experimental protocol involved eighteen healthy participants with age between 20 and
30 years, from whom different physiological signals were recorded during three tasks
inducing different levels of mental stress: a resting condition lasting 12 min and consisting
in watching a relaxing video (R); a mental arithmetic test during which the volunteer had
to carry out the maximum number of 3-digit sums and subtractions (M); a sustained
attention task that consisted in following a cursor on the screen while trying to avoid some
obstacles (G). The experiment was approved by the Ethics Committee of the University of
Trento, and all participants provided written informed consent. The study was in
accordance with the Declaration of Helsinki.

The acquired physiological signals were the Electrocardiogram (ECG) signal, the
respiratory signal (RESP) monitoring abdomen compartment movements, the blood
volume pulse (BVP) signal measured through a photoplethysmographic technique, and
Electroencephalogram (EEG) signals acquired using 14 channels Emotiv EPOC PLUS
(international 10-20 locations). More details on the instrumentation and acquisition
steps can be found in (Zanetti et al., 2019). The acquired physiological signals, representing
the dynamical activity of different integrated physiological systems, were processed to
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extract synchronous time-series representing the time-course of different stochastic
processes. Specifically, a template matching algorithm was employed to extract R peaks
from the ECG and then measure R-R interval time series (process 7). The breath signal was
sampled in correspondence of the R peaks to attain respiratory time series (process p).
Moreover, the pulse arrival time was extracted as the time interval between the ECG R
peak and the maximum derivative of the BVP signal (process m) for each cardiac cycle.
With regard to brain activity, the power spectral density (PSD) of the EEG signals
measured at the electrode F, was calculated using a 2-s long sliding window with 50%
overlap. Then, for each window, the PSD was integrated within four different frequency
bands to obtain time series representative of the § (0.5-3 Hz), 0 (3-8 Hz), « (8-12 Hz)
and 3 (12-25 Hz) brain wave amplitudes. The use of these frequency bands was motivated
by studies which relate increasing levels of fatigue or alertness with higher PSD of the §,
0 and « processes and lower PSD of the 8 process (Sciaraffa et al., 2020; Tran et al.,
2007; Trejo et al., 2007). The brain time series extracted in this way was synchronous with
those obtained resampling at 1 Hz the three cardiovascular time series using spline
interpolation (Zanetti et al., 2019). The rate of 1 Hz, which sets a time scale for the
analysis which is compatible with the spectrum of heart rhythms, has already been used in
previous studies in the field of network physiology for analyzing the time series from
different body locations (Bashan et al., 2012; Bartsch et al., 2015). The uniformity of the
final sampling rate and the synchronization of the signals acquired from different devices
permitted to obtain seven synchronous time series for all the physiological districts.

Following the procedure described above, synchronous segments of the seven time
series were selected inside each experimental condition (R, M, or G); each time series
consisted of 300 samples, corresponding to five minutes of signal recording. All time
series were checked for a restricted form of weak sense stationarity using the algorithm
proposed in (Magagnin et al., 2011), which randomly extracts a given number of sub-
windows from each time series and assesses the steadiness of mean and variance across the
sub-windows. The seven time series extracted from each subject and experimental
condition were considered to be a realization of a VAR process descriptive of the behavior
of a dynamical system that describing the observed network of physiological interactions.
For each subject and condition, the parameters of the VAR model fitting the seven
observed time series, Ay,..., A, 0, were estimated with the two procedures described
(i.e., OLS and ANN). The model order p was estimated for each experimental condition
and subject through the Bayesian Information Criterion (BIC) (Schwarz, 1978).

Granger Causality analysis

To assess the topological structure of the physiological network, the conditional
Granger causality between each pair of nodes, F;_;;, was computed through SS analysis
applied to the VAR parameters estimated with the two presented methods (i.e., OLS
and ANNs), and its statistical significance was assessed with the associated approach
(i.e., using surrogate data for OLS and exploiting the intrinsic sparseness after the training
process for ANN). The analysis was performed between each pair of processes as driver
and target (i,j = [1,p,m,6,0,a,], i # j) and collecting the remaining five processes in the
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Figure 11 Topological structure of the network of physiological interactions reconstructed during
the rest (R), mental arithmetic (M) and serious game (G) experimental conditions. Graphs depict
significant directed interactions within the brain (purple arrows), body (red arrows) and brain-body
(green arrows) sub-networks. Directed interactions were assessed counting the number of subjects for
which the conditional Granger causality (F;j) was detected as statistically significant using OLS (A-C)
or ANN (D-F) in the estimation process. The arrow thickness is proportional to the number of sub-
jects (n) for which the link is detected as statistically significant.

Full-size K&l DOT: 10.7717/peerj-cs.429/fig-11

n=3

conditioning vector with index s. Moreover, to confirm the results obtained in (Antonacci
et al., 2020b) on the same data, the in-strength—defined as the sum of all weighted
inward links (Rubinov ¢ Sporns, 2010)—was computed for a specific network node (pulse
arrival time 7). The effect of the different experimental conditions on the in-strength
evaluated for the 7 node was assessed through the Kruskal-Wallis test followed by the
Wilcoxon rank-sum test between pairs of conditions. All analyses were performed with a
model of dimension Mp, where M = 7 and p ~ 4 (depending on the BIC) on time series of
300 points, corresponding to K ~ 10 relating the amount of data sample available to the
model dimension. The performed analysis can be replicated by running the MATLAB
script Test_Application in the released toolbox for a single subject taken from the entire
dataset (TimeSeriesStress).

Results of Granger causality analysis

Figure 11 depicts the network of physiological interactions reconstructed through the
detection of the statistically significant values of the conditional Granger causality (F;_js)
computed for all pairs of processes belonging to the analyzed network. The weighted
arrows represent the most active connections among the systems (arrows are present when
at least three subjects show a statistically significant value of F;_,;;). To ease interpretation
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and comparison between OLS and ANN estimates, the three sub-networks representative
of brain, body and brain-body interactions are depicted with arrows of different colors.
The networks estimated using OLS in the three experimental conditions (Figs. 11A-11C)
exhibit similar structures to those estimated using ANN (Figs. 11D-11F); the main
difference is that networks estimated with ANN show greater sparsity than those estimated
with OLS.

A qualitative analysis of the networks illustrates the existence of a highly connected
body sub-network (red arrows), a weakly connected brain sub-network (purple arrows),
and a pattern of brain-body interactions (green arrows) that changes with the experimental
condition. The body interactions are characterized, consistently across the three
conditions, by cardiovascular links (interactions from # to 7) and cardio-respiratory
links (interactions between # and p), with a weaker coupling between p and 7. The use of
ANN reveals a preferential direction from p to 7 that is not present in the condition M and
is bidirectional in the condition G. The topology of the brain sub-network assessed by
the ANN method is less stable across conditions, and looses consistency moving from
R to G. On the contrary, in the OLS case, the topology seems to be more consistent
exhibiting weaker connections moving from R to M and from M to G. The analysis of
brain-body interactions reveals that such interactions are mostly directed from the brain to
the body sub-networks; in this case, the use of ANN clearly shows an increasing of brain-
body interactions during the condition G.

Figure 12 reports the distribution of the values of the in-strength index evaluated for
the 77 node in each experimental condition. For both OLS and ANN, the median value
of the in-strength index is significantly higher in the condition R with respect to the
condition G. The use of ANN highlights lower values for the in-strength parameter even if
the trend is the same moving across the three experimental conditions. These results
show that both approaches detect a decrease of the information flow directed to the
cardiovascular node of the body subnetwork, documented by the reduction of the in-
strength index in the G condition for the process 7.

APPLICATION TO A RING OF NON-LINEAR ELECTRONIC
OSCILLATORS

In this section we investigate the application of GC, in its unconditional version, computed
through OLS and ANN by exploiting the SS approach, to a dataset of electronic non-linear
chaotic oscillators, recorded from a unidirectionally-coupled ring of 32 dynamic units,
previously realized with the aim of studying remote synchronization (Minati, 2015a;
Minati et al., 2018). In the literature, it has been pointed out that a single transistor
oscillator can exhibit very complex activity and a ring of coupled oscillators can create a
community structure with statisical properties resembling physiological systems
(Takahashi, 2013; Stam, 2005; Minati et al., 2015). The previous analysis has shown how it
is possible to provide a mesoscopic description of the information exchanged between
different nodes of a network which represents the activity of several physiological systems.
On the other hand, the employment of an electronic circuit comprising a ring of
oscillators, provides a system of reduced scale and complexity, with respect to a

Antonacci et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.429 24/44


http://dx.doi.org/10.7717/peerj-cs.429
https://peerj.com/computer-science/

PeerJ Computer Science

OLS ANN
0.30 ; ; : . , :
# #
o
025 1t i
o o
0.20 t r 1t .
° o
o
0.15 | o ° 11 ° .
o
o
0.10 | 0 0 1t ]
= °
o
:o o 6 ° *
0.05 | ° T — 1 F ° 3 3 1
%00 o ° 4
0 ¢g
o
o E9 5 B
R M G R M G

Figure 12 In-strength index computed for © node of the physiological network. Box plots report the
distribution across subjects (median: red lines; interquartile range: box; 10"-90"" percentiles: blue bars)
and the individual values (circles) of the in-strength computed at rest (R), during mental stress (M) and
during serious game (G). Statistically significant differences between pairs of distributions are marked
with # (R vs G). Full-size K&l DOT: 10.7717/peerj-cs.429/fig-12

physiological one, yielding full access to the activity of each individual node. The resulting
time series, measured as voltage output by each oscillator, were considered as input for a
VAR model and for an ANN, descriptive of the behavior of the entire network ring.

System description and synchronization analysis
The structural diagram of the oscillator circuit corresponding to each node in the network
is reported in Fig. 13A and comprises four summing stages associated with low-pass filters.
Three such stages with negative gains G; = -3.6, G, = -3.12, G4 = —3.08 and filter
frequency F; = F, = F; = 2 kHz are arranged as a ring oscillator. Two Integrator stages with
integration constants K; = 3.67 K, = 0.11 s~ ' with mixing gains G; = —0.5 and G5 = —0.71
are overlapped to this structure. The ring is completed through fourth summing stages
having F, = 100 kHz :amp:gg; F, with one input (gain G¢ = 0.132) which is necessary to
close the internal ring itself and another (gain G; = — 1.44) connected to the previous
oscillator in the ring network (Fig. 13B). To limit the voltage swing for the off-chip signal a
gain inverter G, = — 0.4 is installed. The recorded time series have a length [ = 65,536 points
and are sampled with a sampling frequency f; = 100 kHz and are freely available (Minati,
2015D).

The frequency spectrum of each node is represented by three peaks: the most prominent
(central one) at f. = 2.8 kHz and two weaker ones (sidebands) at f; = f./2 = 1.4 kHz and
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Figure 13 Diagram of the oscillator circuit corresponding to each node in the network (A). Master-
Slave (unidirectional, clock-wise) structure of the ring comprising thirty-two oscillators (B).
Full-size K&l DOT: 10.7717/peerj-cs.429/fig-13

fn =fi + fc = 4.2 kHz. The higher sideband represents the mirror frequency of the lower
one. As explained in (Minati et al., 2018), demodulation via envelope detection and
subsequent interference occurs, and these phenomena lead to spatial fluctuations of the
lower sideband amplitude that are closely related to the remote synchronization effect.
In this system, remote synchronization is manifest as a non-monotonic decay of
synchronization along the ring, wherein, with increasing distance from a given node, on
average synchronization drops, then increases transitority, and finally vanishes.

As in previous works (Minati, 2015a; Minati et al., 2018), we determined the
instantaneous phase ¢,,(t) and the envelope A,,(t) of the output signal v,,(t) of each
oscillator m with the following relationship:

Vi (£) + iV () = A (1)), (20)

where ¥,,(t) is the Hilbert transform of the recorded signal v,,(t).

Given two generic time series Y; and Y}, amplitude synchronization for the envelope
A,,(t) was considered in terms of the maximum normalized cross-correlation coefficient
for non-negative lags (that is, lags that take into account a possible propagation time
along the direction of coupling, clock-wise in this system) max[Cjj;)] > o which is defined
as:

Cl](‘C) = s (21)
0107

where k;j(7) = E [(Yi, + - — ph)(Yjn + - — )] is the time cross-covariance, y; = E [Y;,] and

uj = E [Y;,] that represent the mean of values of Y; and Yj; 67 = E[(Y;, — 1;)*] and

sz =E[(Yj, — uj)z] which correspond to the variances of Y; and Y; respectively.

In Fig. 14 the analysis of cross-correlation coefficient performed for each pair of
oscillators (i,f) in the entire ring (panel a) is reported, alongside with the corresponding
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Figure 14 Instance of remote synchronization. (A) Reports the synchronization matrix for the entire
ring intended as the maximum positive cross-correlation coefficient for the signal envelope A,,(f).
(B) Shows the signal envelope A,, for three different coupled of nodes demonstrating remote synchro-
nization effects. The blue line represents A; with the red line that shows A, (B), A4 (C) and Ay (D). Time
series were realigned to the lag for which the maximum value of cross correlation was observed.
Full-size K&l DOT: 10.7717/peerj-cs.429/fig-14

synchronization analysis for three representative oscillator pairs (panel b) which exemplify
the decay and transient recovery of amplitude synchronization for three different distances
from the node 1. The analysis of the cross-correlation coefficient reveals that moving
away from a node, synchronization initial decayed, then gradually increased, rising till a
distance d = 8, and eventually vanished as shown in Fig. 14A. The structural coupling on
the ring is only between first neighbors, as indicated by the master-slave configuration, and
the highlighted non-monotonic trend in the cross-correlation coefficient indicates a
situation of remote synchronization. The visual inspection of signal envelope for three
different couples of oscillators (panel b) confirms the analysis of cross-correlation with
complete synchronization of the couple i = 1, j = 2 (distance 1, max[Cjj]; = o = 0.91)
that becomes a desynchronization for the couple i = 1, j = 6 (distance 5, max[Cij]; > o =
0.19); finally, the synchronization appears to be strong even for the couple i =1, j=9
that means a physical distance of eight (max[Cjjy]+ = o = 0.59). The performed analysis can
be replicated by running the Matlab script Test_Oscillators in the released toolbox.

Granger Causality analysis

From a theoretical point of view cross-correlation coefficient is a symmetric measure and
thus, its value for each time step is the same independently of the selected direction (i — j,
j — 1). For this reason, it is not possible to assess if there is an information exchange
between different oscillators. In order to test if there is information exchange between
different oscillators, and if both methodologies can adequately capture the effects of
“remote synchronization” restoring the results obtained in (Minati et al., 2018), Granger
causality in its unconditional form was evaluated (F;_.;) for each couple driver (i) target (j)
belonging to the ring. Here, the past history of the target node j was approximated as
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Figure 15 Unconditional Granger Causality Analysis performed on the network of 32 chaotic
oscillators (Fy;). The matrices represent the analysis performed using OLS (A) and using ANNs (B)
where each entry of the matrices corresponds to the strength of the causal influence from the driver i
towards the target j. The value of Sperman rank correlation coefficient (r, = 0.84) reveals a strong cor-
relation between the two different patterns (p < 107°).  Full-size K&l DOT: 10.7717/peerj-cs.429/fig-15

Yf w = Yin-1, ", Yja_p), i.e,, with lagged components equally spaced in time. The past
history of the driver node i was approximated as ij w = Yin-1,"", Yin—p]. In the
present analyses, the model order p was set to 16 with time series that were decimated
firstly by a factor of 4 and subsequently by a factor 10. This process was needed in order to
reduce the computational load and take into account the elimination of information
storage and the propagation delays (Minati et al., 2018). In this condition, the ratio
between the number of data samples and the number of VAR coefficients to be estimated is
more or less equal to 3 (K = 3) and the partial variances needed for the evaluation of
Granger causality were obtained through OLS and ANN by exploiting the theory of state-
space models as described in the Methods section.

Figure 15 shows the results of the evaluation of unconditional GC (F;_.;) performed
for each couple (i,j) through OLS (Fig. 15A) and ANN (Fig. 15B). The estimated patterns
are quite similar independently of the methodology used for estimation. The highest
values of coupling estimated are linked to the previously described synchronization
phenomenon: by considering a target (j) the coupling strength from the driver (i) to the
considered target is very high nearby the position of the target; then decreases with the
distance from the target with another peak at a distance approximately equal to 8 and
finally vanishes. Another important feature is that this phenomenon is not bidirectional,
but it is observable only in the direction i — j and not vice versa, as expected from the
physical realization of the ring. Furthermore, the analysis of the pattern estimated through
ANN s reveals more clearly the preferential synchronization clusters along the main
diagonal. More in general, it is possible to observe a more sparse network when the analysis
is performed through ANNs with the maximum value of observed coupling that is an
order of magnitude smaller respect to the classical approach based on OLS (0.18 for OLS
and 0.09 for ANNS).
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The analysis of the computation time required for the estimation process, reveals a total
temporal request of 28 hours (OLS = 5.0605-10* s; ANNs = 5.108-10%s) with the difference
between the two methods ascribable to the training process of the ANN.

In order to test the degree of similarity between the two matrices, we computed the
Spearman rank correlation coefficient that is a measure of the relationship between two
variables when the data is in the form of rank orders. The Spearman rank correlation
coefficient is in the range [-1,1] where 1 indicates complete agreement and —1 indicates
complete disagreement. A value of 0 would indicate that the rankings were unrelated.
Let R; be the rank of the unconditional GC evaluated through OLS and S; be the rank of the
same analysis performed with ANN. Then, the rank-order correlation coefficient is defined
to be the linear correlation coefficient of the ranks, namely,

> (R = R)(S; = S)

@ <;zi —ﬁf@ (5, —3)

(22)

rs =

The significance of a nonzero value of r; is tested by computing

N -2
t=1s 11— 2 (23)
N

which is distributed approximately as Student’s distribution with N-2 degrees of freedom
(Hollander, Wolfe ¢» Chicken, 2013). The result of this analysis reveals a value of r, = 0.84
with a p-value p < 10~ indicating a strong correspondence between the networks obtained
through the two methodologies.

DISCUSSION

Simulation study |

The first simulation study was designed to evaluate the effects of ANN training parameters
on the GC estimation process. We pointed out how the learning rate (LR) and the number
of iterations (Ny;,) of the gradient descent have an impact on the training process as
regards both the regression problem and the classification of significant network links
(Zhang, 2006). The accuracy in the estimation of the regression parameters, which reflects
the accuracy in the magnitude of the estimated GC, was investigated while varying the
amount of data samples available for the estimation (Fig. 3). As expected, the bias of GC
estimated over both null and non-null links increased in conditions of data paucity, while
it was reduced increasing the number of iterations of the gradient descent. An opposite
trend was observed assessing the bias along the null links for small learning rate (LR =
107°). This result was previously observed in the context of classification analysis
(Hoffer, Hubara & Soudry, 2017; Li, Wei & Ma, 2019) and is likely due to the fact that too
small learning rates can trap the ANN training process into local minima, resulting

in our case in larger differences between estimated and theoretical values of the
conditional GC.
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On the other hand, the analysis of the accuracy in reconstructing the network structure
was tested in terms of different classification parameters previously used to assess the
structure of connectivity networks (Toppi et al., 2016b; Antonacci et al., 2019b; Antonacci
et al., 2020b). The analysis (Fig. 4) showed a general improvement of the classification
performance when increasing the number of data samples available and the number of
iterations of the SGD-/; algorithm, and when decreasing the learning rate. These results are
in line with previous studies analyzing the performance of estimators related with the
concept of Granger causality (Toppi et al., 2016a; Antonacci et al., 2020a; Antonacci et al,
2017), and help to optimize the parameter selection for GC analysis based on ANN.

Such an optimization was performed in an objective way selecting the best
combination of learning rate and number of SGD-/; iterations that minimized the
overall performance parameter S (Fig. 5; note that lower values of S indicate better
performance). Varying the parameters N;,,;,, and LR within ranges compatible with those
suggested in a review of ANNs employed in classification analysis (Zhang, 2000), we
identified the combination LR = 10> and N,,,;,, = 1,000 as the most suitable for optimizing
the performance of ANNSs in the computation of magnitude and statistical significance of
the conditional GC. Overall, our simulation results lead to the following recommendations
for GC estimation based on ANNs:

o The selection of the regularization parameter A is crucial, and needs to be performed
through objective approaches such as the use of cross-validation employed in this study.
In addition, a careful selection of both the range and the number of A values to be tested
through cross-validation is relevant; according to previous works and to the results
obtained here, a range of three hundred values seems to be sufficient.

e The factors which mostly affect the computation time are the number of data samples
and the number of iterations of the gradient descent (Ny,,;,). Although with a sufficient
number of data samples the impact of the number of iterations does not seem to be
significant, we recommend to set Ny,,;, = 1,000.

e Very small values of the learning rate should be avoided as they force the experimenter
to increase the number of iterations of the gradient descent to escape from local minima.
We suggest the combination Nj,,;, = 1,000 and LR = 107 as a good compromise
between accuracy and computation time.

Simulation studies II-lll

The second and the third simulation studies were designed to analyze the performance of
the proposed ANN approach for GC estimation in comparison with the state-space
analysis based on standard OLS estimation of the VAR model (Barnett ¢ Seth, 2015) in
different experimental conditions. Simulation study II has evaluated the effect of the
number of data samples available (K-ratio) and the effect of the amplitude of white noise
added to the original time series (SNR). Simulation study III was designed to compare the
performance of the two methodologies on simulated networks with a smaller degree of
sparsity with respect to the simulation study II (Pascucci, Rubega ¢ Plomp, 2020). As in the
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first simulation, performances were assessed separately regarding the estimation bias and
the statistical significance of the conditional GC. The bias analysis revealed the expected
tendency to observe a larger difference between true and estimated GC values for
decreasing the K ratio between amount of data samples and number of model parameters
independently from the considered SNR value (Figs. 7, 9). This trend was marked for
OLS-based GC estimates, confirming previous comparative studies (Schlogl ¢ Supp, 2006;
Antonacci, Astolfi & Faes, 2020), and was much less evident for ANN-based estimates,
which were more stable with respect to varying K. Considering the worst scenario in which
the number of data samples available is equal to the number of VAR coefficients to be
estimated (K = 1), the ANN estimation still yielded acceptable results, while OLS
estimation was even not possible due to the non-convergence of the DARE equation
contained in the SS estimation of GC (Antonacci et al., 2020b). The increasing bias
observed for the OLS method while approaching the condition K = 1 is likely related to the
fact that the matrix [y?]"y* (see methods) becomes progressively closer to singularity. On
the other hand, a drawback of the ANN estimator is the substantial bias exhibited by the
the conditional GC computed over the non-null links even in presence of sufficient
amounts of data. This could be explained in part with the penalization directly applied on
the matrix of coefficients that shrinks the values towards zero, and in part to the way by
which the weights of the ANN are initialized (Scardapane ¢» Wang, 2017). Figure 7
highlighted a smaller effect of SNR on the bias measures in the ANN case with respect to
the OLS case, which reaches values of bias very close to zero when SNR is very high
(SNR=10°). This result could be explained by recalling the biased nature of regularization
approaches and the tendency to counteract the effect of collinearity between regressors
which may be induced by the additive noise (James et al., 2013).

Also the ability in reconstructing the network structure showed a tendency to
decrease with the ratio K between the number of data samples and model parameters (Figs.
8, 10). In terms of overall accuracy, the ANN approach outperformed the OLS one for
K < 3 and SNR = 10’ resulting well-applicable (AUC = 0.85) even in the challenging
condition K = 1. We ascribe this better performance to the use of the /; regularization
introduced in the training of the ANN, which helps counteracting the collinearity between
regressors induced by the decrease of the number of data samples available (Tibshirani,
1996; Silvey, 1969).

As expected, the AUC parameter reported in Fig. 8 showed a tendency to decrease as a
result of SNR reduction for both OLS and ANN. According to the results obtained in
(Toppi et al., 2016a), for the OLS case the decreasing quality of the data leads to a
strong increase of the estimated statistical thresholds, such that only a few connections
survive to the assessment procedure. Otherwise, in the ANN case, such a trend can be
explained by a wrong selection of the A parameter during the training procedure triggered
by white noise added and is in line with a previous study in which the effect of white noise
in sparse regression methods was explored (Haufe et al., 2010). When a more dense
network is analyzed, the results of Fig. 10 showed a statistically significant difference
between AUC values resulting from ANN and OLS estimation for K = [20,10] which
become not statistically significant when K = 3. If compared with the results obtained in
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Fig. 8 (panel ¢ and SNR = 10°) a deterioration of ~ 10% can be noticed in the
reconstruction of the network structure, with an AUC value of ~85% when K = 1

which becomes ~75% with a more dense network (Fig. 10C). The results here obtained
are in line with those obtained in (Antonacci et al., 2020b) in which similar AUC trends are
obtained for LASSO regression in simulated networks with a density of connected nodes
equal to 50%.

When particularized to the rate of correct detection of null and non-null links, the
performance under conditions of data paucity for both simulation studies differs for the
two approaches, with ANN and OLS showing respectively better capability to correctly
detect existing links (lower FNR) and better capability to correctly detect the absent links
(lower FPR). The high rate of false negative detections exhibited by OLS when K < 10 is
likely due to an inaccurate representation of the distribution of the GC under the null
hypothesis of uncoupling, estimated empirically using surrogate time series (Antonacci
et al., 2019a). On the other hand, the slightly higher rate of false positive detections
exhibited by ANN is in line with previous findings in the context of information transfer
estimation, in which the use of variable selection techniques showed few extra links,
observed for different degrees of sparsity of the simulated network structure and values of
K (Antonacci et al., 2020b; Haufe et al., 2010; Antonacci, Faes ¢ Astolfi, 2020). The latter
result is also confirmed by the value of false positives obtained for ANN case in Fig. 10B in
which ANN proved to be more susceptible to false positives when a denser network
structure is analyzed.

Concerning the effects of SNR (Fig. 8), the decrease in the signal-to-noise ratio,
regardless of the value of K-ratio considered, leads to a worsening of ~20% in the value of
false negatives for both methods causing a strong reduction in the AUC value. However,
ANN proved to be less affected by the reduction of signal-to-noise ratio and, even in
the worst scenario of K = 1 and SNR = 0.1 the average value of AUC is above ~ 75%
(Fig. 8C-purple line). These results are in line with different studies exploring the effects of
SNR in Granger-based estimators in the time and frequency domain or in non-stationary
regimes (Toppi et al., 2016a; Pascucci, Rubega ¢ Plomp, 2020; Astolfi et al., 2007).

In sum, we provide the following remarks about the comparison between the two
methods:

e If one is interested in the reconstruction of the network topology, ANNs can be used as a
valid alternative to standard OLS approaches with a considerable computational cost
reduction (Table 4).

o The capabilities in reconstructing the network topology of both methodologies are
strongly influenced by the signal-to-noise ratio and the network density, with ANN
performing better if sparse networks are considered and OLS which is more vulnerable
to low SNR values.

o If one is interested in the assessment of coupling strength as measured by the GC values,
ANNSs are much more accurate than OLS in detecting small or zero GC values but are
more biased in the detection of non-zero GC values.
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e The use of ANNs with the parameter combination Nj,,;,, = 1,000, LR = 10°° guarantees a
good level of accuracy in the estimation of GC even for conditions of strong data

paucity.

Two final issues should be discussed concerning the structures of simulated networks
and a technical aspect related to the methodology proposed. In functional brain
networks analysis, the topology of network interactions is often represented by a full
AR process for which AR coefficients are non-zero at each considered lag but fade out
exponentially as the lags increase. Even if the structure of the AR process here simulated
was not completely full, the network structure of simulation study III was used in a
previous study that approximates properties of realistic brain networks, extending beyond
classical approaches with a restricted number of nodes and fixed connectivity patterns
(Pascucci, Rubega & Plomp, 2020). In fact, with a completely full AR process it should be
better to use regression analysis with a structural constraint such as group LASSO which
outperforms /; regularization techniques without structural constraint (i.e., LASSO
regression and the methodology here proposed) as discussed in previous works (Mullen
et al., 2015; Haufe et al., 2010). Nevertheless, it is worth stressing that the formulation
here introduced can be easily extended to a similar form of group sparse development
inspired by the group LASSO regression, by forcing all outgoing connections from a single
neuron (corresponding to a group) to be either simultaneously zero or not as reported in
(Scardapane et al., 2017).

As a final remark, we want to emphasize that, even if the /;-regularized (SGD-I;) and [;-
constrained (LASSO) algorithms target different objective functions, their behavior
could be related since the idea at the basis of their functioning is the same (Tsuruoka, Tsujii
& Ananiadou, 2009). Nevertheless, the advantage of this type of formulation lies in the fact
that it can be used indifferently with several types of loss functions (e.g., cross-entropy
loss), or with different structures of the neural network designed to model non-linear
relationships between input and output layers (i.e., the past states of the whole system and
the present state of the target process) (Tsuruoka, Tsujii & Ananiadou, 2009; Scardapane &
Wang, 2017).

Application to physiological networks

Within the emerging field of network physiology, it is possible to analyze physiological
interactions in a multivariate fashion, building complex networks whose nodes and edges
represent different organ systems and their communication mechanisms (Bashan et al.,
2012). However, identifying networks on the basis of the information exchanged between
physiological signals is not a trivial task and requires the development of novel approaches
(Faes et al., 2017b). As a main challenge is to interpret dense networks in terms of the
underlying physiological mechanisms (Faes et al., 2015; Porta ¢ Faes, 2015), the study
performed here was aimed to show the usefulness of GC measures based on ANNs for the
description of brain, peripheral, and brain-heart interactions in a previously studied
dataset (Zanetti et al., 2019). The usability of the proposed approach can be inferred
linking the present results to those that we obtained in recent studies where the possibility
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to describe the topology of physiological networks through penalized regressions was
explored (Antonacci et al., 2020b; Antonacci et al., 2020a). In particular, the very similar
network topologies observed here and in (Antonacci et al., 2020b) using very different
identification methods support the usefulness of sparse model identification approaches
for the study of physiological interactions.

The analysis of the statistically significant values of the conditional GC led us to
detecting specific topology structures (Fig. 11). In the study of the peripheral sub-network
of cardiovascular and respiratory interactions, we confirm the results of previous works
highlighting the presence of significant interaction patterns which are observed
consistently across physiological states (Zanetti et al., 2019; Porta et al., 2017; Antonacci
et al., 2020b). These patterns comprise a strong information flow between # and p
reflecting the mechanisms of respiratory sinus arrhythmia (Berntson, Cacioppo & Quigley,
1993) and cardio-respiratory synchronization (Schifer et al., 1998), the causal interaction
n — 7 reflecting the physiological effect of the heart rate on stroke volume and arterial
pressure which modulates the arterial pulse wave velocity (Javorka et al., 2017), and the
causal interaction p — 7 reflecting the influences of breathing on the intra-thoracic
pressure, blood pressure and blood flow velocity (Drinnan, Allen & Murray, 2001).

The main effect observed when changing the physiological state was the statistically
significant decrease of the in-strength index of the vascular node 7 occurring with the
transition from R to G (Fig. 12); physiologically, this variation can be related to a reduced
efferent nervous system activity from the cardiac and respiratory centers towards the
vascular system during mental stress conditions (Antonacci et al., 2020b; Antonacci

et al., 2020a; Pernice et al., 2020). While the majority of these patterns were observed
identically by OLS and ANN identification approaches, the interaction between p and %
was detected as bidirectional using OLS and as unidirectional using ANN; the presence of
unidirectional interactions p — # is physiologically more plausible with the mechanism of
respiratory sinus arrhythmia (Berntson, Cacioppo & Quigley, 1993; Faes, Porta ¢ Nollo,
2015).

As regards the analysis of the brain sub-network, we detected interaction patterns
which are weaker and less consistent across physiological states. Using OLS, the total
number of connections shows a tendency to decrease moving from R to M and to G.
Using ANN, the brain sub-network is very sparse during R and M, and disconnected
during G. The latter result is in line with our recent work in which the same dataset was
analyzed through different measures of information dynamics computed through
LASSO regression (Antonacci et al., 2020b). In such work, a different degree of
disconnection was observed for the brain sub-network; given the general weakness of the
connections, it is reasonable to assume that the results are influenced by the selection the
regularization parameter A that controls the amounts of shrinkage applied to the ANN
weights, as in the optimization of A the weaker connections have a higher probability to be
discarded (Tibshirani, 1996; Tibshirani ¢ Taylor, 2012). This confirms the importance of
employing automatic strategies, such as that used in this work, for the selection the
regularization parameter, in order to provide an objective quantification of the network
topology. Here, the adoption of an automatic strategy led to detect a much more sparsely
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connected brain subnetwork using ANN than OLS, confirming results previously reported
for this type of data (Zanetti et al., 2019).

The regularization approach implicitly present in ANN training allowed highlighting
better than standard OLS analysis the modification of the structure of brain-body
interactions across the considered physiological states. Indeed, while both OLS and ANN
suggest an increase of the connections between brain and body during sustained attention
(condition G), the results achieved with ANN highlight the emergence of causal
interactions from brain to body moving from R and M to G. The rise of these connections,
directed mostly to the p and # nodes of the peripheral sub-network, confirms the results
of previous studies about the importance of the brain oscillations for attention tasks
that can be correlated with the cardiac and respiratory activity (Tort et al., 2018; Kubota
et al., 2001).

Application to chaotic electronic oscillators

The recorded time series and the master-slave unidirectional structure guarantee a
higher level of stationarity and more elementary dynamics with a well known a-priori
topological effect compared to physiological systems. For these reasons, it is reasonable to
assume that electronic oscillators could represent a useful benchmark for testing in real
settings new methods developed for the study of the interactions between dynamical
systems.

The second application was therefore devised to demonstrate the validity of the
proposed method, based on the combination of ANN and SS modeling, to compute GC
from the output signals of a network of electronic oscillators. The analysis of the cross-
correlation coefficient presented in Fig. 14 revealed the existence of a preferential
synchronization effect between groups of nodes that are not directly connected via a
physical link and, in particular, we found a maximum of the cross-correlation coefficient at
a distance d = 8. This result is in agreement with previous analyses performed in the same
ring of oscillators (Minati, 2015a; Minati et al., 2018) and with the recently introduced
concept of remote synchronization which reveals mutual synchronization between pairs of
locally coupled groups of nodes in a network. Thus, each group of nodes remotely
synchronized is physically connected through a group of intermediary nodes more weakly
synchronized with them (Gambuzza et al., 2013).

In order to investigate if the observed remote synchronization corresponds to
“remote” information transfer, we performed unconditional GC analysis with both
OLS and ANN. An inspection of Fig. 15 clearly shows the good overlap between the
networks estimated with the two methodologies; this result is supported quantitatively
by the analysis of the Spearman rank correlation coefficient (r, = 0.84, p < 107°).

A similar analysis was performed on the same dataset by (Minati et al., 2018), who
used uniform embedding to approximate the history of target and driver time series as
Y = Yjn-s, Vim0, Yin-pr—ols Yi, = [Yin-o-a Yin—r—o-a, "+ Yin—pr—o-d,
where the additional time lag § = 0.01 ms was added to ensure the full elimination of
information storage (Wibral et al., 2013) and the lag d was introduced to account for

Antonacci et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.429 35/44


http://dx.doi.org/10.7717/peerj-cs.429
https://peerj.com/computer-science/

PeerJ Computer Science

propagation delays and was set searching for the minimal prediction error over the range
d e [0,2].

Here, we confirm the results obtained in Minati et al. (2018) with a different
analysis that exploits the SS representation of the VAR model and the ANN training. In
particular, both methodologies can capture the dynamical activity in a ring of electronic
oscillators with a well-defined complexity and stability of the network topology, since
it is possible to obtain structures overlapped with those extracted performing the analysis
with different methodologies already reported in the literature. From a methodological
point of view, the strong overlap between the two networks can be motivated by the
results of the simulation study II for which at K = 3 the AUC parameter, indicating the
capability in the reconstruction of the network topology, showed a very small difference
between the two methods. Furthermore, it is also important to note that, as an effect of
the /;-norm applied to the weights of the network during the training process, the
maximum value of GC estimated with ANN is one order of magnitude less for ANN than
OLS (Sun et al., 2016).

CONCLUSIONS AND LIMITATIONS

This work documented that neural networks can be used in combination with state-space
models for the identification of linear parametric models, allowing computationally
reliable and accurate estimation of GC in its conditional and unconditional forms. In
particular, we showed how this combined approach leads to overcoming both the decrease
in accuracy reported for traditional least-squares identification when it needs to be
performed in unfavorable conditions of data availability (Schlogl ¢ Supp, 2006), and the
problems arising in the computation of GC estimated through different regression
problems (Faes, Stramaglia ¢» Marinazzo, 2017). ANNs are useful in particular to assess
the statistical significance of GC estimates, favoring the reconstruction of the network
topology underlying the observed dataset without the need to employ time-consuming
asymptotic or empirical procedures for significance assessment.

The implementation of the proposed approach for the study of physiological networks
and coupled electronic oscillators documented its usefulness in practical applications,
supported by the observation of interaction patterns similar to those found in previous
studies where the datasets were first studied in terms of GC (Zanetti et al., 2019; Minati
et al., 2018). All the findings in this work suggest that ANNs are able to detect the strongest
interactions providing output patterns of information dynamics which are more
straightforward and easy to interpret than those obtained with OLS.

An aspect not directly investigated in this work, that will be addressed with further
studies, concerns the effect of sparsity operated by /;-constrained (e.g., LASSO regression)
and /;-regularized (e.g., ANN here proposed) on GC measures that explicitly re-elaborate
the VAR parameters. The induced sparsity in the time domain might introduce uneven
shrinking of the VAR coefficients over lags which eventually causes undesired alterations
in the frequency domain and this could impact the accuracy of several Granger-based
estimators in the frequency domain such as Partial Directed Coherence (Baccald ¢
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Sameshima, 2001), Directed Transfer function (Kamiriski et al., 2001) or Granger causality
in the frequency domain (Barnett & Seth, 2014).

Future developments will aim at exploring the possibility of evaluating GC with non-
linear ANNS trained with SGD-I; to guarantee sparseness in the estimated patterns of
causality. Although [,-regularized and /;-constrained learning algorithms are not directly
comparable due to their different objective functions, a comparison of the two approaches
in term of practicality is of interest in the field of stochastic optimization (Tsuruoka, Tsujii
& Ananiadou, 2009). Furthermore, an extensive comparison between the well-known
LASSO regression and the ANN based approach here proposed, in different conditions of
density of connected nodes and signal-to-noise ratio, may provide useful insights in the use
of either approach (Pagnotta, Plomp ¢» Pascucci, 2019; Pascucci, Rubega ¢ Plomp, 2020;
Antonacci et al., 2020b).

Given the tight relation between information dynamics and the VAR representation of
Gaussian stochastic processes, future works can be envisaged to introduce ANNs for the
estimation of measures of information dynamics different than the GC (Faes et al., 2017b;
Finn & Lizier, 2020), computed even across multiple time scales (Faes, Marinazzo &
Stramaglia, 2017; Martins et al., 2020). Moreover, this new method will easily find
application even in different contexts, such as the study of dynamic information flow
between stock market indices (Scagliarini et al., 2020), between different brain regions with
Granger-based estimators (Astolfi et al., 2007), for time series analysis in climatology (Faes
et al., 2017a), or for the study of gene regulatory networks (Davidson ¢ Levin, 2005).
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