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Isotonic regression for metallic microstructure data:
estimation and testing under order restrictions
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ABSTRACT ARTICLE HISTORY
Investigating the main determinants of the mechanical performance Received 7 February 2020
of metals is not a simple task. Already known physically inspired ~ Accepted 23 February 2021
qualitative relations between 2D microstructure characteristics and KEYWORDS

§D mechanlcal properties can act as the starting point of the inves- Isotonic regression;
tigation. Isotonic regression allows to take into account ordering alternating iterative method;
relations and leads to more efficient and accurate results when the likelihood ratio test;
underlying assumptions actually hold. The main goal in this paper bootstrap; order restrictions;
is to test order relations in a model inspired by a materials science geometrically necessary
application. The statistical estimation procedure is described con- dislocations

sidering three different scenarios according to the knowledge of

the variances: known variance ratio, completely unknown variances,

and variances under order restrictions. New likelihood ratio tests are

developed in the last two cases. Both parametric and non-parametric

bootstrap approaches are developed for finding the distribution of

the test statistics under the null hypothesis. Finally an application

on the relation between geometrically necessary dislocations and

number of observed microstructure precipitations is shown.

Abbreviations

AIM; alternating iterative method

EBSD; electron backscatter diffraction
GND; geometrically necessary dislocations
KAM; Kernel average misorientation

LRT; likelihood ratio test

MLE; maximum likelihood estimation
PAVA; pool-adjacentviolators algorithm

1. Introduction

Understanding the intrinsic nature of the mechanical properties of metals is usually not
an easy task. In order to get insight into what gives desired mechanical performance to a
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metal, a deep and detailed analysis of the metal microstructure characteristics is needed.
For instance, it is known in literature that dislocations, i.e. line defects in the crystalline
arrangement of the atoms [17], play a fundamental role in the mechanical behavior of metal
alloys. More specifically, the appearance of geometrically necessary dislocations' (GNDs)
during plastic deformation of the material contributes to the hardening of the material.
Detecting GNDs from 2D microstructure images is often challenging. One widely accepted
way is to use the so-called Kernel average misorientation (KAM) [26]. The KAM, measured
in electron backscatter diffraction (EBSD), quantifies the average misorientation around a
measurement point with respect to a defined set of a nearest or nearest plus second-nearest
neighbor points [8].

In [6,22,31], studies on the relation between GNDs and microstructure properties such
as grain size and carbides size are presented. The relation between GNDs and grain size has
both theoretical and experimental confirmation and it can be related to the well-known
macroscopic physical Hall-Petch relation [15,29]. In fact, the Hall-Petch relation, in its
original version, describes the negative dependence of yield stress (mechanical property)
on grain size; loosely speaking the smaller grains are, the stronger the material is. More
specifically in [18], the authors give as an explanation of the relation between GNDs and
grain size that as the grain size decreases the grain boundary layer in which GNDs typically
accumulate, occupies a greater volume fraction of the material, therefore it is reasonable to
think that the smaller are the grains, the more GNDs will be observed.

Still unclear is, instead, the relation between carbides and GNDs. In fact, since the 1940s,
several studies on how carbides affect the mechanical behavior of metals have been con-
ducted. In [30], the authors state that the primary carbides and their distribution have a
major influence on the wear resistance and the toughness of the material. However, car-
bides tend to precipitate along the grain boundaries, that as said before, are the locations
in which GNDs typically accumulate. Until now, no direct physical relationship has been
found between carbides and GNDs. Therefore, isolating carbides effect and assessing the
conjecture on the positive relation between carbides and GNDs is a problem of interest.

In [16], a descriptive statistical analysis with response variable KAM, used as a proxy of
GNDs and as explanatory variables the number of grains, the number of carbides and the
position of carbides revealed an almost monotone trend of the response variable according
to the increments of the explanatories.

Therefore, in order to take into account the already known direction of the physical rela-
tion, we want to propose an approach that incorporates this information and a procedure
for testing the prementioned conjectures on a new dataset.

In this context, isotonic regression comes to aid. In fact, the idea at the basis of isotonic
regression is taking order restrictions into account for improving the efficiency of the sta-
tistical analysis by reducing the error or the expected error of estimates and increasing the
power of the testing procedures, provided that the hypothesized order restriction actually
holds. The first papers about isotonic regression appeared in the 1950’s [1,41] and books
[2,33] are well-known references for frequentist statistical inference under order restric-
tions. Isotonic regression proves its power in different fields such as epidemiology in testing
the effects of different treatments or in dose-finding [34,40] but also in genetics [23], busi-
ness [19], biology [3]. There are not many examples of isotonic regression use in Materials
Science. Throughout this paper, special attention is given to the peculiar data structure.
Nowadays, developments toward multivariate isotonic regression, isotonic regression in
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inverse and censoring problems [13,14] are ongoing. Also in the Bayesian framework, the
problem of estimating and testing under order constraints has been addressed and well
developed [7,10,20,21]. But also in the most basic frequentist framework, there is still
something missing.

In this paper, starting off with the most basic case, univariate isotonic regression of
means under normality assumptions with known variances, we guide the reader into
frequentist estimation and testing order restriction assumptions, considering different
conditions on the variances.

Three different scenarios are considered. In all three cases, we focus on maximum likeli-
hood as estimation procedure and likelihood ratio test (LRT) as test statistic for hypothesis
testing.

The first case is the basic case in which ‘the variances’ are known or unknown but their
ratio is known. This instance is considered extensively in [2,33] and results for estimation
and testing order restrictions are already known.

The second scenario is from an applications point of view the most common scenario
in which the variances are unknown. In [37], the authors derive a two steps estimating
procedure for means and variances and interesting results on existence and uniqueness of
the maximum likelihood estimates are derived under special conditions. Another iterative
method, proposed in [38], is extended to the unknown variances case. The derivation of
the test statistic and of its distribution in this scenario is not trivial. In fact, the estimate of
the mean under the null hypothesis is also affected by the non-knowledge of the variances.
We propose the LRT statistic and two different bootstrap approaches, one parametric and
one non-parametric, for obtaining the test statistic distribution.

The last model considers not only the means under order restrictions but also the vari-
ances. This case has not often been faced probably because it is not common to have prior
knowledge on the order of both means and variances. As in the unknown variances sce-
nario, a two-step procedure for estimating means and variances is derived in [36] and
similar results on existence and uniqueness under specific conditions on the empirical vari-
ances are given. In [38], an improved algorithm called alternating iterative method (AIM)
and more general results about convergence are derived. For testing in this case we derive
the LRT taking into account the order of variances also under the null hypothesis and apply
a parametric and non-parametric bootstrap approach in line with the one derived in the
unknown variance case to obtain approximate p-values.

The paper structure is as follows. In Section 2, we explain the estimation procedure of the
isotonic means in the three different cases (Sections 2.1, 2.2, 2.3). In Section 3, the focus is
on the LRT. We present it in the three different cases (Sections 3.1, 3.2, 3.3) and in Section 4,
we propose both a parametric and non-parametric bootstrap approach for approximating
the distribution of the test statistics under the null hypothesis. Finally, in Section 5, we come
back to the application and we illustrate step-by-step how to deal with a real problem and
more precisely how to perform isotonic regression and test for monotonicity of KAM with
respect to the number of carbides. The paper ends with conclusions in Section 6.

2. Estimating restricted means in the normal case

We first introduce isotonic regression and the notation used in the rest of the paper in a
more general context. Normality is assumed throughout this section.
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Let yjj, j=1,...,n; i =1,...,k be the jth observation of the response variable Y
corresponding to the ith level of the explanatory variable X.

We assume Yj; to be independent random variables, normally distributed with means
Wi and variances o*l-z, i=1,...,kj=12,...,n;

The log-likelihood is then given by

k n;
n; 1
o™ =) § =5 Ino? = —— 3 (i = m)*  +¢ (1)

i=1 i j=1

where c is a constant which does not depend on the parameters . = (i1, .. ux)’ and 6 =
(0f,... ,akz)/.
Furthermore, we assume that u satisfies

M1 < p2 <o < Uk (2)

A k-dimensional vector p is said to be isotonic if t < simplies py < .
Let D be the set of all the isotonic vectors in RX,

D={peRu <py<- < (3)

In this section, we are interested in the maximum likelihood estimator of (., o 2), where
R is isotonic and o7 > 0. Depending on the information on o2, different MLEs have been
derived.

In the following three sections, the three different cases are considered.

2.1. Isotonic regression of means with known variance ratio

This first case constitutes the most basic case in which all variances are either known or
unknown but they differ according to some known multiplicative constants ¢;. This means
that the variance o of the response variable Y; is given by:

This specific case is already covered in [2,33], but we hereafter report the main results. The
problem of maximizing log-likelihood (1) in u can be rewritten equivalently as solving:

k
: - 2
min P — i) Wi 4
eD Z()’z i) wi (4)
i=1
where y; = Z]i?’ij and w; = 7. Note that this objective function does not depend on ol
1 1

The solution, iiI, is called the isotonic regression of y = (y1,. .., yx) with weights w =
(W1, ..., wx) [37]. For obtaining the solution to (4), different algorithms have been pro-
posed in the literature ([2,33]). In this paper, the the intuitive and skilfully implemented
‘Pool-Adjacent Violators Algorithm’ (PAVA) is used ([1,5]).

More details about the algorithm are provided in Appendix 1.
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2.2. Isotonic regression of means with unknown variances

In this second case, no assumptions on the variances are made. They are unknown and
for obtaining the maximum likelihood estimate of p, they need to be estimated as well. In
[37], the authors consider this case and interesting results on existence and uniqueness of
the MLE are achieved. We hereby recall the main results. The approach is to maximize the
log-likelihood (1), with . € Dand 02 € RE.

For any fixed o2 € Rk, the maximizer il of I(u,02) over u € D is the isotonic

S

regression of y with weights w = (w1,... wx) and w; = -

On the other hand, for any fixed g € D, the maximizer o2 of I(,02) over o € R'jr is

~ A A ~ S =)
62(1) = (62(u1). - 62(ui))'s where 62(u;) = =L

Substituting 62(w) into (1), we can express the profile log-likelihood of p as

k
(w) = —ninl6? + Gi — w1+ ¢ (5)
i=1
_, X . . .
where 67 = =—"—— is the sample variance of the ith normal population and ¢ a con-
stant that does not depend on p. Note that [(u) — —ooif up — oo or 3 — —oo. Hence,
maximizing [ over D is equivalent to maximizing / over a compact subset of D of type
D,={ueD:u; > —a,ur < a}. Aslis continuous on D,, a maximizer over D exists.
As previously said, the authors in [37] discuss also uniqueness of the MLE of (u, a?).
They state that [ is not a concave function in general and that for guaranteeing uniqueness
the following condition suffices (see Theorem 2.3 [37]):

Condition 2.1: Fori=1,...,k 67 > max{(y; — min(»))?, (i — max(y))?}.

For finding a maximizer of (5), a two-step iterative algorithm based on PAVA has been
proposed in [37]. From an initial guess for , the associated maximizer in o2 is computed
and after that the maximizer in g based on this 62 and so on. This iterative procedure stops
when the maximum difference between the estimated means at step /—1 and at step / is less
than an arbitrary small threshold value, e.g.

10=0 _ I0) < o=,

where m is taken to be equal to 3 in our case. In [38], the authors propose a new algorithm
called AIM. The procedure is based on the minimization of a semi-convex function. In
particular, restating the problem in terms of (u,v), where v = (1/0},...,1/07)" and
given D, is a convex subset of Rk and V a convex subset of R’fP V={ve Rﬁ :0 <
1/ max;(Minmin(y) <6 <max@@) 57 (0)) < vi < 1/ min;(Minmin) <o <max@) 5 (0))} L(R, v) is
a semi-convex function because: i) L(i, v) is defined on D, x V3 ii) for any given u € Dy,
L(p,-) is strictly convex on V and, for any given v € V, L(:, v) is strictly convex on D,. The
algorithm originally proposed for the simultaneous order restrictions of means and vari-
ances can be easily extended to the unknown variance case. The iteration method works in
alternating the search of the minimum point, [L(l), of L(u, v(/L(l’l))) on a compact subset
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D, and the search of the minimum point, vD, of L(;L(v(l’l)), v) on V. Proof of the conver-
gence of the algorithm does not require additional conditions [38]. The iterative procedure
stops when the difference between the likelihoods at step [—1 and at step [ is less than an
arbitrary small threshold value:

1LV vEDy 1D, v D)) < 107 (6)

A more detailed version of both algorithms is reported in Appendix A.2.

2.3. Isotonic regression of means and variances simultaneously

We now assume that both mean and variances are restricted by simple orderings. Therefore,
in addition to assumption (2), we assume also:

01220222~--26k2>0 (7)
The reason for taking decreasing order relates to our application considered in Section 5;
increasing variances can be dealt with analogously. In [36], maximum likelihood estima-
tion under simultaneous order restrictions on mean and variances from a normal popula-
tion is studied. Some of the most important results are hereby recalled. The approach is to
maximize the log-likelihood (1) with u € D and 02 e G, where G is the closure of

G={0’2€Rﬁ_:01220'222---20'k2>0}. (8)

This means that the maximizer will have positive o2-values if there is variation within the
groups. Then, for any fixed 62 € G, the maximizer u! of (i, 6%) over u € D is the isotonic
regression of y with weights w = (wy,... wk) and w; = C%

Furthermore, for any u € D, the maximizer 62/(u) of (i, 0?) is the so-called anti-
tonic regression (isotonic regression with reversed order [13]) of 2= (s%, .. .si)/ , s? =

o i mi)?
ZJ:I(Z—{‘”, with weights N = (n1,...,n;) . Existence is guaranteed noticing that =
[min; (MiNmin; () <6 <max; ) 57 (6))> Max; (MiNmin, 5) <0 <max;) 57 O], s2(0) = Z}il(yzj -
6)?/n; (see [36, Theorem 2.1]).

Uniqueness is proved under the following condition (see Theorem 2.2 [36])

Condition 2.2: For i = 1,...k the sample variance 51'2 satisfies 61.2 > 2(b — a), where b
and a are the maximal and the minimal means respectively.

As in the unknown variances case, a two-step iterative algorithm is proposed for find-
ing the solution for both means and variances under order restrictions. The proof of the
convergence of the algorithm is given under Condition 2.2.

Later, in [38], as mentioned in the previous section, the authors show that restat-
ing the problem in terms of (p,v), where v = (1/012,. C l/akz)’ Condition 2.2 is not
needed for proving that the algorithm converges. In fact, also in this case the proposed
AIM algorithm can be employed. Since L(u,v) has continuous second-order partial
derivatives and the Hessian matrix with respect to u H(u, v) = diag(njvi, ..., ngvg) is
a positive definite diagonal matrix for any fixed v = (vy,..., ) € Vo, Vo ={v € Rk .
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0 < 1/ max;(MiNmin;5) <6 <max;) 5+ (0)) < v1 < -+ < v < 1/ min;(MiNmin, ) <6 <max;§)
51-2 (0))} then by Theorem 4 in [38] the iterative sequence of solutions to L(u,v),
{(u™, pm)) converges to the MLE solution and consequently the sequence {(u ™, g2(m))
as well.

As in the previous case, the alternating iterative procedure is stopped when the maxi-
mum difference between the likelihoods at step /-1 and at step / is less than an arbitrary
small threshold value (see (6)).

A pseudo code of the algorithms can be found in Appendix A.3.

3. LRT: constant y against monotonicity

We are interested in testing hypotheses of monotonicity in p under the various assump-
tions on the variances discussed in Section 2. There exists extensive literature on testing
hypotheses on means. In most cases, a standard testing procedure entails testing the
hypothesis of equality of means against the hypothesis that they are different. In this paper,
we consider the same null hypothesis but the alternative is different: monotonicity of the
means. As in the previous section, we consider three different testing frameworks accord-
ing to the different assumptions on the variances. In all three different scenario, the test
statistic of interest is the LRT, an intuitive and powerful tool in hypothesis testing. In both
[2] and [33], an entire chapter is dedicated to LRT developments and its use for testing
order restrictions hypothesis under the normality assumption and known variance ratio.
Using the same notation used in Section 2, we wish to test

Ho: py=pa="--- = px
against monotonicity of means
Hy: pp S pp <+ < . %)

The LRT for Hy against H; can be defined as:

MAX (e Hoo?) Ly, y2, - Y6 1 0'2)

Max,eq o) LOL Y2, -5 Vi n,o?)

A = (10)

where y; = (i1, - . s Yin)'s &= (1,... %) and 0% = (012,. ..Ukz)’. It rejects the null
hypothesis for small values of A or alternatively for large values of —2log A. The conve-
nience in using this other form lies on the analogy with the x? statistic used to test against
the alternative hypothesis Hy, that not all u;’s, i = 1,. .., k, are the same.

In the following sections, more explicit expressions for A are given depending on the
specific assumptions on means and variances.

3.1. LRT with known variance ratio

As in Section 2.1, let yij=L1L2,...n,i=12,.. .k be independent observations, nor-

mally distributed with unknown mean p; and variances aiz = ¢;o? with ¢; known and o2

unknown. Under Hy, the maximum likelihood estimate of ;1 = pa = - - - = g is given
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by:

k -
= =L (an)
Dim1 Wi
with w; = ’C’—: Under H; the MLE of u is iifh, the isotonic regression of y, with weights
w = (wy,...,wr), with respect to the simple order defined in (9).
The LRT for Hy against Hj, if the variances are known and ¢; = 1 boils down to rejecting
H) for large values of

k nj k nj
1 . Ny
—2logA=— | D> 05— Am)* = D Y 0 — i)’ (12)

i=1 j=1 i=1 j=1

It is easy to check that the test is equivalent to rejecting Hy for large values of:

k-2

- i=1 Xi

X == (13)
o

where )21»2 = ni(/l{Hl -0 HO)Z and o2 is the (known) common value of the variance.

Now, let us consider the more general case, aiz = cijo? with ¢1, ¢, . . . ¢, known and o2

unknown. The estimator of o2 under the null hypothesis is

k —1 i ~
a2 2ic1 G ?:1()’1’;‘ — fimy)?
OHy = N (14)

and under H;

k -1 n; AL N2
A2 D et € =10 = igy)

~2
The LRT rejects Hy for small values of A = (Z%)N/ 2 or equivalently, taking E> = 1 —
Ho

AN for large values of

k —1-2
2. i1 G Xi (16)

k —1 i ~ 2
2im1 6 j=1(Vij = ItHo)

An extension to the multivariate case with covariance matrix ¥ unknown but common
can be found in [28,35].

3.2. LRT with unknown variances

In this second case, no assumptions on the variances are made. They are unknown and
possibly unequal. Using the notation of Section 2.2, let yj;, j = 1,2,...,n;, i = 1,2,...,k
be independent observations from a univariate normal distribution with unknown mean
vector u; and completely unknown variances o7 > 0. Let fi! be the solution of the isotonic
regression of y with weights w = (wy,...,wy), w; = % found used Algorithm (2.2) in

Appendix 1.
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The first example of testing when all the variances are unknown can be found in [4] and
the univariate version of the test proposed by the author is:

ko oal =2
e n;
Z (,Uq 2)’) i (17)
i=1 Si
ks kS (=)
where y = M and 7 = ZHZJ’# This test is clearly inspired by the LRT but
i=1 M !
it is not. 1

Let us consider first the maximum likelihood solution ({tx,, 62 Ho)> 6}210 = (&IZHO, e
&szO)’ under the null hypothesis. The log-likelihood under the null hypothesis is

k

n; Q"
(R SEDY —Ellnaiz ~5 D i—w*t +e (18)
i=1 ij=1

Differentiating this log-likelihood with respect to n and o7, the following k+ 1 score
equations in k + 1 unknowns emerge:

k —2-
" it nioip, Vi
H = —fr 5
2_im1 Mg, (19)
i -1 .
01%0 = 2?21 n; (yij — wH)? 1<i<k

Substituting 01310 (p) in (18), the profile likelihood of w is:

k n;
I(n) =— Z %ln Z ni_l(y,'j —w?| +e (20)

i=1 j=1

Theorem 1: A maximizer of (20) over R4 exists and it is contained in [min; y;, max; y;].
Moreover, if [min;y;, max; ;] € [maxj<j<x(yi — 0;), minj<j<x(y; + ;)] then the maxi-
mizer is unique.

Proof: Maximizing profile likelihood of i (20) boils down to maximize the sum of
functions

. %m(ni(arf FGi—wd), i=1,...k (21)

Functions of type (21) are unimodal with mode at y; and strictly concave on [y; — 65 y; +
0i]. As the sum of unimodal functions is decreasing to the right of the rightmost mode
(since all terms are decreasing) and from —oo to the leftmost mode, the sum is increasing
(as all of the functions are increasing on that set). Therefore, any maximizer of [, if it exists,
belongs to the interval [min; ¥;, max; y;]. As I is continuous on [min; y;, max; y;], existence
of a maximizer is guaranteed.

Then if we consider the (possibly empty) interval where all the functions in (21) are
strictly concave, on that interval the sum is also strictly concave. As for each i the func-
tion (21) is strictly concave on I; = [y; — 03; yi — 6;], (20) is strictly concave on ﬂle I. If
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[min; y;, max; ;] is contained in this intersection, [ is strictly concave on [min; y;, max; ;.
Hence [ has a unique maximizer on R, |

Remark 3.1: Remark in a setting with real data, it is easy to check whether
[min; y;, max; y;] € [max)<;<x(y; — 6;), min; <;<x(y; + 0;)] and hence to determine whe-
ther the maximum is unique.

However, as seen from (19), the MLE estimate (11, 0%) has no closed form expression.
Therefore, in [11] and [27], two different methods for finding the optimal solution are pro-
posed. The first is an iterative procedure based on the Newton-Raphson method. A reason-

able initial value for ;l(o) is the so-called Graybill-Deal estimator [12] ft(Gp) = Z“,j(+)—”/)s/s
i=1
with 57 = Z];(# The convergence speed of the algorithm strongly depends on the

initial values The second method is based on the profile likelihood approach. The authors
in [27] propose the bisection method for finding the zero of the profile likelihood with
respect to up,. Under H; we use as estimates of (g, aiZHI), (i1, 62) found using the
iterative procedure described in Section 2.2.

The LRT when the variances are completely unknown can be expressed as:

Therefore, as in the previous case, the test rejects for small values of A or equivalently for
large values of —21log A.

3.3. LRT with ordered variances

Using the notation of Section 2.3, let yjj, j = 1,2,...,n;, i = 1,2,...,k be independent
observations from Normal distributions with mean vector u; and variances oiz. As in the
previous case, the first step is the estimation of (i, 0?) under the null hypothesis. In this
case, we need to maximize (18) under the restriction

01220222-~20k2>0. (22)

Theorem 2: Suppose that for 1 <i <k, 67 > 0. Then there exists a maximizer of (18)
under constraints (22).

Proof: First consider the situation for fixed o2 with aiz > 0 for all i. Differentiating (18)
with respect to u yields the equation

k _
Z ni(yi — i)
2
i=1 i
This shows, that for this 62, the (unique) maximizer of (18) in j is given by the following
weighted sum of level-means,
k 2
R k nio
M(G2) — Zl kl 1 gjl
| 1o,
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Consequently, min; y; < fi(6%) < max; y;, bounding the set of possible maximizers of (18)
in p irrespective of the precise value of 2.
Now, given any u € R, the corresponding optimal o2 is the solution to the anti-

_ S i)
tonic regression problem antlreg(aH ,N) where o2 (cr1 yes sz ! 02 %,

= (n1,...,nx)" (see [33, Example 1.5.5]). The vector to be projected has elements
61.2 + (u — y,)z. This means, that if p is restricted to [min; y;, max; y;], the coordinates
to be projected all belong to the interval [min; 61-2, max 51.2 + (max y; — min)_/i)z]. So, if
ranges over [min; y;, max; y;], the optimal a2 is also contained in a the closed bounded
region [min; 61.2, max 61.2 + (max y; — min )7,-)2]". By our assumption that all 61.2 > 0, the
MLE exists being a maximizer of a continuous function on a compact setin R x R* W

If we consider this case as a special case of the case considered in [36], the solution is
unique if Condition 2.2 holds. Given that the solution is not in a closed form, we use an
iterative procedure to approximate the solution. As a starting value ), a modified version
of the Graybill-Deal estimator of the common mean when the variances are subject to order
restrictions proposed in [25] appears to be a good choice:

Sk it
YE L wits

where 7; is the isotonic regression of (£, N) where t = (t1,...t), ti = lz

A = (23)

Under H; we use as estimates of (fm,, lHl) (i, found usmg the iterative
procedure described in Section 2.3.

In contrast with the previous cases, it is not possible to further reduce the expression of
the LRT because

exp Z Z (ylj MHo

11]1

does not reduce to a constant. The same holds under H;. Therefore, the LRT in this case
can be computed by substituting the solutions obtained via the iterative procedure under
Hy and H in the generic expression given in (10):

n ~21
I_ L(/'LH() > GHO)

24
T LGy, 62D) 24

4. Null hypothesis distribution of the test statistics: bootstrap approach

In order to determine the significance of the various test statistics proposed in the previous
sections, we need the null hypothesis distribution of the test statistics. The main distribu-
tional results concerning x ,f and Ei, the test statistics derived in the known variance ratio
case, are contained in [2, Theorems 3.1-3.2]. However, problems related to the value of k
can arise in the analytical derivation of the p-values. Numerical approximation can be nec-
essary, especially if k > 4 and if the variation in the range of the weights is not ‘moderate’
(32,39].
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Furthermore, in the case of completely unknown variances, the null distribution
depends on the unknown variances. When analytical derivation of the null distribution is
particularly complex or not possible, bootstrap methodology is a good option. Therefore,
we propose both a parametric and a non-parametric bootstrap approach that can be easily
employed for finding approximate p-values taking into account the different assumptions
on the variances. For overcoming the complex derivation when the variances are unknown,
bootstrap procedures have been proposed in the literature [4,24].

In particular, in [24], an interesting review of the methods used to approximate the null
distribution of the test statistic under Hy and the restrictive normality assumption (with
which we will not deal in this paper) is reported. Moreover, the authors propose both a
parametric and non-parametric bootstrap approach for the LRT null distribution for one-
sided hypothesis testing for means in a multivariate setting [24]. Also in [4], a bootstrap
approach to test the homogeneity of order restricted mean vectors when the covariance
matrices are unknown is used. In line with those previous approaches, here we propose
two general bootstrap procedures, parametric and non-parametric, that can be used for
testing the null hypothesis taking into account the various assumptions on the variances.

Parametric bootstrap

Algorithm 1

(1) Obtain the estimates ﬁle and [ip, using the original da‘Ea and compute the observed
value of the test statistic of interest LRT©® ( )22(0), E20 A0 o AIO),

(2) Generate,forl <i<k1<j<mn; Yi’; ~ N(finy, | /G,%{O), independently.

(3) For (Y},...,Y}) obtain the estimates ;'ilI* and 1* and compute the bootstrap test
statistic of interest LRT™
(4) Repeat (2)-(3) for a sufficient large number of times M

The bootstrap approximation of the p-value is the given by:

__ #(LRT* > LRT'?)
M

(25)

and the null hypothesis is rejected whenever this p-value is less than the nominal level .

Step (2) is the key step, in which the assumption on the variances play a crucial role. It
is interesting to notice that the above procedure can be further simplified. In fact, we can
instead of generating individu