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Abstract. Variational methods are used in order to establish the existence

and the multiplicity of nontrivial periodic solutions of a second order dynamical

system. The main results are obtained when the potential satisfies different
superquadratic conditions at infinity. The particular case of equations with a

concave-convex nonlinear term is covered.

1. Introduction

For over thirty years many authors have shown great interest in the study the
second order dynamical system

−ü = ∇F (t, u) a.e. in [0, T ], (1.1)

where T > 0, N ≥ 1 is an integer and F : [0, T ] × IRN → IR is a smooth function
(a brief history is given in the next section).

Because of the variational structure, direct methods as well as min-max methods
of critical point theory have been widely exploited in several papers (see for example
[9]-[23], [29], [32], [33], [35]-[55], [57]) with the aim of establishing different existence
and multiplicity results of periodic solutions of problem (1.1).

In [32] the existence of one non-constant periodic solution has been proved re-
quiring a very known superquadratic condition on F , namely, there exist µ > 2,
L > 0 such that for all |ξ| > L and t ∈ [0, T ]

0 < µF (t, ξ) ≤ ∇F (t, ξ) · ξ. (1.2)

Moreover, existence results have been investigated in [33, 44] when F , in addition
to a suitable coercivity condition, satisfies subquadratic behavior with respect to
the second variable, in Rabinowitz’s sense, i.e., that there exist 0 < µ < 2, L > 0
such that for all |ξ| > L and t ∈ [0, T ]

∇F (t, ξ) · ξ ≤ µF (t, ξ).

In the papers [36, 37], non constant periodic solutions of (1.1) have been obtained
under the following superquadratic conditions on F

lim inf
|ξ|→∞

Hµ(t, ξ)

|ξ|2
≥ 0,

where Hµ(t, ξ) = ∇F (t, ξ) · ξ − µF (t, ξ), with µ > 2. In particular, the analysis
pointed out in these articles allows one to consider different nonlinearities, improv-
ing the results of the preceding literature. In [35] the case when, among the others,
∇F (t, ξ) · ξ − µF (t, ξ)→ +∞ as |ξ| → ∞ is considered. More recently, in [29, 38],
problem (1.1) has been studied when the right hand side is perturbed by a linear
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term B(t)u where B(t) is a symmetric matrix whose components are integrable
functions.

It is interesting to note that in almost all these papers the potential F is required
to satisfy some conditions that are strictly related to superquadratic or quadratic
growth at zero with respect to the vectorial variable.

In this note, the aim is to consider problem (1.1) when

F (t, ξ) =
1

2
A(t)ξ · ξ − λb(t)G(ξ),

where A : [0, T ] → IRN×N (N ≥ 1) is a suitable matrix-valued function with

components in L∞([0, T ], IR), b ∈ L1([0, T ], IR), G ∈ C1(IRN ) and λ is a positive
parameter, so that (1.1) reduces to −ü+A(t)u = λb(t)∇G(u) a.e. in [0, T ]

u(T )− u(0) = u̇(T )− u̇(0) = 0.
(Pλ)

To be precise, first we only require that G satisfies an Ambrosetti-Rabinowitz
condition of type (1.2) ; see assumption (4.1) of Theorem 4.1. There we prove the
existence of an explicit positive interval of parameters λ for which (Pλ) admits at
least one non trivial solution. Then, adding an algebraic condition on G, see (4.9)
in Theorem 4.2, we obtain a second nontrivial solution.
It is relevant to point out that (4.9) is not a local condition at zero. Indeed, it
is perfectly compatible both with a quadratic or superquadratic growth near zero.
Moreover, in Theorem 6.1, it is emphasized that the subquadracity of G at zero is a
sufficient condition for (4.9). Hence, we can obtain results for (Pλ) when the right
hand side is of the form λ|u|q−2u+ |u|r−2u, with 1 < q < 2 < r (see Corollary 6.1).
A further multiplicity result is obtained in Theorem 6.2 when the Ambrosetti-
Rabinowitz condition is replaced by a different assumption involving a suitable
behavior at infinity of the function ∇G(ξ) · ξ − 2G(ξ).

The approach adopted in this paper is variational and it is based on two different
critical point theorems due to Bonanno [7] and Bonanno-D’Agùı [8] that have been
already fruitfully used by other authors for studying differential problems of very
different nature (see, for instance, [13, 15, 16]). For other critical point results and
applications we refer for instance to [30, 31, 56].

In the next section we present a brief history of the research connected with
the problem. Background material is given in Section 3. We state and prove our
main results in Section 4. In Section 5 we compare our results obtaining nontrivial
solutions with those obtained with other methods. Examples and further results
are discussed in Section 6.

2. History

The periodic non-autonomous problem

ẍ(t) = ∇xV (t, x(t)), (2.1)

has an extensive history in the case of singular systems (cf., e.g., Ambrosetti-Coti
Zelati [1]). The first to consider it for nonsingular potentials were Berger and the
third author [5] in 1977. They proved the existence of solutions to (2.1) under the
condition that

V (t, x)→∞ as |x| → ∞
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uniformly for a.e. t ∈ I. Subsequently, Willem [50], Mawhin [27], Mawhin-Willem
[28], Tang [42, 43], Tang-Wu [46, 47], Wu-Tang [51] and others proved existence
under various conditions (cf. the references given in these publications).

Most previous work considered the case when A(t) = 0. Ding and Girardi [17]
considered the case of (5.1) when the potential oscillates in magnitude and sign,

−ẍ(t) + B(t)x(t) = b(t)∇W (x(t)) (2.2)

and found conditions for solutions when the matrix B(t) is symmetric and positive
definite and the functionW (x) grows superquadratically and satisfies a homogeneity
condition. Antonacci [3, 4] gave conditions for existence of solutions with stronger
constraints on the potential but without the homogeneity condition, and without
the negative definite condition on the matrix. Generalizations of the above results
are given by Antonacci and Magrone [2], Barletta and Livrea [6], Guo and Xu [22],
Li and Zou [26], Faraci and Livrea [20], Bonanno and Livrea [9, 10], Jiang [24, 25],
Shilgba [39, 40], Faraci and Iannizzotto [19] and Tang and Xiao [48].

3. Preliminaries

Following the notation of [28], let H1
T be the Sobolev space of functions u ∈

L2([0, T ], IRN ) having a weak derivative u̇ ∈ L2([0, T ], IRN ). It is well known that
H1
T , endowed with the norm

‖u‖H1
T

:=

(∫ T

0

|u(t)|2 dt+

∫ T

0

|u̇(t)|2 dt

)1/2

, (3.1)

is a Hilbert space, compactly embedded in C0([0, T ], IRN ) and C∞T ⊂ H1
T .

Let us describe the assumptions on the function A involved in problem (Pλ).

Let A : [0, T ]→ IRN×N be a matrix-valued function such that

(A )1 A(t) = (aij(t)) is a symmetric matrix with aij ∈ L∞([0, T ]) for every t ∈
[0, T ].

(A )2 There exists a positive constant ν such that

A(t)ξ · ξ ≥ ν|ξ|2

for every ξ ∈ IRN and a.e. in [0, T ].

Clearly, if λmax(t) denotes the biggest eigenvalue of A(t), one has that λmax ∈
L∞([0, T ]). Hence, if we put

Λ = ‖λmax‖∞ (3.2)

one has
ν|ξ|2 ≤ A(t)ξ · ξ ≤ Λ |ξ|2, (3.3)

for every t ∈ [0, T ] and ξ ∈ IRN . Because of the previous conditions, it is possible
to introduce on H1

T the following inner product

〈u, v〉 :=

∫ T

0

A(t)u(t) · v(t) dt+

∫ T

0

u̇(t) · v̇(t) dt, (3.4)

for every u, v ∈ H1
T . The norm induced by 〈·, ·〉 is

‖u‖ :=

(∫ T

0

A(t)u(t) · u(t) dt+

∫ T

0

|u̇(t)|2 dt

)1/2

. (3.5)
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It is also simple to verify that ‖ · ‖ is equivalent to ‖ · ‖H1
T

. Indeed, from (3.3) on
has √

m‖u‖H1
T
≤ ‖u‖ ≤

√
M‖u‖H1

T
, (3.6)

where m = min{1, ν} and M = max {1,Λ}. If we denote by k̄ the constant of the
embedding (H1

T , ‖ · ‖H) ↪→ (C0, ‖ · ‖∞) and put

k :=


√

2
m max

{√
T , 1√

T

}
if
√

2− 1 ≤ T ≤ 1√
2−1

,√
T
m

(
1 + 1

T

)
otherwise,

(3.7)

by a simple computation one can obtain that (see [20] and [28])

k̄ ≤ k. (3.8)

Assuming that

(B) b ∈ L1([0, T ]) \ {0} is such that b ≥ 0 a.e. in [0, T ]

and

(G ) G ∈ C1(IR), with G(0) = 0,

let Φ,Ψ : H1
T → IR be defined as follows

Φ(u) :=
1

2
‖u‖2, Ψ(u) :=

∫ T

0

b(t)G(u(t)) dt, (3.9)

for every u ∈ H1
T . Standard arguments show that Φ and Ψ are continuously

Gâteaux differentiable, with

Φ′(u)(v) =

∫ T

0

u̇(t) · v̇(t) dt+

∫ T

0

A(t)u(t) · v(t) dt, (3.10)

and

Ψ′(u)(v) =

∫ T

0

b(t)∇G(u(t)) · v(t) dt, (3.11)

for every u, v ∈ H1
T . Moreover, by the Sobolev embedding theorem, Ψ′ is a compact

operator. It is also useful to point out that estimate (3.8) provides the following
property of the sublevels of Φ

Φ−1(]−∞, r]) ⊆
{
u ∈ C0([0, T ], IRN ) : ‖u‖C0 ≤ k

√
2r
}
, (3.12)

for every r ≥ 0.
From the fact that a solution of problem (Pλ) is any function u0 ∈ C1([0, T ], IRN )

such that u̇0 is absolutely continuous

−ü0(t) +A(t)u0 = λb(t)∇G(u0) a.e. in [0, T ], (3.13)

and
u0(T )− u0(0) = u̇0(T )− u̇0(0) = 0, (3.14)

it was shown in [11] that

a critical point of the functional Iλ := Φ− λΨ is a solution of (Pλ). (3.15)

The existence of multiple solutions will be obtained exploiting the well known
Palais-Smale condition that here we recall for the reader convenience.

If X is a Banach space and I : X → IR is a Gâteaux differentiable function, we
say that I satisfies the Palais-Smale condition (briefly (PS)) if
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(PS) every sequence {xn} in X such that

{I(xn)} is bounded and I ′(xn)→ 0 in X∗

admits a strongly convergent subsequence.

We conclude this section clarifying that the main results of the present note will
be proved by applying in a suitable way the following two critical point theorems
due to Bonanno [7, Theorem 3.2] and Bonanno-D’Agùı [8, Theorem 2.1]

Theorem 3.1. [7, Theorem 3.2] Let X be a real Banach space and let Φ,Ψ : X → IR
be two continuously Gâteaux differentiable functions such that Φ is bounded from
below and Φ(0) = Ψ(0) = 0. Fix r > 0 such that supu∈Φ−1(]−∞,r[) Ψ(u) < +∞ and
assume that for each

λ ∈

]
0,

r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded from
below. Then, for each

λ ∈

]
0,

r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ admits at least two distinct critical points.

Theorem 3.2. [8, Theorem 2.1] Let X be a real Banach space and let Φ,Ψ : X → IR
be two continuously Gâteaux differentiable functions such that infX Φ = Φ(0) =
Ψ(0) = 0. Assume that there are r ∈ IR and ũ ∈ X, with 0 < Φ(ũ) < r such that

supu∈Φ−1(]−∞,r[) Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)

and for each λ ∈
]

Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ = Φ − λΨ satisfies

the (PS)-condition and it is unbounded from below.

Then, for each λ ∈
]

Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ admits at least two

non-zero critical points uλ,1, uλ,1 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

Remark 3.1. In Remark 2.1 of [8] it is pointed out that Theorem 3.2 still holds
whenever the (PS) is replaced by the so called (C), provided that Φ is coercive.

For the sake of completeness, let us recall that if X is a Banach space and
I : X → IR is a Gâteaux differentiable function, we say that I satisfies the Cerami
condition (briefly (C)) if

(C) every sequence {xn} in X such that

{I(xn)} is bounded and (1 + ‖xn‖)I ′(xn)→ 0 in X∗

admits a strongly convergent subsequence.

4. Main results

Here is a first existence result.
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Theorem 4.1. Assume that (A )1 − (A )2 and (G ) hold. Moreover, suppose that
there exist R > 0 and µ > 2 such that for every |ξ| ≥ R

0 < µG(ξ) ≤ ∇G(ξ) · ξ. (4.1)

Then, for every b : [0, T ]→ IR satisfying (B) and for every

λ ∈ 1

2k2‖b‖1

]
0, sup
c>0

c2

max|ξ|≤cG(ξ)

[
problem (Pλ) admits at least one nontrivial solution.

Proof. Fix b : [0, T ] → IR satisfying (B) and λ ∈ 1
2k2‖b‖1

]
0, supc>0

c2

max|ξ|≤cG(ξ)

[
.

We wish to apply Theorem 3.1 with X = H1
T and Φ, Ψ as defined in the previous

section 3.
First, we verify that Iλ = Φ− λΨ satisfies the (PS)-condition. If {un} is such that
Iλ(un) is bounded and I ′λ(un) → 0 in X∗ one can verify that {un} is bounded.
Indeed, if for every n ∈ IN we put

G(un(t)) =
1

µ
∇G(un(t)) · un(t)−G(un(t)),

Tn = {t ∈ [0, T ] : |un(t)| > R},
from assumptions (G ) and (4.1) there exist M1,M2 > 0 independent from n, such
that for every n ∈ IN large enough one has

M1 +
1

µ
‖un‖ ≥ Iλ(un)− 1

µ
I ′λ(un)(un)

=

(
1

2
− 1

µ

)
‖un‖2 + λ

∫ T

0

b(t)G(un(t)) dt (4.2)

=

(
1

2
− 1

µ

)
‖un‖2 + λ

[∫
Tn

b(t)G(un(t)) dt+

∫
[0,T ]\Tn

b(t)G(un(t)) dt

]

≥
(

1

2
− 1

µ

)
‖un‖2 − λM2. (4.3)

Because µ > 2, from (4.2) one can conclude that {un} is bounded. At this point,
since Φ′ is a homomorphism and Ψ′ is a compact operator the (PS)-condition holds
(see also [23, Proposition 3.8]).

From condition (4.1) there exist α, β > 0 such that

G(ξ) ≥ α|ξ|µ − β (4.4)

for every ξ ∈ IR. Hence, if {ξn ∈ IRN} is such that |ξn| → +∞ and put wn(t) = ξn
one has that wn ∈ H1

T and, also in view of (3.3),

Iλ(wn) =
1

2

∫ T

0

A(t)ξn · ξn dt− λ
∫ T

0

b(t)G(ξn)

≤ ΛT

2
|ξn|2 − λα‖b‖1|ξn|µ + λβ‖b‖1, (4.5)

namely Iλ is unbounded from below.
Let c > 0 such that

0 < λ <
1

2k2‖b‖1
c2

max|ξ|≤cG(ξ)
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and put

r =
c2

2k2
. (4.6)

From (3.12) one has

sup
u∈Φ−1(]−∞,r[)

Ψ(u) ≤ ‖b‖1 max
|ξ|≤c

G(ξ) < +∞ (4.7)

and, in particular

0 < λ <
1

2k2‖b‖1
c2

max|ξ|≤cG(ξ)
≤ r

supu∈Φ−1(]−∞,r[) Ψ(u)
.

Hence, all the assumptions of Theorem 3.1 are satisfied and Iλ admits at least two
critical points, possibly one being zero. The proof is completed taking in mind
claim (3.15). �

Remark 4.1. We explicitly point out the proof of the previous theorem furnishes
two solutions of problem (Pλ). However, it is not possible to assure that both these
solutions are nontrivial.

Remark 4.2. Condition (4.1) has been used by other authors in order to establish
the existence of at least one solution for the more general problem (1.1), for example
see [18, 23, 32]. It is interesting to emphasize that in the cited papers the results are
obtained requiring some further assumption on F , namely it is superquadratic at
zero with respect to the second variable and/or it satisfies a global sign condition.

The next result represents a multiplicity theorem and throughout it we will make
use of the following constant

L =
1

k2TΛ
, (4.8)

where Λ is the number introudced in (3.2).

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 are satisfied. More-
over, assume that there exist c > 0 and ξ̃ ∈ IRN , with |ξ̃| < c, such that

max|ξ|≤cG(ξ)

c2
< L

G(ξ̃)

|ξ̃|2
. (4.9)

Then, for every b : [0, T ]→ IR satisfying (B) and for every

λ ∈ 1

2k2‖b‖1

]
1

L

|ξ̃|2

G(ξ̃)
,

c2

max|ξ|≤cG(ξ)

[
problem (Pλ) admits at least two nontrivial solutions.

Proof. Fix b : [0, T ] → IR satisfying (B) and λ ∈ 1
2k2‖b‖1

]
1
L
|ξ̃|2

G(ξ̃)
, c2

max|ξ|≤cG(ξ)

[
. In

this case we wish to apply Theorem 3.2 with X = H1
T and Φ, Ψ as introduced in

section 3. From |ξ̃| < c and (4.9) one has

|ξ̃| <
√
Lc. (4.10)

Indeed, arguing by contradiction, assume c ≤ 1√
L
|ξ̃|. It follows

max|ξ|≤cG(ξ)

c2
≥ G(ξ̃)

c2
≥ LG(ξ̃)

|ξ̃|2
,
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in contradiction with (4.9).
Let r be as defined in (4.6) and put

ũ(t) = ξ̃ ∀t ∈ [0, T ].

From (4.9) one has that ξ̃ 6= 0. Hence, because of (4.10)

0 <
1

2

∫ T

0

A(t)ξ̃ · ξ̃ dt ≤ 1

2
TΛ|ξ̃|2 =

1

2

1

Lk2
|ξ̃|2 ≤ c2

2k2
,

namely,

0 < Φ(ũ) < r.

Moreover, from assumption (4.9) and taking in mind (3.12) one has

supu∈Φ−1(]−∞,r[) Ψ(u)

r
≤ 2k2‖b‖1

max|ξ|≤cG(ξ)

c2

< 2k2‖b‖1L
G(ξ̃)

|ξ̃|2

= 2‖b‖1
1

TΛ

G(ξ̃)

|ξ̃|2

≤ 2‖b‖1
G(ξ̃)∫ T

0
A(t)ξ̃ · ξ̃

dt

=
Ψ(ũ)

Φ(ũ)
.

Arguing as in Theorem 4.1, it is possible to verify that Iλ = Φ− λΨ is unbounded
from below an satisfies the (PS)-condition. Hence, all the assumptions of Theo-
rem 3.2 are satisfied and Iλ admits two nontrivial critical points u1,λ, u2,λ with
Iλ(u1,λ) < 0 < Iλ(u2,λ). This, in conjunction with claim (3.15), concludes the
proof. �

5. Comparison with other results

In [38] a study was made of the system:

−ẍ(t) + A(t)x(t) = λ∇xV (t, x(t)), (5.1)

where V (t, x) ∈ C([0, T ]× IRN ). A special case is

−ü+A(t)u = λb(t)∇G(u). (5.2)

The elements of the symmetric matrix A(t) were only assumed to be integrable
functions on I = [0, T ], i.e., for each j and k, ajk(t) ∈ L1(I). This implies that
there is an extension D of the operator

D0x = −ẍ(t) +A(t)x(t)

having the same essential spectrum as −ẍ(t). In particular, it has a discrete, count-
able spectrum consisting of isolated eigenvalues of finite multiplicity with a finite
lower bound λ0 :

−∞ < λ0 < λ1 < λ2 < . . . < λl < . . . . (5.3)

The hypotheses (A )1 and (A )2 were not assumed there. The counterparts of the
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functionals Φ,Ψ : H1
T → IR are

Φ(u) := d(u), Ψ(u) :=

∫ T

0

2V (t, u) dt, (5.4)

Let

G(x) = d(x)− 2

∫
I

V (t, x) dt, (5.5)

where d(x) = (Dx, x). The counterpart of Iλ := Φ− λΨ is

Gλ(x) = d(x)− 2λ

∫
I

V (t, x) dt, 0 < λ <∞. (5.6)

It was not required that the Ambrosetti-Rabinowitz condition (1.2) be satisfied.
Neither the (PS)-condition nor the (C)-condition held. One consequence of the
results proved there is

Theorem 5.1. Assume λ0 > 0 and

(1) V (t, x)/|x|2 →∞ as |x| → ∞.
(2) There are positive constants µ and m such that

2V (t, x) ≤ µ|x|2, |x| ≤ m, x ∈ IRN .

Then the system (5.1) has a nontrivial solution for almost all λ ∈]0, λ0/µ[. If we
add the hypothesis: There is a function W (t) ∈ L1(I) such that

2V (t, x+ y)− 2V (t, x)− (2ry − (r − 1)2x) · ∇xV (x, t) (5.7)

≥ −W (t), t ∈ I, x, y ∈ IRN , r ∈ [0, 1],

then the system (5.1) has a nontrivial solution for each λ ∈]0, λ0/µ[.

Theorem 5.2. The conclusions of Theorem 5.1 hold if we replace Hypothesis (5.7)
with: There are a constant C and a function W (t) ∈ L1(I) such that

H(t, θx) ≤ C(H(t, x) +W (t)), 0 ≤ θ ≤ 1, t ∈ I, x ∈ IRN ,

where

H(t, x) = ∇xV (t, x) · x− 2V (t, x).

Note that there were no results concerning multiple nontrivial solutions.

6. Examples

Example 6.1. The following problem{
−ü+ u = 1

18ue
|u|2
36

(
|u|6 + 91|u|4 − 1208|u|2 + 576

)
a. e. in [0, 1]

u(1)− u(0) = u̇(1)− u̇(0) = 0

admits at least two nontrivial solutions.
Indeed, one can apply Theorem 4.2 when T = 1, A(t) = IN×N , λ = 1, b ≡ 1 and

G(ξ) = |ξ|2(|ξ|2 − 1)(|ξ|2 − 16)e|ξ|
2/36. In this case k =

√
2, L = 1/2 and choosing

c = 4 and ξ̄ ∈ IRN , with |ξ̄| < 1 such that max|ξ|≤4G(ξ) = max|ξ|≤1G(ξ) = G(ξ̄),
some calculations show that

max|ξ|≤4G(ξ)

16
=
G(ξ̄)

16
<
G(ξ̄)

2
<

1

2

G(ξ̄)

|ξ̄|2
,
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namely (4.9) holds. Condition (4.1) is clearly satisfied. Moreover, one can verify
that 1

2 < G(ξ̄) < 4, hence

1

2k2‖b‖1
1

L

|ξ̄|2

G(ξ̄)
=

1

2G(ξ̄)
< 1 <

4

max|ξ|≤4G(ξ)
=

1

2k2‖b‖1
16

max|ξ|≤4G(ξ)

and the conclusion is achieved by applying Theorem 4.2 with λ = 1.

We explicitly wish to point out that condition (4.9), that is the crucial assump-
tion of Theorem 4.2, is not a local condition at zero on the potential G. Note that
in the above example G has a quadratic behaviour at zero. However, in general, a
sub-quadratic growth at zero represents a sufficient condition to satisfy (4.9). On
account of this remark, as a particular case of Theorem 4.2, it is possible to state
the following

Theorem 6.1. Suppose that the assumptions of Theorem 4.1 are satisfied. More-
over, assume that

lim sup
ξ→0

G(ξ)

|ξ|2
= +∞. (6.1)

Then, for every b : [0, T ]→ IR satisfying (B) and for every

λ ∈ 1

2k2‖b‖1

]
0, sup
c>0

c2

max|ξ|≤cG(ξ)

[
problem (Pλ) admits at least two nontrivial solutions.

Proof. Fix b : [0, T ] → IR satisfying (B) and λ ∈ 1
2k2‖b‖1

]
0, supc>0

c2

max|ξ|≤cG(ξ)

[
.

Let c > 0 be such that

0 < λ <
1

2k2‖b‖1
c2

max|ξ|≤cG(ξ)
. (6.2)

Because of assumption (6.1) there exists ξ̃ ∈ IRN \ {0}, with |ξ̃| < c, such that

0 <
1

2k2‖b‖1
1

L

|ξ̃|2

G(ξ̃)
< λ, (6.3)

where L is the constant introduced in (4.8). Hence, putting together (6.2) and (6.3)
one has that

max|ξ|≤cG(ξ)

c2
< L

G(ξ̃)

|ξ̃|2

and

λ ∈ 1

2k2‖b‖1

]
1

L

|ξ̃|2

G(ξ̃)
,

c2

max|ξ|≤cG(ξ)

[
,

Namely, all the assumptions of Theorem 4.2 are satisfies and the proof is complete.
�

Remark 6.1. We can observe that Theorem 6.1 is a generalization of Theorem 4.1
of [11] where the extra conditions ∇G(0) 6= 0 and b ≡ 1 are exploited.
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As a consequence of Theorem 6.1 we can study the following class of Hamiltonian
systems  −ü+ u = λ|u|q−2u+ |u|r−2u a.e. in [0, 1]

u(1)− u(0) = u̇(1)− u̇(0) = 0,
(6.4)

with 1 < q < 2 < r.

Corollary 6.1. Put

λ∗ =

(
r

r − 2

2− q
q

) 2−q
r−2
[
q

2
· r − 2

r − q

] r−q
r−2

.

Then, for every λ ∈]0, λ∗[ problem (6.4) admits at least two nontrivial solutions.

Proof. Fix λ ∈]0, λ∗[ and put

T = 1, A(t) = IN×N , b ≡ 1 and G(ξ) = λ
|ξ|q

q
+
|ξ|r

r
.

It is possible to verify that all the assumptions of Theorem 6.1 are satisfied, with

k = 1 and ‖b‖1 = 1. Hence, for every ν ∈
]
0, 1

2 supc>0
c2

max|ξ|≤cG(ξ)

[
problem −ü+ u = ν

(
λ|u|q−2u+ |u|r−2u

)
a.e. in [0, 1]

u(1)− u(0) = u̇(1)− u̇(0) = 0,
(6.5)

admits at least two nontrivial solutions. At this point, it is clear that

sup
c>0

c2

max|ξ|≤cG(ξ)
= sup

c>0

c2

λ
q c
q + cr

r

,

and, since the function ϕ :]0,+∞[→]0,+∞[ defined by putting

ϕ(c) =
c2

λ
q c
q + cr

r

for every c > 0 is continuous and such that

lim
c→0+

ϕ(c) = lim
c→+∞

ϕ(c) = 0,

there exists cmax > 0 such that

ϕ(cmax) = sup
c>0

c2

max|ξ|≤cG(ξ)
.

In particular, simple calculations show that

cmax =

(
λ

r

r − 2

2− q
q

) 1
r−q

and

1

2
sup
c>0

c2

max|ξ|≤cG(ξ)
=

1

λ
r−2
r−q

q(r − 2)

2(r − q)

(
r

r − 2

2− q
q

) 2−q
r−q

=

(
λ∗

λ

) r−2
r−q

.

Thus, since λ ∈]0, λ∗[ and taking in mind that 0 < q < 2 < r, one has that

1

2
sup
c>0

c2

max|ξ|≤cG(ξ)
> 1.

Finally, we can conclude observing that (6.5) reduces to (6.4) when ν = 1. �
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Thanks to Remark 3.1, in analogy with Theorem 6.1, it is possible to obtain
another multiplicity theorem by requiring a different condition with respect to the
Ambrosetti-Rabinowitz type condition (4.1).

Theorem 6.2. Assume that (A )1− (A )2, (G ) and (6.1) hold. Moreover, suppose
that

lim sup
|ξ|→+∞

G(ξ)

|ξ|2
= +∞ (6.6)

and that there exist M, τ, α > 0 with 1 ≤ α ≤ τ such that

G(ξ) ≤M(1 + |ξ|α+1) (6.7)

and

lim inf
|ξ|→+∞

∇G(ξ) · ξ − 2G(ξ)

|ξ|τ
> 0 (6.8)

Then, for every b ∈ L∞([0, T ]) \ {0} such that b = essinf b > 0 and for every

λ ∈ 1

2k2‖b‖1

]
0, sup
c>0

c2

max|ξ|≤cG(ξ)

[
problem (Pλ) admits at least two nontrivial solutions.

Proof. Fix b ∈ L∞([0, T ]) \ {0} such that b > 0 and let λ such that

0 < λ <
1

2k2‖b‖1
sup
c>0

c2

max|ξ|≤cG(ξ)
.

If X = H1
T and Φ, Ψ are as defined in the previous section 3, since Φ is coercive,

we wish to apply Theorem 3.2 with (PS) replaced by (C).
Arguing exactly as in the proof of Corollary 6.1 it is possible to find r ∈ IR and

ũ ∈ X such that 0 < Φ(ũ) < r and

supu∈Φ−1(]−∞,r[) Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
.

From (6.6) there exist a sequence {ξn} in IRN and a positive number η with

η >
TΛ

2λ‖b‖1
(6.9)

such that |ξn| → +∞ and

G(ξn) > η|ξn|2 (6.10)

for every n ∈ IN. Hence, if we put wn(t) = ξn for every t ∈ [0, T ], n ∈ IN, one has
that wn ∈ X and, from (3.3) and (6.10) one obtains

Iλ(wn) = Φ(wn)− λΨ(wn)

=
1

2

∫ T

0

A(t)ξn · ξn dt− λ‖b‖1G(ξn)

≤ TΛ

2
|ξn|2 − λ‖b‖1G(ξn)

≤
(
TΛ

2
− λ‖b‖1η

)
|ξn|2.

Hence, passing to the limit in the previous inequality and taking in mind (6.9), it
follows that Iλ is unbounded from below.
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Let us now verify the Iλ satisfies (C). Assume that {un} in X is such that

{Iλ(un)} is bounded and (1 + ‖un‖)I ′(un)→ 0 in X∗. (6.11)

We claim that
{un} is bounded. (6.12)

By contradiction, if (6.12) does not hold, passing to a subsequence if needed, one
has that

‖un‖ → +∞. (6.13)

By assumption (6.8) there exist M1, M2 > 0 such that

∇G(ξ) · ξ − 2G(ξ) ≥M1|ξ|τ −M2 (6.14)

for every ξ ∈ IRN . Condition (6.11) assure the existence of a positive constant M3

as well of a sequence {εn} with ε ↓ 0+ such that

‖un‖2 − 2λ

∫ T

0

b(t)G(un(t)) dt ≤M3 (6.15)

and

〈un, h〉 − λ
∫ T

0

b(t)∇G(un(t)) · h dt ≤ εn
‖h‖

1 + ‖un‖
(6.16)

for every n ∈ IN and every h ∈ X. Acting in (6.16) with h = −un and adding (6.15)
to (6.16) one has

λ

∫ T

0

b(t)[∇G(un(t)) · un(t)− 2G(un(t))] dt ≤M3 + εn
‖un‖

1 + ‖un‖
(6.17)

for every n ∈ IN. On the other hand, since b > 0, by (6.14) one has

λ

∫ T

0

b(t)[∇G(un(t)) · un(t)− 2G(un(t))] dt ≥ λ

∫ T

0

b(t)[M1|un(t)|τ −M2] dt

≥ λbM1‖un‖ττ − λM2‖b‖1 (6.18)

for every n ∈ N . Putting together (6.17) and (6.18) one has that {un} is bounded

in Lτ ([0, T ], IRN ). Hence, because 1 ≤ α ≤ τ it is clear that

{un} is bounded in Lα([0, T ], IRN ). (6.19)

Condition (3.8) assures that
|un(t)|
‖un‖

≤ k (6.20)

for every t ∈ [0, T ] and every n ∈ IN. Hence, putting together (6.15), (6.7) one has

‖un‖ ≤ 2λ

∫ T

0

b(t)
G(un(t))

‖un‖
dt+

M3

‖un‖

≤ 2Mλ

∫ T

0

b(t)

(
1

‖un‖
+
|un(t)|α+1

‖un‖

)
dt+

M3

‖un‖
(6.21)

≤ 2Mλ

(
‖b‖1
‖un‖

+ k‖b‖∞‖un‖αα
)

+
M3

‖un‖
for every n ∈ IN. At this point it is clear that (6.21), in view of (6.19), is in
contradiction with (6.13). Hence (6.12) holds and recalling again that Φ′ is a
homomorphism and Ψ′ is a compact operator, since from (6.11) it follows that
I ′λ(un)→ 0 in X∗, one has that {un} admits a convergent subsequence, namely Iλ
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satisfies (C). We are now in the position to apply the alternative version of Theorem
3.2 where condition (PS) is replaced by (C), see Remark 3.1, that concludes the
proof. �

Remark 6.2. The previous Theorem 6.2 extends Theorem 4.2 of [11] because it
does not require that ∇G(0) 6= 0 and, in addition, it considers problems where the
nonlinearity can explicitly depend on the variable t.

Example 6.2. Let A : [0, T ] → IRN×N be a matrix-valued function satisfying
conditions (A )1 − (A )2 and b ∈ L1([0, T ]) with b̄ = essinf b > 0. Then, for every
λ ∈ 1

2k2‖b‖1

]
0, e2

[
problem −ü+A(t)u = 2λb(t)u ln |u| (ln |u|+ 1) a.e. in [0, T ]

u(T )− u(0) = u̇(T )− u̇(0) = 0

admits at least two non trivial solutions. Indeed, if one considers the function
G(ξ) = |ξ|2 ln2 |ξ| for all ξ ∈ IRN \{0}, with G(0) = 0, direct calculations show that
∇G(ξ) = ξ ln |ξ| (ln |ξ|+ 1) and max|ξ|≤1G(ξ) = e−2. Hence,

sup
c>0

c2

max|ξ|≤cG(ξ)
≥ e2

and the conclusion is achieved by applying Theorem 6.2.

Acknowledgement. The first and second authors are members of the Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).
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