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Preference data are a particular type of ranking data that arise when sev-
eral individuals express their preferences over a finite set of items. Within
this framework, the main issue concerns the aggregation of the preferences to
identify a compromise or a “consensus”, defined as the closest ranking (i.e.
with the minimum distance or maximum correlation) to the whole set of pref-
erences. Many approaches have been proposed, but they are not sensitive
to the importance of items: i.e. changing the rank of a highly-relevant ele-
ment should result in a higher penalty than changing the rank of a negligible
one. The goal of this paper is to investigate the consensus between rankings
taking into account the importance of items (element weights). For this pur-
pose, we present: i) an element weighted rank correlation coefficient as an
extension of the Emond and Mason’s one, and ii) an element weighted rank
distance as an extension of the Kemeny distance. The one-to-one correspon-
dence between the weighted distance and the rank correlation coefficient is
analytically proved. Moreover, a procedure to obtain the consensus ranking
among several individuals is described and its performance is studied both
by simulation and by the application to real datasets.

keywords: Weighted rank correlation coefficient, weighted Kemeny dis-
tance, element weights, consensus ranking.

1 Introduction

Ranking is one of the most effective cognitive processes used by people to handle many
aspects of their lives. It is also a simple and efficient data collection technique to un-
derstand individuals’ perception and preferences for some items. When some subjects

*Corresponding author: alessandro.albano@unipa.it
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are asked to indicate their preferences over a set of alternatives, ranking data are called
preference data. Therefore, preference data arise when a group of n individuals (e.g.
judges, experts, voters, raters) express their preferences for a finite set of items (m dif-
ferent alternatives of objects, e.g., movies, activities, wines). Preference data can be
expressed in two forms: by ordering the items (when alternatives are placed in order
from best to worst), or rankings (when alternatives are fixed in any pre-specified order
and preferences are expressed by using integers to indicate the rank of each alternative).
If the m items, labelled {1, ...m}, are ranked in m distinguishable ranks, a complete
(full) ranking or linear ordering is achieved (Cook, 2006): this ranking π is a map-
ping function from the set of items {1, ...,m} to the set of ranks {1, ...,m}, endowed
with the natural ordering of integers; π = (π(1), π(2), ..., π(m)) where π(i) is the rank
given by a judge to item i. For example, given 5 items, say {i1, i2, i3, i4, i5}, the or-
dering O = (i2 ≻ i3 ≻ i4 ≻ i1 ≻ i5) corresponds to the ranking π(O) = (4, 1, 2, 3, 5).
Ranking π is, in this case, one of the 5! (or m! with m items) possible permutations
of 5 elements. When some items receive the same preference, then a tied ranking or a
weak ordering is obtained. For example, given 5 items, say {i1, i2, i3, i4, i5}, the ordering
O2 = (i2 ≻ i1 ∼ i3 ≻ i4 ≻ i5), where the judge likes i1 and i3 equally well (i.e. the items
are tied), corresponds to the ranking π(O2) = (2, 1, 2, 4, 5). Finally, in real situations,
sometimes not all items are ranked: we observe partial rankings when judges are asked
to rank only a subset of the whole set of items (for example only m − 1 items), and
incomplete rankings when judges can freely choose to rank only some items. Since every
ordering can be transformed into a ranking and vice-versa, in this paper the two words
are used interchangeably.
Because of their data reduction properties and ease of acquisition and representation,
rankings have gained significant attention in the past few years. Within this framework,
the interest lies in evaluating the distance and the correlation between two rankings.
The most famous correlation measures between rankings include Kendall’s and Spear-
man’s rank correlation coefficient. As regards the distances, in 1962 Kemeny and Snell
introduced a metric defined on linear and weak orders, known as Kemeny distance (or
metric), later generalized to the framework of partial orders by Cook et al. in 1986,
which satisfies the constraints of a distance measure suitable for rankings. Among the
several axiomatic approaches proposed in the literature, here we consider the Kemeny’s
axiomatic framework (Kemeny and Snell, 1962) and, since we consider the possibility of
ties, we assume that the geometrical space of preference rankings is the generalized per-
mutation polytope (Heiser and D’Ambrosio 2013, D’Ambrosio et al. 2017), for which the
natural distance measure is the Kemeny distance. Cook (2006) highlights the difficulties
to treat the Kemeny metric, an issue already underlined by Emond and Mason (2002)
and connected to the mathematical formulation using absolute values (see Eq.(6)). For
this reason, the latter introduced a new correlation coefficient, strictly related to the Ke-
meny distance, and proposed the use of this coefficient as a basis for deriving a consensus
among a set of rankings. A correlation coefficient takes values between -1 and +1, i.e.
rankings in full agreement are assigned a correlation of +1, those in full disagreement
are assigned a correlation of -1, and all others lie in between. A distance d between two
rankings, instead, is a non-negative value, ranging in [0, Dmax], where 0 is the distance
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between a ranking and itself, while Dmax varies among distances. This makes the cor-
relation coefficient much more intuitive as a measure of agreement between rankings.
In general, distances between rankings consider all item equally important, and they
are not sensitive toward where the disagreement occurs. Kumar and Vassilvitskii (2010)
introduced two essential aspects for many applications involving distances between rank-
ings: positional weights and element weights. Positional weights allow to take into ac-
count the particular position of disagreement between two rankings when computing
their distance/similarity, i.e., for example, the researcher may want to consider swap-
ping elements near the head of a ranking more critical than swapping elements in the
tail of the ranking.
Conversely, element weights refer to the role played by the objects that judges are rank-
ing: in certain situations swapping some particular objects should be less penalizing
than swapping some others. For example, let us consider a survey in which a group of
people is asked to rank ten social networks. In this case, it would be reasonable to as-
sign weights proportional the social network’s stock market value (e.g. Facebook would
receive the highest weight), so that a disagreement between two popular platforms re-
ceive a larger penalization than an inversion between less famous ones. In other words,
if two judges agree in assigning the position of the most important alternatives, they
will be highly positively correlated. Another example comes from the voting theory:
when ranking politicians, the weights allow taking into account that some candidates
are similar (belonging to the same party or political coalition) and that transposing sim-
ilar candidates induces a smaller cost than transposing dissimilar candidates. Here two
judges that commit many inversions between politicians coming from different parties
will be negatively correlated.
A critical issue involving rankings concerns the aggregation of the preferences in order to
identify a compromise or a “consensus” (Kemeny and Snell 1962, Fligner and Verducci
1990). The same problem is known in the literature as the social choice problem, the
rank aggregation problem, the median ranking problem, the central ranking detection, or
the Kemeny problem, depending on the reference framework (D’Ambrosio et al., 2019).
Different approaches have been proposed in the literature to cope with this problem,
but probably the most popular is the one related to distances/correlations (Kemeny and
Snell 1962,Cook et al. 1986, Fagot 1994, D’Ambrosio and Heiser 2016). As a matter
of fact, in order to obtain homogeneous groups of subjects with similar preferences,
it is natural to measure the spread between rankings through dissimilarity or distance
measures. In this sense, a consensus is defined as the closest ranking (i.e. with the
minimum distance) to the whole set of preferences. Another possible way for measuring
(dis)-agreement between rankings in a consensus problem is in terms of a correlation
coefficient. As already said, a correlation coefficient lies between -1 and +1, while the
distance between two rankings ranges in [0, Dmax], where Dmax changes according to
the distance. Considering the (finite) set S of all weak orderings of m objects, any rank
correlation coefficient on S is also a distance metric on S, and vice versa. A distance
metric d can be transformed into a correlation coefficient c (and vice-versa) using the
linear transformation c = 1− 2d

Dmax .
While a position weighted correlation coefficient τwx , for both linear and weak ordering,
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has been proposed by Plaia et al. (2020), here we aim at introducing an element weighted
correlation coefficient called τx,e as an extension of τx provided by Emond and Mason
(2002), and a new weighted distance called dK,e as an extension of Kemeny distance.
We will prove that the proposed correlation coefficient reduces to Emond and Mason’s
τx when equal weights are set, and that it is related to the proposed distance through
the linear transformation τx,e = 1− 2dK,e

Dmax .
Moreover, the proposed weighted correlation coefficient will be used to deal with a
consensus ranking problem, i.e. to find the ranking which best represents the rank-
ings/preferences expressed by a group of judges.
The paper is organized as follows. The next section describes the most used distance
measures for ranking data. Section 3 deals with the introduction of element weights in
the distance. In Section 4, some intuitive methods to assign weights to elements are
discussed. The algorithm for finding the consensus ranking is described in Section 5. In
Section 6, the algorithm is applied to simulated and real data. Finally, the concluding
remarks are presented in Section 7.

2 Distances and correlation for rankings

Several distance measures have been proposed for ranking data. Given a setX, a distance
is a function d : X ×X → R where, for all π and π∗ ∈ X, holds:

1. reflexivity d(π, π) = 0;

2. positivity d(π, π∗) ≥ 0

3. symmetry d(π, π∗) = d(π∗, π).

A distance measure is said to be a metric when it satisfies the triangle inequality:

4. triangle inequality d(π, π∗) ≤ d(π, z) + d(z, π∗), ∀z ∈ X.

Finally, d is said to be a pseudometric if it does not satisfy the identity of indiscernibles:

5. identity of indiscernibles d(π, π∗) = 0 if and only if π = π∗.

2.1 Kendall’s correlation coefficient τb

Kendall’s correlation coefficient is probably the best-known measure for ranking data
(Kendall, 1948). It can be calculated by creating a score matrix of a ranking. A rank
vector π with m objects can be transformed into a symmetric m×m score matrix, whose
elements aij are defined by:

aij =


1 if i is preferred to j

0 if i = j or i is tied with j

−1 if j is preferred to i

(1)
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Kendall’s correlation coefficient τb between two rankings, π with score matrix aij and π∗

with score matrix bij is defined as:

τb(π, π
∗) =

∑m
i=1

∑m
i=1 aijbij√∑m

i=1

∑m
i=1 a

2
ij

∑m
i=1

∑m
i=1 b

2
ij

. (2)

When two rankings are the reversal of each other τb becomes −1. When comparing linear
orderings, the denominator always works out to the constant m(m − 1). Conversely,
when comparing weak orderings the denominator will compute to a lesser value, reduced
according to the total number of ties declared in each ranking. Emond and Mason
(2002) pointed out that an all-ties ranking results in a zero-filled score matrix and can
never be estimated as a solution, because of the zeros in the numerator divided zeros
in the denominator results in an unknown number. Kendall’s correlation coefficient is
a measure of similarity and can be transformed into a dissimilarity or distance measure
via the linear transformation dτb = 1− τb, where dτb is Kendall’s distance.

2.2 Emond and Mason’s correlation coefficient τx

When dealing with tied rankings, Emond and Mason (2002) showed that Kendall’s
distance (dτb) violates the triangle inequality. To solve this difficulty, they redesigned
the elements in Kendall’s τb score matrix in Eq.(1) and renamed it to τx. The elements
in the new score matrix a′ij for rank vector π are now defined by:

a′ij =


1 if i is preferred or tied with j

0 if i = j

−1 if j is preferred to i .

(3)

The extended correlation coefficient is defined as:

τx(π, π
∗) =

∑m
i=1

∑m
j=1 a

′
ijb

′
ij

m(m− 1)
. (4)

When ties are not allowed τx reduces to τb, the former differs from the latter in giving
a score of 1 to ties instead of 0; this allows to solve the known Kendall’s problems with
weak orderings.

2.3 Spearman’s distance ds

The Spearman’s distance is calculated by taking the square root of the well known
Spearman’s ρ. The distance between two rank vectors π and π∗ is defined by:

ds(π, π
∗) =

√√√√ m∑
i=1

(π(i)− π∗(i))2. (5)
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When a ranking contains tied objects, these objects must be given the average of the
corresponding rank values. A problem identified by Emond and Mason (2000) is that
Spearman’s ds suffers from what is known as the sensitivity to irrelevant alternatives
(an irrelevant alternative is one that is asymmetrically dominated, this means that the
object is less preferred in every ranking to another object but not by every other ob-
ject (Emond and Mason 2000)). In other words, adding extra irrelevant objects to the
ranking exercise could change the maximum agreement solution. This technical flaw
arises because Spearman’s ds treats the ranks as numerical values instead of categorical
ordered values. Because of this sensitivity to irrelevant alternatives, Spearman’s ds is
not suitable as a rank correlation coefficient in the weighted rankings problem.

2.4 Kemeny distance dK

Kemeny (1959) introduced several constraints that a suitable distance measure for rank-
ings should satisfy:

1. reflexivity, positivity, symmetry and the triangular inequality;

2. the measure of distance should not be affected by a relabeling of the set of objects
to be ranked;

3. if two rankings are in complete agreement at the beginning and at the end of the
list and differ only in the middle, than the distance does not change after deleting
both the first and the last objects to be ranked;

4. the minimum positive distance is one,

and introduced a distance, dK , that satisfies all these constraints.
The Kemeny distance dK between two rankings of size m, π with score matrix aij and
π∗ with score matrix bij (aij and bij defined as in Eq.(1)) is a city block distance defined
as:

dK(π, π∗) =
1

2

m∑
i=1

m∑
j=1

∣∣aij − bij
∣∣ . (6)

The Kemeny distance takes the shortest path between two rankings. The factor a half
takes into account that the two triangular matrices that are created by the sum of
absolute differences of the score matrices are identical. The maximum distance from a
complete ranking to its reversal is m(m − 1) while the maximum distance of a ranking
containing t ties is given by: m(m− 1)− 2t.
Considering the usual relation between a distance d and its corresponding correlation
coefficient τ = 1 − 2d

Dmax , where Dmax is the maximum distance, dK is in a one-
to-one correspondence to the rank correlation coefficient τx proposed by Emond and
Mason (2002). Distances and correlation are two possible measure used to cope with
the consensus ranking problem: given n full or weak rankings of m items, what best
represents the consensus opinion? The consensus is the ranking that shows maximum
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correlation, or equivalently, minimum distance with the whole set on n rankings.
Given the drawbacks affecting ds and dτb , in this paper we follow the approach based on
the Kemeny distance dK and its corresponding correlation coefficient τx.

3 Item weighted distances and correlation coefficient

Distances between rankings treat all items equally, and they are not sensitive to the
point of disagreement. Kumar and Vassilvitskii (2010) introduced two issues that are
essential for many applications involving distances between rankings, namely, positional
weights and element weights. In brief, i) the importance given to swapping elements
near the head of a ranking could be higher than the importance attributed to elements
belonging to the tail of the list, and ii) swapping important items should receive a larger
penalization than swapping negligible ones. The issue of positional weights has been
explored by relevant researches (Garćıa-Lapresta and Pérez-Román 2010; Can 2014;
Plaia et al. 2018, 2019). In this paper, we deal with case ii) and propose the weighted
version of the Kemeny metric and the correlation coefficient introduced by Emond and
Mason (2002).
The weighting vector w = (w1, w2, ..., wm) with wi ≥ 0 is used to take into account the
importance of the items where wi is the importance given to the ith-item in a ranking.

3.1 Introducing element weights in the Kemeny distance

There are many ways to introduce weights in a distance, each of them corresponds to a
different penalization of each inversion between two generic items in two rankings. For
example, one can decide that an inversion of elements i and j should have a penalty
proportional to the arithmetic average of their weights, say

wi+wj

2 . The corresponding
weighted version of the Kemeny distance, in this case, will be:

adK,e(π, π
∗) =

1

2

m∑
i=1

m∑
j=1

wi + wj

2

∣∣aij − bij
∣∣ . (7)

It can be easily demonstrated that the maximum value of Eq.(7) is equal to (m −
1)

∑m
i=1wi. An alternative could be the product of the weights wiwj , the corresponding

weighted Kemeny distance will be defined as:

pdK,e(π, π
∗) =

1

2

m∑
i=1

m∑
j=1

wiwj

∣∣aij − bij
∣∣ , (8)

the maximum value of Eq.(8) being equal to
∑m

i=1

∑m
j=1wiwj . It can be proved that,

regardless of the choice of weighting procedure, the mathematical properties of the Ke-
meny distance are preserved. Therefore, these methods should be compared in the light
of their impact on the resulting weighted Kemeny distance.
Let’s consider, for example, three different rankings of three items, say i1, i2 and i3,
R1 = (1, 2, 3), R2 = (2, 1, 3), R3 = (2, 3, 1) and a weighting vector w = (10, 10, 1) (Table
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1).

Table 1: Weighting vector and data matrix

w

i1 i2 i3

10 10 1

Elements

i1 i2 i3

R1 1 2 3

R2 2 1 3

R3 2 3 1

Let us compute the weighted Kemeny distances between R1 and the other rankings R2,
R3 using the two penalization method discussed before.

Table 2: Weighted Kemeny distances

Items adK,e pdK,e

R1 vs R2 20 200

R1 vs R3 22 40

According to adK,e, the distance R1 vs R3 (22) is slightly higher than R1 vs R2 (20)
while pdK,e claims the contrary, stating that R1 vs R3 (40) is far lower than R1 vs R2

(200). R1 assigns the first position to item i1, the second one to item i2 and finally item
i3 is ranked third. With R1 used as reference, R2 switches the ranks of i1 and i2 but
keeps i3 in the last position. R3 changes the rank of every item moving i3 to the first
position, i1 to the second one, and finally i2 to the third one.
Apparently, R3 changes more frequently the position of items, but it keeps unchanged
the ordering of i1 and i2. That is to say, either R3 and R1 prefer i1 to i2, while R2

doesn’t. Since i1 and i2 are the most important elements according to the weighting
vector w, their inversion should be over penalized. This logically implies that R3 resem-
bles R1 more than R2 does.
Why does the arithmetic average weighted Kemeny distance adK,e fail to spot the inver-
sion between the most important items i1 and i2 committed by R3?
It is a matter of relative weight, this measure is computed as the ratio of the ij inver-
sion’s weight over the total sum of weights, and it represents how much each inversion
influences the resulting dK,e.
When using the arithmetic average, the relative weight of each inversion between two
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generic elements i and j is defined as follow:

raij =


wi+wj

(m−1)
∑m

i=1 wi
, if i ̸= j

0 if i = j
(9)

while in the case of the product, the relative weight of each inversion is:

rpij =


2wiwj∑m

i=1

∑m
j=1(wiwj)

, if i ̸= j

0 if i = j.
(10)

In both cases the relative weights must sum up to 1;
∑m

i<j rij = 1. Let’s compute the
relative weights with the data of Tab.(1):

Table 3: Relative weights raij of each inversion with arithmetic average

i1 i2 i3

i1 0 - -

i2 0.476 0 -

i3 0.262 0.262 0

Table 4: Relative weights rpij of each inversion with product

i1 i2 i3

i1 0 - -

i2 0.834 0 -

i3 0.083 0.083 0

The inversion between i1 and i2, when using the arithmetic average, will “cost” approx-
imately the 48% of the maximum obtainable Kemeny distance (Tab.3). In contrast,
when using the product (Tab.4), the same inversion has a more considerable influence,
equal to 83%. In this example, the product of weights turns out to be an appropriate
method, while the arithmetic average produces inconsistent results.
In broader terms, the product aggregation pdK,e concentrates the mass of weights on the
inversions of the most important items, while the arithmetic average adK,e distributes it
more evenly.
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The critical point for the researcher is to think about the relative weight of each inver-
sion when assigning the individual weights. From now on, for the purpose of this paper,
the product of strictly positive weights (wi > 0) will be used as penalization, keeping in
mind that the relative weights are what really matter.

3.2 A new weighted rank correlation coefficient

Combining the weighted Kemeny distance proposed, pdK,e, and the extension of τx
provided by Emond and Mason (2002) we propose a new weighted rank correlation
coefficient between two rankings π and π∗:

τx,e(π, π
∗) =

∑m
i=1

∑m
j=1wiwjaijbij

max[dK,e]
(11)

where the denominator represents the maximum value of the weighted Kemeny distance
max[dK,e] =

∑m
i=1

∑m
j=1wiwj .

3.2.1 Correspondence between distance and correlation

Following the relation τ = 1− 2d
Dmax , we prove the following equation:∑m

i=1

∑m
j=1wiwja

′
ijb

′
ij

max[dK,e]
= 1−

2dK,e

max[dK,e]
. (12)

Proof: ∑m
i=1

∑m
j=1wiwja

′
ijb

′
ij∑m

i=1

∑m
j=1wiwj

= 1−
∑m

i=1

∑m
j=1wiwj

∣∣aij − bij
∣∣∑m

i=1

∑m
j=1wiwj

m∑
i=1

m∑
j=1

wiwja
′
ijb

′
ij =

m∑
i=1

m∑
j=1

wiwj −
m∑
i=1

m∑
j=1

wiwj

∣∣aij − bij
∣∣

m∑
i=1

m∑
j=1

wiwja
′
ijb

′
ij =

m∑
i=1

m∑
j=1

wiwj(1−
∣∣aij − bij

∣∣)
the left side and the right side of the equation are equal, the proof is due to Emond and
Mason (2002). To prove this equality we will show that over any pair of objects i and j
the two summations correspond, i.e. that

���wiwj (1−
∣∣aij − bij

∣∣) +���wiwj (1− |aji − bji|) = ���wiwj (a
′
ijb

′
ij) +���wiwj (a

′
jib

′
ji) (13)

There are nine possible combinations of preferences for objects i and j between rankings
A and B, but only four distinct cases must be considered. The other five are equivalent
to one of these four through a simple relabelling of the rankings and/or the objects.

Case 1 : A prefers object i over j, as does B.
The values are: aij = 1, aji = −1, bij = 1, bji = −1. These yield the left side:
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1−|1−1|+1−|(−1)− (−1)| = 2, the right side values are identical in this case: a′ij = 1,
a′ji = −1, b′ij = 1, b′ji = −1 yield the same total: (1)(1) + (−1)(−1) = 2.

Case 2 : A prefers object i over j, while B ranks them as tied.
The values are: aij = 1, aji = −1, bij = 0, bji = −0. These yield the left side:
1 − |1 − 0| + 1 − |(−1) − 0)| = 0. The right side values are: a′ij = 1, a′ji = −1, b′ij = 1,
b′ji = −1 yield the same total: (1)(1) + (−1)(1) = 0.

Case 3 : A prefers object i over j, while B prefers j over i.
The values are: aij = 1, aji = −1, bij = −1, bji = 1. These yield the left side:
1−|1−(−1)|+1−|−1−1| = −2. The right side values are: a′ij = 1, a′ji = −1, b′ij = −1,
b′ji = 1 yield the same total: (1)(−1) + (−1)(1) = −2.

Case 4 : Both A and B rank the objects as tied.
The values are: aij = 0, aji = 0, bij = 0, bji = 0. These yield the left side:
1 − |0 − 0| + 1 − |0 − 0| = 2. The right side values are: a′ij = 1, a′ji = 1, b′ij = 1,
b′ji = 1 yield the same total: (1)(1) + (1)(1) = 2.
The two methods give identical results in all four distinct cases, completing the proof.

3.2.2 Minimum and maximum values of τx,e

From the previous demonstrations, τx,e assumes its maximum value, equal to 1, if and
only if for all i and j only Case 1 or Case 4 are observed. Therefore, contrary to what
happens with Kendall’s τb, τx,e assumes the maximum value even when a generic all tied
ranking is compared with itself. Analogously, τx,e can be minimum and equal to -1, if
and only for all i and j only Case 3 occurs.

3.2.3 Correspondence between weighted and unweighted measures

For equal weights assigned to the items, wi = C with i = 1, 2, ...,m the weighted distance
is proportional to the classic Kemeny distance.

dK,e = C2dK (14)

the proof is straightforward:

dK =
1

2

m∑
i=1

m∑
j=1

∣∣aij − bij
∣∣ dK,e =

1

2

m∑
i=1

m∑
j=1

wiwj

∣∣aij − bij
∣∣

if wi = C for each i = 1, ...,m ⇒ wiwj = C2 and dK,e =
C2

2

∑m
i=1

∑m
j=1

∣∣aij − bij
∣∣.

Corollary. Since τx ≡ dK and τx,e ≡ dK,e, the weighted rank correlation coefficient
is equivalent to the rank correlation coefficient defined by Emond and Mason when
equal importance is given to items:
τx,e = τx with wi = C for i = 1, 2, ...,m.
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3.3 The case of 0-weight items

Sometimes the data matrix X, i.e. the n × m matrix X, whose lth row represents
the ranking associated to the lth judge (defined as in Tab.1), contains some negligible
items representing just noise. One may want to compute the weighted Kemeny distance
between two or more rankings overlooking the set irrelevant items: to do this those
elements will be assigned weight equal to 0. To deal with the 0-weight situation, the
data matrix X should be modified in order to lead back to the well known case wi > 0.
Let’s define two rankings and one weighting vector: R1 = (1, 2, 3, 4, 5), R2 = (4, 1, 2, 5, 3)
and w = (0, 1, 1, 1, 0). The weighting vector states that elements i1 and i5 shouldn’t

Table 5: Weighting vector and original data matrix

w

i1 i2 i3 i4 i5

0 1 1 1 0

Elements

i1 i2 i3 i4 i5

R1 1 2 3 4 5

R2 4 1 2 5 3

influence the distance between R1 and R2. We proceed to remove these two items
defining:

� two new rankings R′
1 and R′

2 that keep just the elements with a non-zero weight
and re-assign the positions: R′

1 = (1, 2, 3), R′
2 = (1, 2, 3);

� a new weighting vector w′ with all non-zero entries w′ = (1, 1, 1).

Table 6: Weighting vector and modified data matrix

w′

i2 i3 i4

1 1 1

Elements

i2 i3 i4

R′
1 1 2 3

R′
2 1 2 3

The new rankings R′
1 and R′

2 concern only three items i2, i3 and i4 (the ones with a
non-zero weight). It should be notice that element i2 is ranked 2nd by R1, while in the
new ranking R′

1 i2 is ranked 1st since i1 is removed, a similar situation is met for the
other elements i3 and i4.
Therefore, the distance dK,e between R1 and R2 with weighting vector w = (0, 1, 1, 1, 0)
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reduces to the distance dK,e between R′
1 and R′

2 with weighting vector w′ = (1, 1, 1),
and it’s equal to 0.
This transformation allows to move from the tricky case of wi ≥ 0 to the straightforward
case of wi > 0.

4 How to choose the weights

The choice of the weights is crucial, because it strongly influences the Kemeny distance
and the corresponding correlation coefficient between two rankings. As pointed out in
Subsection 3.1, the weights determine the relative penalization of each inversion. There-
fore, the researcher can use the weighting procedure to express his apriori knowledge
on the candidates. In general, there is not a unique optimal solution to cope with this
problem. Many times is up to the researcher to assign the weights subjectively, while
in other situations some unequivocal parameters allow distinguishing the important ele-
ments from the irrelevant ones. In this section, two intuitive methods to assign weights
are shown.

4.1 Frequency-based weights

This method uses a deterministic procedure to assign individual weights. Suppose that
the n ×m data matrix contains n incomplete rankings of m elements, in this case not
all the items are ranked by all the judges. Assuming that choosing to rank an item is
a proxy of the greater importance that a judge gives to that item (with respect to the
items not ranked), the weights wi can be defined as

wi = 100
Ti

n
for i = 1, ...,m, (15)

where Ti stands for “number of judges that assigns a non-zero rank to the ith-element”,
the weights wi are rounded down so that wi ∈ N.
In other words, the frequency-based method assigns higher weights to items that are
included several times in partial rankings of the data matrix. When using this method,
in order to observe τx,e > τx a particular situation must occur: the ordering of the
generic elements i and j (e.g. i ≻ j), who have the highest inclusion probabilities, must
be respected by the vast majority of the incomplete rankings. This usually happens,
when there is a high agreement between judges assigning the first and the last positions,
but there is uncertainty on the middle positions.
Let us consider an example from the Ballon d’Or award voting to clarify the notion of
frequency-based weights.
The Ballon d’Or is an annual football award presented by France Football1 that is
generally regarded as the most prestigious individual award for football players. The
winner of the FIFA Ballon d’Or is annually chosen, in a system based on positional
voting, by international journalists, the coaches, and the FIFA national teams’ captains.

1https://www.francefootball.fr/
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Voters are provided with a shortlist of 23 players from which they could select the three
players they deemed to have performed the best in the previous calendar year. That is,
each judge returns a partial ranking expressing only the top 3 positions.
Our example will focus on the Ballon d’Or award vote that took place in 2018. The total
number of judges was 503, while the players who received at least a vote were: Ronaldo,
De Bruyne, Griezmann, Hazard, Kane, Mbappé, Messi, Modric, Salah, Varane. The
judges’ preferences are reported in table 7.

Table 7: Ordering data matrix

Players

1 2 3

R1 De Bruyne Ronaldo Modric

R2 Ronaldo Modric De Bruyne

R3 Modric Ronaldo De Bruyne

... ... ... ...

R503 Modric Mbappé Griezmann

The weights of each footballer, computed according to Eq.(15), are reported in Table
8. Table 9 compares the item-weighted and unweighted Kemeny distances computed

Table 8: Weighting vector

Weights

Ronaldo De Bruyne Griezmann Hazard Kane Mbappé Messi Modric Salah Varane

56 14 27 20 3 40 24 79 26 11

between the first judges.

Table 9: Item weighted Kemeny distances dK,e

Items dK dK,e

R1 vs R2 4 5894

R2 vs R3 2 10962
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The introduction of frequency-based weights allows distinguishing high-relevant foot-
ballers from negligible ones. In particular, according to the weighted distance, dK,e, the
judge rankings R2 and R3 appear to be more different than the couple R1-R2, since they
disagree on the ordering of the most important footballers (with the highest weights),
i.e. Ronaldo and Modric. On the contrary, the unweighted distance dK , which does not
consider the importance of items, regards the couple R2-R3 more similar than the couple
R1-R2.

4.2 Item similarities

The item similarity criterion follows the idea that swapping two similar elements should
be less penalized than swapping two dissimilar ones. A way to assign weights in this
situation is to define a symmetric penalization matrix P which reflects the item similar-
ities. The P matrix establishes the penalty (pij = pji) for each inversion of two generic
items. The proposed weighted Kemeny distance between two rankings π and π∗ when
using the item similarities method is:

dK,e(π, π
∗) =

m∑
i<j

pij
∣∣aij − bij

∣∣ (16)

where pij is the generic element of the penalization matrix P. The relative weight of each
generic inversion can still be computed:

rij =


pij∑m
i<j pij

, if i ̸= j

0 if i = j
(17)

with
∑m

i<j rij = 1. To illustrate the notion of similarities, let us consider an example
from voting theory.
When dealing with rankings of politicians, it should be taken into account that can-
didates are gathered into political parties, aimed at the pursuit of common objectives
such as adherence to a specific ideological area. Swapping candidates from the same
political party should have a smaller impact on the results of an election than swapping
candidates from different parties. Let R1, R2, R3 be three rankings of politicians.

Table 10: Data matrix

Politicians

Clinton Obama Bush

R1 1 2 3

R2 2 1 3

R3 1 3 2
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The rankings R2 and R3 differ from R1 only in one adjacent transposition. In the first
case, the swap involves members of the same political party, while in the second case, the
transposed candidates belong to two different parties. Hence it is reasonable to assume
that the first distance should be smaller than the second one.
In this example, we decided to penalize swapping politicians of the same party with
weight equal to 1 while swapping politician of different parties with weight equal to 10,
the penalization matrix:

Table 11: Penalization matrix

Clinton Obama Bush

Clinton 0 - -

Obama 1 0 -

Bush 10 10 0

Thus, the relative weights are:

Table 12: Relative weights rij of each inversion with item similarities

Clinton Obama Bush

Clinton 0 - -

Obama 0.04 0 -

Bush 0.48 0.48 0

The resulting Kemeny distances are reported in table 13.

Table 13: Unweighted and weighted Kemeny distances

Items dK dK,e

R1 vs R2 2 2

R1 vs R3 2 20

The introduction of weights allows to account for similarities of politicians, in fact ac-
cording to the weighted distance dK,e, R2 resembles R1 more than R3 does.
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In conclusion, the item similarity method is handy when dealing with multi-level data.
In this case, the data matrix contains rankings of politicians (level 1) who belong to
political parties (level 2). Although in this case we compute distances according to for-
mula (16), the item similarity method can be seen as a special case of distance (8) with
pij = wiwj .

5 Reaching the consensus ranking

There are many approaches for searching for a ranking representative of a group of judges,
such as Heuristic methods: Borda (1781) and Dwork et al. (2001), DeConde et al. (2006)
or model-based methods Thurstone (1927). Here we follow the approach based on a
measure of distance (Cook, 2006), the median ranking approach. The proposed weighted
correlation coefficient τx,e can be used to deal with a consensus ranking problem. Given
a n×m matrix X, whose lth row represents the ranking associated to the lth judge, the
purpose is to identify the median ranking Ŝ within the universe of the permutations (with
ties) of m elements that best represents the average consensus of the subjects involved
(i.e. the matrix X). Considering that there is a one-to-one correspondence between a
rank correlation coefficient and a distance, the solution ranking is reached by minimizing
the average distance or, similarly, maximizing the average rank correlation:

n∑
l=i

dK,e(x
(l), S) = min (18)

n∑
l=i

τx,e(x
(l), S) = max (19)

Emond and Mason (2002) proposed the BB algorithm to deal with the consensus ranking
problem. Recently, Amodio et al. (2016) and D’Ambrosio et al. (2015) proposed two
accurate algorithms, they called QUICK and FAST, for identifying the median ranking
when dealing with weak and partial rankings, in the framework of the Kemeny approach.
The procedure proposed here is based on their approach, but τx is replaced with τx,e.

Indicating as sij and x
(l)
ij the scoring matrices for S and the lthrow of X, l = 1, .., n, the

problem is:

max
n∑

l=1

∑m
i=1

∑m
j=1wiwjsijx

(l)
ij∑n

i=1

∑n
j=1wiwj

= max

m∑
i=1

m∑
j=1

sijc
ew
ij (20)

where cewij =
∑n

l=1wiwjx
(l)
ij . The score matrix CIew = [cewij ] is a modified version of

the Combined Input Matrix (CI) proposed by Emond and Mason. It is the result of
a summation of each input ranking multiplied by the weight. Defined in this way, it
summarizes the information about the input rankings and the weights in a single matrix.
Emond and Mason conceived a branch-and-bound algorithm to maximize the numerator
of Eq (20) (since the denominator is a fixed quantity depending on the number of items
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and their weights), by defining an upper limit on the value of that dot product. This
limit is given by the sum of the absolute values of the elements of CIew:

V =

m∑
i=1

m∑
j=1

∣∣∣cewij ∣∣∣ . (21)

Let Q = 1 be a vector of ones of sizem. Let cewij be them×m element weighted combined
input matrix. By taking into account all the combinations of m objects, each pair of
items is evaluated once by considering the two associated cells in CIew. A moderately
accurate first candidate to be the median ranking can be computed as follow:

� If sign cij = 1 and sign cji = −1 then Qi = Qi + 1;

� If sign cij = −1 and sign cji = 1 then Qj = Qj + 1;

� If sign cij = 1 and sign cji = 1 then Qi = Qi + 1, Qj = Qj + 1

In this way, we obtain the updated rank vector Q containing the number of times each
object is preferred to the others in the pairwise comparisons. This vector is the starting
point for the algorithm. The detailed algorithm employing the defined quantities can be
found in Amodio et al. (2016) and D’Ambrosio et al. (2015).
Data analysis is performed using our code written in R language (available upon re-
quest). The proposed BB algorithm has been implemented in R environment by suitably
modifying the corresponding functions of the ConsRank package (D’Ambrosio et al.,
2016).

6 Experimental evaluation

This section aims to show the impact of the element weighting procedure on the con-
sensus ranking. As soon as the weighted version of the QUICK algorithm finds the
consensus ranking, a numerical measure of agreement is provided: the weighted correla-
tion coefficient τx,e. In a consensus problem the value of the corresponding τx,e is crucial,
because it represents the overall agreement between the estimated consensus Ŝ and the
input rankings X. That is to say, if the consensus ranking’s τx,e is close to 0 then it’s
uncorrelated with the input rankings, therefore there is not a real optimal solution. The
interest lies in pointing out how the consensus ranking and the corresponding τx,e vary
according to the weighting vector w employed.
In order to study the performance of the τx,e we will consider two simulation studies and
two real datasets.

6.1 Simulation under model I

In the first simulation study (Model I) ranking data were generated according to a vector
of random variables with 5 independent components X = (X1, X2, X3, X4, X5)

T , each
one following a Gaussian distribution Xi ∼ N (µi, σ

2
i ). The vector of expected values



Electronic Journal of Applied Statistical Analysis 135

is µ = (µ1 = 0.8, µ2 = 1.2, µ3 = 1.6, µ4 = 1.6, µ5 = 1.7), and the vector of standard
deviations is σ = (σ1 = 0.4, σ2 = 0.3, σ3 = 0.6, σ4 = 0.6, σ5 = 0.4).
Each judge observes one realization of the random vector X; x = (x1, x2, x3, x4, x5)

T

and produces his ranking by assigning the first position, i.e. rank 1, to the item that has
the lowest value of x and so on. For example, the kth judge observes the kth realization
of X, say xk = (1.021, 1.521, 1.474, 2.16, 1.857) and assigns the following ranking vector
π(xk) = (1, 3, 2, 5, 4).
Since µ1 < µ2 < µ3 = µ4 < µ5, item number 1 will be reasonably placed most of the
times in first position while item number 5 in the last one, furthermore having ties is
improbable.
The item weighting vectors employed are w1 = (1, 1, 1, 1, 1), w2 = (10, 1, 1, 1, 10) and
w3 = (1, 1, 10, 10, 1). Let’s remind that w1 will produce an unweighted version of con-
sensus since it assigns the same weight to each item (see Eq.(14)). In contrast, w2 assigns
higher weights to the external items, and finally w3 assigns higher weights to the internal
items.
We generated 1000 samples of size 100, i.e. X100×5, according to Model I. For each
sample, the consensus ranking and the corresponding τx,e are estimated according to
each weighting vector.
In Tables 14, 15, 16 the relative weights of each generic inversion depending on the
weighting vector are reported.

Table 14: Relative weights rij of each generic inversion when using w1

Item1 Item2 Item3 Item4 Item5

Item1 0 - - - -

Item2 0.1 0 - - -

Item3 0.1 0.1 0 - -

Item4 0.1 0.1 0.1 0 -

Item5 0.1 0.1 0.1 0.1 0
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Table 15: Relative weights rij of each generic inversion when using w2

Item1 Item2 Item3 Item4 Item5

Item1 0 - - - -

Item2 0.061 0 - - -

Item3 0.061 0.001 0 - -

Item4 0.061 0.001 0.001 0 -

Item5 0.613 0.061 0.061 0.061 0

Table 16: Relative weights rij of each generic inversion when using w3

Item1 Item2 Item3 Item4 Item5

Item1 0 - - - -

Item2 0.001 0 - - -

Item3 0.061 0.061 0 - -

Item4 0.061 0.061 0.613 0 -

Item5 0.001 0.001 0.061 0.061 0

When equal weights are set (Table 14), each inversion has the same relative weight de-
termining the dK,e and τx,e. That is to say, the mass of weights is evenly distributed.
On the contrary, vectors w2 and w3 manly emphasize the inversion of the two most
important items attributing the 61.3% of the total weight.
Table 17 counts how many times the ith candidate is chosen to be the consensus ranking
by the QUICK algorithm when using the jth weighting vector. Six candidates have been
chosen at least once as consensus. It can be noticed that the weighted QUICK, regardless
of the weighting vector employed, picks as the optimal solution predominantly the can-
didates (1, 2, 4, 3, 5) and (1, 2, 3, 4, 5) coherently with the generating model parameters.
As one may notice, the algorithm finds more than one optimal solution approximately
in 10% of the simulations (total ≈ 1100).
Which are the main differences between the three weighting schemes?
Figure 1 compares the conditional distributions of τx,e for the three different weighting
vector.



Electronic Journal of Applied Statistical Analysis 137

Table 17: Distribution of consensus ranking vs weighting vector

Consensus ranking w1 w2 w3 Total

1 2 3 4 5 456 449 458 1363

1 2 3 5 4 112 121 109 342

1 2 4 3 5 413 405 413 1231

1 2 4 5 3 16 13 17 46

1 2 5 3 4 119 127 114 360

1 2 5 4 3 26 23 27 76

Total 1142 1138 1138 3418
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Figure 1: Distribution of τx,e vs weighting vectors

The conditional distributions of τx,e depending on the weighing vectors are very different.
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In particular, when using w2 = (10, 1, 1, 1, 10) the corresponding τx,e takes high values
varying from 0.57 to 0.83 with median and mean approximately equal to 0.73. This
happens because the vast majority of the judges prefers item number 1 to item number
5. Thus, there is a strong concordance between them assigning the ranking of the items
with the highest weight. In fact, as pointed out in Table 15, the inversion of item number
1 with item number 5 has the largest relative weight equal to 61.3%. This implies that,
if most of the judges do not commit the over-penalized inversion they will exhibit a firm
agreement and this fact will be disclosed by the τx,e of the consensus ranking, that is to
say that the optimal solution is a proper synthesis of the input rankings.
On the contrary conditioning to w3 = (1, 1, 10, 10, 1), the corresponding τx,e takes small
values ranging from 0.14 to 0.37, the median is equal to 0.21 and mean equal to 0.22.
Again this is a strong evidence of the impact of weights. The weighting vector w3 brings
out the strong disagreement that exists between the judges in the determination of the
rank of item number 3 and item number 4. In this case, just over half of the judges
prefer item number 3 to item number 4. Therefore, the consensus ranking found is not
a proper synthesis of the input rankings.
Such results are due to either the weighting vectors and the weighting aggregation proce-
dure (i.e. product aggregation) manly emphasizing the inversion of the most important
items. If one wants to distribute more evenly the mass of weights, then he should de-
crease the individual weights, or use another type of weighting scheme (e.g. arithmetic
mean or geometric mean).

6.2 Simulation under model II

The second simulation (Model II) is run in order to include ties in the model matrix. Data
were generated according to a vector of random variables with 5 independent components
Y = (Y1, Y2, Y3, Y4, Y5)

T , each one following a Gaussian distribution Yi ∼ N (µi, σ
2
i ). The

vector of expected values is µ = (µ1 = 0.8, µ2 = 1.2, µ3 = 1.6, µ4 = 1.6, µ5 = 1.7), and
the vector of standard deviations is σ′ = (σ1 = 0.4, σ2 = 0.3, σ′

3 = 0.005, σ′
4 = 0.005, σ5 =

0.4). Each judge observes one realization of the random vector Y rounded to the second
decimal place y = (y1, y2, y3, y4, y5)

T and produces his ranking. The item weighting vec-
tors employed are again w1 = (1, 1, 1, 1, 1), w2 = (10, 1, 1, 1, 10) and w3 = (1, 1, 10, 10, 1).
We generated 1000 samples of size 100, i.e. Y100×5 according to Model II. For each
sample, the weighted QUICK algorithm estimates the consensus ranking and the corre-
sponding τx,e according to the weighting vectors. Due to either the rounding of digital
places and the choice of small standard deviation of item number 3 and item number 4,
many judges will produce ties in their rankings. The results of the simulation are shown
in Table 18 and Figure 2.
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Table 18: Distribution of consensus ranking vs weighting vector

Consensus ranking w1 w2 w3 Total

1 2 3 3 3 4 4 4 12

1 2 3 3 4 979 979 980 2938

1 2 4 4 3 17 17 17 51

Total 1000 1000 1001 3001

Table 18 shows that the choice of the consensus ranking is unequivocal. Over 97% of the
time QUICK selects the candidate (1, 2, 3, 3, 4) as optimal solution consistently with the
data generator model. This is evidence of the goodness of the algorithm performance.
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Figure 2: Distribution of τx,e vs weighting vectors

Once again, the highest agreement between the judges and the consensus ranking is
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reached using the weighting vector w2. In fact, the corresponding τx,e varies from 0.64
to 0.87 with mean and median equal to 0.78. The lowest agreement is reached with w3,
when the corresponding τx,e takes values between 0.47 and 0.68 with median and mean
equal to 0.57. The three conditional distributions turn out to be much more similar
than they were in the first simulation. This is due to two factors, firstly the standard
deviations of item number 3 and item number 4 (σ′

3 = σ′
4 = 0.005) are much lower than

in the first simulation (σ3 = σ4 = 0.6). Therefore item number 3 and item number 4
cause less noise and, consequently, their rankings are indeed defined. This is visible in
the Table 18 where there is only one real candidate to be the consensus. In other words,
there is less uncertainty about the internal items. Secondly, ties are allowed. In this
example, item number 3 and item number 4 are equally likable; therefore, the average
agreement among judges will be higher if allowed to express a tie. This is particularly
evident in the case of w3, in the first simulation the similarity between item number 3
and item number 4 caused strong disagreement between the judges, while in the second
simulation the two factors menage to mediate.

6.3 ISTAT dataset

ISTAT2 dataset concerns the sample survey “Aspetti della vita quotidiana” (aspects of
daily life); it provides basic information on the daily lives of individuals and families.
Since 2005 it has been conducted annually in February. The information gathered makes
it possible to learn about citizens’ habits and the problems they face every day. Thematic
areas on different social aspects follow each other in the questionnaires, allowing to
understand how individuals live and how satisfied they are with their conditions, their
economic situation, the area in which they live, the functioning of services, etc. The data
matrix dimension is 22 × 10; the rows are the 20 regions of Italy and the autonomous
provinces of Trento and Bolzano, the columns stand for the problems related to the city
such as: parking difficulties (A), inefficiency of public transport (B), traffic (C), poor
street lighting (D), poor road conditions (E), dirty roads (F), air pollution (G), noise
(H), risk of crime (I), bad smell (L). In the original data X, the xij cell is the percentage
of people in the ith region, who feel that their city particularly suffers from the jth

problem. We re-arranged the data such that within each row rank 1 is assigned to the
problem with the highest percentage and so on. In other words, there are 22 judges (the
regions) expressing their preferences on 10 elements (problems), where the item that is
ranked first is the problem that afflicts the region the most.
The aim is to study the influence of the weighting vector on the resulting consensus
ranking. Two weighting vectors will be compared; w1 which assigns the same weight to
each element and w2 that is based on the item similarity criterion, i.e. swapping similar
items should be less penalized than swapping two dissimilar ones.
For this purpose, we found three clusters of items. Cluster number 1 called “Mobility
and road conditions” that contains the items: A, B, C, D, E. Cluster number 2 called
“Livability” that includes: F, G, H, L. Finally, cluster number 3 contains only element

2https://www.istat.it/
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I (risk of crime). With w2, we penalized swapping elements of the same cluster with
weight equal to 1, while swapping elements of a different cluster with weight equal to
50.
In this case, the relative weight of each inversion between two generic elements i and j
is defined as follow:

rij =


0.001 if i, j belong to the same cluster

0.034 if i, j belong to the different clusters

0 if i = j

(22)

Table 19: Relative weight of each inversion

A B C D E F G H I L

A 0.000 - - - - - - - - -

B 0.001 0.000 - - - - - - - -

C 0.001 0.001 0.000 - - - - - - -

D 0.034 0.034 0.034 0.000 - - - - - -

E 0.001 0.001 0.001 0.034 0.000 - - - - -

F 0.034 0.034 0.034 0.001 0.034 0.000 - - - -

G 0.034 0.034 0.034 0.001 0.034 0.001 0.000 - - -

H 0.034 0.034 0.034 0.001 0.034 0.001 0.001 0.000 - -

I 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.000 -

L 0.034 0.034 0.034 0.001 0.034 0.001 0.001 0.001 0.034 0.000

The consensus estimated for each weighting vector is shown in Table 20

Table 20: Consensus ranking for each weighting vectors

1 2 3 4 5 6 6 8 9 10 τx,e

w1 E A B C D G H F I L 0.69

w2 E A B C D G H F I L 0.78

The consensus ranking shows that elements of cluster 1 “Mobility and road conditions”
take up the first five positions. In particular element E (road conditions) worries the
citizens the most. The impact of weights is visible, although the optimal solution remains
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the same the value of τx,e increases. The value of the correlation coefficient stands for the
representativeness of the optimal solution found by the algorithm. In this case, taking
into account the element similarities brings to an increase of the representativeness of
the consensus ranking. The positive variation of τx,e reveals that most of the times the
disagreement among the regions’ rankings occur between similar elements, i.e. belonging
to the same cluster. Therefore the general weighted agreement, computed with w2, is
higher than the unweighted one computed using w1.

6.4 Quiz dataset

The quiz dataset (Jacques et al., 2014) contains the answers of 70 students (40 of the
third year and 30 of the fourth year) from Polytech’Lille (Statistics Engineering School,
France) to the four following quizzes: Literature Quiz, Football Quiz, Mathematics Quiz
and Cinema Quiz. In this study the Mathematics Quiz will be analyzed, it consists
of ranking four numbers according to increasing order: A = π

3 , B = log(1), C = e2,

D = 1+
√
5

2 .
Each student provides his ranking without using the calculator such that the data matrix
has 70 rows and 4 columns. Differently from the previous examples the exact order of

items is known, that is; log(1) < π
3 < 1+

√
5

2 < e2, i.e B < A < D < C.
The QUICK algorithm allows us to find out the unweighted consensus ranking, that is:
B, A, D, C with correlation coefficient τx = 0.85. Therefore the global solution is the
right one, furthermore the degree of concordance between students is high.
Now we assume that the students had no difficulty in realizing that the elements B
(log(1)) and C (e2) had to be placed in the first and in last position respectively, and
maybe this “easy choice” let the correlation coefficient grows. Therefore we want to test
whether the students were good enough to recognize the exact order of elements A (π3 )

and D (1+
√
5

2 ). A way of doing that is to define a vector of weights w = (10, 1, 1, 10) that
emphasises the inversion between A and D and then to compute the weighted consensus
ranking and the correspondence correlation coefficient τx,e. The relative weight of each
inversion is reported in Tab.21.

Table 21: Relative weights rij of each generic inversion

A B C D

A 0.000 - - -

B 0.071 0.000 - -

C 0.071 0.007 0.000 -

D 0.709 0.071 0.071 0.000

The weighted consensus ranking is: B, A, D, C and the corresponding τx,e is 0.72. What
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does it mean? We can say that the value of τx,e, although decreased, is still quite high,
indicating that the unweighted consensus was robust and not mainly influenced by the
“easy choice”. At the same time, items A and D are indeed the most difficult values to
rank: τx,e assumes its minimum value, 0.72, with a vector of weights w = (10, 1, 1, 10)
and its maximum value, 0.90, with a vector of weights w = (1, 10, 10, 1) (items B and C
are the easiest to rank). In this way τx,e can also be useful to verify where (i.e. referring
to which items) the disagreement between rankings mainly occurs.

7 Concluding remarks

Within the framework of preference data, where individuals express their preferences
over a set of items, the main interest lies in evaluating the agreement between them and
obtaining a synthesis of their preferences by computing a consensus ranking. Different
approaches have been proposed in the literature to cope with this problem, but the most
popular one is probably the one related to distances/correlations. Usually, these are not
sensitive to the importance of items, since each inversion is considered equally impor-
tant. In many cases, this assumption could be simplistic. For this reason in this paper,
we provided an element weighted rank correlation coefficient τx,e for linear, weak and
incomplete orderings. We demonstrated the correspondence between τx,e and the corre-
sponding weighted Kemeny distance dK,e. Finally, we showed that, in the case of equal
weights for all items wi = C, the weighted rank distance dK,e is proportional to the well
known Kemeny distance dK , while the correlation coefficient τx,e is equal to the Emond
and Mason’s τx. From the simulation study and the real data examples, we demon-
strated that the BB algorithm allows us to find the true consensus and to show how
the weighting vector affects the representativity of the median ranking. The weighted
consensus algorithm’s computational effort was investigated by considering some simula-
tions. We progressively increased the sample size (from 200 to 1000) and the number of
items (from 3 to 10). Compared with the unweighted algorithm, the weighted consensus
algorithm entails a slight increase in computational time which has never exceeded 30%.
Future studies could fruitfully explore this issue further by including the element weight-
ing procedure in a cluster analysis of ranking data. When dealing with preference data,
the cluster analysis attempts to identify homogeneous groups of rank choices (clusters).
The use of weights allows taking into account the importance of alternatives minimizing
the distances between cluster members.
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