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Abstract In this paper we derive a reaction-diffusion-chemotaxis model for the dynamics of Multiple Sclero-
sis. We focus on the early inflammatory phase of the disease characterized by activated local microglia, with
the recruitment of a systemically activated immune response, and by oligodendrocyte apoptosis. The model
consists of three equations describing the evolution of macrophages, cytokine and apoptotic oligodendrocytes.
The main driving mechanism is the chemotactic motion of macrophages in response to a chemical gradient
provided by the cytokines. Our model generalizes the system proposed by Calvez and Khonsari in [15, 48] to
describe Baló sclerosis, a rare and aggressive form of multiple sclerosis. We use a combination of analytical
and numerical approaches to show the formation of different demyelinating patterns. In particular, a Tur-
ing instability analysis demonstrates the existence of a threshold value for the chemotactic coefficient above
which stationary structures develop. In the case of subcritical transition to the patterned state, the numerical
investigations performed on a 1-dimensional domain show the existence, far from the bifurcation, of complex
spatio-temporal dynamics coexisting with the Turing pattern. On a 2-dimensional domain the proposed model
supports the emergence of different demyelination patterns: localized areas of apoptotic oligodendrocytes,
which closely fit existing MRI findings on the active MS lesion during acute relapses; concentric rings, typical
of Baló sclerosis; small clusters of activated microglia in absence of oligodendrocytes apoptosis, observed in
the pathology of preactive lesions.
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1 Introduction

Multiple Sclerosis (MS) pathology is a debilitating and progressive autoimmune disease primarily expressed
as multiple focal areas of myelin loss in the white matter of the brain called plaques or lesions. Myelin is a
substance produced by oligodendrocytes that provides the protective coating around nerve fibers in the Central
Nervous System (CNS) to help transmission of nerve impulses and it is a primary objective of the immune
attack in MS. The body’s immune system of MS patients produces an inflammatory state which destroys the
oligodendrocytes and the myelin sheath around nerves (demyelination process) and causes an axonal damage
of the central nervous system.

The pathological analysis of actively demyelinating lesions has revealed a profound heterogeneity be-
tween disease stages and between individual patients, suggesting that a variety of fundamentally different
immunological mechanisms involving cytotoxic T-cells, B-cells, auto-antibodies and activated macrophages
or microglia, likely come into play, maybe acting in parallel. Four major types of demyelinations, staged
according to demyelinating activity, have been recently classified, suggesting different targets of injury and
mechanisms of demyelination in each subtype [62]. Around 50% of patients displays type II lesions, charac-
terized by the presence of immunoglobulin and complement deposit and abundance of remyelinating shadow
plaques. The remaining lesions are distributed between type I (15% of patiens), an immune-type pattern with
high incidence of remyelinating plaques and absence of complement deposition on a backgound of activated
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microglia inflammatory background, and type III lesions (about 30% of patiens), exhibiting extensive zones
of apoptotic oligodendrocytes and microglial activation in a myelinated tissue with few or no T-lymphocytes,
no evidence of complement activation, and no remyelinating shadow plaques. Type IV lesions (only about 1%
of patients) are extremely rare and show dying non-apoptotic oligodendrocytes in the periplaque white matter,
probably due to a potential primary metabolic oligodendrocyte disfunction. In the reported cases, neither over-
lap in pattern nor a change between different lesion types was observed during the clinical course of individual
patients (intra-individual homogeneity). Myelin is considered to be the primary target of the inflammatory
response in the type II lesions, whereas type III lesions are thought to reflect primary oligodendrocyte injury.

These findings would lead to two different mechanisms of demyelination: in type I and II microglial
activation is mediated by adaptive immunity characterized by a T-cell dependent, macrophage-mediated,
autoimmune attack on constituents in the normal myelin sheath, while in type III lesions demyelination would
be provoked by innate immunity activated processes which have been recently found to be able to activate
microglia [66]. An alternative hypothesis has been proposed by Barnett and Prineas [2, 3], based on the
analysis of the pathological events preceding myelin phagocytosis (’pre-demyelinating’ lesions) in patients
with fulminant MS deceased shortly after a relapse. They observed hypoxia-like lesions, characterized by
extensive oligodendrocyte apoptosis on a background of early microglial activation but few or no infiltrating
lymphocytes or myelin phagocytes (type III lesions). Moreover they found the presence of two different lesion
types (type II and III) within one patient, consistent with intra-individual heterogeneity, or stage-dependent
pathology. On the basis of these results, the authors suggest that the pathological heterogeneity observed in
MS could largely be due to evolution of lesional pathology, rather than pathogenic heterogeneity: namely, type
III lesions would represent a very early stage in the formation of most, if not all, MS lesions which would then
evolve towards the second T-cell-mediated stage of the disease. The paradigm of a stage-dependent disease
has been recently confirmed by the study of Breij et al. [12].

However to date the debate whether MS is a interindivual heterogeneous 1-stage disease or the pathogenic
dynamics can change during the clinical course is still unresolved and the question on what mechanism
underlies different lesion types remains unanswered.

In this paper we introduce a continuous model of MS which aims to reproduce the initial stages of the de-
myelination process through oligodendrocyte destruction driven by activated macrophages. This corresponds
to type III lesions in the scenario of interindividual heterogeneity-intraindividual homogeneity proposed by
Lucchinetti et al. [62] or to the ’pre-demyelinatig’ phase of the disease in the paradigm hypothesized by
Barnett and Prineas. We want to investigate the formation of plaques of demyelinated areas on 2D sections of
the white matter, which are the characteristic neuropathological lesions of multiple sclerosis [55].

Inflammation is a major hallmark of multiple sclerosis pathology and the experimental data suggest that
macrophages activation is driven by inflammation throughout all stages of the disease: in the early stages (the
so-calledRelapsing-Remitting phase), the process is characterized by inflammation-driven focal demyelinating
lesions associated with massive activated microglia and infiltrated macrophages. With the progression of the
disease (in patients with primary or secondary progressive MS) the inflammatory response may decrease and
becomes trapped behind a repaired blood brain barrier. In any case, active demyelination and neurodegeneration
are invariably associated with inflammation [58], which is recognized as the major driver of clinical disease
and tissue injury [91]. In our model we shall describe the chemosensitive motion of activated microglia using
a modification of the classical Keller-Seger model of chemotaxis, that has been proposed to describe the
aggregation phase in a variety of different biological phenomena in which the main role is played by cellular
self organization. Chemotactic signaling and motility of macrophages is also assumed in the fewmathematical
models of acute inflammatory processes which take into account spatial variations [17, 26, 60, 77, 81]. We
move from the model proposed by Khonsari and Calvez [48], who introduced a chemotaxis system based on
partial differential equations to elucidate the dynamic processes involved in the so called Baló’s sclerosis, a
rare form of multiple sclerosis characterized by concentric demyelination areas. With respect to the Khonsari-
Calvez model we present some modifications: we choose a different analytical form for the chemotactic
sensitivity function, which still displays saturation at high cells densities to prevent solutions blow-up, but
does not degenerate close to the stable homogeneous equilibrium. We also consider a different dynamics
for the pro-inflammatory cytokines, removing the quasi-steady state approximation considered in [48] and
allowing for an evolutive equation whose characteristic time scale can be varied to investigate its effects on
the corresponding solutions. Finally, we introduce in the local equation for the pro-inflammatory cytokines
a linear production term from the activated microglia, which are the principal source of chemical mediators
driving inflammatory demyelination in MS [10]. Therefore this term accounts for the release of cytotoxic
factors by ’classically activated’ M1 microglia under pathological conditions [76]. We shall show that the
presence of linear degradation and production by macrophages in the cytokine kinetics is able to induce
the appearance of concentric rings. In fact, a key hypothesis in the Khonsari-Calvez model to describe the
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formation of the ring structures is that the chemical signals attracting the macrophages are produced by the
destroyed oligodendrocytes which, locally recruiting the surrounding macrophages, protect the neighbouring
myelin sites from being attacked. Therefore in the model proposed in [48] the pro-inflammatory cytokines are
produced by the damaged olygodendrocytes through a first order kinetic term and no cytokine production from
macrophages is considered. On the other hand we shall see that the model presented in this paper supports the
formation of concentric rings also in absence of oligodendrocyte-driven cytokine production. We postpone to
Section 7 a comparison between the Khonsari-Calvez model and the model presented here, where the different
assumptions and results are highlighted.

Through both Turing stability analysis and numerical simulations we perform a detailed investigation of
the effects produced by variation of the system parameters on the relevant characteristics of the emerging
aggregates, such as form, size and spacing. The aim of the present analysis is to show that the proposed model,
within the experimentally available numerical values of the parameters, is able to predict the appearance
of aggregates that qualitatively reproduce some of the patterns of demyelinated lesions typical of multiple
sclerosis.

We have tested the dynamical behaviors of the proposed system starting our analysis on a one dimensional
domain. In this case the analytic and numerical investigations performed yielded the conditions for the
appearance of stationary non constant solutions and provided evidence for the occurrence of more complicated
patterns, such as oscillatory and irregular spatio-temporal dynamics. In the more realistic case of a 2D domain,
we have investigated the phenomenon of formation of the plaques close to the Turing instability threshold,
carrying out a detailed sensitivity analysis aimed to probe the effect of varying the parameters on the plaques.

The paper is organized as follows: in Section 2 we introduce the model and the relevant parameters, and
briefly account for the mathematical literature on chemotaxis-related systems. In Section 3 we perform a
Turing stability analysis close to the stable homogeneous equilibrium which yields the critical value of the
chemotactic coefficient above which spatial pattern are observed. Moreover the critical wavenumber of the
resulting structures is found. In Section 4 the parameter values adopted in the analysis are specified, either
taken from experimental literature or estimated. In Section 5 a detailed investigation of the system dynamics
on 1D domains is performed: a weakly nonlinear analysis close to the Turing instability threshold is carried
out and numerical bifurcation diagrams are shown that provide useful insight out of equilibrium. Section 6
provides the numerical simulations performed on 2D domains together with a detailed analysis on the effects
produced by variations of the parameters affecting the characterization of the demyelinated plaques. In Section
7 we compare the hypotheses and results of the present system with the Khonsari-Calvez model. Finally in
Section 8 some conclusions are drawn and perspectives for future work given.

2 Model description

The focus of this paper is the description of the initial stage of the disease (or type III lesions). As already
discussed in the Introduction, this phase is characterized by macrophages and activated microglia, which
dominate the inflammatory reaction triggering the production of a cocktail of pro-inflammatory cytokines
[28]. In addition early lesions present areas of extensive oligodendrocyte apoptosis with a low grade of
lymphocyte infiltration.

Therefore we shall propose a model which describes the spatio-temporal dynamics of the following three
species:

m̃(T,X) the density of activated macrophages,
c̃(T,X) the concentration of chemoattractants and
d̃(T,X) the density of the destroyed oligodendrocytes.
All the concentrations depend on time, T , and on the position, X, where (T,X) ∈ R+ ×Ω, and Ω is a

bounded domain, Ω ⊂ Rn, n = 1,2.
Since we are interested in the description of self-aggregating phenomena, we shall impose no-flux (ho-

mogenous von Neumann) boundary conditions.

2.1 Activated macrophages m̃(T,X)

The evolution of the density of activated macrophages/microglia is ruled by the following equation:

∂m̃
∂T
= D∆Xm̃︸ ︷︷ ︸

Diffusion

+ λm̃ (m̄− m̃)︸       ︷︷       ︸
Production/Decay

−∇X · (Ψ(m̃)∇Xc̃)︸              ︷︷              ︸
Chemotaxis

, with Ψ(m̃) = ψ
m̃

m̄+ m̃
. (1)
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The first term on the right hand side of Eq.(1) describes the random movement of the activated macro-
phages, where ∇X = ∂/∂X, ∆X = ∇X · ∇X and D is the diffusion constant. The next term describes the
production and saturation of the activated macrophages: it is in fact hypothesized that activation of microglia
may be responsible for the appearance of early MS lesions [79] but the underlying mechanism still remains
unknown. Namely, in type II lesions it could be produced by activated T-lymphocytes, while in type III lesions
macrophage activation is pronounced on a background of rather mild T-cells infiltration [2, 66]. This suggests
that other mechanisms mediated by innate-immunity, for example through signaling via toll-like receptor,
could take place [66]. So if, from the one hand, autoimmunity against CNS antigens is one possible explana-
tion for macrophages activation [42], another possible mechanism could be that a persistent infection (like the
Epstein–Barr virus [57]) triggers an immunopathological response either directly or through autoimmunity.
However, despite of the intensive search for the target antigens of MS, no study has yet led to unequivocal iden-
tification of the antigen nor a generally accepted explanation of the activation mechanism has been provided.
Here we do not try to represent the activation process and describe the dynamics only of those macrophages
which are already transformed in an autoimmune active state. We just assume that an activation front travels in
the white matter and drives the macrophages into their active state. This is supported by the clinical evidence
that activated microglia in MS patients are found outside the histopathologically defined borders of multiple
sclerosis plaques and in areas, such as the cerebral central grey matter, that are not normally reported as
sites of pathology [1] and by the observation of the existence of an activation gradient of microglia from
the periplaque white matter into the active plaques [53, 56]. Therefore we describe the rate of macrophages
activation choosing a logistic functional form which takes into account the proliferation and saturation effects
that have been also described in ODE models of acute inflammation [52, 82]. Here λ is the production rate of
activated macrophages and m̄ is the characteristic density of macrophages, i.e. the mean value of their initial
distribution in the white matter of the brain. The third term on the right hand side describes chemotactic motion
of activated macrophages in response to the gradient of the chemoattractant density c̃(T,X). In fact, because
of their ability to migrate to sites of tissue infection, activated macrophages are attracted by the cytokine
signal, responding to a chemical stimulus and moving up the chemical gradient. We adopt a modified version
of the Keller-Segel equations, the so-called cell-kinetics model (see [40]) with a different functional form
for the chemotactic sensitivity function. Namely, we shall take into account the prevention of overcrowding
effect, sometimes also referred to as ’volume-filling’ effect, assuming a density-dependent sensitivity function
comprising saturation, where ψ is the maximal chemotactic rate.

2.2 Chemoattractants: proinflammatory cytokines c̃(T,X)

The evolution of the density of cytokines is ruled by the following equation:

∂c̃
∂T
=

1
ν

©­­­« ε∆Xc̃︸︷︷︸
Diffusion

+ µd̃+ bm̃︸   ︷︷   ︸
Production

− αc̃︸︷︷︸
Decay

ª®®®¬ . (2)

The first term on the right hand side of Eq.(2) describes undirected random diffusion of the cytokines with
diffusivity coefficient ε. We assume that the chemotactic signal, consisting of the cytokine, is produced by
both the the damaged oligodendrocytes and activated macrophages. The production of the chemical signal by
the olygodendrocytes, also proposed in [15], is a modeling assumption which expresses the onset of protective
mechanisms from damaged cells in which, by local recruiting the surrounding macrophages, they protect the
neighboring zones from insults. The activation of protecting processes in the early stages of active lesions has
been recently reported in [66] and, other than being responsible for the formation of the concentric patterns
typical of Balò sclerosis, could account for the relatively slow progress of pre-demyelinated lesions before
the appearance of the classical inflammatory demyelinated plaque which is observed in MRI [95]. In the
present model we also introduce a production term of proinflammatory cytokines by activated macrophages.
In fact, it is well known that microglial cells are able to release a wide range of soluble mediators, ranging
from cytotoxic mediators to trophic factors, which can exert deleterious as well as neuroprotective effects
on the surrounding tissue. Several studies have resulted in the definition of different activation states: M1
’classically activated’ microglia are considered to be neurotoxic and damaging to oligodendrocytes, whereas
the alternative M2 phenotype promotes repair. Since we are interested in describing the initial stage of
formation of the plaques, we will not take into account the production from microglia of repair-promoting
effector and precursor cells, which usually play a key role in preactive and remyelinating lesions, and only
consider the release of proinflammatory cytokines by activated macrophages as they are involved in the
up-regulation of the inflammatory reaction.
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Therefore the chemical kinetics consist of cell-dependent chemical production and linear degradation. To
keep the kinetic term simple, we consider cell proliferation and death independent of the chemical signal and
assume µ,b and α to be constant proliferation and death coefficients, respectively. Finally, as we want also to
model the possibility for the chemoattractant cytokine dynamics to evolve on a different time scale compared
to the other species, we consider its characteristic time scale ν as a parameter.

2.3 Destroyed oligodendrocytes d̃(T,X)

Finally, the evolution of the density of damaged oligodendrocytes is ruled by the following equation:

∂ d̃
∂T
= κF (m̃) m̃

(
d̄− d̃

)︸              ︷︷              ︸
Production

, with F (m̃) =
m̃

m̄+ m̃
(3)

We assume that the destroyed oligodendrocytes are immotile, so that we do not consider any spatial
dynamics for them. Moreover, denoting by d̄ the initial characteristic density of oligodendrocytes in the brain,
intact oligodendrocytes are destroyed upon interaction with activated macrophages with a mass action law, the
parameter κ measuring the destructive strenght of the macrophages. The damaging function F has been chosen
to be positive and increasing with saturation for high values of the macrophages density, and is borrowed from
[15, 48].

2.4 Non-dimensional form of the equations

Putting together Eqs.(1)-(3), the interaction between the three species can be described by the following system
of PDEs: 

∂m̃
∂T = D∆Xm̃+λm̃ (m̄− m̃)−∇X · (Ψ(m̃)∇Xc̃), with Ψ(m̃) = ψ m̃

m̄+m̃,
∂c̃
∂T =

1
ν

[
ε∆Xc̃+ µd̃−αc̃+ bm̃

]
,

∂d̃
∂T = κF (m̃) m̃

(
d̄− d̃

)
, with F (m̃) = m̃

m̄+m̃,

(4)

Setting the reduced variables and parameters as

m =
m̃
m̄

d =
d̃
d̄

c =
α

b̄m̄
c̃ t = λm̄T x =

√
λm̄
D

X

χ =
ψb̄
αD

τ =
νλm̄
α

ε =
ελm̄
αD

β =
b
b̄

r =
κ

λ
δ =

µd̄
m̄b̄

,

(5)

where b̄ is a typical production rate per macrophage and d̄ is the characteristic density of intact oligo-
dendrocytes in the brain, it follows that the non-dimensional form of Eqs.(1)-(3) yields the following PDE
system: 

∂m
∂t = ∆m+m (1−m)−∇ · (χ(m)∇c), with χ(m) = χ m

1+m,
∂c
∂t =

1
τ [ε∆c+ (δd− c+ βm)]

∂d
∂t = rF (m)m (1− d) where F (m) = m

1+m

(6)

which we shall solve in (t, x) ∈ R+ ×Ω, Ω ⊂ Rn, n = 1,2 imposing no-flux boundary conditions and in the
following ranges of the parameters:

χ > 0, τ > 0, ε > 0, β ≥ 0, r > 0, δ ≥ 0. (7)

The mathematical properties of the Keller-Segel system and its numerous variations have been extensively
studied in recent years [25, 39, 46, 47, 93]. In particular, a property that has deserved a lot of attention is
the fact that solutions might blow-up in finite time. Well-posedness of the model relies on the choice of the
sensitivity function and on the inclusion of growth and degradation terms. If the sensitivity function depends
linearly or logarithmically on m and in absence of growth or decay terms, global existence has been proved in
one spatial dimension [21]. In two dimensions global existence has been proved only if the initial mass of the
cell density is below a given threshold [14].

In the case when volume filling effects are considered, global existence and uniqueness of the Cauchy
problem with both linear and nonlinear diffusion has been proved by Burger et al. [13]. Moreover the inclusion
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of logistic-type growth restrictions has been detected to prevent blow-up of the solutions. In particular in
presence of growth and degradation terms, global well posedness has been recently proved for a model of
residential burglarieswhere a logarithmic sensitivity functionwas considered [83, 84]. The global boundedness
and finite-time blow-up of solutions for a chemotaxis systemwith generalized volume-filling effect and logistic
source has been studied in [96, 97].

A large body of literature is also devoted to the existence of non-constant steady states for Keller-Segel
type models, which shows that the interplay of the chemotactic term and cell kinetics of logistic formmay lead
to pattern formation and, more generally, to a very rich dynamics ([50, 64, 90, 94] just to mention some recent
contributions). In particular, in [63] it has been analytically proved that the volume-filling chemotaxis model
with logistic source term can develop, other than stationary patterns, a variety of interesting spatio-temporal
patterns, such as chaotic dynamics and merging processes.

Our interest is mainly devoted to the process leading to the formation of plaques of destroyed oligoden-
drocytes, therefore in what follows we shall investigate the conditions under which spatial patterns can arise
for the system (6).

3 Turing instability analysis

In this section we shall perform a linear stability analysis of system (6) to investigate the formation of stationary
structures around the homogeneous steady state (m∗,c∗,d∗) = (1, β+δ,1). This is intended to explore the long-
time dynamics of the system (6) and, from a biological point of view, to give a quantitative description of the
clusters of cells observed when the majority of the present macrophages are turned into the active state and
most of the oligodendrocytes are destroyed.

The two uniform steady states of the system are the disease-free equilibrium P0 = (0,0,0) and the non
trivial point P∗ = (m∗,c∗,d∗) = (1, β+ δ,1). The equilibrium P0 is unstable while P∗ is a stable attractive node
for the kinetics for all non negative values of the parameters.

Linearization around this latter steady state, gives the system:

Ûw = J ′w+D′∆w, where w = ©­«
m−m∗

c− c∗

d− d∗
ª®¬, (8)

J ′ = ©­«
−1 0 0
β
τ −

1
τ

δ
τ

0 0 − r
2

ª®¬, and D′ = ©­«
1 − χ2 0
0 ε

τ 0
0 0 0

ª®¬ . (9)

We look for solutions of the form w ∝ eσt+ik·x, where σ represents the linear growth rate and k is the
wavenumber of the perturbation. Upon substitution into (8), one easily gets that one of the eigenvalues is
equal to −r/2. Therefore we are left with the following dispersion relation, which gives the eigenvalue σ as a
function of the wavenumber k = |k|:

σ2 +g(k2)σ+ h(k2) = 0, (10)

with
h(k2) = det(D)k4 + qk2 + det(J), (11)

and

g(k2) = k2tr(D)− tr(J), q =
2(1+ ε)− χβ

2τ
,

where

J =
(
−1 0
β
τ −

1
τ

)
, and D =

(
1 − χ2
0 ε

τ

)
.

For the Turing instability to occur, the steady state has to be linearly unstable to spatial disturbances, i.e.
we require that ∃ k , 0 : Re{σ(k2)} > 0. By inspection it is easiliy seen that g(k2) > 0 ∀k. Therefore the only
possibility for (10) to have a root σ(k2) > 0 is h(k2) < 0 for some nonzero k (see e.g. [71] pages 84-85). We
denote by kc the value where h(k2) attains its minimum. Obviously kc depends on the bifurcation parameter
χ. Marginal stability is where h(k2

c) = 0. Therefore the bifurcation value χc and the most unstable mode kc
can be found imposing:

min
k
(h(k2)) = 0. (12)
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The minimum of h is attained when

k2 = −
q

2det(D)
≡ k2

c . (13)

The previous expression for the critical wavenumber requires q < 0, which is satisfied by imposing the
additional necessary condition:

χ > χ̄ =
2(ε +1)

β
.

Figure 1 shows the graph of h(k2) and its dependence on the chemotaxis parameter χ, which plays the role
of the bifurcation parameter. Inserting the expression (13) for k2

c in (11), and imposing (12) one can find the
bifurcation value:

χc =
2(
√
ε +1)2

β
. (14)

The corresponding critical wavenumber can be found inserting the above expression in (13):

k2
c =

1
√
ε
. (15)

Since χ̄ < χc , for χ > χc the system admits a range [k1
2, k2

2] of unstable wavenumbers. Thus, to allow for
the possibility of pattern formation, the linear dimension of the domain must be big enough so that at least
one of the modes admitted by the boundary conditions falls within the interval [k1

2, k2
2]. We have therefore

proved the following

Theorem 1 (Turing instability) Under the hypotheses (7) on the parameters, the equilibrium (m∗,c∗,d∗) is
stable for the kinetics of model (6). Moreover, if χ > χc , with χc given by (14), then the uniform steady state
solution (m∗,c∗,d∗) is an unstable equilibrium for the reaction-diffusion system (6) and a Turing bifurcation
is possible.

Fig. 1 (a) Plot of h(k2) as a function of the bifurcation parameter χ, showing the range of unstable wavenumbers for different
values of χ. (b) Plot of the real part of the growth rate of the kth mode: a band of growing modes is present for χ > χc

4 Parameter Estimates

In order to estimate the relevant parameters introduced in the equations (1)-(3) and to be able to compare
numerical predictions with experimental data, we take into account both preexisting literature and analogous
quantities found in similar systemsmodeling inflammatory diseases, e.g. [48, 60]. From previous experimental
estimates we can deduce the numerical values of all the involved parameters, but two: the activation rate of
macrophages, λ, and the cytokine production rate per oligodendrocyte, µ/ν. We can estimate λ from imposing
a typical linear size of the plaques. The order of magnitude of this numerical estimate has also been confirmed
by another heuristic argument (see below). The parameter µ/ν has been introduced by Khonsari and Calvez
in their model and we could not find any experimental data providing quantitative measures on the destroyed
oligodendrocytes-driven cytokine production rates. Therefore, we shall assume a typical numerical value for
µ/ν to be of the same order of magnitude of themacrophage-driven cytokine production rate and, to investigate
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a whole range of possibilities, we allow µ/ν to vary in an interval ranging from zero to the typical value.
However, since one of the aims of this study is to explore different scenarios that can emerge from the model,
values were generally varied over wide ranges.

The set of parameter values available from experimental data with the corresponding units and descriptions
is provided in Table 1.

We assume a default average density of inactive macrophages m̄, as well as the distribution of healthy
oligodendrocytes d̄, evenly spread in the white matter of the brain based on the experiments reported in [73]
and [61], respectively and also adopted by [48].

The motility of macrophages has been extensively studied experimentally in literature, therefore we use
the rate of random motion of activate macrophages D as given by [69].

We could not find in literature any estimated value of ψ, the parameter that expresses the maximal rate
for the chosen form of the chemotactic flux of activated macrophages ψ m̃

m̄+m̃∇Xc̃. Therefore, we derived
an estimate of the numerical value of ψ using the experimentally measured data reported in [69] of the
parameter χ̄, which is the chemotactic coefficient of the following flux of neutrophils: χ̄m̃∇Xc̃. In fact one
can easily observe that, for small values of the macrophages density (m̃ � m̄), ψ ' χ̄m̄. Therefore, since
χ̄ ∈ [6,780] µm2 · nM−1 ·min−1 and recalling that nM = 10−9 ·Mwt · pg · µm−3, where Mwt is the molecular
weight of the cytokine expressed in kDa (we used the value of 17 kDa for the molecular weight of IL-1β), we
obtained for ψ the range of values given in Table 1.

The activation rate of macrophages λ has not been measured in experimental literature. Therefore, our
estimate of this parameter is obtained by imposing that the typical length scale of the system

√
D/(λm̄) is

0.258 mm. This choice allows to describe plaques with size ranging from small to large, consistently with the
reported linear dimensions of the active lesions which can vary between fewmillimeters to centimeter [56, 66].
With the above assumed values of D and m̄, we obtain λ ∼ 3 · 10−6 mm2· cells−1· min−1 and, consequently, a
characteristic time scale ∼ 0.7 days. This is consistent with the findings of some recent MRI studies according
to which plaques in MS can start their genesis several hours or days before the appearance of the inflammatory
demyelinating lesions [2, 18]. Indeed, the same order of magnitude for the value of λ can be obtained from
an heuristic reasoning based on the explicit solution of the logistic equation, which rules the activation rate
of the microglia. In fact, assuming that the initial datum is given by the density of the activated macrophages
in a healthy individual, namely ∼ 100 cells mm−2 [60], and that the density of activated macrophages at three
times the characteristic time attains the 90% of its asymptotic value, one gets λ ' 3.43 · 10−6 mm2· cells−1·
min−1, in good agreement with the above chosen value of λ.

The diffusivity coefficient of cytokines ε has been evaluated by the known direct determination of
the diffusion constant for a given molecule in the aqueous cytoplasm of mammalian cells (namely ∼ 3.3 ·
10−6cm2sec−1 for a molecular weigth of 0.17 kDa) and by considering that it scales with the cube root of the
molecular weight of the species involved, (this procedure was also adopted in [60]).

To calculate the numerical value of the typical production rate of cytokine per macrophage (b̄/ν), we use
data from in vitro experiments [59, 72]. Since the production rate of cytokine per macrophage ranges in the
interval 5.7 ·10−6−1.96 ·10−5 pg · min−1· cells−1, we choose b̄/ν = 1.96 ·10−5 pg · min−1· cells−1, so that the
adimensional parameter β = (b/ν)/(b̄/ν) ranges in the interval [0.3,1].

The cytokine production rate µ per oligodendrocyte is not derived in literature, therefore we estimate
its value assuming that the two different contributions to the cytokine production coming from the activate
macrophages and the damaged oligodendrocytes are of comparable size. Therefore, we choose µ/ν to vary in
the range 10−6 −10−5 pg min−1 cells−1. The numerical values of cytokine decay rate α are taken from [72].

A numerical estimate of the damaging intensity by macrophages on oligodendrocytes κ is provided in
[48]. Here, taking into account the fact that the demyelination process in MS is less aggressive than in Baló’s
form of sclerosis, we shall consider a wider range of variation of κ, which will allow us to explore several
scenarios corresponding to varying levels of aggressiveness of the disease.

The range of admissible dimensionless parameter values arising from the above scaling and used in the
numerical simulations is listed in Table 2.

5 Pattern formation in 1D domain

To provide insights on the possible dynamics supported by the model systemwe have first explored the pattern-
forming properties of system (6) on 1D spatial domains. Depending on the values of the system parameters, we
have detected two different scenarios of transition from the homogeneous to the patterned state: a supercritical
transition and a subcritical transition. When the bifurcation occurs supercritically, at the bifurcation value
χc the homogeneous equilibrium becomes linearly unstable and a stable pattern branch is originated whose
amplitude scales as the square root of the distance to the transition point. In the case of subcritical bifurcation,
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Table 1 Dimension carrying parameter values of the model

Parameter Description Value Source

m̄ average macrophages density 350 cells mm−2 [73]
d̄ average oligodendrocyte density 400 cells mm−2 [61]
λ macrophages activation rate ∼ 3 ·10−6 mm2 cells−1 min−1 Estimated
D macrophages random motility 6.6 ·10−5 mm2 min−1 [69]
ψ chemoattraction 0.0023−0.298 mm2 min−1 cells pg−1 Derived from [69]
ε/ν cytokine diffusion 9 ·10−4 mm2 min−1 [35]
b/ν cytokine production rate 5.7 ·10−6 −1.96 ·10−5 pg min−1 cells−1 [59, 72]
µ/ν cytokine production rate per oligodendrocyte 10−6 −10−5 pg min−1 cells−1 Estimated
α/ν cytokine decay rate 0.001−0.03 min−1 [72]
κ damaging intensity 3.96 ·10−6 mm2 cells−1 min−1 [48]

Table 2 Non dimensional parameter values used in the numerical simulations

Parameter Description Value

χ chemoattraction 4−55
τ time scale of cytokine dynamics 0.001−1
ε cytokine diffusion 0.5−1.5
β cytokine production rate 0.2−1
δ cytokine production rate per oligodendrocyte 0−1
r damaging intensity 0.01−6

the system becomes linearly unstable above the bifurcation threshold but a finite amplitude pattern branch
exists also below this value. Moreover, the amplitude of the resulting pattern does not converge to zero as the
bifurcation threshold is approached from above. Therefore, in the subcritical case and below the transition
point, the homogeneous equilibrium is bistable with the Turing pattern: a sufficiently large perturbation can
in fact drive the system toward the nontrivial stable stationary state and hysteretic behavior is possible. The
detection of a subcritical transition is both of theoretical and biological interest since it provides the possibility
of stable localized stationary patterns [44]. However the supercritical vs subcritical character of the bifurcation
cannot be discerned by the linear stability analysis outcomes and it is necessary to perform a weakly nonlinear
expansion to derive the corresponding amplitude equations which yield the form of the pattern close to
criticality. This is performed in Subsection 5.1. In Subsection 5.2 a numerical bifurcation analysis far from
transition is then set forward which shows the appearance of complex spatio-temporal phenomena.

5.1 Weakly nonlinear analysis

In this section we shall derive the amplitude equations for the spatially periodic solutions to the system (6):
through the multiple scales method we shall perform a weakly non linear analysis close to the uniform steady
state P∗ = (m∗,c∗,d∗) = (1, β+ δ,1). We shall adopt the formalism of [87] in which the authors extended the
analysis presented in [67] where only two time scales had been considered; see also [22] considering the case
of a 2D domain and the more recent papers [11, 31, 33, 34]. The intersted reader is referred to [92] where
different approaches to WNL are compared.

We set a small control parameter η2 = (χ− χc)/χc , which gives the dimensionless distance of χ from the
bifurcation value χc . Upon translation of the equilibrium P∗ to the origin, the system (6) can be written as:

∂w
∂t
= Lχw+Nw, (16)

where w is defined in (8), the linear operator Lχ = J ′+D′(χ)∂xx with J ′ and D′ defined in (9), and N is a
nonlinear operator containing higher order powers in w .

Close to equilibrium we expand w and the bifurcation parameter χ as follows:

w = ηw1 +η
2w2 +η

3w3 +O(η4),

χ = χc +η
2 χ2 +O(η4),

and look for solutions having a multiple scale dependence on time t

wi = wi(T2,T4, ...)
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where
T2 = η

2t, T4 = η
4t, ....

so that the time derivative operator has the following expansion:

∂

∂t
= η2 ∂

∂T2
+η4 ∂

∂T4
+O(η5).

We introduce the following notation: wi = (wmi ,wci ,wdi )
T and:

ξ(m) =
m

1+m
, φ(m,d) =

m2

1+m
(1− d).

By substitution of the above expansions into (16) and collecting the terms at each order in η, we obtain
the following systems:

O(η) : Lχc w1 = 0, (17)

O(η2) : Lχc w2 = F, (18)

O(η3) : Lχc w3 =G, (19)

with Lχc = J ′+D′(χc)∂xx and the expressions for F and G are the following:

F = ©­«
w2
m1
0

r∂mdφ(m∗,d∗)wm1wd1

ª®¬+ χc ©­«
ξ ′(m∗)∂x

(
wm1∂xwc1

)
0
0

ª®¬ (20)

G =©­«
2wm1wm2

0
r
[
∂mdφ(m∗,d∗)

(
wm1wd2 +wm2wd1

)
+ 1

2∂mmdφ(m∗,d∗)w2
m1wd1

]ª®¬
+ χc

©­­«
ξ ′(m∗)∂x

(
wm1∂xwc2 +wm2∂xwc1

)
+
ξ
′′
(m∗)
2 ∂x

(
w2
m1∂xwc1

)
0
0

ª®®¬
+R(χ2)∂xxw1, (21)

where

R(χ2) =
©­«
0 χ2ξ(m∗) 0
0 0 0
0 0 0

ª®¬ . (22)

From equation (17), by imposing Neumann boundary conditions, one gets a solution of the form:

w1 = ρA(T2, . . . )cos (kc x), where ρ ∈ Ker(J ′− k2
cD′(χc)), (23)

where A(T2, . . . ) is the amplitude of the pattern. Notice that kc has to be compatible with the Neumann
boundary condition; in a 1D domain [0, L], for example, it is required that kc = nπ/L for some n ∈ N. In
practice, when comparing the results of an accurate numerical resolution of the system, with the predictions
of the WNL analysis, one should tune the domain size to fit the above compatibility condition.

The solvability condition for the Eq. (18) is given by 〈F,ψψψ cos (kc x)〉 = 0, with ψψψ ∈ Ker(L∗), where
we have denoted by L∗ the adjoint of Lχc and by 〈·, ·〉 the scalar product in L2(0,2π/kc). The solvability
condition is automatically satisfied and the solution w2 to the second-order system (18) can be easily written.
Substituting w1 and w2 into (19), one gets the following expression for G:

G =
(
∂A
∂T2

ρ+ AG(1)1 + A3G(3)1

)
cos(kc x)+G∗. (24)

In the above expression G∗ satisfies the Fredholm solvability condition, while G(j)1 for j = 1,3, whose explicit
expression is not reported here, depend on the system parameters. Therefore, imposing the solvability condition
at the third order, we get the following Stuart-Landau equation for the amplitude A(T2):

∂A
∂T2
= σA− L A3, (25)
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Fig. 2 (a) Turing region: The black bold line corresponds to L(ε, β) = 0. The region in light grey corresponds to the supercritical
case L > 0, whereas the dark grey region corresponds to the subcritical case L < 0. The parameters are fixed as follows:
τ = 1, δ = 1, r = 1, χ = 55. (b) Magnification of (a) in the region of the parameters used in our simulations: ε = 0.5− 1.5,
β = 0.2−1.

where:

σ =
〈G(1)1 ,ψψψ〉

〈ρρρ,ψψψ〉
, L =

〈G(3)1 ,ψψψ〉

〈ρρρ,ψψψ〉
. (26)

All the details of the derivation of the coefficients in Eq. (25) can be found in [4], where we have performed
the weakly non linear analysis to investigate the pattern invasion as a travelling wave front.

One can easily see that the growth rate σ is always positive in all the pattern-forming region. Then the
dynamics of the Stuart-Landau equation (25) can be divided into two qualitatively different cases depending
upon the sign of the Landau coefficient L: the supercritical case, that corresponds to L > 0, and the subcritical
case, corresponding to L < 0. From the analytical expression of the Landau coefficient, we can deduce that it
only depends on the parameters β and ε . In Figs. 2(a)-(b) we present the curve across which L(ε, β) changes
its sign for the following set of parameters: τ = 1, δ = 1,r = 1, χ = 55. This curve corresponds to a straight line
of equation ε ≈ 0.697. It divides the Turing space into two distinct regions: the region where the pattern forms
supercritically (displayed in light grey) and the subcritical region (displayed in dark grey).

In the supercritical case, the Stuart Landau equation (25) has a stable equilibrium solution A∞ =
√
σ/L,

that is the asymptotic value of the amplitude A(T) of the pattern.
Otherwise, in the subcritical case, i.e. when the Landau coefficient L is negative, the third order Stuart-

Landau equation (25) is not able to capture the amplitude of the pattern. In this case we shall push the weakly
non linear analysis to a higher order, thus by performing the weakly non linear analysis up to O(η5). This leads
to the quintic Stuart-Landau equation for the amplitude of the pattern A:

∂A
∂T2
= σ̃A− L̃ A3 + Q̃A5, (27)

where the explicit expression of the coefficients L̃, σ̃ and Q̃ in (27) is too cumbersome and for brevity will be
not reported here. We remark that in this case Q̃ is O(η2); this shows that the stationary solutions of (27) are
O(1/η) so that the amplitude of the pattern originated from the subcritical transition is O(1).

5.2 Bifurcation analysis far from equilibrium

The numerical investigations of system (6) are addressed on the 1D spatial domain [0,12π], which corresponds
to about 1cm in the physical domain, imposing zero flux boundary conditions. The numerical scheme adopted
is based on a method of lines that considers the discretization of the spatial operators and the time integration
separately. The equations are first discretized in space with a finite-difference scheme on a 200 point grid for
a domain of length 12π, and the resulting semi-discrete system of ODEs is then integrated in time.

The diffusion terms are approximated by second-order central differences and the taxis terms is approxi-
mated by a finite difference scheme that conserves the number of macrophages. All the 1D simulations were
performed using the CVODE stiff integrator included in the XPPAUT computational software package. We
set error tolerances of 10−10 in CVODE and used a time-step ∆t = 10−3. We verified the dynamical behavior
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of the solutions to (6), varying the mesh spacing ∆x and the time step ∆t, using the 1D-version of spectral
method adopted for the 2D simulations.

We have verified the outcomes predicted by the linear stability analysis and reported in Section 3,
assigning as initial condition a small random perturbation of the stable homogeneous equilibrium. Namely, if
the parameter bifurcation χ is chosen below the critical threshold, after some transient the system reaches the
uniform equilibrium. A different picture depicts if one chooses the bifurcation parameter slightly above the
Turing bifurcation value χc: the small random perturbation evolves towards a stationary non-homogeneous
pattern for the species m and c, while, after a transient whose timescale is ruled by the parameter r during
which nonhomogeneous structures emerge, no pattern persists in the asymptotic dynamics of the species d,
which evolves towards the homogeneous equilibrium value d = 1, where all the present oligodendrocytes are
destroyed.

(a) (b)

Fig. 3 (a)The bifurcation diagram as the parameter χ is varied. Other parameters are fixed: ε = 0.8, β = 1, δ = 1, r = 1, τ = 1.
Stable and unstable stationary branches are depicted as red solid lines and black dashed lines respectively, stable and unstable
oscillatory branches are depicted in green and blue, respectively. (b) Enlargement of the subcritical primary Turing Bifurcation
close to χc

To gain some insight on far from equilibrium solutions, we have therefore numerically explored the
system dynamics for different sets of the parameters and computed the corresponding bifurcation diagrams
as the control parameter χ is varied. For parameter sets for which the primary Turing bifurcation occurred
subcritically, secondary bifurcations and transition to irregular spatio-temporal solutions were often observed,
as illustrated below.

In Fig.3(a) we show the bifurcation diagram computed using the numerical continuation software AUTO
for r = 1, τ = 1, ε = .8, β = 1, δ = 1 which yields χc ' 7.17 and kc = 1.05. The equilibrium amplitude of the
central point m(0.5cm) of the species m is shown for χ ∈ [7.1,8.05]. The corresponding bifurcation diagram
for the species d returns the uniform stable equilibrium d = 1 for the whole interval of χ.

At the point labeled by T B, for χ ' 7.1775, the uniform steady state first destabilizes through a subcritical
Turing bifurcation. The area close to χc is magnified in Fig.3(b), which clearly shows the subcritical character
of the bifurcation: for 7.174 . χ . 7.1775 the homogeneous equilibrium is bistable with the primary Turing
pattern branch. Since kc ' 1.05 on a domain size L = 12π (in non-dimensional variables), one expects, on the
basis of the linear analysis,' 6.5 stripes in the simulations. The spatio-temporal evolution of the corresponding
pattern on the primary Turing branch for χ ' 7.264 is shown in Fig.4.

For χ = 7.22, at the bifurcation point labeled by BP1 in Fig.3(a), a stable branch of stationary patterns
emerge from an unstable branch. The existence of this branch of periodic solutions can be predicted by
linear analysis: in fact as the distance of the parameter χ from the primary instability threshold is increased,
more consecutive modes of the discrete spectrum allowed by the boundary conditions become unstable. The
numerical simulation showing the form and amplitude of the pattern of m and c for χ ' 7.262 is reported in
Fig.5. It shows that the resulting pattern differs from the Turing pattern emerging from the primary bifurcation
and obtained for the same value of the parameter χ, in both the amplitude and the wavenumber, as 6 stripes
are now observed.

For χ ' 7.441, at the bifurcation point labeled by BP2 in Fig.3(a), a stable branch of stationary patterns
emerge from an unstable branch as a consequence of another mode driven unstable by the increased value of
the bifurcation parameter. The numerical simulation which displays the form and amplitude of the pattern of
m and c for χ ' 7.498 is reported in Fig.6, showing the emergence of a periodic pattern with 5.5 stripes.
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Fig. 4 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.264 > χc ' 7.1775 on the stable
stationary branch starting from the point labeled by TB in the bifurcation diagram (Fig.3). The cell density is plotted as a function
of space (horizontal axis) and time (vertical axis). The parameters are chosen as in Fig.3. (c) (m, c) phase-plane at the midpoint
location X = 0.5cm. The corresponding trajectory gives a fixed point, indicating the presence of a stationary pattern.

m

 

 

X

t

0 1
0

42

0.6

0.8

1

1.2

1.4

(a)

c

 

 

t

X
0 1

0

42

1.7

1.8

1.9

2

2.1

(b)

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

m(.5cm)

c
(
.
5
c
m
)

(c)

Fig. 5 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.262 > χc ' 7.1775 on the stable
stationary branch starting from the point labeled by BP1 in the bifurcation diagram (Fig.3(a)). The parameters are chosen as in
Fig.3. This pattern has different amplitude and wavenumber from the pattern originated from the Turing bifurcationTB. (c) (m, c)
phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory gives a fixed point, indicating the presence of a
stationary pattern.

m

 

 

X

t

0 1
0

42

0.5

1

1.5

(a)

c

 

 

X

t

0 1
0

42

1.6

1.7

1.8

1.9

2

2.1

(b)

0 0.5 1 1.5 2 2.5
0

1

2

3

m(.5cm)

c
(
.
5
c
m
)

(c)

Fig. 6 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.498 > χc ' 7.1775 on the stable
stationary branch starting from the point labeled by BP2 in the bifurcation diagram (Fig.3(a)). The parameters are chosen as in
Fig.3. This pattern differs in both amplitude and wavenumber from the pattern emerging from the Turing instability point. (c)
(m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory gives a fixed point, indicating the presence
of a stationary pattern.

As χ is increased, this stationary branch remains stable up to the point labeled by HB2 for χ ' 7.554, where
a secondary supercritical Hopf bifurcation occurs. The simulation shown in Fig.7 presents the corresponding
oscillatory solutions for χ ' 7.67.

For χ ' 7.68 the oscillatory branch loses stability and a torus bifurcation takes place at χ ' 7.69. The
corresponding space-time evolutions are shown in Fig.8.

We were unable to detect a period-doubling sequence to irregularity, which is commonly associated with
chaotic dynamics, maybe for an insufficient resolution of the step increase in χ. Further increase in the
chemotactic sensitivity parameter in fact results in more accentuated space-time irregularity, up to χ ' 8.1,
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Fig. 7 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.67 > χc ' 7.1775 on the stable
oscillatory branch starting from the point labeled by HB2 in the bifurcation diagram (Fig.3 (a)). The parameters are chosen as in
Fig.3. (c) (m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory gives a closed trajectory, showing
the presence of a Hopf bifurcation.
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Fig. 8 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.69 > χc ' 7.1775 on the unstable
oscillatory branch starting from the point labeled by HB2 in the bifurcation diagram (Fig.3 (a)). The parameters are chosen as
in Fig.3. (c) (m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory shows the presence of a torus
bifurcation.
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Fig. 9 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.89 > χc ' 7.1775 on the unstable
oscillatory branch starting from the point labeled by HB2 in the bifurcation diagram (Fig.3 (a)). The parameters are chosen as in
Fig.3. (c) (m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory displays highly irregular dynamics.

when it becomes impossible to follow the oscillations and the system settles on the stable stationary pattern.
The irregular space-time evolution of the system for χ ' 7.89 is showed in Fig.9.

At χ ' 7.59 the stable Turing branch originated from the point BP1 looses stability through a supercritical
Hopf bifurcation and a stable periodic oscillating pattern is created. The corresponding simulation for χ = 7.651
is shown in Fig.10.

Analogously to what observed on the other branch, the supercritical Hopf branch loses stability as χ
is further increased: at χ ' 7.727 a torus bifurcation occurs whose corresponding pattern for χ ' 7.732 is
displayed in Fig.11.

As the value of χ is further increased along this branch, the (m,c) plane trajectories at the midpoint spatial
location indicate the presence of closed orbits that tend to strange attractors, corresponding to highly irregular
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Fig. 10 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.651 > χc ' 7.1775 on the
stable oscillatory branch starting from the point labeled by HB1 in the bifurcation diagram (Fig.3). The parameters are chosen as
in Fig.3. (c) (m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory gives a closes trajectory.
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Fig. 11 (a)-(b): Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 7.732 > χc ' 7.1775 on the
stable oscillatory branch starting from the point labeled by HB1 in the bifurcation diagram (Fig.3). The parameters are chosen as
in Fig.3. (c) (m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory shows a torus bifurcation.
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Fig. 12 Spatio-temporal evolution of macrophages (a) and cytokines (b) in the case χ = 8.06 > χc ' 7.1775 on the unstable
oscillatory branch starting from the point labeled by HB1 in the bifurcation diagram (Fig.3 (a)). The parameters are chosen as in
Fig.3. (c) (m, c) phase-plane at the midpoint location X = 0.5cm. The corresponding trajectory displays highly irregular dynamics.

space-time dynamics (see Fig. 12). As above, we failed to detect a possible period-doubling cascade, although
this irregular behavior appeared robust with respect to variations in the parameter χ.

6 Numerical results in 2D domain

In this Section we present the results of the numerical investigations of the 2D spatio-temporal dynamics of the
system (6). The aim here is to determinewhich parameters are likely to bemost significant to affect the form and
size of the plaques and to provide a quantitative analysis on the characterization of the demyelinated lesions.
Different sets of parameters are used within the range listed in Table 2. In particular in the Subsection 6.1 we
analyze four combinations of different aggressiveness levels, corresponding to different values of the parameter
r , and of the cytokine production by macrophages, measured by the parameter β. The four combinations
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are investigated in the Subsection 6.1.1 in absence of cytokine production by damaged oligodendrocytes
(δ = 0), and in the Subsection 6.1.2 for the moderate-high value of the cytokine production by damaged
oligodendrocytes (δ = 1). We prove that the phenomenon of formation of ringlike patterns is supported by the
model system also in the absence of cytokine production from apoptotic oligodendrocytes: in fact in the case
δ = 0 stable patterns of concentric demyelination are observed when χ > χc . For each scenario we explore
how the chemotactic parameter χ can influence the resulting emerging structures, performing the numerical
simulations below and above the bifurcation threshold, and then discuss the influence of the parameters on
the relevant features characterizing the lesions.

In Subsection 6.2 we fix a scenario with high aggressiveness (HA) and high cytokine production by the
macrophages (HcP) and explore the effects produced by the variation of the cytokine diffusivity parameter
ε . The last two Subsections are devoted to the study of the dynamics as the initial conditions are varied.
In particular, in Subsection 6.3 we assign distinct initial spots for the macrophages species, showing the
formation of a confluent plaque. In Subsection 6.4, we examine the effects produced by a random spatial
initial perturbation for the concentration of activated macrophages. The following evolution closely resembles
a pathological state known as pre-active lesions, reflecting the very early stages in the development of MS
lesions.

We adopted a Fourier spectral solver on a square regular grid Lx = Ly = 100, which corresponds to a
physical spatial domain of 2.58cm×2.58cm. The numerical algorithm is based on a two-stage second order
semi-implicit time discretization scheme, i.e. a Runge-Kutta two Crank-Nicolson type, where the self diffusive
term is treated implicitly and is of Crank-Nicolson type, and the non linear chemotactic term is evaluated
explicitly. We used a computational grid with a resolution up to 2048× 2048 points in a parallel computing
environment. For all the simulations illustrated ∆t = 10−4.

In all the simulations presented in this Section the initial condition is set zero for both the cytokine and the
destroyed oligodendrocytes and varies for the macrophages species.We remark that we have also investigated a
non zero initial condition for the cytokine species without any qualitatively relevant difference in the resulting
outcome. In all the figures showing the spatio-temporal evolution of model (6), we present different snapshots
of the apoptotic oligodendrocytes d profile.

6.1 Effects of the aggressiveness r and of the macrophages-driven cytokine production β

Weconsider the following four scenarios: high aggressiveness (HA) (r = 6) and high cytokine production (HcP)
(β = 1); low aggressiveness (LA) (r = 1) and high cytokine production (HcP) (β = 1); high aggressiveness
(HA) (r = 6) and low cytokine production (LcP) (β = 0.2); low aggressiveness (LA) (r = 1) and low cytokine
production (LcP) (β = 0.2). For all the scenarios, we consider three different chemotaxis values, one below the
critical threshold χ < χc , one above the threshold, χ > χc and one well above criticality χ� χc , respectively.
All the scenarios are investigated for two different values of the cytokine production rate δ by damaged
oligodendrocytes, δ = 0 and δ = 1. The other parameters are fixed as follows: ε = 0.5, τ = 1.

We set a small centered bump (B) as initial condition for the macrophages species, while the cytokine
and the damaged oligodendrocytes are initially set to zero. To quantitatively characterize the outcomes of the
simulations, for all the four setups we determine the size Psize of the plaque (in a sense specified below) and
the maximum value MP assumed by the destroyed oligodendrocytes profile. We remark that all the values
reported in the figures and tables refer to the non-dimensional variable d = d̃

d̄
. Under the initial macrophages

profile chosen, our model produces round-shaped structures in the damaged oligodendrocytes species which
maintains the radial symmetry of the macrophages initial profile.

The size Psize is computed bymeasuring thewidth of the region over which the destroyed oligodendrocytes
level decays by a factor ewith respect to its peak. This procedurewas adopted in [60] tomeasure the dimensions
of Alzheimer senile plaques. Notice that the Psize value can decrease in time, in the case when the destroyed
oligodendrocytes are rapidly concentrating over a small region. On the other hand, the Psize value can also
undergo to an abrupt increase when secondary rings form and the damaged oligodendrocytes, here localized,
decay by a factor less then e with respect to their peak.

6.1.1 No damaged oligodendrocytes-driven cytokine production (δ = 0)

The HA-HcP scenario is presented in Fig.13 for χ = 4,8,15 and t = 7 days, being χc = 5.828. The time
evolutions of Psize and MP are also shown, as well as the slice dsl = d(·,Y = 1.29cm) of the damaged
oligodendrocytes at Y = 1.29cm at t = 7 days. The numerical values of the characteristic quantities Psize and
MP at times t = 2,4,6,7 are reported in Table 3. We can observe at t = 7 that, below the critical threshold
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Fig. 13 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) from numerical simulations of model 6 in
the case of HA-HcP (r = 6, β = 1) and δ = 0. The critical chemotaxis value is χc = 5.828. The initial condition is B. The plots
correspond to the profile of oligodendrocytes at the time t = 7 days, for χ = 4, 8, 15 respectively (a-c). (d) Time evolution of the
demyelinated plaque diameter Psize in the HA-HcP scenario (r = 6, β = 1) and δ = 0 for different values of χ. (e) Time evolution
of the maximum value MP of the damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged
oligodendrocytes at Y = 1.29cm at t = 7 days for different values of χ

(χ = 4) and just above the critical threshold (χ = 8), the destroyed oligodendrocytes form a large homogeneous
plaque, whereas well above this threshold (χ = 15) a feeble concentric structure arises. The size Psize of the
plaque diminishes as χ increases, as a consequence of the increased aggregating strength of the chemotactic
term. The maximum value MP of the destroyed oligodendrocytes increases, at a fixed time, with increasing
χ. During the time range 2 < t < 3 in which MP has a fast increasing behavior, the Psize experiences a small
growth rate.

The LA-HcP scenario is presented in Fig.14 for χ = 4,8,15 and t = 7, being χc = 5.828, together with
the time evolutions of Psize, MP and the slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at
t = 7 days. The corresponding numerical values at times t = 2,4,6,7 are reported in Table 3. Similarly to the
previous scenario, the size Psize of the plaque diminishes as χ increases. We also notice that for χ = 15 this
size decreases during the range 2.5 < t < 4, due to the rapid concentration of the damaged oligodendrocytes
in a small central area. In the same case χ = 15, the size of the plaque abruptly increases at t ≈ 5 and t ≈ 6.6
due to the formation of two secondary concentric ring. Up to t = 7 the concentric structure forms only for
χ = 15, while for χ = 4,8 the damaged oligodendrocytes form a large homogeneous plaque. Due to the smaller
aggressiveness, the size of the plaque is lower than the corresponding value in the HA-HcP case for the same
value of χ (see Table 3). Moreover, compared to the HA-HcP setup, in the LA-HcP case the concentric
rings form in a longer time. However, it is worth noting that, although higher aggressiveness accelerates
the formation concentric structures, these structures are more noticeable for lower aggressiveness. In fact, at
t = 7, the rings are more marked in the LA-HcP case. This can be explained by the fact that an increasing
aggressiveness pushes the damaged oligodendrocytes in the central area to the equilibrium value 1, softening
the variations between the maxima and the minima that are revealers of the ring appearance. On the other side,
by decreasing the aggressiveness, the variations between maxima and minima in the central area are more
pronounced and rings are more noticeable.

The HA-LcP scenario for χ = 26,34,55 and t = 7, being χc = 29.142, is presented in Fig.15, where the
time evolutions of Psize, MP and the slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at t = 7
days are also shown. The numerical values of Psize and MP at times t = 2,4,6,7 are reported in Table 3.
Some of the general results already reported in the two previous scenarios are still valid: the size Psize of
the plaque decreases as χ increases, the maximum value MP of the destroyed oligodendrocytes increases in
time by increasing χ and one can identify a time interval (in this case 3 < t < 5) during which the Psize has
a low growth rate. For χ = 26,34 a large homogeneous plaque forms at t = 7, while a concentric structure is
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Fig. 14 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of LA-HcP (r = 1, β = 1) and δ = 0.
The critical chemotaxis value is χc = 5.828. The initial condition is B. The plots correspond to the profile of oligodendrocytes
at the time t = 7 days, for χ = 4, 8, 15 respectively (a-c). (d) Time evolution of the demyelinated plaque diameter Psize in the
LA-HcP scenario (r = 1, β = 1) and δ = 0 for different values of χ. (e) Time evolution of the maximum value MP of the damaged
oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at Y = 1.29cm at t = 7 days for
different values of χ

barely visible for χ = 55 (this is almost not observable in Fig.15(c), and it can be better visualized from the
dsl profile in Fig.15(f)).

The last LA-LcP scenario is presented in Fig.16 for χ = 26,34,55 (being χc = 29.142) and t = 7 days.
The time evolutions of Psize, and MP are also shown in Figs.16 and reported in Table 3, and the the slice
dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at t = 7 days is shown in Fig.16(f). The results are
quite similar to the scenario HA-LcP, although, as already observed in the comparison between the scenarios
HA-HcP and LA-HcP , the low aggressiveness leads, with respect to the HA-LcP case, to a decreased size of
the plaque, to a delay in the time in which the concentric rings form for χ = 55, and to a clearer evidence of
the rings structures.

Some general observations can be made from the characterization of the plaques above described in the
four scenarios: (i) the size Psize of the demyelinated lesion becomes smaller as the chemotactic parameter χ
increases (ii) The size Psize has lowest growth ratewhen themaximumvalue MP of destroyed oligodendrocytes
rapidly increases. (iii) High values of aggressiveness ease the formation of an homogeneous plaque which
rapidly tends to the equilibrium value d = 1. Moreover, the size Psize of the lesion increases with increasing
r , as can be seen in Table 3. (iv) For high chemotactic parameter values (well above the critical threshold), an
increasing aggressiveness quickens and enhances the formation of concentric rings in the demyelinated lesion,
although these concentric structures are more clearly marked for lower aggressiveness. This phenomenon can
be easily observed by comparing at t = 7 days the HA-HcP with the LA-HcP case for χ = 15, and the HA-LcP
with the LA-LcP case for χ = 55 (v) The peak of damaged oligodendrocytes profile increases with both the
aggressiveness r and the chemotactic parameter χ.

The above considered four setups do not give an immediate evidence of the effect produced by varying
the cytokine production by macrophages on the system dynamics. Hence, we have also performed some
numerical simulations by changing the value of β, to determine how this parameters affects the significant
features of the lesions. Simulations are performed by fixing r = 6, δ = 0, ε = 0.5. The chemotactic parameter
χ = 15, is in all cases above the critical value, which depends on β. The results are shown in Figs. 17(a)-(c)
where we show the time evolutions of the Psize and MP , and the slice dsl = d(·,Y = 1.29cm) of the damaged
oligodendrocyte atY = 1.29cm at t = 7 days. Results refer to β = 0.6,0.8,1.We observe that the size Psize of the
plaque slightly increases as β diminishes. Concentric structure arise only for β = 0.8,1. Moreover, an apparent
effect of increasing β is to determine the formation of better marked rings of healthy oligodendrocytes (see
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Fig. 15 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of HA-LcP (r = 6, β = 0.2)
and δ = 0. The critical chemotaxis value is χc = 29.142. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time t = 7 days, for χ = 26, 34, 55 respectively (a-c). (d) Time evolution of the demyelinated plaque
diameter Psize in the HA-LcP scenario (r = 6, β = 0.2) and δ = 0 for different values of χ. (e) Time evolution of the maximum
value MP of the damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at
Y = 1.29cm at t = 7 days for different values of χ
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Fig. 16 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of LA-LcP (r = 1, β = 0.2)
and δ = 0. The critical chemotaxis value is χc = 29.142. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time t = 7 days, for χ = 26, 34, 55 respectively (a-c). (d) Time evolution of the demyelinated plaque
diameter Psize in the LA-LcP scenario (r = 1, β = 0.2) and δ = 0 for different values of χ. (e) Time evolution of the maximum
value MP of the damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at
Y = 1.29cm at t = 7 days for different values of χ

Fig.17(c)): an analogous effect has already been reported for increasing values of the chemotactic coefficient
and decreasing aggressiveness.
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Fig. 17 (a) Time evolution of the demyelinated plaque diameter Psize for r = 1, ε = 0.5, δ = 0, χ = 15 and different βs. (b)
Time evolution of the maximum value MP of the damaged oligodendrocytes species. Parameter are fixed as in (a). (c) The slice
dsl = d(·,Y = 1.259cm) of the damaged oligodendrocytes at Y = 1.29cm at t = 7 for different values of β. Parameter are fixed
as in (a). (d)-(e)-(f) The same as Figs (a)-(b)-(c) but with δ = 1

6.1.2 High damaged oligodendrocytes-driven cytokine production (δ = 1)

The HA-HcP scenario is presented in Fig.18 for χ = 4,8,15 and t = 7, being χc = 5.828, together with the time
evolutions of Psize, MP and the slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at t = 7. The
numerical values of the characteristic quantities Psize and MP at times t = 2,4,6,7 are reported in Table 3. We
can observe that below the critical threshold (χ = 4) the destroyed oligodendrocytes form a large homogeneous
plaque, whereas above this threshold (χ = 8,15) a concentric structure arises. As already observed in the case
δ = 0, the size Psize of the plaque diminishes as χ increases, as a consequence of the increased aggregating
strength of the chemotactic term. We also notice that for χ = 15 this size decreases in time in the range
1.51 < t < 2.5, due to the rapid concentration of the damaged oligodendrocytes in a small central area. The
Psize abruptly increases after t = 4 for the appearance of a secondary concentric ring in which the apoptotic
oligodendrocytes value decays by a factor less than e with respect to its peak. The maximum value MP of the
destroyed oligodendrocytes increases with increasing χ. During the time range 1.1 < t < 3 when MP has a fast
increasing behavior, the Psize experiences a small growth rate, which becomes negative in the case χ = 15.
Compared with the same scenario in δ = 0 case, we observe that increasing the cytokine production rate by
damaged oligodendrocytes, accelerates the phase in which the oligodendrocytes rapidly increase, and favors
the formation of concentrating rings which, for δ = 1, are barely visible even for χ = 8. Moreover, comparing
the values of Psize obtained for δ = 0 and δ = 1 respectively, one can observe that increasing δ has the effect
of diminishing the size of the plaque (see Table 3).

In Fig.19 we present the LA-HcP scenario for χ = 4,8,15 and t = 7 days, being χc = 5.828, and the corre-
sponding time evolutions of Psize, MP and the slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes
at t = 7 days are also shown. The corresponding numerical values Psize and MP at times t = 2,4,6,7 are
reported in Table 3. The results are similar to those of the scenario HA-HcP. However, due to the reduced
aggressiveness, the size of the plaque is smaller than the corresponding value in the HA-HcP case for the same
value of χ (see Table 3). Up to t = 7 days the concentric structure forms only for values of the chemotaxis
coefficient above the critical threshold (χ = 8,15), while for χ = 4 the damaged oligodendrocytes form a large
homogeneous plaque. By comparing this scenario with the same one in the case δ = 0, we deduce, as in the
analysis of the previous scenario, that increasing the cytokine production rate by damaged oligodendrocytes
eases the formation of concentrating rings.

The HA-LcP scenario is presented in Fig.20 for χ = 26,34,55 and t = 7 days, being χc = 29.142, and the
time evolutions of Psize, MP . In the same Figure the slice dsl = d(·,Y = 1.29cm) of the damaged oligodendro-
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Table 3 Exact values of Psize and MP at various time for the four scenarios HA-HcP, LA-HcP, HA-LcP, LA-LcP with δ = 0
and δ = 1. Units of measurement are: days for t, and cm for Psize . The time evolutions of these quantities are also shown in
Figs.13-14-15-16 for δ = 0, and in Figs.18-19-20-21 for δ = 1.

HA (r = 6), HcP (β = 1) LA (r = 1), HcP (β = 1)
χc = 5.828 χc = 5.828

δ = 0 δ = 1 δ = 0 δ = 1
t (days) χ Psize (cm) MP Psize (cm) MP Psize (cm) MP Psize (cm) MP

2 4 0.108 0.341 0.103 0.401 0.104 0.069 0.106 0.064
4 4 0.258 0.855 0.241 0.951 0.194 0.275 0.179 0.297
6 4 0.516 1 0.493 1 0.377 0.745 0.348 0.815
7 4 0.651 1 0.627 1 0.491 0.934 0.471 0.969
2 8 0.104 0.411 0.082 0.542 0.097 0.085 0.096 0.083
4 8 0.241 0.411 0.185 1 0.155 0.377 0.118 0.473
6 8 0.488 1 0.444 1 0.317 0.919 0.291 0.994
7 8 0.617 1 0.577 1 0.435 0.999 0.411 1
2 15 0.088 0.621 0.052 0.993 0.078 0.015 0.073 0.169
4 15 0.197 1 0.057 1 0.057 0.909 0.042 0.996
6 15 0.438 1 0.387 1 0.238 1 0.214 1
7 15 0.566 1 0.506 1 0.395 1 0.380 1

HA (r = 6), LcP (β = 0.2) LA (r = 1), LcP (β = 0.2)
χc = 5.828 χc = 29.142

δ = 0 δ = 1 δ = 0 δ = 1
t (days) χ Psize (cm) MP Psize (cm) MP Psize (cm) MP Psize (cm) MP

2 26 0.109 0.361 0.061 0.931 0.104 0.073 0.096 0.082
4 26 0.255 0.881 0.068 1 0.184 0.299 0.093 0.568
6 26 0.508 1 0.382 1 0.357 0.785 0.276 0.999
7 26 0.642 1 0.516 1 0.476 0.952 0.381 1
2 34 0.106 0.363 0.047 0.995 0.097 0.079 0.088 0.098
4 34 0.245 0.916 0.052 1 0.166 0.338 0.063 0.821
6 34 0.498 1 0.259 1 0.332 0.855 0.258 1
7 34 0.627 1 0.471 1 0.451 0.984 0.279 1
2 55 0.094 0.469 0.032 1 0.093 0.099 0.068 0.205
4 55 0.222 0.989 0.032 1 0.111 0.532 0.037 1
6 55 0.464 1 0.224 1 0.287 0.999 0.214 1
7 55 0.597 1 0.395 1 0.410 1 0.375 1

cytes at t = 7 days are also shown. The numerical values of Psize and MP at times t = 2,4,6,7 are reported in
Table 3. The general results already reported in the two previous scenarios are here still valid: the size Psize

of the plaque decreases as χ increases, the maximum value MP of the destroyed oligodendrocytes increases
in time by increasing χ. In the time interval 2 < t < 3 the Psize diminishes. For all the considered values of
χ, the Psize abruptly increases after t = 4 due to the growing concentric ring. Comparing these results of this
scenario with the outcome of the case δ = 0, we observe that for δ = 1 the pattern formation in the damaged
oligodendrocytes profile is even more supported, since, for all the considered values of χ, at t = 7 days, a
concentric ring structure arises.

The last LA-LcP scenario is presented in Fig.21 for χ = 26,34,55 and t = 7 days, being χc = 29.142. The
time evolutions of Psize, MP and the slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes at t = 7
days are also shown. The numerical values of Psize and MP at times t = 2,4,6,7 days are reported in Table
3 . The results are quite similar to the scenario HA-LcP, although, as already observed in the comparison
between the scenarios HA-HcP and LA-HcP , the low aggressiveness leads, with respect to the HA-LcP case,
to a decreased size of the plaque and to a time delay in the formation of the concentric rings.

A seemingly unexpected phenomenon occurs in the low cytokine production by macrophages and high
cytokine production by damaged oligodendrocytes regimes (β = 0.2, δ = 1, HA-LcP and LA-LcP): indeed
the performed simulations show the formation of concentric structures also for chemotaxis values below the
critical threshold. This can of course be motivated by the fact that the chosen initial condition belongs to
the basin of attraction of the the pattern found in the simulations shown in Figs.20-21 (a)-(c) and it is not
in contrast with the results of the Turing stability analysis below criticality: in fact, we have verified that an
initially small perturbation of the uniform equilibrium quickly decays. Furthermore, an initial condition given
by a larger bump (about five times larger than the bump assigned above) returns a homogeneous plaque with
no ring structures (for brevity the corresponding simulations are not shown here), confirming the expectation
that the outcomes of the linear stability analysis are reliable only close to equilibrium.

Summarizing the outcomes of the four setups considered in the high δ regime, we have recovered the
qualitative results (i)-(v) deduced from the analysis performed in the case δ = 0. However, for δ = 1, another
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Fig. 18 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of HA-HcP scenario (r = 6, β = 1)
and δ = 1. The critical chemotaxis value is χc = 5.828. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time step t = 7 days, for χ = 4, 8, 15 respectively (a-c). (d) Time evolution of the demyelinated plaque
diameter Psize for the HA-HcP scenario (r = 6, β = 1) and δ = 1. (e) Time evolution of the maximum value MP of the damaged
oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.259cm) of the damaged oligodendrocytes at Y = 1.29cm at t = 7 days
for different values of χ
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Fig. 19 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of LA-HcP scenario (r = 1, β = 1)
and δ = 1. The critical chemotaxis value is χc = 5.828. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time step t = 7 days, for χ = 4, 8, 15 respectively (a-c). (d) Time evolution of the demyelinated plaque
diameter Psize for the LA-HcP scenario (r = 1, β = 1) and δ = 1. (e) Time evolution of the maximum value MP of the damaged
oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocytes atY = 1.29cm at t = 7 days for
different values of χ

aspect due to the variation of the parameter χ is better highlighted. In fact, in the case when a concentric
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Fig. 20 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case ofHA-LcP scenario (r = 6, β = 0.2)
and δ = 1. The critical chemotaxis value is χc = 29.142. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time step t = 7 days, for χ = 26, 34, 55 respectively (a-c). (d) Time evolution of the size Psize of
demyelinated plaque for the HA-LcP scenario (r = 6, β = 0.2) and δ = 1. (e) Time evolution of the maximum value MP of the
damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.249cm) of the damaged oligodendrocyte at Y = 1.249cm at
t = 7 days for different values of χ

pattern is formed, as the value of χ is increased the minima of the profile of the apoptotic oligodendrocytes
get closer to zero. Therefore, a strong aggregation force close to the sites of high density of activated microglia
protects the surroundings, determining the formation of well delimited zones of healthy oligodendrocytes.
This phenomenon can be clearly observed in Figs.20(f)-21(f) in the low β regime, whereas it is less evident
for high β values (Fig.18(f) and Fig.19(f)), because of the low value of χ above threshold chosen.

To gain a better understanding of the effect of changing the parameter β on the model dynamics, we
have performed numerical simulations as β is varied also for the present case δ = 1. Parameter are fixed at
r = 6, δ = 1, ε = 0.5 and χ = 15 (in all cases above the critical threshold). The results are shown in Figs.
17(d)-(f) where we show the time evolutions of the Psize and MP , and the slice dsl = d(·,Y = 1.249cm) of
the damaged oligodendrocyte at Y = 1.249cm at t = 7 days. Results refer to β = 0.6,0.8,1. We can deduce
from the outcomes of the simulations the general results already observed in the case δ = 0. In fact, the size
Psize of the plaque slightly increases as β diminishes. However, due to the higher cytokine production rate per
oligodendrocyte, we observe that for δ = 1 the concentric structures arise for all the β considered, and in the
time range 2 < t < 2.5 the damaged oligodendrocytes rapidly concentrates in a small central area, leading to
the decrease of the Psize.

6.1.3 Comparing the low and high δ regimes

We conclude this Subsection by discussing the main effects related to the variation of the cytokine production
rate δ per oligodendrocyte. We remark the fact that no experimentally measured value of the parameter δ
is found in the previous literature. Therefore we have investigated the outcomes supported by the proposed
model considering two different schemes: a complete absence of cytokine production by oligodendrocytes
(δ = 0), and a relatively high value of it (δ = 1), recording the corresponding effects on the relevant features of
the lesions. The conclusions are deduced by comparing the various scenarios for the two different cases δ = 0
and δ = 1, and can be formulated as follows:

(i) A high value of δ eases the formation of concentric structures in the damaged oligodendrocytes profile.
In fact, for all the scenarios in the case δ = 1, the concentric rings form for all the chemotaxis values above
the critical value χc , while for δ = 0 they form only well above χc or they form after the final time t = 7 days
we have considered in our simulations.
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Fig. 21 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of LA-LcP scenario (r = 1, β = 0.2)
and δ = 1. The critical chemotaxis value is χc = 29.1428. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time step t = 7 days, for χ = 26, 34, 55 respectively (a-c). (d) Time evolution of the size Psize of
demyelinated plaque for the HA-LcP scenario (r = 1, β = 0.2) and δ = 1. (e) Time evolution of the maximum value MP of the
damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged oligodendrocyte atY = 1.29cm at t = 7
days for different values of χ

(ii) The formed rings are better marked for increasing δ. This can be seen, for instance, by comparing the
damaged oligodendrocytes profiles in Figs.15(c),20(c) and in Figs.16(c),21(c).

(iii) The size Psize of the plaque increases by diminishing the parameter δ (this can be deduced from the
values reported in Table 3)

It is worth noting that the results of the simulations performed by imposing δ = 0 clearly support the fact
that the formation of concentric structures above criticality does not depend on the presence of the kinetic
term δd in the cytokine dynamics. In effect, this is confirmed by the resultants of the Turing stability analysis
shown in Section 3, from which one can clearly see that the conditions for diffusion driven instability only
depend on the parameters ε and β, whose experimental values are easily found in the existing literature.

6.2 Effects of the cytokine diffusivity coefficient ε

To investigate the effect of varying the diffusivity of the cytokine species on the lesions, we consider here the
HA-HcP scenario (r = 6, β = 1) for both the cases δ = 0 and δ = 1, and vary the diffusivity ε in the range from
0.6 to 1.5. Moreover, we fix τ = 1 and the chemotaxis value at χ = 15. The critical threshold χc increases
with ε and varies in the range [6.298,9.899]. The chosen initial condition is a small centered bump for the
macrophages species (initial condition B), and zero density for both cytokines and apoptotic oligodendrocytes.

In Figs.22-23 we show the damaged oligodendrocytes profiles for ε = 0.8,1,1.5 at t = 7 days in the case
δ = 0 and δ = 1, respectively. The case ε = 0.5 has been already presented in Figs.13(c)-Figs.18(c). In Figs.22-
23 we also show the time evolution of Psize and MP , and the slice dsl = d(·,Y = 2.5cm) of the damaged
oligodendrocytes for Y = 1.249cm at t = 7 days for ε = 0.6,0.8,1,1.5.

Since the chemotaxis parameter is above the critical threshold, in all cases concentric structures appear
(more marked for δ = 1). One can observe in Figs.22-23(d)-(f) that the Psize of the plaque increases with ε at
least up to time t ≈ 5, when Psize begins to be affected by the presence of the concentric structures. However,
the form of the graphs of Psize vs t and of MP vs t show the same qualitative behavior observed in the previous
Subsections. Here we just stress a sharper profile of the rings for decreasing ε , being the minima of the profile
of the apoptotic oligodendrocytes closer to zero as ε is decreased.
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(a) ε = 0.8, δ = 0 (b) ε = 1, δ = 0 (c) ε = 1.5, δ = 0
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Fig. 22 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of HA-HcP (r = 6, β = 1) for
δ = 0. The chemotaxis parameter is fixed at the value χ = 15. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time step t = 7 days, respectively for ε = 0.8, 1, 1.5. The profile for ε = 0.5 is shown in Fig.13(c). (d)
Time evolutions of the size Psize of demyelinated plaque in the HA-HcP scenario for different values of ε . (e) Time evolutions
of the maximum value MP of the damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 2.5cm) of the damaged
oligodendrocytes at Y = 2.5cm at t = 7 days for different values of ε

(a) ε = 0.8, δ = 1 (b) ε = 1, δ = 1 (c) ε = 1.5, δ = 1
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Fig. 23 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) in the case of HA-HcP (r = 6, β = 1) for
δ = 1. The chemotaxis parameter is fixed at the value χ = 15. The initial condition is B. The plots correspond to the profile of
oligodendrocytes at the time step t = 7 days, respectively for ε = 0.8, 1, 1.5. The profile for ε = 0.5 is shown in Fig.18(f). (d)
Time evolutions of the size Psize of demyelinated plaque in the HA-HcP scenario for different values of ε . (e) Time evolutions
of the maximum value MP of the damaged oligodendrocytes species. (f) The slice dsl = d(·,Y = 1.29cm) of the damaged
oligodendrocytes at Y = 1.29cm at t = 7 days for different values of ε
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6.3 Confluent plaques

(a) (b) (c)

Fig. 24 Sequence of profiles showing the evolution of d (damaged oligodendrocytes) at various time. The initial condition is given
by three small perturbed bumps with different concentration for m and c = d = 0. Parameters are χ = 4, r = 6, ε = 0.5, τ = 1, δ =
0, β = 1

The simulation presented in Fig.24 shows the coalescence of three distinct initial spots of activated
macrophages with different size and concentration in the HA-HcP scenario with δ = 0 and χ = 4. One can
observe that at t = 7 days the spots merge together into a single oblong plaque whose linear size is about
0.9cm. We have found a very similar results for the case δ = 1 (not reported here), in terms of both final plaque
structure and length of the plaque. Hence, depending on the location of the initial plaques, one can either
observe different homogeneous areas of destroyed oligodendrocytes or the merging of multifocal damaged
areas into a single plaque (Fig.24). The latter situation is frequently observed in Multiple Sclerosis pathology,
often characterized by the presence of confluent subpial cortical lesions. Note that the chosen parameter set is
such that the chemotactic parameter is below the instability threshold and no ring structures arise.

6.4 Clusters of activated microglia: pre-active lesions

In this Subsection we examine the spatio-temporal evolution originated by a spatially distributed small random
perturbation of the macrophages density and zero initial condition for both the cytokines and the damaged
oligodendrocytes.

The profiles of the activated macrophages and apoptotic oligodendrocytes shown in Figs. 25 are the
outcomes of a simulation with low aggressiveness (r = 0.01), moderate-low diffusivity (ε = 0.5), high cytokine
production by macrophages (β = 1), absence of cytokine production by damaged oligodendrocytes (δ = 0),
and a chemotactic parameter χ = 20 above the critical threshold.

We have performed some numerical simulations for the same parameter set, varying the parameter δ,
without noticing any relevant difference in the species densities.

In Fig. 25 we observe the formation of small high density clusters of activated macrophages all over the
domain followed by the appearance of scarcely populated aggregates of damaged oligodendrocytes.

The reported pattern reproduces some experimental findings observed in the so-called pre-active lesions,
round or oval regions whose key feature is the presence of clusters (nodules) of activated microglia in absence
of demyelination, observed in the majority of Multiple Sclerosis patients [23, 43]. Preactive lesions are not
associated with blood vessel and their exact size is considered a nondiscriminatory variable [88]. According
to a well-accepted scenario of lesion development, pre-active lesions are considered the first specific signs
of reversible early disorder, preceding the onset of the classical inflammatory lesions typified by myelin
degradation. In fact, in most cases the activation of microglia resolves with time and only a few of the
pre-active lesions lead to the development of actively demylinating plaques. This could be caused by natural
neuroprotective mechanisms induced by activated microglia which, if on the one side actively contribute to
tissue destruction and neurodegeneration, on the other side play a key role in endogenous neuroprotective
pathways releasing neurotrophic factors and immunomodulatory molecules [76]. In-depth analysis of the
mechanisms involved in creating pre-active lesions and how they progress to a destructive state would therefore
offer novel clues for modeling and for the design of neuroprotective therapeutic strategies [74].

The above presented numerical results, together with those shown in the previous Subsections, are in good
agreement with some of the experimental observations found in literature, both for the shape of the lesions,
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(a) m (b) m

(c) d (d) d

Fig. 25 Spatial distribution ofm (activated macrophages) and d (damage oligodendrocytes) at different times. The initial condition
is a random noise all over the domain for m and c = d = 0. Parameters are r = 0.01, ε = 0.5, β = 1, τ = 1, δ = 0, and χ = 20

which is typically spherical or ovoidal (see [16, 86]), for the time evolution of the spots (see [36, 68]) and
for the size. On the other hand it has to be stressed that the MRI of patients affected by MS demonstrate
the presence of lesions with an high variability in the linear size, which can range from few millimeters to
centimeters ([86]).

7 Comparison with the Khonsari-Calvez model of Baló’s sclerosis

In this section we provide a detailed comparison between Baló’s multiple sclerosis model introduced by
Calvez and Khonsari [15, 48] and the model proposed here and expressed by (6). The two models provide a
relevant framework for reproducing the leading mechanisms describing the demyelination process common
in the neuropathology of multiple sclerosis subtypes.

The system (6) proposed in this paper shares with the Kohnsari-Calvez model the description of the self
organization mechanisms based on the chemotactic motion of cells together with activation and propagation.

The aim, here, is to explore a wider spectrum of scenarios, within the experimentally available ranges of
variations of the involved parameters, so to reproduce some of the different pathological features observed in
the various subtypes of MS.

Afirst difference involves the kinetics of cytokine: differently fromwhat assumed in [48], on the basis of the
known immunological pathways, we added an additional term describing the production of the chemical signal
by macrophages. The simulations show that the presence of this term has the effect to ease the aggregation
of macrophages species: we observe the formation of lesions and a time evolution towards stabilization
compatible with measured times. On the other hand, in the simulations performed by Khonsari-Calvez (see
[48]), one can observe a quick saturation and the formation of homogeneous plaques in a short timescale.
Indeed, in the presence of a non-zero production of pro-inflammatory cytokines by activated macrophages,
the formation of the aggregates occurs also if there is no cytokine production by apoptotic oligodendrocytes,
an effect which is the key mechanism in [48].

Furthermore, we opted for a parabolic equation for the cytokine species, introducing the parameter τ, which
measures the characteristic time-scale of their evolution. This allows one to investigate different dynamical
behaviors as τ is varied and to get the quasi-steady state approximation adopted in [48] in the limit of τ→ 0.

Another difference with K-C model concerns the functional form of the sensitivity function in the chemo-
tactic term. To avoid unrealistic cell overcrowding which contrasts with the finite size of individual cells and
the behavior of cells at higher densities, in K-Cmodel the non linear diffusion term is expressed by a saturating
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term which has a degeneration for m = 1. We propose a biologically equivalent expression for the saturation
of macrophages which in turn removes this singularity and makes the mathematical investigation easier.

We have performed some numerical investigation to compare the outcomes prescribed by the two models
under the same conditions. The numerical results shown in Figs.26(a)-(c) are initiated by a small centered
bump of activated macrophages. We set the chemotaxis value at χ = 30, above the critical threshold, and the
parameters as follows: τ = 0.001, β = 0.2, ε = 0.5, δ = 1, r = 6. Thus, one can observe that in the limit of small
τ and β, our model has a similar behavior to the one prescribed by [48], i.e. it is able to produce Baló’s type
concentric damaged areas with thickness ∼ 0.4mm at t = 7. This thickness does not vary as time progresses
(t = 14 days). A homogeneous demyelinated plaque occurs for χ = 6, as shown in Figs.26(d)-(e). Therefore, in
the limit τ, β→ 0, the system (6) shares common qualitative outcomes with the model proposed by Khonsari
and Calvez, showing either one of two different scenarios as the parameter χ is varied: very early stages of
MS (homogeneous plaque) and concentric lesions of Baló’s sclerosis.

(a) χ = 30 (b) χ = 30 (c) χ = 30

(d) χ = 6 (e) χ = 6 (f) χ = 6

Fig. 26 (a)-(b)-(c) Spatial distribution of d (damage oligodendrocytes) at different times in the HA-HcP set-up for χ = 30. The
initial condition is a small centered bump of activated macrophages for m and c = d = 0. (d)-(e)-(f) Damaged oligodendrocytes
profile at different times for χ = 6. In both the simulations, parameters are: τ = 0.001, β = 0.2, ε = 0.5, δ = 1, r = 6

8 Conclusions

According to the current consensus, the pathogenesis of the MS lesion is heterogeneous and no single
predominantmechanism for demyelination and neurodegeneration has emerged. In this paperwe have proposed
a mathematical model which reproduces the molecular processes involved in the genesis of type III lesions,
which are also believed to be effective in the early stages of tissue injury, which precedes the formation of
hypoxia-like demyelinated plaques. Despite this heterogeneity and the several complex biological phenomena
involved in the disease, here we focused our attention only on oligodendrocytes apoptosis and macrophages
activation, mainly due to an autoimmune inflammatory mechanism.

On 1D domains the model supports the formation of stationary patterns close to the Turing bifurcation
threshold and shows the emergence of complex oscillatory solutions far from equilibrium. On 2D domains one
observes the appearance of localized spots of apoptotic oligodendrocytes areas, whose size is regulated by the
phagocytosis aggressiveness of the macrophages and by the diffusivity of the cytokines. Indeed a comparison
between some MRI data ([16, 36, 86]) and our numerical simulations has revealed a good agreement with
the size and shape of the plaques observed in clinical cases. Moreover, in accordance with the fact that the
dimension of a new plaque is well defined within few days after initial symptoms [2], the time scale for
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the emergence of new lesions and the linear dimensions observed in our results are compatible with the
experimental data.

Although themodel proposed here describes the subtype III lesions ofMS, it is also able to reproduceBaló’s
sclerosis demyelinated rings, the formation of confluent plaques and the neuropathological state characterized
by the presence of nodules of activated macrophages, observed in the reversible first stages of MS.

The numerical simulations performed here have some limitations due to the heterogeneous composition
of the white matter of the brain: since lesions are frequently clustered around the periventricular white matter,
the main improvement in this direction should be the inclusion of the four cerebral ventricles in order to obtain
a more realistic 2D domain. This could also be accomplished utilizing a mesh-free algorithm based on particle
methods [5, 20, 24] which has proven to be effective in the study of reaction-diffusion systems in presence of
nonlinear diffusion terms [29, 30].

It is well known that cytokine has both the roles of promoting and contrasting inflammation. As suggested
by some models of inflammatory diseases ([27, 37, 38, 60, 77]), a possible modeling improvement could be
to take into account the presence of an inhibitory cytokine, here neglected, and investigate the possible effects
of this anti-inflammatory component not only on the formation and evolution of the lesions but also on the
onset of reparative effects leading to remyelination [9]. Indeed, remyelination is a common phenomenon in
Multiple Sclerosis: oligodendrocyte precursor cells can be recruited and reappear in inactive plaque centers.
The arising remyelinated areas, the so-called shadow plaques, are then characterized by thin irregular shaped
myelin sheaths within the whole lesion. These shadow plaques are present in lesions of I and II subtypes,
whereas rarely observed in chronic MS lesions of III and IV subtypes [62], their presence certainly depending
on the availability of oligodendrocyte precursor cells and the pro and anti inflammatory balance [80].

From a mathematical point of view, it would be of interest to derive the explicit form and the amplitude
of the resulting patterns close to bifurcation through a weakly nonlinear analysis in the case of 2D domains
[11, 22, 32, 34]. This will be the subject of a forthcoming paper.

One could also consider the inclusion of nonlinear diffusion terms ([33, 34, 65, 85]) and investigate the
effects on the phenomenon of plaque formation. In particular the presence of a nonlinear self diffusion term
of the type introduced in [34, 51] could be used to quantitatively explore the stimulated migratory response
of macrophages through 3D fibrin gels, which in recent years have been employed to realistically model
macrophage migration [69].

Some attention could be devoted to the study of far from equilibrium phenomena. This should include the
analysis of complex spatio-temporal patterning on the 1D domain, such as stationary periodic, oscillatory and
chaotic dynamics, which has also been recently found in the Keller-Segel system with logistic growth [41, 75].

Also the presence of localized dissipative structures such as spikes [19, 40, 45, 89], bubbles [54], hotspots
[49], and their stability has been the object of extensive investigations in many recent papers. The exploration
of similar dynamics in this case could shed more lights on the mechanisms underling the demyelinating
patterns.

Moreover, it could be worth studying the nonlinear stability of system (6) using a suitable Lyapunov
functional or adopting a proper reduction method (see [70]).

Finally, it would be of interest to explore some discrete approach to the simulation of the processes
involved in the evolution of MS: agent-based modeling and cellular automata offer a way to model complex
adaptive system characterized by emergent order and self-organization and have been successfully applied for
the description of related phenomena [6–8, 78].
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