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Abstract

Decentralized Online Social Networks (DOSNs) have recently captured the in-
terest of users because of the more control given to the end users over their
shared social contents. Indeed, user privacy issues related to the centralized
Online Social Network (OSN) services (such as Facebook or Google+) does not
apply in the case of DOSNs because of the absence of the centralized service
provider. However, these new architectures have motivated researchers to inves-
tigate new privacy solutions that allow DOSN’s users to protect their contents
by taking into account the decentralized nature of the DOSNs platform.
In this survey, we provide a comprehensive overview of the privacy solutions
adopted by DOSNs and compare them by exploiting several criteria. After
presenting the differences that the proposed DOSNs present in terms of pro-
vided services/architecture, we identify, for each DOSN, the privacy model used
to define the privacy policies and the mechanisms for the management of the
privacy policy (i.e., initialization and modification of the privacy policy). In
addition, we evaluate the overhead introduced by security mechanisms adopted
for privacy policy managements by discussing their advantages and drawbacks.

Keywords: Data privacy, Decentralized Online Social Network, Access
Control, Security, Peer to peer computing

1. Introduction

Recent years have seen unprecedented growth in the Online Social Network
(OSN) services [1], with about 300 OSNs collecting information about more than
half a billion registered users1. An OSN enables its users to define their own
profile, a virtual representation of themselves containing personal information,
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photos, posts and to explicitly declare the relationships with the (profiles of the)
other users. Regardless of their purpose, the main service provided by OSNs to
their users is the sharing of information with a set of selected contacts. Users
can publish very heterogeneous contents, ranging from personal information,
wall posts, photos, videos, comments to other posts, and they can send private
messages.
The most popular OSNs are based on a centralized architecture where the ser-
vice provider (e.g., Facebook) acts as central authority and takes control over
users’ information, by storing a huge amount of private and possibly sensitive
information on users and their interactions (such as the personal information
and lifestyle behaviors).

In order to use centralized OSN, users have to accept the related policy,
which gives to the provider the right to access and to use users’ data for several
purposes, even though this data is intended for users’ friends only. For instance,
the Terms Of Service (TOS) established by Facebook allows users to delete their
accounts from the social network at any time, but Facebook still has the right to
access and exploit the related contents. In particular, the information produced
by users of the centralized OSNs are typically exploited by the service provider
for targeted advertising, product recommendations and any kind of forecasts.
However, such information are usually intended for a specific audience only (the
friends of the users or a subset of them).

Due to the centralized infrastructures, users of the current OSNs are forced to
share the information directed to their friends by means of the service providers,
increasing the risk of censorship, surveillance and information revelation. In-
deed, recent events have shown that, in addition to malicious users (internal or
external to the OSN), also the centralized service provider [2, 3] and third-party
applications [4] introduce new privacy risks. The National Security Agency
(NSA) documents clearly illustrate how the agencies collected users’ informa-
tion by exploiting the weaknesses of the Facebook’s security platform [3].

Regardless of their architectures, one of the main features provided by cur-
rent OSNs is the capability of the users to define privacy preferences on the
contents of their profiles, i.e., to define which other users are allowed to see
their contents. The current privacy mechanisms provided by centralized OSNs
are very simple and allow users to choose only from a limited set of privacy
options for a content [5]. In fact, the lack of privacy mechanisms with a suitable
granularity level and flexibility could lead to the disclosure of improper infor-
mation to the different parts of the system thus exposing users to a number of
security risks. Since the number of users’ contacts, as well as the number and
the type of contents shared on OSNs, are constantly increasing, members of
OSNs need an effective way to define authorizations that protect their contents.
In contrast, the business model of the centralized OSN is based on the capability
of attracting a large number of users and of encouraging them to share a large
number of contents with other users of the system [6, 7]. In several recent cases,
providers of centralized OSNs have been blamed for giving to end users a false
sense of control over their data privacy, thus introducing several privacy issues
exposing users to a number of risks [8, 9]. As a matter of fact, data of the OSNs
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were used by malicious users to infer personal information [10, 11] or to perform
other harmful activities [12].

1.1. Motivations

Several studies show that privacy is an ever-increasing concern for OSNs’
users [13] and, in many cases, the strength of privacy mechanisms for protecting
contents is crucial for the success of the service [14]. Behind these, central-
ized OSN infrastructures have also raised several drawbacks [14] such as the
dependency on a single service provider, no re-use of data coming from other
OSNs [15], the availability of the service or scalability. However, the lack of
privacy with respect the centralized provider is one of the main concerns that
has driven both scientists and the open source community towards the devel-
opment of alternative OSN platforms able to shift the control over data to the
end-users.

To address the previous privacy issues and leave to the users the control
on their data, researchers have proposed to decentralize the functionalities of
the OSN, by implementing them in a distributed way. The resulting platform
is known as Decentralized Online Social Network (DOSN) [15, 14] and it is
typically based on a P2P architecture (such as a network of trusted servers,
an opportunistic network, a Distributed Hash Table, or an unstructured P2P
network). For this reason, in a DOSN there is no central control authority which
manages and maintains available the users contents. Instead, DOSNs are based
on a set of peers (corresponding to the users’ devices) that store the contents
and execute the tasks needed to provide a seamless service (such as, search for
data [16], recommendation [17], etc..).
For instance, Diaspora [18] is one of the most popular DOSNs which currently
has about 669,000 users, and it is based on a network of independent, federated
servers that are managed by the users. A federated network is also used by
Friendica [19], another popular DOSN based on a extensible plug-in architecture,
which currently has more than 1,100 users. Finally, RetroShare [20] is a DOSN
which exploits Friend-to-Friend network to manage and to store users’ data.
Therefore, the proposed DOSNs allow to shift the control over data to the end
user because contents generated by the users are stored on their devices and
they are not controlled by a single OSN provider. However, the decentralization
of the OSN service introduces several issues related to the availability of users’
contents and their privacy with respect the other users of the system.

As for the case of the centralized OSN, the users of DOSNs are able to define
their specific privacy policies on the contents they share in order to specify who
should have the capability to access and alter these contents. User’s contents
must be protected from unauthorized access and only users who have the per-
mission of the owner can access the contents. However, while users’ content may
be stored on their private devices until they are online, when they are off line,
their contents must be kept available on other devices available in the system,
and this requires the usage of proper strategies to prevent unauthorized access
to such contents. Indeed, the most part of existing DOSNs try to address these
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privacy concerns by combining different encryption schemes. To achieve fine-
grained access control, each content generated by a user of the DOSN should
be encrypted (separately for different sets of recipients) before being stored and
replicated on different users’ devices. As a consequence, the design of DOSNs
may suffer from performance issues that arise due to the overhead introduced
by cryptographic schemes. For instance, authors of [21, 22, 23] investigated the
overhead introduced by encryption schemes used by some DOSNs and high-
lighted the impact they have on performance and user experience. The choice
of the cryptographic schemes does not only involve performance aspects, but
also privacy aspects related to the capability provided by the DOSNs to define
different types of privacy policies and modify them.

1.2. Contributions

The main aim of this paper is the investigation of the different approaches
used by current DOSNs to protect the privacy of the contents of their users
by analyzing and comparing them. For this reason, we identified a large set
of DOSNs which have been proposed in the literature, without focusing only
on the DOSNs which are really deployed and under active development (such
as Diaspora, Friendica, or RetroShare). For each of the selected DOSN, first
we briefly analyze the architectural model used to provide independence from a
centralized provider and then we present the approaches implemented to enable
users to define their privacy preferences (i.e., the privacy model and the privacy
policy management). In particular, the privacy model is related to the capabil-
ity of users to protect their contents by defining privacy policies that specify the
set of authorized users. To help the reader in understanding the characteristics
of the different privacy models, we classify them by using a taxonomy based on
attributes.
Since the proposed DOSNs enforce the access control requirement by implement-
ing their own protocol we investigate the approaches proposed for privacy policy
management. In particular, we focus on the solutions exploited to guarantee
that the privacy policies created by DOSNs’ users are properly enforced on each
content by using proper security mechanisms. In addition, we investigate the
approaches used to enable the modification of the privileges on the contents,
i.e., granting access to new users or revoking access to previously authorized
users. We evaluate the overhead introduced by the privacy policy management
in terms of number of cryptographic keys created, and number of encryption op-
erations required. Finally, we have also determined whether changes in privacy
policies ensure (or not) the backward secrecy property [24]. Besides presenting
a comprehensive comparison of the privacy mechanisms used by the current
DOSNs, this paper allows the reader to better understand the main privacy
requirements of DOSNs, and how they impact the performances of the current
DOSNs implementations.

1.3. Outline of the Survey

This paper is structured as follows. We provide a description of the architec-
tures and design choices of the selected set of DOSNs in Section 2. In Section 3
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we identify the main requirements concerning privacy of the contents. Section
4 summarizes the privacy models proposed by current DOSNs while Section 5
describes the mechanisms used for privacy policy management (i.e., initializa-
tion and modification of a privacy policy). Finally, we evaluate and discuss the
limitations and advantages of the current DOSNs in Section 6 and draw the
final remarks in Section 7.

2. Decentralizing the Online Social Networks

A current trend for developing OSNs that do not rely on a centralized service
provider is moving towards the decentralization of the OSN service. A Decen-
tralized Online Social Network [14] is a OSN implemented in a distributed and
decentralized way. The approaches exploited by current DOSNs to provide in-
dependence from a centralized provider are typically based on Peer to Peer
(P2P) architectures (such as a Distributed Hash Table [25] or network of in-
terconnected trusted servers). Indeed, every participating user can act both as
a server and as a client, depending on the context [26]. The approaches used
by current DOSNs to provide independence from a centralized authority com-
bine multiple architectural levels, each with its own features. According to the
topology of the P2P network, the currently available DOSNs can be classified
into two alternative P2P architectural styles:

Structured: In structured P2P architectures, the peers are organized into a
specific topology that ensures good performance on specific tasks of the
system, such as routing. This architecture exploits hashing to associate an
identifier to the peer and to pair contents with peers, so defining a DHT.

Unstructured: This P2P architecture does not impose any particular struc-
ture and resources are connected according to their needs. Operations
are usually implemented by using flooding or gossip-like communication
between users.

Instead, the approaches used by current DOSNs to accomplish the data storage
functionality are mainly based on three P2P architectural styles:

Decentralized: This architecture does not impose any particular conditions
concerning where data should be stored, since contents of users are stored
on random nodes.

Semi-decentalized: A subset of the users in the system (super peers) take
responsibility for storing and managing information of all the users. The
choice of providing super peer services can be voluntary or incentive-based.

Hybrid: This architecture exploits the P2P approach, but also relies on some
external service provided by a centralized entity (such as Clouds, Private
Servers, Dropbox, etc.). This service allows to exploit permanently avail-
able resources which guarantee that the contents of the users can be always
accessed, but this also implies a cost for the DOSN’s users.
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For a comprehensive description of the DOSNs structure we refer to [27],
a survey which is focused on the architectural style of the main DOSNs. In
the following, we provide a list of the currently available DOSNs which will be
investigated in this paper, along with a summary of their architectural charac-
teristics.

Diaspora. Among the most popular DOSNs we mention Diaspora [18, 28], a
hybrid architecture where users may agree to act as a local server in order to
keep complete control of their data, or choose to use an existing server (named
Pod) from a Federated Social Pods Network, which consists of 184 open pods
managed by third parties, having uptime of about 99%2. Generally, running
a Pod requires a lot of different components to be installed and the amount
of resources required by the server depends on how many users and how much
traffic the installation receives.

Safebook. Safebook [29] relies on both a structured P2P overlay (Kademlia)
and an unstructured network layer, named Matryoshka: concentric circles of
nodes built around each member’s node providing trusted data storage, profile
data retrieval, and communication obfuscation [29]. The DHT is used for data
lookup while the Matryoshka overlay is used for data retrieval. The innermost
ring of a matryoshka is composed of direct contacts and each user associates a
particular trust level for each of their friends. This level is used to select closely
related contacts that will store the user’s data. Users in successive logical rings
are logically connected by friendship or trust relationships. The outermost ring
acts as a gateway and the peers in this ring route all the requests addressed to
the central node towards the innermost ring of the Matryoshka. As a result,
anonimity is guaranteed by the Matryoshka structure because the center peer
storing data of a friend is not able to understand which is the user requesting
such data. The profile of a user is logically organized as a hierarchy where
contents are located only at the leaves of the profile hierarchy tree [30].

PeerSoN. The architecture of PeerSoN [31] is originally designed in [32]. The
PeerSoN exploits both a DHT to implement a lookup service and also direct
communications between the peer of a user and those of his friends. Users store
their information on their local devices and they directly exchange information
with their friends, if they are online. The structured P2P overlay is used as a
lookup support to find a friend, to store the updates for the users which are
offline, and to store peer’s metadata, while contents are exchanged on-demand,
via a direct communication between the involved peers.

SuperNova. SuperNova [33] is a super-peer based architecture which relies on
an unstructured overlay. Each peer of the system can act as a super-peer, by
providing and managing different types of services, or as storekeeper, by keeping
a copy of the data of their friends. Users’ data can be stored on unknown peers

2https://podupti.me/
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(super-peers) or users’ friends peers (storekeepers). Initially, since new users
who join the system may not have enough friends in the network, they store
their data on the super-peers. After this initial phase, the system tries to find
storekeepers among the user’s friends, in order to store data on them as well.
Super-peers are responsible for friends lookup, finding potential storekeepers for
friend, keeping track of replica and tracking the availability of the users assigned
to them.

LifeSocial.KOM. LikeSocial.KOM [34] is a plugin-based architecture which ex-
ploits a structured P2P overlay (i.e., FreePastry). Users’ contents are securely
stored on the DHT and they can be quickly retrieved by using the key identifier
of the content. In order to ensure availability against involuntary disconnections
of users’ peers, PAST [35] is used. In particular, each content is replicated on
the k nodes having identifiers closest to the identifier of the content.

Cachet. Cachet [36] is based on DECENT [37]: an architecture for DOSNs that
exploits a structured P2P (such as Pastry or Kademlia) to store user data. In
particular, contents are securely stored on the DHT by using the identifier of the
content as the DHT key. The data replication service of the underlying DHT
is exploited to guarantee data availability. In addition to the underlying DHT,
the architecture of Cachet also exploits a gossip-based social caching algorithm
where the devices of the trusted friends are leveraged to provide cached, de-
crypted contents to other contacts. Contents are organized in container objects
which may contain, in turn, references to other containers. Containers are the
basic unit of access control.

LotusNet. LotusNet [38] is a DOSN based on a structured P2P overlay where
users’ data could be stored and replicated on distinct peers which build up
the DHT. The DHT used by the system is a customized version of Kademlia
(called Likir [38]), which enhances the Kademlia protocol by introducing identity
management. The architecture can be easily extended by providing new features
(or widgets) on top of the P2P structured layer, while communications between
widgets takes place through the DHT.

Vis-à-Vis. Vis-à-Vis [39] leverages an hybrid architecture where each user is
paired to an independent Virtual Identification Server (VIS) providing a reliable
storage service which also guarantee high availability of user data. A VIS is a
virtual machine provided as a cloud computing service by third parties which
are external to the system. Users select and configure their VISs at the moment
of registration, and users’ data are stored on the selected VISs. The VIS of a
user acts as a proxy for their contents, by providing them on behalf of the user.
Finally, location-based groups have a central role in Vis-a-Vis because VISs are
organized according to a hierarchical routing structure where VISs are located
on the leaves of the tree and intermediate nodes represent geographic regions.
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My3. The initial design of My3, (initially referred as porkut), was originally
described in [40] and further refined in [41] and [42]. My3 is based on a hy-
brid architecture based on both structured and unstructured P2P architecture.
Users’ contents are stored on a set of trusted peers self-chosen by the users among
their friends. The set of trusted peers are selected by considering the availability
and performance of the users’ devices. In addition, users’ peers are organized
according to a DHT, which is used for storing the mapping between users and
the trusted peers where their contents are stored, in a privacy-preserving way.

Persona. Persona [43] leverages a hybrid architecture where users store their
data either on their local storage service or on a dedicated web server provided
by others external parties. The storage service is implemented through an API
which provides to the users the possibility to store their contents and make
them available to others users. Private server of private virtual space (such as
Dropbox) can be used as external storage service.

eXO. Authors of [44] propose eXO, a DOSN based on a structured architecture,
which provides advanced mechanisms for content/user discovery based on tags.
Each peer belongs to a DHT (such as Pastry, Chord, and CAN) and contents
are stored on the peer of the owner or on the DHT, for availability purposes.
Each content is indexed by hashing a set of keywords that describe it and each
user is paired to a user profile which is also indexed on the DHT.

Vegas. The authors of [45] propose Vegas, a DOSN hybrid architecture with
limited capabilities and focused on mobility. Indeed, availability of the con-
tents is guaranteed by exploiting external data storage services (such as FTP,
WebDAV, Amazon S36, Google Drive, or Dropbox). To increase data decen-
tralization, users are allowed to select several data stores which provide access
to the contents published in their profiles. The storage service is responsible for
the synchronization between multiple devices of the same user.

DiDuSoNet. Authors of [46] propose DiDuSoNet, a multilevel architecture con-
sisting of an unstructured Dunbar Social Overlay and a structured DHT level.
The first level is described in [47] and it provides a storage service which stores
contents of a user only on a restricted number of friends’ peers having regu-
lar contacts with him (named Dunbar friends [48]). The DHT provides the
functionality to find users and to store, search, and retrieve contents in a dis-
tributed fashion. The DHT provides also bootstrap functionalities and support
the search of new friends.

Prometheus. In [49], a P2P social-aware architecture, named Prometheus, is
proposed, and it leverages a structured P2P infrastructure to provide the OSN
services. In particular, it is based on the Mobius [50] architecture which consists
of two layers: i) a mobile (wireless) user-centric layer which executes the mobile
application, and ii) a structured P2P network (based on Pastry [51]) supporting
the mobile applications on smartphones when they leave the mobile network.
Indeed, the devices of the P2P layer have more powerful resources and they can
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provide reliable services. Prometheus does not require each user to participate to
the P2P network layer with his peer’s resources. Instead, a user of the mobile
layer can decide to exploit a social multimedia-sharing service provided by a
trusted peer of the P2P network layer. The mobile application interacts with
the trusted peer, which stores and replicates the contents shared by the user.
Past [52] is used to ensure data availability by replicating contents produce by
mobile applications on different peers.

Gemstone. Authors of [53] propose Gemstone: a DOSN platform based on a
structured DHT, which only stores pointers to the contents, while contents
are stored and replicated on distinct peers by using learning mechanisms. In
particular, social relationships, online patterns of peers and user experiences are
used to select the device where contents are stored. A content can be requested
directly to the content owner (if online) or to replica peers. Indeed, when a
user is online, his peer acts as a server by providing his profile and by ensuring
consistency between the replica peers. When the user goes offline, the replicas
are in charge of providing he profile of such user.

Friendica. The main purpose of the Friendica project [19] is the creation of a
federated decentralized social platform, on the same line of the Diaspora project.
Indeed, it is based on a hybrid architecture which exploits the same Diaspora
federation network consisting of 309 nodes. However, only 52 Friendica nodes
support the social network and they can be effectively used to host the users
profiles. Alternately, if a user does not trust the administrator of a Friendica
node, he can choose to use his own server to manage a new Friendica node.
As stated from the online documentation in [19], the administrator of a Frien-
dica node has information about the users profiles on his server, which can be
moderated. Depending on the configuration of the administration, the Frien-
dica nodes can decide to block or not public access to profiles, friends, photos,
etc., to unauthorized persons unless they are logged in. Optionally, encrypted
server-to-server communication can be used between the Friendica nodes who
have appropriately configured this extension.

RetroShare. Another established DOSN is RetroShare [20], a decentralized Friend-
to-Friend network (F2F) which consists of network of users’ peers, where the
exact location of the peer of each user is only known to his friends (or neigh-
bors). Each user is paired with a public key which is used to identify people and
to verify authenticity of the data. RetroShare allows direct secure connections
only between two friends. As a result, data transfer between two users’ peers
who are not friends requires to search for a chain of friend-of-friend, connecting
the sender to the recipient.
A user may choose to act as a relay for his friends, for the friends of his friends,
or anyone in the RetroShare network. In such a case, the relay nodes behave
as a bridge between the sender and the receiver by routing encrypted traffic
in a tor-like style. A DHT based on BitTorrent is used only to locate friends
and resources while data are stored on the private peers of the users. Shared
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Figure 1: The elements of a privacy policy.

contents are hashed and become available for friends who can download them
and make available to other users. As specified in the online documentation
[20], the network availability improves as the number of friends grows and users
have recommended to start with about 5 friends to make Retroshare worthwhile.
Eventually, when not enough peers are available as trusted friends, a user can
accept to expand their network by connecting also to friends of friends.

3. Privacy requirements in DOSNs

Decentralized OSNs address the main privacy concern about users’ data that
affects centralized OSNs, because data are stored on the peers of the users be-
longing to the DOSN or on some storage server chosen by the user, and there
is no central authority that controls and stores such data. In addition, DOSNs
users are able to define privacy policies, i.e., (typically simple) statements spec-
ifying who can access their contents. As a result, DOSNs shift the control over
users’ data to the peers that build up the system (i.e., to the users these peers
belong to), thus solving some, but introducing new security issues, such as the
one concerning the confidentiality of users’ data with respect to the users pro-
viding the peers where such data are stored. In particular, DOSNs ensure data
availability by allocating contents on the peers of users who may not be autho-
rized to access them according to the privacy policies defined by the content
owners. Consequently, the adoption of a proper security support to protect the
privacy of such contents is required. Figure 1 shows a graphic representation of
the privacy policy defined by a user U that defines the contents C = {c1, . . . , ck}
that each user belonging to the set A = {u1, . . . , ul} can access. Since no cen-
tralized storage service exists in DOSNs, contents c1, . . . , ck of U can be stored
on the device of a user p /∈ A (i.e., a user that does not belong to the set of
authorized users). Hence, privacy in DOSNs is guaranteed by allowing users
to express their preferences to decide which information should be disclosed to
the other users, while proper security mechanisms are exploited to protect the
confidentiality of these contents in order to disclose them according to the pri-
vacy preferences previously defined. Based on the above considerations, we can
identify the following main features concerning privacy in DOSNs:
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Privacy model: Privacy model is defined as the capability of the DOSN to
provide different types of privacy policies enabling the users to specify the
set of members who are entitled to access their contents. Indeed, the way
in which the users can express the privacy preferences concerning their
contents, on the one hand, heavily impacts on the capability of the access
control mechanism and, on the other hand, increases awareness about the
audience accessing the contents. Typically, privacy policies are simple
statements specifying who has access to the user’s contents in terms of a
set of OSN features (such as friendship type, interests, work, school,..).

Privacy policy management: Once users have defined privacy policies on
their contents, the DOSNs framework must guarantee that these policies
are enforced on each content by using proper security mechanisms. The
enforcement of privacy policies ensures that user decisions are properly
implemented and the related contents are disclosed only to authorized
people. In addition, users are able to change their privacy policies by
adding new users or removing old users from the set of authorized ones.

4. Privacy model

Each DOSN enables its users to protect their contents by defining privacy
policies that determine the set of users authorized to access each of them. The
majority of existing DOSNs, provide to the users a limited and predefined set
of privacy policies based on the knowledge derived from the social network, e.g.,
relationships (friends, family, colleagues, etc.), groups, content or profile infor-
mation. For instance, some DOSNs allow their users to define groups of friends,
and to specify which groups are allowed to access each of the content they
publish. Table 1 summarizes the access control options of current DOSNs by
reporting the privacy policy type and (if the case) the encryption schemes used
by each DOSN to enforce privacy policies. The most part of current DOSNs pro-
tect users’ contents by employing both asymmetric and symmetric encryption.
The details about the encryption schemes used to enforce privacy policies will be
discussed in Section 5. In the following of this section, instead, we give a short
description of the privacy model supported by each of the DOSNs introduced
in Section 2.

Diaspora. In Diaspora [18], the users define privacy policies based on “aspects”,
i.e. groups of contacts which are part of one or more aspects of the users’ life.
Indeed, the “aspects” can be defined to reflect common features of friends (such
as common interests, type of the relationships, etc.). The groups are visible
only to their owner in their profiles, but the group owner can decide whether
to make the identity of the group’s members visible to each other (by creating
public group) or visible only to the group owner (by creating private group).
The aspects mechanism can be used only by the group owner to control the
sharing of the contents with the group members. At the moment of content
creation, the content owner may decide that the content is public, i.e. visible by
everyone, or may select the aspects with which he wants to share the content.
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Table 1: Comparison of the security mechanisms provided by current DOSNs
DOSN Enc Encryption Schemes Privacy Policy

Diaspora [18] 7 private, public, selected contacts

Safebook [29] 3 Asymmetric, Symmetric private, group, attributes, trust level, depth

PeerSoN [31] 3 Asymmetric, Symmetric private, public, groups

LotusNet [38] 3 Asymmetric, Symmetric selected contacts, regular expression on con-
tent type

SuperNova [33] 3 Asymmetric, Symmetric private, public, selected contacts

LifeSocial.KOM [34] 3 Asymmetric, Symmetric private, public, selected contacts

Vis-a-Vis [39] 7 group admission based on friendship and cre-
dentials

My3 [41] 7 trusted contacts, all friends

Cachet [36] 3 Asymmetric, Symmetric, ABE identity or attribute-based policy

Persona (ABE) [43] 3 Asymmetric, Symmetric, ABE private, group, selected contacts, attribute-
based group

eXO [44] 7 public, private

Vegas [45] 3 Asymmetric selected contacts, all friends

DiDuSoNet [46] 7 selected contacts, all contacts, dunbar circles

Prometheus [49] 3 Asymmetric relationship type, interactions, weights of the
relationship, location

Gemstone [53] 3 Symmetric, ABE attribute-based policy

Friendica [19] 7 public, selected groups, selected contacts

RetroShare [20] 7 circles, selected groups, selected contacts, n-
degree contacts

Safebook. The privacy model of Safebook is sketched in [29] and refined in [30].
Personal information of users is organized into atomic attributes, and privacy
policies based on these attributes can be defined by each user. Contents (or
artifacts) are logically grouped by labels (such as Comments, Posts, Images, etc.)
and on each label a set of attributes is defined in order to be exploited in privacy
policies. In order to protect their contents, users can define privacy policies
based on the type (or label) of the relationship (such as Family, Close friends,
etc.), the depth (such as Friends, Friend of a Friend, etc.) or the trust level of
the relationship (i.e, a numeric value that user assigns to each friendship relation
in order to indicate the level of confidence with the corresponding friend). For
these reasons, users can assign labels or attributes to their relationships in order
to define badges, i.e., set of contacts having the same label and attributes. Users
can also define their custom groups of users, by choosing which of their contacts
belong to them (regardless of the relationship type). The group is visible to
any members, who are aware of the other users participating in the same group.
In addition, Safebook permits the creation of private groups (named circles)
and, in that case, membership information are visible only to the owner of the
group. Contents can be private, i.e., they are not published, protected, i.e. they
are published encrypted on mirrors, or can be public, i.e., hey are published on
mirror without encryption. We recall that mirrors are the innermost nodes of
the Matryoshka.

PeerSoN. PeerSoN [54] exploits the concept of “shared space” to abstract social
entities like groups, friend networks, or personal profiles. Each shared space is
a container for a set of data objects like photo, albums, videos, and may be
paired with a set of members. Peerson allows its members to define simple
access policies based on individual user or private group of users. In particular,
the user is able to create a filegroup, which is a set of objects having the same
authorized readers. Group name remains visible only to the owner of the group
and the members of the same filegroup cannot see each other.
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LotusNet. In LotusNet [38], access control is achieved using signed grant cer-
tificates. The contents created by users are grouped using content type (such
as Status, Photos, Comments, etc.) and a grant certificate is generated for each
friend. A grant certificate consists of the identities of the owner and of the
granted user, an expiration time and a regular expression that is a compressed
list of all the content types that can be accessed by the granted user. Grants are
paired with social contacts, rather than with shared resources. This allows to
maintain their number low, but does not allow the definition of granular privacy
policies. In addition, a grant certificate created by user A for a user B implies
that a social tie has established between A and B. Through this mechanism, it
is possible to represent both directed and undirected social networks, depending
on whether grants are reciprocated or not.

SuperNova. SuperNova [33] defines three privacy levels to be paired to each
content: public, protected, or private. Public contents can be accessed by any
user, while private contents are accessible only by the publisher itself, for exam-
ple for data backup. Finally, protected contents are intended to be shared with
a subset of friends explicitly selected by the content owner. Authorized users
can not see who is allowed to access the same content, but they have information
on all the peers, i.e. the storekeepers or the super-peers, which store a replica
of the profile of the user. Furthermore, each storekeeper has information about
all the other storekeepers which are storing the node’s data.

LifeSocial.KOM. LifeSocial.KOM [34] does not allow users to define complex
privacy policies, but it provides a security layer [22] where users are enabled
to define Access Control Lists (ACLs) [55] containing the identities of friends
authorized to access a specific content. In particular, when a content is created,
the user creates a privacy policy for that content by selecting the identities of
the users authorized to access it. In addition, users are able to create public
groups based on a common interest where both group name and the identities
of the group members are visible to anyone. At the group level, privacy control
requires that contents published within the group are visible only to all the
group members.

Vis-a-Vis. The main goal of Vis-a-Vis [39] is the sharing of geographic locations
within large social groups, however the framework can be exploited for sharing
other social contents. Vis-a-Vis allows its users to create privacy policies to
restrict the sharing of locations, based on public or private groups. At the mo-
ment of the group creation, the group owner selects an admission policy for the
group defining the set of credentials corresponding to the members authorized
to access the group. Each user within the group possesses a shared attribute.
The credential set can be: i) empty, in the case of a public group with contents
accessible to everyone; ii) shared attributed such as an inter-personal relation-
ship with the group owner (e.g., family, colleague, or classmate) or an interest
in a particular topic [39]. Each user of a group is associated to a geographical
region (e.g., hometown or current GPS coordinates) visible to all members of
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the group. Geographical regions of users are organized according to a hierar-
chical tree structure where the higher levels of the tree represent coarse-grained
areas (such as countries, followed by states, counties) while lower levels of the
tree represent fine-grained regions (such as cities and places). When a user u
joins a group, u provides a set of geographic regions that specify the geographic
information that u want to share with other group members.

My3. Members of My3 [42] leverage their trusted friends to enforce privacy
policies on the access requests. However, authors do not specify the exact
organization of the profile content and the type of privacy policies that members
can define on it.

Cachet. Cachet [36] allows its users to define two kinds of privacy policies:
identity-based and attribute-based (AB) policies. Identity-based policies de-
fine accesses based on the identities of users. AB policies, instead, are defined
through logic formulas over attributes and they are used to define access for a
group of social contacts sharing some common features. As for example, an AB
policy can grant access to users having attributes friend, coworker, family. In
particular, only the type and depth of relationships are used as attributes of the
AB policies. Each content may be protected with three policies: a Read Policy
which specifies the set of users that can read the content, a Write Policy which is
generally set to the identity of the content owner, and an Append Policy which
may define, for instance, who can comment on post.

Persona. In Persona [43], users exploit attributes to model semantic properties
of their social contacts and to define privacy policies based on them. The authors
propose to use as an attribute the type of the relationships among users (such as
co-worker, friends, friends of friends, etc.). In addition, users can organize their
contacts into private groups which are intended to be used by the group owner.
Indeed, groups and group memberships are visible only to the group owner. This
makes group management in Persona different from classical scenarios because
the members of a group may not necessarily be aware of each others. For
instance, Alice may post a message on Bob’s wall, encrypted for Bob’s friends,
without necessarily knowing the list of Bob’s friends. Groups can be defined
by selecting the identities of users to be added and they are heterogeneous in
terms of the type of relationships. The content owner chooses whether to share
the content in a private group or by using the relationship type attribute.

eXO. In eXO [44], each user is able to mark a content only as public or private.
In the former case, the content can be seen by anyone in the system because it
is indexed by the DHT, while private contents are visible only to users having
a friendship relation with the content’s owner. Similarly,the user’s profile may
be public, i.e., indexed and replicated by the DHT, or private, that is is stored
only on the peer of the profile owner. In addition, a content can be paired to
a set of tags (i.e., terms that describe the content). However, tags on contents
can not be exploited during the definition of the privacy policies.
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Vegas. Members of Vegas [45] have few capabilities in terms of privacy pref-
erence settings and they can exploit only a limited set of privacy policies that
allow them to share contents only with the selected users or with all friends.
When users create a content, they can choose whether to share it with to all
users having a friendship relation with them. Alternatively, the content owner
individually selects the friends with whom to share the content.

DiDuSoNet. DiDuSoNet [46] defines simple privacy policies that are based on
friendship relation. In addition, each user has a profile which contains only
public and private data. Public data can be accessed by anyone while private
data can be accessed only by contacts having a friendship relation with the
content owner.

Prometheus. Prometheus allows users to specify privacy policies based on types
of relationship, the labels associated to interactions (such as Post, Comment,
etc.), weights related to the trust of the relationship, and locations specified by
the users in their profiles. Access Control Policies define white-lists, i.e. list
of users who can access the contents, but the user can also specify a black-list
to exclude a small number of users. The information referred in the access
control policy may be explicitly derived from multiple external sources provided
by users, such as e-mail, blog, phone, or other DOSNs. As for example, a
privacy policy on trusted peers of a user u can allow both LinkedIn friends and
LinkedIn friend of friend to access the work-related information of u. Labels
play a fundamental role in the Access Control Policy definition. For instance,
users and contents may be grouped under labels to define proper policies. For
instance, a user may group all contents related to work under the “work” label
and restrict access to those contents only to users characterized by the “co-
worker” label, possibly excluding some single user through the black list. The
policies are stored on the trusted peers of the users and they are evaluated when
an access request is received.

Gemstone. Users of Gemstone [53] are able to specify privacy policies based on
distinct attributes (or properties) derived from the OSN knowledge. In partic-
ular, the type of the relationship (i.e., the label associated to the relationship
itself) and profile information of the users can be exploited to define privacy
policies on contents. The typical profile information used as attributes of pri-
vacy policies is location and interest.

Friendica. In Friendica [19] each user is paired to a default public profile which
can be access by all the users. Users can restrict the access on their profiles to
the intended audience (based on, friends, protocols, email addresses, and DNS
location). In addition, a user can maintain different personalities by creating
distinct profiles, each configured for the intended audience.
The users are able to organize their contacts in different groups which can be
used to restrict the access to the shared contents. In addition, users can select
multiple groups and specific friends that are authorized/unauthorized to access

15



the content. A visual editor helps users to manage the members of groups,
as well as, to select the friends who can view a specific profile. In addition,
Friendica supports also the creation of (one-way) relationships (i.e., follower,
fan, etc.)

RetroShare. Users of RetroShare are able to create groups of friends having
different permissions. In particular, RetroShare imposes that a friend cannot
belong to two different groups of a user, i.e., groups constitute a partition of the
peers3. In addition, privacy policies for a single friend, all friends or friends of
friends are also provided. The privacy policies are defined by the content owner
by using flags provided by the visual group interface and each content shared
by a user can belong to zero or multiple groups. Each content can be published
by using three different sharing option flags: i) the green flag indicates that
only friends in selected groups can see and download the content, ii) the blue
flag enables all the friends to see and to download the content, and iii) the N
flag indicates that friends, but also friends of friends, and friends who are at a
maximum distance of N can download files.
In addition, a user can control the search visibility and anonymous access to the
shared contents. As for example, a user can define a privacy policy that allows
to share a content anonymously for untrusted friends but with the exception of
the family group. The group owner selects a discovery policy for each group
that specifies the group settings visibility between the members of the group. In
particular, the group owner can decide to allow/disallow: i) sending information
between friends of this group; and ii) sending information from peers of this
group to others.
Finally, in the latest version of RetroShare [56] users are able to create circles,
i.e., groups of (anonymous) identities, that can be used to restrict the visibility
to forums, channels, etc. A circle can be: i) Public: if members and contents
are visible to any friends; ii) Private: if it is visible only to the members of the
circle; or iii) Restricted: the members and contents are visible only by members
of another circle, and iv) Invited: visible to invited members who explicitly join
the circle.

4.1. Advanced privacy policy mechanisms

Besides the DOSNs previously described, there is a large collection of works
that propose extensions to the existing approaches.

Authors in [57] propose the D-FOAF system: a Friend of Friend ontology-
based distributed identity management system for DOSNs, where access control
management is provided as additional services. In D-FOAF, relationships are
paired with a trust level, and users define their access control policies in terms
of minimum trust level and maximum length of the paths (in terms of friend-
ship relationships) connecting the applicant to the content owner. Authors in
[58] extend the D-FOAF system by considering the case of multiple types of

3http://retroshare.sourceforge.net/wiki/index.php/Groups
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relationships.
On the same line of research, the authors of [59] propose Lockr: a system ex-
ploiting relationships among users within the DOSN to specify privacy policy.

Authors in [60] propose a privacy mechanism based on trust where each user
has a reputation value computed by considering the ratings specified by other
users in the system. In particular, each user is paired to an operating trust
level that is used to determined contents that can be accessed by the user. The
operating trust level is obtained by combining an input parameter provided by
the user and the reputation value of the user. The content created by a user is
paired to numeric confidence level which ranges from 0 (for contents with higher
exposure) to the operating trust level of the content owner (for contents with
limited exposure). Each content created by a user is encrypted with a key Kc

and published on a set of trusted peers. Threshold based cryptography is used
as sharing scheme between the trusted peers. The user operating at trust level
τ can access the content c to the trusted peers only if the confidence level of the
contents is equal or less than the operating trust level τ of the applicant.

Authors of [61, 6] focused on a rule-based access control mechanism for OSNs
where authorized users are denoted in terms of the type of the relationship, the
depth of the paths between two users in term of friendship relations and the
trust level of the existing relationship.

Recently, Carminati et al. [62] proposed an access control model based on
semantic web technologies where semantic web ontologies are used to model
different aspects of the online social network (relationship, properties of the
users, relationship between users and resources, etc.).

Authors of [63, 23] proposed to exploit XACML [64] (a language based on
XML defined by the OASIS consortium) for defining complex privacy policies
that leverage the knowledge provided by the DOSN (e.g., time, type of relation-
ship, location, etc.). In addition, authors of [23] propose to exploit such privacy
policies to produce smart contents allocation that meets the privacy preferences
defined by users.

Typically, the systems reviewed above, exploit privacy policy languages for
representing their policies. Privacy policy languages are designed to define the
privacy controls that both organizations and users want to express. Privacy
policy languages are expected to be fairly simple.

Instead, the authors of [65] focused on the resolution of the privacy conflicts
arising from the process of data sharing. In particular, users are able to specify
their privacy policies to grant data access to the other users, based on their
friendship relation, group membership and identity. Each user is paired to a
trust level while each privacy policy for a content is paired to a sensity level,
which are both of numerical values defined by the user who specifies the policy.
The trust level indicates how much user trust another member while the sensity
level specifies the degree of protection of the data, respectively. The resolution
of a privacy conflict aims to find an authorization decision (permit, deny) which
ensure lower privacy risk and lower sharing looseness. In particular, authoriza-
tion decision is computed as a function of the trust level and the sensity level
of the data, and the trust level of the applicant.
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Table 2: Notations of the different aspects affecting the performance and complexity of a
secure DOSN

Term Description
P(A,C) a privacy policy authorizing users A to access contents in C
A the set of authorized users A = {a1, · · · , an}
n the number of authorized users involved in a privacy policy
C the set of contents C = {c1, · · · , cm} protected by a privacy policy
m the number of contents protected by a privacy policy
GenKeyS time required to generate a symmetric key
GenKeyAS time required to generate an asymmetric key pair
GenKeyABE time required to generate a key with attributes for ABE
EncS time taken by a symmetric schema for the encryption of the data
EncAS time taken by an asymmetric schema for the encryption of the data
EncABE time taken by ABE for the encryption of the data

5. Privacy policy management

In order to enforce privacy policies, the majority of the solutions proposed by
current DOSNs are based on encryption mechanisms. Other DOSNs [46, 41, 66],
instead, exploit alternative approaches in order to avoid the use of cryptography.

In the case of cryptography-based DOSNs, encryption mechanisms perform
a data transformation in such a way that only authorized users can understand
the contents. For instance, to achieve fine-grained access control, each content
should be encrypted before being stored on the peers of the DOSN. In turn,
the secret key used to secure this content should be securely distributed to
the users who are authorized to access the contents (see Section 5.1 and 5.2).
Consequently, even though a generic user can retrieve the encrypted content
stored on a peer, only users who have the permission of the owner (i.e. the
secret key) can understand it. As a result, cryptographic mechanisms used for
privacy policy management introduce some overhead in terms of: number of
keys created and number of encryption operations.

Every time a user defines a privacy policy P (A,C) to protect the contents
in C, the DOSN must initialize it by generating the encryption data structure,
e.g., the cryptographic keys, required to protect these contents, by distribute
it among the proper set of user, and by encrypting these contents before being
stored on the peers of the system. In addition, every time a user changes a
privacy policy, the related encryption structures meant to enforce such policy
must be properly updated as well to reflect the new access rights, i,e., to update
the set of users allowed to access the related contents. For instance, if the privacy
policy model is based on the definition of groups of users, the initialization of
a policy concerns the creation of the group key and the distribution of this key
to the group members. Every time the privacy policy is changed by adding
a new member to the group, the DOSN must properly update the group key
and redistribute it to the group members in order to ensure that both the new
member and the previously authorized users can access future contents that
will be published on this group. This is clearly a performance issue, especially
when the set of authorized users specified in a privacy policy is large and it is
frequently updated.

The cryptographic systems used by the existing DOSNs are typically based
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on the combination of symmetric/asymmetric cryptography or their variations
(such as Attribute Based Encryption or ABE [67]). In contrast to traditional
public-private schemes, in ABE, a set of descriptive attributes is used as an
identity to generate a secret key and to encrypt the data. Only the users who
holds a secret key with the specified attributes are able to decrypt the data.

Table 2 summarizes the general notation used to represent the key factors
affecting the performance and the complexity of a secure DOSNs. In par-
ticular, we consider the overhead introduced by each DOSN for the enforce-
ment of a general privacy policy P (A,C) which grants to the set of authorized
users A = {a1, · · · , an} the permission to access the set of protected contents
C = {c1, · · · , cm}. Based on the previous analysis, we identified two different
operations that can occur during the life time of privacy policies: Initialization
and Update. In the following, we analyze in more detail the overhead introduced
by these operations.

5.1. Initialization

Privacy policies P (A,C) are defined by the content owner o in order to allow
users in set A to access the contents in set C. To protect the confidentiality of the
published contents, each privacy policy needs an initialization phase before being
properly enforced. In general, the initialization phase concerns the creation
of proper cryptographic data structures, as detailed in the following for each
DOSN.

Diaspora. In Diaspora, initialization of a privacy policy does not require any
additional costs because storage of data on pods is not encrypted [68]. Conse-
quently, the pod administrator can access all the profile data hosted by the pod
and all the data published by users. For this reason, several organizations and
users prefer to run their own pod because this provides them more privacy and
control over their data. The communication between pods is always encrypted
(using SSL) and the Diaspora protocol uses HTTPS as transfer mechanism be-
tween pods. Instead, the communication between the pods and the users can
support different levels of confidentiality where data are can be communicated
with or without encryption.

Safebook. Safebook ensures the confidentiality of the protected data by leverag-
ing asymmetric and symmetric cryptography. Each registered user is identified
by a public-private key pair [30]. Contents C shared for a group of authorized
users A are encrypted with a symmetric data encryption key (DEK). Further-
more, the owner generates a key encryption key (KEK) which is previously
distributed among the members of A using their individual public-key. The
DEK related to the contents C is encrypted by using the key encryption key
(KEK) and distributed among all users A that are authorized to decrypt the
contents of C [69].
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PeerSoN. PeerSoN [31, 54] initializes a privacy policy P (A,C) by both exploit-
ing symmetric and asymmetric encryption. Each user in the authorization set A
is paired with an individual asymmetric key while contents in C are encrypted
with distinct symmetric keys and distributed to the authorized users (or stored
on the DHT). In order to protect the confidentiality of contents, each symmetric
key of a content in C is securely distributed to the set of authorized users A by
encrypting it with their individual asymmetric public keys.

LotusNet. In LotusNet, each user has a pair of RSA keys and an OpenId4

account. A certification service validates the account and produces a signed
certificate containing the user’s OpenId and a public key. Each authorized user
in A is paired with a grant certificate. Since grants do not hide the published
contents in C from the peers that store them (i.e., the peers of the DHT),
contents of C are encrypted with a unique symmetric key which is shared with
the set of authorized users A by using their asymmetric public key. Indeed, the
authors suggest to encrypt the full set of contents in C with a single encryption
key. When a replica peer receives a request for a protected content, it verifies the
identity of the querying peer by asking for a valid grant. If a valid certificate is
provided by the applicant, then the replica peer returns the requested encrypted
contents. Finally, the applicant uses their asymmetric private key to obtain the
symmetric content key previously shared by the content owner and decrypts the
related content with it.

SuperNova. We recall that in Supernova contents are replicated on storekeepers,
list of users who have agreed to keep a replica. These nodes are not necessarily
authorized to access the content. SuperNova [33] uses a cryptographic storage
system [70] to enable secure storage on these untrusted nodes. Contents are
organized in filegroups, i.e., groups of files with the same privacy policies. File-
groups are protected using a symmetric (DES) key, called file-block key, which
is exchanged on-demand (via a secure channel). When users want to access a
content, they contact the content owner (or other readers), in order to obtain
the relevant key. Every file is divided into several blocks where each block is
encrypted with a symmetric key. A traditional (k, n)-threshold based secret
sharing protocol [71] is exploited to split the contents into n parts where only k
of them are required to reconstruct the secret. The authors propose to use this
schema for delegating access control and key distribution.

LifeSocial.KOM. LifeSocial.KOM exploits Access Control Lists (ACL) to en-
able a fine grained access control. Indeed, compared to Capability Lists, ACL
is the most suitable solution in a content centric network. In LifeSocial.KOM
[34, 22], each user belonging to the authorization set A of the ACL is paired
with an individual asymmetric RSA key (1024-bits key length). The public key
is used to uniquely identify and authenticate users. A single symmetric AES
key (128-bits key length) is created for all the contents published in C and each

4http://openid.net/
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content c ∈ C is encrypted, individually, with the symmetric content key. In
turn, the symmetric content key is encrypted with the individual public key of
each of the authorized users in A, and the resulting list of encrypted keys is
attached to the encrypted content. The resulting item, signed by the owner of
the content, contains all the information to enforce access control and may be
stored on any peers of the DOSN. Authors of [22] analyzed the overhead (in
terms of time and storage) introduced by the enforcement of the access control
policies, for different number of authorized users (from 1 to 200). The crypto-
graphic mechanisms affect the traffic speed or the storage space by introducing
an overhead of about 2 KB on each stored content. Each additional privileged
user introduces a data overhead of about 413 bytes and encryption takes 89
milliseconds for 200 privileged users.

Vis-a-Vis. We recall that Vis-a-Vis assumes that users have chosen an external
service provider (VIS) which stores and maintains their data available to other
users. A basic assumption [39] is that users trust their storage services. Hence,
the contents of the users are stored unencrypted on their Virtual Individual
Servers (VIS). This basic assumption is based on the observation that the could
providers’ business model does not allow third parties to exploit the contents
produced by their users, like Facebook or Twitter, but it is focused on providing
on demand computational resources to users. Users are identified by a self-signed
key pair. The private keys of the users are securely stored by their VISs, thus
allowing the VISs to act as a proxy for the users. The DOSN requires that users
properly configure the privacy policies on their providers. In particular, the
VIS of the group founder initially manages the privacy policies of that group.
The membership management may be dynamically delegated to other member
of the group, during the group lifetime. The IP address of the owner and the
owner’s public key are distributed out of band.

My3. In order to avoid encryption mechanisms for access control and content
storage, users’ data are stored unencrypted on the devices of their trusted friends
(trust proxy set) [42]. The trust proxy set is directly defined by each user and
peers of the trust proxy set must enforce the privacy policy on the contents
behalf of the user.

Cachet. In Cachet [36], users’ data are protected by EASiER [72]: a crypto-
graphic hybrid structure where privacy policies P (A,C) are enforced by using
traditional public-private key and Attribute-Based Encryption (ABE) [67]. Poli-
cies are defined by the owner at the time of content creation. Each content of
C is encrypted with a randomly chosen symmetric encryption key and the sym-
metric key used to encrypt the content is encrypted with ABE secret key related
to the attributes used in the privacy policy. Users are paired with ABE user
keys which specify the values of the attributes characterizing them. Users who
don’t satisfy the attributes specified by the ABE secret key in the privacy policy
can’t decrypt the content. For instance, a user may define the attributes (friend,
colleague, neighbor), and generate keys for interesting combination of attributes
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(e.g., colleague ∧ friend, neighbor ∧ colleague). Then, a user can assign these
keys to other users and encrypt the contents with a proper ABE policy. After
the contents have been retrieved, they are cached unencrypted on the host of
the applicant.

Persona. In Persona, each user initializes a privacy policy P (A,C) by generat-
ing a new symmetric content key for each content of C. Each symmetric content
key is encrypted either by using a traditional public key or ABE schema. In
the former case, the user sends to the members of the group A the symmetric
key encrypted with the public key of each member. In addition, the group key
may be asymmetric in the case of the group owner wants to allow users which
are not members of the group to encrypt messages for the group as well. In
the latter case, the symmetric content key of a content is encrypted with an
ABE secret key which grants access only to the users having specific attributes’
values. The encrypted contents are stored on a specified storage service which
make them available to the authorized users. The integrity of the contents is
not ensured since Persona assumes that storage services are not interested in
tampering with users’ data. In addition, Gunnar Kreitz et al. [73] focus on the
problem of ABE cryptographic primitives that hide the user’s data but reveal
access policies. They introduce predicate encryption (PE) [74] in order to hide
the user’s data without revealing the access policies. A user’s profile is defined
as a set of multiple objects encrypted for different users and Bloom filter is used
to store users who can decrypt the objects.

eXO. The contents shared by users of eXO are stored unencrypted only on the
peers of the owners of such contents [44]. The content owner decides whether
the added user can access the contents already published. Similarly, the content
owner can decide whether still allowing a removed user to access the contents
published before his removal.In addition, authors claim that users can decide
autonomously to replicate contents on the set of the adjacent peers in the DHT.
However, they do not specify if the content on the DHT is stored encrypted or
not.

Vegas. In Vegas [45], each user owns an asymmetric key pair for each of his
friends. When a user B establishes a friendship relation with another user S,
the user B creates a new public-private key for S and he sends the related public
key to S. In the same way, user B receives the public key for him created by
user S. As a result, a user with n friends has to manage 2n public keys and n
private keys. Initialization of a privacy policy P (A,C) requires the encryption
of each content of C with a new individual symmetric key, which is securely
distributed to the users of A by using their public keys.

DiDuSoNet. In DiDuSoNet [46], a privacy policy P (A,C) simply enables access
the users’s content to all the friends. The contents in C related to a privacy pol-
icy P (A,C) are stored unencrypted on the peers of trusted friends (i.e., friends
of the content owner). Trusted friends are in charge of regulating access con-
trol by providing contents only to authorized users and they are automatically
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derived from the OSNs by considering tie strength [75, 76] of the relationships
(in terms of amount of interactions).

Prometheus. Prometheus [49] enforces a privacy policy P (A,C) by exploiting
public/private schema, access control lists, and trusted peers. At registration
time, the user creates an individual public/private key pair which is used to
authenticate the user’s account and to protect the cryptographic keys shared by
user. In addition, each user specifies the trusted peers that will contribute to
manage his contents and creates a unique asymmetric group key for the trusted
peers. The asymmetric group key is sent to each trusted peer by encrypting it
with the public key of the owner. Each content created by a user is paired to a
privacy policy P (A,C) and it is securely sent to the trusted peers by using the
public group key. As a result, the trusted peers can decrypt the user’s contents.
The policy of the contents are encrypted with the public group key and stored
on the DHT. In addition, privacy policies are also stored on the trusted peers
selected by the content owner. The trusted peers enforce the privacy policies
when the corresponding content is requested.

Gemstone. Gemstone [53] exploits both symmetric encryption and ABE to pro-
tect the privacy of contents. Initially, users assign attributes to their friends,
create new ABE keys based on these attributes, and send the keys to their
friends. Given a privacy policy P (A,C), each content of C is encrypted by
using a new symmetric key. Finally, each symmetric key is encrypted, by using
ABE, with a combination of attributes so that only users who have the required
attribute can decrypt it.

Friendica. The users of Friendica [19] are uniquely identified by exploiting
OpenId, an open standard and decentralized authentication protocol. Each
content published by a user is controlled by four access lists that specify the
individuals authorized/unauthorized to access the content, and the groups au-
thorized/unauthorized to access the content. Each user is paired to a user-name
and password which are used to log in the system. The contents published by
a user are sent to the corresponding Friendica server through a secure channel.
When a content c is shared, the Friendica server of the content owner propagates
c to the Friendica servers of the recipients. Traffic between Friendica servers can
be encrypted depending on the configuration of the involved servers. The con-
tents along with their privacy policies are stored unencrypted on the database
of the Friendica servers.

RetroShare. Users of RetroShare are identified by using a public PGP certificate
(with 4096 bits RSA key), which provides a web of trust between friends. In
order to establish a friendship relation, the involved users must exchange their
PGP certificates. Optionally, they can also sign the keys of their friends in order
to approve the friends’ identities and provide a higher level of trust for friends.
After the creation of a new profile, a user can register one or more devices where
a RetroShare instance is running by creating a unique SSL certificate for each
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device. Each SSL certificate is signed with the PGP key, encrypted with the
PGP key (along with the SSL passphrase), and stored on the corresponding
peer. When the user u logs in RetroShare, u must provide the PGP passphrase
in order to decrypt the SSL passphrases by using the private PGP key. The
unencrypted SSL passphrase and the SSL certificate are both used to initialize
secure communication between friends.
In RetroShare, the content published by a user correspond to shared folders
which are located on their local device. All files in this folder will be hashed
(with SHA1) and a special link item is create. The link is used to share the
(hash of the) content, to access the collection paired to the content, and to
download all files linked to it. Due to the hash of files, the shared folders will
not shared immediately but after 2 minutes or up to 1 hour, depending on the
number of files in the shared folder. The list of shared folders, as well as the
friends’ lists are stored encrypted on the device of the owner by using the SSL
private key of the device. For storage efficiency, the total number of shared
files and directories is limited 4,194,303 for a maximum number of 1023 friends.
Since contents are stored unencrypted on the users’ devices, the administrators
of RetroShare recommend to encrypt the home directory of the devices, so that
SSL certificates and PGP keys cannot be retrieved by exploiting brute force
[77].

5.2. Updating privacy policies

DOSNs allow their users to update the privacy policies P (A,C) they defined.
In particular, at a given time t, a user can change the set A of his contacts
allowed to access his contents by adding a new user u or removing an existing
one w. In this case, A′ is the set of updated members (where, respectively,
A′ = A ∪ {u} or A′ = A\{w}), while C is the set of contents that have been
published before time t and C ′ is the set of new contents that will be published
after time t. When the set A of a privacy policy is updated, each DOSN adopts
its own strategy to manage the permissions on the new contents in C ′ and
on the contents in C. In order to classify such strategies, in the following
we define three properties, and we investigate whether each of the considered
DOSN ensures them or not. If the privacy policy P (A,C) is updated by adding
a new user u, we say that the DOSN satisfies the Backward Secrecy property if
P (A,C)→ P (A,C) +P (A∪{u}, C ′), i.e., the new member u cannot access the
contents already belonging to C before the policy update while the old members
of A can still access such contents. The new contents that will be published after
the policy update (the ones in C ′) can be accessed by both the new user u and
the old members in A. Instead, the Backward Secrecy property is not guaranteed
when P (A,C) → P (A ∪ {u}, C) + P (A ∪ {u}, C ′) where C and C ′ include the
contents published before and after time t, respectively.
Similarly, in case a user w ∈ A is removed from A, we say that the DOSN ensures
the Forward Secrecy property only when P (A,C)→ P (A,C)+P (A\{w}, C ′). In
such a case, none of the contents that will be published in C ′ after the removal
of w from A will be disclosed to w because w is not an authorized user any
longer. In addition, we say that the Backward Right Revocation property was
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not ensured in the previous definition because the user w can still access the
contents in C, i.e., the contents which have been published before his removal.
Instead, when P (A,C)→ P (A\{w}, C) +P (A\{w}, C ′) we say that the DOSN
also ensures the Backward Right Revocation property because the contents that
are in C are not accessible to w any longer after his removal from A.

The implementation of the policy update operations could affect the per-
formance of the DOSN system as new cryptographic keys could be generated
and some encryption/decryption operations could performed in order to prop-
erly enforce the requirements above. Hence, in the following of this section, we
describe how the policy update operations are implemented in the main DOSNs.

Diaspora. In Diaspora, once a user u has published some contents, he cannot
change the set of aspects he allowed to access them [68]. Hence, the modification
of a privacy policy is not permitted in Diaspora. Indeed, the development team
suggest to make a new version of the content and share it to a different aspect.
Instead, users can add new members or remove exiting members from the aspects
they defined. When a new user is added to an aspect, such user can ask for
all the contents that have been published for that aspect. As a result, the
backward secrecy property is not guaranteed. When a user is removed from an
aspect, he cannot access new contents published for that aspect (i.e., forward
secrecy is enforced) because the removed user will be no longer considered when
new contents will be published. In addition, Diaspora guarantees the backward
right revocation property because the removed user cannot access anymore the
contents previously published for that aspect. However, the enforcement of this
property on the already existing contents cannot fully ensured because if the
removed user is a pod administrator, he can still access old contents of the
aspect stored in his local memory.

Safebook. In Safebook [29, 69], in order to remove a user from A, the symmetric
DEK key of each of the contents in C is refreshed and distributed to the current
members of A. However, the contents in C will not be encrypted again with
the new DEK key and will still be accessible by the removed user as long as
they are not modified. Indeed, the new DEK key will be used to encrypt the
new contents, while the existing contents will be encrypted with the new key
only in case they are updated by the content owner. As a result, in case of
removal of an authorized user from the privacy policy, Safebook ensures the
forward secrecy property, but it does not ensure the backward right revocation
property. In the case of the addition of a new member to the set of authorized
users A, the symmetric DEK keys used to encrypt the contents of C will not
be changed and DEK keys are securely distributed to the new user by using his
public key and the KEK key. As a result, the addition of a new user to A does
not ensure the backward secrecy property, because new members of A are able
to access the data previously published in C.

PeerSoN. To add a new user to A, in PeerSoN [31, 54], the symmetric keys
used to encrypt the contents in C are encrypted with the public key of the
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new user. In this way, the new authorized users are able to access also the
existing contents. Hence, the backward secrecy property is not guaranteed. In
the case of user removal from A, the contents already published in C before
the removal of user are decrypted and re-encryption with a new symmetric key,
which must be no longer accessible to the removed user. Moreover, the key
used to encrypt the contents that will be published after the user removal will
not be made available to the removed user. As a result, the revocation of the
access to a user ensures both the backward right revocation and the forward
secrecy properties. A. Datta et al. [71] propose to use threshold-based scheme
to address the problem of backup and recovery of the user’s private key in a
network of untrusted servers. To improve security of the secret sharing protocol
they propose a mechanism to select the most trustworthy delegates based on
the social relationships between users.

LotusNet. In LotusNet users are able to change the relative grant certificates
in order to grant access to new members not in A or deny access to existing
members removing them from A [38]. When a new user is added to A a grant
certificate is created and distributed to the new user. The contents published
before the addition of the user remains encrypted with the same symmetric
content keys, which are securely distributed to the joining user by using their
asymmetric individual key. A user asking for a content must provide a valid
grant certificate in order to download all the encrypted contents published in
C, this decrypting the contents with the corresponding symmetric content key.
As a result, the backward secrecy property is not ensured by PeerSoN because
the new member can access all the contents published before the modification
of the privacy policy.
In contrast, when a member is removed from A the removed member u is not
allowed to download the new data published in C ′ because he hasn’t a valid
certificate. As a result, the forward secrecy property is guaranteed. However,
the user u can still access the contents in C published before his removal because
u holds the symmetric keys of such contents. As a result, the backward right
revocation property is no ensured. The authors propose a solution based on a
lazy revocation schema, i.e., the contents already in C when u was removed from
A are re-encrypted with the new symmetric key only when an authorized mem-
bers modify them. However, this solution is not effective because the majority
of contents shared in OSNs are never modified [38].

SuperNova. Users of SuperNova [33] are able to change a privacy policy P (A,C)
by adding the identity of a new member to the set of authorizing users A [70].
In such a case, the new member is enabled to request (via a secure channel)
the symmetric file-block key of the contents in C and uses it to decrypt each
content. Consequently, when the policy is modified for granting the access
to new members, Supernova does not ensure the backward secrecy property
because the new members can access all the contents published before their
join. SuperNova allows the owners of contents to revoke the rights to access
the contents already published (i.e., in C) to some users by following a lazy-
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revocation. In this approach the member is removed from the set of authorized
users A but the file-block key used to encrypt the contents in C is changed only
when the content is updated. In particular, for each revocation a new version
of the filegroup is generated. The new filegroup version contains the updated
contents, re-encrypted with a new file-block key. The new file-block key is
exchanged on-demand and revoked users can still read unchanged contents in C
but they are not able to read both updated contents or new contents published
after the his removal. Hence, Supernova ensure the forward secrecy property
but it does not fully guarantee the backward right revocation property.

Lifesocial.KOM. In Lifesocial.KOM, a privacy policy P (A,C) can be modified
by granting access to a new member u [22]. In this case, each content of C
is modified, by appending to the list of authorized users the symmetric key
of the content encrypted with the individual public key of the new authorized
member. By default, the backward secrecy is not ensured because the contents
published before u was added to A are accessible to u. In order to revoke
access right on contents in C to an authorized user in A, each content of C is
modified by removing from the list of authorized users the key related to the
removed member. However, it is possible that the removed users have stored the
symmetric content key on their local peers to access the contents whenever they
wants, even if the content owner has denied access to them. For this reason, the
affected contents are re-encrypted with a new symmetric key. As a result, the
removed user cannot access old contents published before his removal because
they are encrypted with a new symmetric content key which is shared only with
the authorized members, thus ensuring the backward right revocation property.
In addition, each new content published by the user is encrypted with a new
symmetric content key which is shared only with the member left in A′.

Vis-a-Vis. Vis-a-Vis [39] assumes that users have chosen an external provider
(VIS) for the storage service. Access control is delegated to users, that have
protected their contents by properly configuring the privacy policies with their
providers.

My3. My3 avoids to enforce privacy policies by using encryption mechanisms
and exploits trust friends for access control and storage of unencrypted contents
[42]. As a result, changes in privacy policies are directly communicated to the set
of trusted proxy, which enforce them behalf of the user. Backward secrecy can
be ensured to prevent new members to access the contents published before they
join the set of authorized users, although no specific mechanisms are provided.
Forward secrecy can be ensured in the same way as well. However, when the
removed members belong to the set of trusted proxies, they will be still able to
see some old contents because a copy of those contents is stored on their devices.
As a result, My3 does not ensure the backward right revocation property.

Cachet. Users of Cachet [36] are able to modify their privacy policies P (A,C) in
order to grant access to a new user or to revoke access to previously authorized
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members [72]. Cachet assumes that each user has obtained a fresh individual
ABE key which contains the updated values of their attributes. Each content
of C is encrypted, individually, with a symmetric key and the symmetric key
is encrypted with an ABE content key where access policy is attached to the
encrypted item. As a result, the addition of a new member requires the creation
of an ABE user key whose attributes satisfy those of the privacy policy. The
backward secrecy is not ensured because new member can access all the contents
that meet its attributes, even if these contents have been published before the
new member was added to A. Users are also able to change the privacy policies
P (A,C) of the contents already published in order to deny access to a previously
authorized member. In this case, the ABE content key must be refreshed to
consider the new access policy which is used to shared future contents with the
members left in A′. However, this is not enough to ensure that contents already
published in C can not be accessed by the removed users because they can store
locally the symmetric key used to encrypt the contents C. As a result, the
backward right revocation property is ensured by refreshing all the symmetric
keys used to encrypt the contents of C and by encrypting these with the ABE
content key related to the new privacy policy.

Persona. In Persona, a privacy policy P (A,C) defined by a user can accept new
authorized members whose attributes’ values satisfy those of the ABE access
policy. For this purpose, the new member obtains an ABE key which meets the
attributes defined by the privacy policy and use it to decrypt the contents of C.
The backward secrecy cannot be properly guaranteed because all the contents in
C can be accessed by the new member. When a user is removed from A, Persona
ensures the backward right revocation property by re-encrypting all the contents
already in C with a new individual symmetric key. Moreover, it is necessary to
encrypt the new individual symmetric key with an ABE access policy that meets
the attributes defined by the privacy policy. By using this approach, the removed
member will no longer be able to obtain the symmetric key of the contents in
C, thus enforcing backward right revocation property. In addition, the removed
user cannot access future contents because their symmetric individual keys are
encrypted with an ABE access policy that meets the attributes defined by the
new privacy policy, thus enforcing the forward secrecy.

eXO. Users of eXO can store unencrypted contents on their local peers and
changes in privacy policies are directly enforced by the content owner [44]. Since
contents are stored on the local device of the content owner, users are able
to prevent both new members from accessing old contents (backward secrecy
property) and the removed members to accessing the new contents (forward
secrecy). Eventually, the backward right revocation property with respect the
removal of a user can be directly guaranteed by the content owner, which may
decide whether to share or not contents already published with the removed
user.

Vegas. When the user changes a privacy policy P (A,C) by adding a new mem-
ber to the set of authorized user A, he has to notify all the contents in C to the
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new member. For this reason, the symmetric key of each content is encrypted
with the individual public key of the new user and it is sent to him/her. By
default, backward secrecy is not ensured but, eventually, it can be guaranteed
by disclosing only the symmetric keys of the new contents in C published after
the join of the new user [45]. Instead, key revocation introduces more over-
head since it requires the re-encryption of each content with a new individual
symmetric key and the distribution of such keys to the new members (by using
their asymmetric public keys). Therefore, backward right revocation property
is ensured because the removed member can no longer access old contents in C.

DiDuSoNet. In DiDuSoNet [46] changes in privacy policies are directly enforced
by the content owner and do not introduce any overhead because contents are
stored unencrypted on the peers of trusted friends. By default, the backward
secrecy property with respect to user’s addition is not guaranteed because the
new member can access all the contents published after their join. Instead,
DiDuSoNet ensures the forward secrecy property when a privacy policy is up-
dated by denying access to a member because the removed user cannot anymore
access old contents. In addition, the backward right revocation property is not
ensured because it requires the reallocation of the contents on the new users’
peers who are authorized to access them.

Prometheus. The user of the Prometheus [49] are able to modify a privacy
policy P (A,C) by adding a new member to the set of authorized users. For
this reason, the content’s owner executes a three-way handshake procedure that
allows to securely share the public/private group key with the new member. The
public/private group key is used to encrypt content of C. As a result, the new
members will be able to decrypt all the contents of the privacy policy by using
the public/private key exchanged in the previous step. The backward secrecy
is not guaranteed because the new member is able to access all the contents
published in C. When a user decides to remove a member from the trusted
group of a privacy policy, he submits an unsubscribe multicast request to all
members of the privacy policy (except for the removed user). The affected users’
peers generate a new public/private group key for the privacy policy which is
distributed to all the authorized users. The backward right revocation property
is not guaranteed because old contents remain encrypted with the old group key
and they can still be accessed by the removed user.

Gemstone. In Gemstone [53], new members having ABE key whose attributes
satisfy those of a privacy policy P (A,C) are authorized to access the contents
of C. The backward secrecy cannot be property guaranteed because all the
contents in C remain visible to the new member. Instead, deny access to a
member of A requires the re-encryption of each content of C with a new indi-
vidual symmetric key in order to avoid disclosure of olds contents. In addition,
each symmetric key is encrypted with ABE by using an access policy which
meets the attributes defined by the privacy policy. In this case, the removed
member will no longer be able to obtain the symmetric key of both old and new
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contents, thus preventing both forward secrecy and backward right revocation
property.

Friendica. In Friendica, users are able to change the composition of their groups
by removing members or adding new ones to the access control list of the groups.
When a new member is added to the group, he will be able to access future
contents and old contents published in the group. As a result, the backward
secrecy property is not guaranteed in the case of user addition. Instead, a
user removed from a group cannot access future contents that will be published
in the group (forward secrecy), but he can still access old contents already
published in the group because users authorized to access the content have
permanent permissions. As a result, the backward right revocation property is
not guaranteed because, once a user has created a content and shared it with a
group, the content has been delivered to the Friendica servers of the recipients.
For this reason, the content owner cannot anymore change the privacy policy
assigned to the content by restricting access to some users in the group. In
such a case, the Friendica suggests to delete the content by sending a delete
notification to everybody who received the content [78].

RetroShare. Users of RetroShare are able to edit permissions on contents shared
with their contacts. Privacy policies on shared contents are directly enforced by
the content owner, when the content is requested by a member. As a result, the
peer of the content owner ensures that new member of the group can access the
contents that will be published for that group. The backward secrecy property
is not provided because the new member can access also the contents already
published in the shared directory. In a similar way, revoking access right to
a user is directly enforced by the peer of the content owner, which denies the
access to the removed user when he requests the contents (i.e., enforcing forward
secrecy). However, deny access to a member does not ensure the backward right
revocation property because it is possible that the users removed from a group
have stored a copy of an the contents in their local storage.

6. Evaluation and Discussion

The previous sections surveyed some crucial aspects of current DOSNs, and
this section presents a comparison among them with respect to those aspects.
Table 3 summarizes the architectural style of each DOSNs, while Table 4 de-
scribes mainly the characteristics of the storage layer. The architectural style
adopted by the current DOSNs is mainly based on structured P2P architectures,
such as OpenDHT in PeerSoN, FreePastry in LifeSocial.KOM, Likir in Lotus-
Net, DECENT in Cachet, and eXO. Indeed, these structured P2P architectures
have proven to be reliable solutions to deal with the dynamism of peers (churn)
and with load balancing. Structured P2P architectures are very efficient for
routing information based on a key and they are exploited also to implement
anonymous communications or to get updated status information about a peer
(such as, IP address, online status, ports, etc.). In addition, structured P2P
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Table 3: Evaluation of the architectural style of DOSNs.
Routing Overlay Network

DOSN Structured Unstructured Structured Unstructured

Diaspora [18] • Federated Network

Safebook [29] • • Kademlia Matryoshka

PeerSoN [31] • OpenDHT

LotusNet [38] • Likir

SuperNova [33] • not specified

LifeSocial.KOM [34] • FreePastry

Vis-a-Vis [39] • not specified

My3 [41] • • DHT not specified

Cachet [36] • DECENT

Persona (ABE) [43] • Network of Private Servers

eXO [44] • DHT

Vegas [45] • Network of Private Servers

DiDuSoNet [46] • • DHT Dunbar Social Overlay

Prometheus [49] • • Pastry Mesh network

Gemstone [53] • • DHT not specified

Friendica [19] • Federated Network

RetroShare [20] • • BitTorrent Mesh Network

architectures have proven to be very efficient in retrieving information managed
by the peers and several DOSNs exploit this advantage by storing users data
on the peers of a structured P2P network. As for instance, PeerSoN, LotusNet,
LifeSocial.KOM, Cachet, and eXo exploit a DHT to store and to replicate en-
crypted contents of the users on the peers of the DHT. For this reason, data
are typically stored encrypted to prevent the owner from accessing them and
replicated on different peers to increase their availability. However, this solu-
tion has a limitation in case of relational data, such as those generated by the
DOSN users, which are typically organized in logically connected structures (for
example a post with its comments and likes). Indeed, the DHT is not able to
deal efficiently with relational data because it needs many accesses in order to
retrieve the complete data structure, taking up to hundreds of second [36]. For
example, in order to obtain the complete data structure concerning a post on
the profile of a user u, the applicants have to access the profile of u, retrieve the
post, retrieve the comments linked to the post and the likes related to both post
and comments. For this reason, the most part of the existing DOSN systems
exploit structured overlay networks to store a reference to the peers having the
user’s contents.

Behind these, there are also other DOSNs (such as Diaspora, Friendica,
SuperNova, Persona, Vis-a-Vis, and Vegas) that rely exclusively on unstructured
P2P architecture where all the users’ devices (or a subset of them) can act as
super-peers by providing different types of services. This solution mitigates the
overhead needed for a peer to connect to the system because the absence of
structure reduces both complexity and prone to dynamism. As for instance,
in Diaspora, Friendica, and SuperNova some users can decide to take part of
the federated network by acting as pods or Friendica servers. In general, these
DOSNs can provide either a semi-decentralized or a hybrid storage service. In
the first case, the contents of users are stored on a sub-set of peers provided
by users of the DOSN (such as Diaspora, Supernova, or Friendica) while in the
second case contents are stored by third parties (such as Vis-a-Vis, Persona or
Vegas). Depending on the assumptions made by each DOSNs, contents can
be stored either unencrypted (such as, Diaspora, Vis-a-Vis, and Friendica) or
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encrypted. In the former case, the DOSN requires the user to trust the peers
that have been chosen to store unencrypted contents. In addition, DOSNs
based on semi-decentralized data storage may or may not ensure replication of
the data on different peers for availability purpose. As for instance, Diaspora
and Friendica, do not provide data replication because they assume that peers
chosen by users to store their contents are very reliable. In fact, run a Diaspora
pod requires a lot of memory because the database grows very fast. In addition,
computational and network resources required by the server depend on the
number of users hosted by the pod and how much traffic the pod receives from
other pods. In case of a high number of data lookups the robustness of semi-
structured P2P system is heavily affected due to the network congestion caused
by numerous queries. Another example is Friendica server, that requires to run
PHP/MySQL/Apache and other components to be installed.
Vis-a-Vis, Persona, and Vegas, leverage external storage system to ensure better
scalability, performance and availability of data. Indeed, availability of contents
is guaranteed by exploiting external centralized data storage services, such as
FTP, WebDAV, Amazon S3, Google Drive, or Dropbox in Vegas and Persona
or Virtual Identification Servers in Vis-a-Vis.

Finally, many DOSNs which in the past relied completely on structured or
on unstructured P2P architectures, have been redesigned to exploit a hybrid
architecture that takes advantage of both solutions. In particular, Safebook,
My3, DiDuSoNet, Prometheus, Gemstone and RetroShare have enhanced their
platforms by integrating both structured and unstructured overlays. In most
of the proposed solutions, the structured P2P level is used to find friends (e.g.,
RetroShare) or to find the peers where data are stored (such as Safebook, My3,
DiDuSoNet, Prometheus, and Gemstone). The unstructured P2P level provides
a semi-decentralized storage service which consists of the peers selected by users
to store their data and it is used to retrieve the data from the corresponding
peers. Instead, the structured P2P level is used as an index to speedup the
lookup of data and for the routing. All the DOSNs considered in this category
rely on the replication of the contents in order to increase data availability, while
contents can be stored either encrypted on different peers (such as Safebook,
Prometheus, and Gemstone) or unencrypted on the peers of trusted friends. In
the first case, the DOSNs store user’s contents on any peers of the system while
in the second case contents are stored on a subset of the users (super peers) in
the system. However, the choice of the super peers where to store replicas of
the contents is typically demanded to the users while only few DOSNs (such as
DiDuSoNet, and [79, 66, 23]) adopt trust models to automatically derive these
super peers.

6.1. Evaluation of the privacy models

To help the reader in understanding the different types of privacy models
provided by current DOSNs, previously described in Section 4, we propose to
classify them by using the taxonomy shown in Figure 2. In particular, we
identified 4 different privacy models:
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Table 4: Evaluation of the architectural style of the DOSNs’ storage systems
Data storage Features

DOSN Decentralized Semi-decentralized Hybrid Data Encryption Replication

Diaspora [18] • 7 7

Safebook [29] • 3 3

PeerSoN [31] • 3 7

LotusNet [38] • 3 3

SuperNova [33] • 3 3

LifeSocial.KOM [34] • 3 3

Vis-a-Vis [39] • 7 7

My3 [41] • 7 3

Cachet [36] • 3 3

Persona (ABE) [43] • 3 3

eXO [44] • - 3

Vegas [45] • 3 7

DiDuSoNet [46] • 7 3

Prometheus [49] • 3 3

Gemstone [53] • 3 3

Friendica [19] • 7 7

RetroShare [20] • 7 3

Relationship-based: where the relationships (such as friendship) established
by users, as well as the features of these relationships, are directly exploited
by the DOSN users in order to define their privacy policies.

Group-based: where users are able to organize their contacts in a set of groups,
and they define their privacy policies by granting the right to access their
contents to these groups.

Profile-based: where each user exploits the profile information of the other
users to define their privacy policies.

Content-based: where users organize their contents in distinct groups (or
types) and they exploit these groups (or types) to define privacy policies
that permit access only to the specified set of contents.

As shown in Table 5, all the considered DOSNs except Diaspora, allow their
users to define relationship-based privacy policies. Most of DOSNs, such as
Safebook, Cachet, Persona, eXO, Vegas, DiDuSoNet, Prometheus, Gemstone,
allow users to organize their contacts in homogeneous groups by specifying the
type of a relationship (such as family, acquaintances, close friend, work col-
league, etc.). Then, users can state privacy policies which exploit the type of
relationships. In particular, Safebook allows users to assign labels to each rela-
tionship in order to define badges, i.e., sets of contacts having the same labels.
Besides relationships type, some DOSNs enable users to provide attributes for
their relationship. Such attributes are features which can be either automat-
ically derived from the DOSN knowledge or explicitly provided by a user for
each of their contacts. For example, the depth of a relationship (such as friend,
friend of friend, etc.) is used by Safebook, RetroShare and Cachet as attribute
of privacy policies.

The identity of a user involved in a friendship relationship (friend’s iden-
tity) is another attribute of the relationships which can be easily obtained from
the DOSN knowledge and it is used by PeerSoN, LotusNet, SuperNova, LifeSo-
cial.KOM, Vis-a-Vis, Cachet, Friendica and Vegas to define privacy policies.
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Figure 2: A taxonomy for the classification of privacy models.

In addition, Safebook and Prometheus give their members the ability to spec-
ify how much they trust their friends or if they know personally each person they
have a relationship with on the OSN, while DiDuSoNet leverages trust model
proposed in the literature to derive and compute the trust value of a user by
using the information about friendships and interactions between OSN’s mem-
bers. The nature of this model takes advantage of the important sociological
concept of Dunbar Circles [48]: the idea is that friends in an ego network can
be described by different levels of intimacy and closeness to the ego. To reflect
different levels of importance of these relationships, friendships are associated
to a tie strength, a numerical value describing their force. The knowledge of tie
strength can be exploited to define privacy policies which exploit this confidence
level.

Group-based privacy policies allow users to organize their contacts into dis-
tinct groups, namely groups in LifeSocial.KOM, Vis-a-Vis, and Persona, aspects
in Diaspora, circles or groups in Safebook, or filegroup in PeerSoN. These groups
differ from those resulting by the types of the relationships because they can
contains contacts with different types of relationships. As a results, group re-
sulting from the relationship-based privacy policies are homogeneous in terms
of types of relationships while group-based privacy policies are meant for het-
erogeneous groups.
In most of the cases, the user who created a group can decide whether to make
it visible only to himself, to the group members, or to any user of the DOSN. In
addition, membership information about a group can be made accessible either
to the group owner, to the group members, to any user. Users of Diaspora,
Safebook, PeerSoN, Vis-a-Vis, Friendica, RetroShare and Persona are able to
create private groups (named also circles) which are intended to be used only by
the user who defined them (i.e., the group owner). As a result, only the group
owner is aware of both the existence of the group and of which users belong
to it. In Diaspora, public or private groups (named also aspects) are visible
only to the group owner while the members can only see the group’s name. In
Safebook, circles are private groups visible only to the group owner and a mem-
ber of the group is not aware of the other group’s members. In addition, users
of Diaspora, LifeSocial.KOM, and Vis-a-Vis are able to create public groups of
users focused on specific topics (such as Music, Movie, or Photography). In
Diaspora, public groups are visible only to the group owner while the identities
of the group members are visible to each other. Instead, in LifeSocial.KOM and
Vis-a-Vis public groups information are visible to any users of the DOSN, who
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may decide to explore and join them. In contrast, public groups created by the
users of Safebook are visible to group members, as well as the identities of the
members who belong to the group. A similar capability provided by RetroShare
is the concept of circle [56], i.e., groups of anonymous identities which can be i)
visible to any friends (Public) ii) visible only to members (Private), iii) visible
to another circle (Restricted), or iv) visible only to invited members.

Content-based privacy policies allow users to attach attributes to the con-
tents in order to exploit them during the definition of privacy policies. For
instance, Safebook, LotusNet, and Prometheus model the type of a content
(such as Post, Comment, Like, or Photo) as attribute, and the privacy policies
define access permissions based on content type. The type of a content can be
automatically derived from the content itself, or manually defined by the user
who specifies the content type by means of labels.

Other sources of information used to support the design of privacy policies
are those related to the user profiles. Typically, OSNs enable their users to
define their own profile: a digital representation of the users containing their
personal information, interests, school, partner information, political preference,
jobs, etc. Profile-based privacy policies allow users to exploit profile information
to decide who can access their contents, on the basis of different aspects of the
profile. In particular, members of Prometheus and Gemstone can use attributes
that model features originating from user-entered profile information (such as
location and interest). These information are typically contained in the public
part of the users’ profiles and they can be exploited by any user of the DOSN
in order to limit access to public contents to users having specific interests or
location. Finally, Friendica allows users to restrict access to a contents based
on the DNS location of the applicant.

6.2. Evaluation of the privacy policy management

Since the majority of the current DOSNs enforce the privacy policies defined
by their users through cryptography, in the following section we evaluate the
overhead introduced by the initialization and modification of a privacy policy
P (A,C) in terms of the number of cryptographic keys created (#Key), and
the number of encryption operations required (#Enc) when a policy P (A,C)
is created and when it is modified by adding or removing members to A. For
instance, Prometheus relies on asymmetric encryption while the others combine
both asymmetric and symmetric cryptography. There are also a small collection
of DOSNs (such as Cachet, Persona, and Gemstone) that propose to improve the
capabilities of existing approaches by integrating Attribute-based Encryption
(ABE) [67]. In Section 6.2.2, instead, we describe some approaches that are not
based on cryptography.

6.2.1. Cryptography-based DOSNs

Initialization. Table 6 shows the costs for the initialization of privacy policies
in the DOSNs we examined. In particular, we measured the number of crypto-
graphic keys created in order to protect a content. Please notice that in Table
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Table 5: Classification of the privacy models provided by current DOSNs according to the
taxonomy defined by Figure 2

.

6 we don’t take into account the creation of the personal asymmetric or ABE
keys paired to the users because these keys are created only once when the users
join the DOSN and they are exchanged with the other users when the relation-
ships are established. In general, it is well known that cryptographic schemes
introduce costly operations for the generation of cryptographic keys, for en-
crypting plain texts, and for decoding cryptograms. Since asymmetric (and
ABE) operations are significantly more costly than symmetric ones, for each
DOSN, we counted separately the number keys created by using the symmetric
schema (GenKeyS), the asymmetric schema (GenKeyAS), and the attribute-
based schema (GenKeyABE), as well as we distinguish between the number
of encryption operation performed by using the symmetric schema (EncS), the
asymmetric schema (EncAS), and the attribute-based schema (EncABE).

Every time a member of the DOSN creates a privacy policy P (A,C) which
grants to the n users of A the access to the m contents in C, a set of new keys
needs to be generated for protecting the m contents. In particular, the data rep-
resenting the contents are typically encrypted by using the symmetric schema.
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Table 6: Evaluation of the overhead for privacy policy definition.
Initialization

DOSN #Key #Enc
Safebook [29] 2 ·GenKeyS m · (2 · EncS) + n · EncAS
PeerSoN [31] m ·GenKeyS m · (EncS + n · EncAS)
LotusNet [38] GenKeyS m · (EncS + n · EncAS)

SuperNova [33] GenKeyS m · EncS
LifeSocial.KOM [34] m ·GenKeyS m · (EncS + n · EncAS)

Cachet [36] m ·GenKeyS m · (EncS + EncABE)
Persona (ABE) [43] m ·GenKeyS m · (EncS + EncABE)

Vegas [45] m ·GenKeyS m · (EncS + n · EncAS)
Prometheus [49] GenKeyAS m · EncAS + n · EncAS
Gemstone [53] m ·GenKeyS m · (EncS + EncABE)

In order to ensure fine-grained and efficient access control, most of the current
DOSNs (such as PeerSoN, LifeSocial.KOM, Cachet, Persona, Vegas, and Gem-
stone) create a new symmetric key for each content to be protected (for a total
of m keys). Then, each of the m contents is encrypted with the corresponding
symmetric key (for a total of m symmetric encryption operations). In contrast,
Safebook, LotusNet, and SuperNova create only one symmetric key, which is
used to encrypt all the contents in C. In particular, Safebook requires the cre-
ation of two symmetric keys because it exploits a unique symmetric content
key to encrypt contents and it is securely distributed to authorized members
by using a different symmetric key (key encription key). A similar approach
is exploited also by Prometheus, which creates a new asymmetric key for the
group and all the contents are protected by using this key.

The symmetric/asymmetric key(s) used to encrypt the contents of C must be
securely distributed to the n authorized users of A. For this purpose, SuperNova
exchanges it/them when requested by the authorized users, via a secure chan-
nel. However, the most part of current DOSNs exploit asymmetric encryption
for securely distributing the key(s) generate in the previous step. As previ-
ously recalled, the public-private key pair of each user is generated only once
when the user registers to the DOSNs. As for instance, Prometheus encrypts
the contents with the group public asymmetric key and exploits the individual
public asymmetric keys of users to securely distribute the private group key
to authorized contacts. In contrast, Vegas, creates an individual public-private
key pair for each friendship relations and each user u has to manage a total of
2 · f public-private key and f private keys, where f is the number of friends of
u. In other DOSNs (such as Safebook, PeerSoN, LotusNet, LifeSocial.KOM),
each user is linked to a public-private key pair, where the public part of the
key is used to uniquely identify the user and it is made available to all their
contacts, while the private part is kept secret by the user. If the contents of C
are protected by a unique symmetric key, this key is encrypted with the public
key of each the n authorized users; alternately, the m symmetric keys used to
encrypt the contents of C, are individually encrypted with the public key of each
the n authorized users. The resulting list of encrypted keys can be attached to
each encrypted content or directly distributed to the authorized users. In any
case, n asymmetric encryption operations (n · EncAS) are necessary for each
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Table 7: Evaluation of the current approach for user addition.
Grant access to a new user

DOSN #Key #Enc BW
Safebook [29] 0 EncAS + EncS 7
PeerSoN [31] 0 m · EncAS 7
LotusNet [38] 0 0 7

SuperNova [33] 0 0 7
LifeSocial.KOM [34] 0 m · EncAS 7

Cachet [36] GenKeyABE 0 7
Persona (ABE) [43] GenKeyABE 0 7

Vegas [45] 0 m · EncAS 7
Prometheus [49] 0 EncAS 7
Gemstone [53] GenKeyABE 0 7

symmetric key used to encrypt the contents of C. In this way, the authorized
users are able to decrypt the symmetric key(s) used to encrypt the contents of
C with their private keys, and they can use such symmetric key(s) for accessing
the contents.

Recently, Cachet, Persona, and Gemstone propose to leverage the ABE
schema to securely distribute the symmetric keys used to encrypt the contents
of C to the n authorized users. To use ABE, each user generates an ABE public
key and an ABE master secret key. For each friend, the user can then generate
an ABE secret key which is associated with a set of attributes. Attributes define
a logical expression that users must satisfy in order to decrypt the data. ABE
ensures that only users with the correct attributes will be able to decrypt the
data. As a result, each symmetric key is encrypted only once for all the n users,
with the proper logical expression over attributes. However, as mentioned by the
authors of [43], this approach is affected by some performance penalty because
ABE operations have proved to be about 100-1000 times slower than those of
the RSA. Finally, it is worth noting how the number of encryption operations
required by users to publish m contents is the same of the number of encryp-
tion operations (i.e., #Enc) needed to initialize the privacy policy in Table 6.
Indeed, the content publisher encrypts the m contents with the appropriate
symmetric/asymmetric keys and shares them to the authorized users.

Overhead for updating privacy policy. Updating privacy policies is an operation
that allows users to redefine their privacy preferences in order to grant access
to some contents to new users or to deny access to previously authorized users.
Since we assumed that content confidentiality is enforced through cryptography,
when a privacy policy is changed, new cryptographic keys must be generated and
some encryption/decryption operations must be performed in order to properly
enforce such changes.

For each DOSN, Table 7 shows the number of generated keys (#Key), and
the number of encryption/decryption operations (#Enc) required to update the
policy P (A,C) to grant the access to a new user. First of all, we notice that
all the current DOSNs do not guarantee the backward secrecy property (last
column of Table 7, BW). Hence, when the users of such DOSNs change their
privacy policies P (A,C) to grant the access to a new user u, besides allowing u
to access the future contents that will be added to C, they also enable u to access
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Table 8: Evaluation of the current approach for the case of deny access.
Deny access to a previously authorized user

DOSN #Key #Enc BRP
Safebook [29] GenKeyS n · EncS 7
PeerSoN [31] m ·GenKeyS m · (EncS + n · EncAS) 3
LotusNet [38] 0 0 7

SuperNova [33] GenKeyS 0 7
LifeSocial.KOM [34] m ·GenKeyS m · (EncS + n · EncAS) 3

Cachet [36] m ·GenKeyS m · (EncS + EncABE) 3
Persona (ABE) [43] m ·GenKeyS m · (EncS + EncABE) 3

Vegas [45] m ·GenKeyS m · (EndS + n · EncAS) 3
Prometheus [49] GenKeyAS n · EncAS 7
Gemstone [53] m ·GenKeyS m · (EncS + EncABE) 3

the contents already published in C. For this reason, the most part of current
DOSNs (such as Safebook, PeerSoN, LifeSocial.KOM, Prometheus and Vegas),
in order to grant the access to a new user u, share the keys used to protect the m
contents of C with u, by encrypting each of them with the individual asymmetric
key of u. In particular, Safebook encrypts the symmetric Key Encryption Key
(KEK) by using the individual public-key of the new member and, in turn, the
KEK is exploited to securely communicate the individual symmetric key used
to protect the contents. Instead, in Prometheus, the asymmetric key pair used
to encrypt the content is sent to the new user u through a secure channel (TCP-
like three-way handshake procedure). Hence, it is not required to futher encrypt
this key pair. However, the estabilishment of the secure channel requires an
additional cost which is not reported in Table 7. In contrast to these approaches,
LotusNet and SuperNova do not incur any cost when the policy is changed,
because users have to request the symmetric key of a content when they want
to access it, by providing a valid grant certificate.
When ABE schema is used to protect contents (such as in the cases of Cachet,
Persona, and Gemstone), the cost of granting access to a new user is equal to
the cost of creation of the ABE key with the proper attributes’ values.
It is interesting to note that it doesn’t really make sense to ensure forward
secrecy property for the user addition operation because the new member will
be authorized to access the contents that will be published in the group.

Table 8 shows the costs for changing the privacy policy P (A,C) in order to
revoke the access right to a user u ∈ A. As for the join operation, Table 8 shows
the number of generated keys (#Key), and the number of encryption/decryption
operations (#Enc) required to update the policy P (A,C) to deny the access to
an authorized member. In addition, we assessed whether the backward right
revocation property (BRP) is guaranteed. The aim of the removal of a member
from the set of authorized users is exactly to guarantee that none of the future
contents published in C will be disclosed to u. As a result, the forward secrecy
property is always guaranteed in case of user the removal because users do not
want to share new contents published in the group with the removed members.
Indeed, except for LotusNet and SuperNova, the forward secrecy is ensured by
generating the new key(s) for encrypting future contents and by distributing
such a key only to the updated set of authorized group members. Instead,
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LotusNet and SuperNova, provides the updated key on-demand to the users
that requests the contents.

Some DOSNs ensure the backward right revocation property, i.e., the con-
tents previously published in C are no more accessible to the removed user u.
Instead, other DOSNs ensure that previously published contents of C will still
be accessible to u.

The majority of existing DOSNs (such as PeerSoN, LifeSocial.KOM, Cachet,
Persona, Vegas, Gemstone) that rely on both symmetric and asymmetric (or
ABE) schema ensure backward right revocation property in case of removal of a
user. For this reason, whenever a user is removed from the set of authorized users
A of a privacy policy P (A,C), the symmetric keys of the contents in C must
be changed, and the new keys must be redistributed to all the current members
of A (obviously, except for the removed member u) by using their individual
asymmetric key or ABE key. In this way, disclosure of either new or old contents
to the removed user is avoided. However, the previous solution is affected by a
serious drawback: it does not scale well for contents shared with large groups
of users due to the overhead introduced by encryption mechanisms in terms of
number of keys that have to be exchanged, associated encryption/decryption
operations, and size of the messages sent [21]. Indeed, the number encryption
operations to be executed to remove a user from a group is linear on the number
of users belonging to that group. Authors of [21, 22, 23] showed that some of
the current DOSNs have a cost per user removal from a group proportional to
the size of the group.

Two different approaches have been adopted by current DOSNs in order to
mitigate with these problems. The first approach consists of not guaranteeing
the backward right revocation property, such as Safebook, LotusNet, Super-
Nova, and Prometheus, which allows the removed users to access old contents
of the group. Hence, previously published contents remain encrypted with the
same cryptographic keys which are known by the removed users. Indeed, DOSNs
that do not ensure the backward secrecy property during user’s removal have
only to delete the user identity from the set of authorized users, and he will no
longer be considered as authorized user when new contents will be published,
but already existing contents remains encrypted with the same keys or, as in the
case of SuperNova, re-encrypted only when the affected contents are updated.
A similar approach is used also by Safebook, that allows the removed users to
access the same copy of the old contents as long as the content owner does not
update them. For what concerns LotusNet, we remark that the cost for user
removal is zero because they don’t have a real user removal procedure, but they
simply assign short validity periods to grant certificates and they don’t renew
the grant certificates to users who have been removed from the authorized user
set. Obviously, in the LotusNet approach, the choice of a proper validity period
for the grant certificates is critical for guarantee the privacy of the contents. As
a matter of fact, authors suggest to use short duration certificates.

The second approach to mitigate the efficiency problem related to the re-
moval of a user [80, 79, 81, 82] exploits the strength hierarchical data struc-
tures for reducing the overhead of the update of the privacy policy. As for
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Table 9: Alternative solutions to cryptography-based DOSNs.
Privacy Policy Management

DOSN User device Peers Selection Scope
Diaspora [18] not required trusted by users internal (pods)
Vis-a-Vis [39] not required trusted by users external (virtual Identification server)

My3 [41] required trusted by users internal (trusted friends’ peers)
eXO [44] required localhost internal (localhost and DHT peers)

DiDuSoNet [46] required tie strength internal (derived from trust model)
Friendica [19] not required trusted by users internal (Friendica servers)

RetroShare [20] required localhost internal

instance, authors of [80, 79, 81] of the Logical Key Hierarchy model (LKH)
[83] for managing the update of the key of a group. The LKH model leverages
the hierarchical properties of the tree data structure to reduce the number of
encryption/decryption operations needed when a member is removed from a
group. In particular, the authors of [79] propose an approach where removing a
user from a privacy policy P (A,C) requires O(d · logd(n)) encryption operations
where d is the maximum number of children of the nodes and the number of
encryption operations depends on the height on the tree. Instead, the join of a
user requires only O(2 · logd(n)) encryption operation. Indeed, the authors of
[80] propose a decentralized group key management algorithm which combines
both the LKH and the tree-based group Diffie-Hellman (TGDH) where autho-
rized members are manged by different LKH trees which are combined by using
TGDH scheme. The join or remove of a user require the update the correspond-
ing LKH tree while TGDH tree is used for inter-group communication.
Finally, the authors of [82] propose to define hierarchy of groups where some
subgroups have more or less privileges than others. Each group is paired to a
symmetric key and some private information. The symmetric key is used to en-
crypt data while the private information are used to derive the keys assigned to
subgroups in the hierarchy. However, the assignment of the private information,
as well as of the symmetric key, is performed by a central trusted authority.

6.2.2. Alternative Approaches

Besides the ones previously described, some DOSNs such as Diaspora, Vis-
a-Vis, My3, eXO, DiDuSoNet, Friendica, and RetroShare avoid the use of cryp-
tography by storing the contents unencrypted on some trusted replica peers. In
particular, the replica peers can be: i) the peer of the content owner, ii) the
peers of the other users explicitly selected by the content owner, iii) the peers
of the friends with higher strength of the relationship, iv the peers of the users
that are authorized to access the content, based on the privacy policy defined
by the content owner.

Consequently, these DOSNs do not have to perform any cryptographic op-
erations to initialize or to update the privacy policies, since the enforcement
of such policies is directly performed by the contents owner (or by the trusted
peers that behave as proxy on behalf of the content owner) when the other
users request to access the contents. Table 9 shows the characteristics of these
DOSNs. In particular, we investigated if such DOSNs require users to provide
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the resources of their devices (column labeled User device), the trust model ex-
ploited by the DOSNs in order to select other trusted replicas when necessary
(column labeled Peers Selection), and whether the peers selected as replica are
managed by users who are registered to the DOSN, i.e., internal, or they are
external, i.e., provided by third parties (column labeled Scope). In addition,
we summarized in Table 10 whether such DOSNs ensure or not the Backward
Secrecy (BW) and the Backward Right Revocation property (BRP).

For instance, the DOSNs that store contents C only on the peers of the
owner of such contents (such as eXO, and RetroShare) do not need to encrypt
them, because the contents are stored on a trusted device of the owner, who is
obviously authorized to access them. As a result, enforcement of privacy policy
is directly performed by the contents owner when the access to the content is
requested. This operational mode also applies to Diaspora and Friendica in
the case of users who have decided to run their pods or Friendica servers. In
addition, some DOSNs assume that the device of a single user u could not
enough to ensure the required availability of the contents published by u. For
this reason, My3 and Friendica enable users to select several trusted servers
where to store their contents. In the case of DiDuSoNet, the selection of trusted
replica peers is dynamically performed by the system by exploiting tie strength
between users.
As for the DOSNs based on cryptography, the update of a privacy policy by
granting access to a new user does not provide the Backward Secrecy property
because the new member is able to access the contents published before his join.

In the case of a policy P (A,C) is updated by removing a user from A, the
Backward Right Revocation property cannot always be fully guaranteed because
it is possible that the removed user u has stored the contents already published
on their local peer.
As for instance, even if Diaspora claims to ensure the Backward Right Revoca-
tion property, the removed user could be the pod administrator. Indeed, My3,
RetroShare, Friendica, avoid to ensure the Backward Right Revocation because
the removed user could belong to the set of trusted replica peers. As a result,
the BPR property can be guaranteed only by re-allocating the contents already
published on the peer of the users that can access them. Instead, in eXO the
Backward Right Revocation property can be directly enforced by the content
owner because contents are stored on his peer.

Via-a-Vis stores unencrypted contents on the Virtual Identification Servers
(VISs) trusted by the users and the Backward Right Revocation depends on the
VISs while DiDuSoNet does not specify whether the Backward Right Revocation
property is ensured or not.

Finally, the approach in [23, 66] proposes to select the replica peers by choos-
ing the ones belonging to users who are allowed to access the contents according
to the related privacy policy. For these purposes, the content owner specifies
a privacy policy for each content, describing the users who are authorized to
access them by using privacy policy based on attributes (or features) derived
from the user’s profile. The privacy policy defined on each content is used to
choose the set of trusted replica peers where to store unencrypted copy of the
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Table 10: Property ensured by alternative solutions to cryptography-based DOSNs
Grant access Deny access

DOSN BW BRP
Diaspora [18] 7 3
Vis-a-Vis [39] 7 -

My3 [41] 7 7
eXO [44] 7 3

DiDuSoNet [46] 7 -
Friendica [19] 7 7

RetroShare [20] 7 7

contents. In this case, every time a user wants to remove (or add) an authorized
user, the proposed approach avoids any encryption operation. However, in the
case of the removal of a user u from A, the allocation of the contents on the
peers should be updated to guarantee the Backward Right Revocation property
because the contents in C could have been allocated on the peer of u.

7. Conclusion

In this paper we investigated the privacy mechanisms provided by the ex-
isting DOSNs in order to protect the privacy of the contents published by their
users. We selected a relevant number of DOSNs and we classified the archi-
tectural styles they adopted in order to accomplish their tasks, and the re-
sults of these analysis reveal that the most part of existing DOSNs exploit
manly unstructured P2P architecture. Results of these analysis reveal that the
most part of existing DOSNs exploit manly unstructured P2P architecture for
routing (such as Diaspora, Friendica, Matryoshka in Safebook, Mesh in both
Prometheus and RetroShare).

For each of the selected DOSN, we also investigated the mechanisms they
provide to allow users to express their privacy preferences, i.e., to decide which of
the contents they published should be disclosed to the other users. In particular,
we classified and compared the different types of privacy policies provided to
the users to specify access rights to the contents of their profiles. The results
reveal that the friendships-based privacy policies provided by current DOSNs
are limited and very simple because they allow users to choose among a set of
predefined access control options, mainly based on the friends’ identities or on
the types of the relationships. However, these simple privacy models suffer from
several drawbacks. In fact, in addition to the type, a relation may also have a set
of attributes that model properties and characteristics of the relationship (such
as trust or strength, location of the relationship). In addition, besides friendship
relations, also relationships between users and resources (such as owner and co-
owner) can be exploited by DOSN’s users to define privacy policies that take
advantage of this information.

Moreover, we investigated the mechanisms adopted by these DOSNs in order
to ensure that privacy policies defined by users are properly enforced. We found
out that privacy policies are mainly enforced exploiting encryption, through
a hybrid schema based on both symmetric and asymmetric cryptography. In
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addition, we observed that the security solutions exploited by DONS to enforce
a privacy policy could be affected by the type of the privacy policy. As for
instance, classical P2P security solutions could suffer from scalability issues
if they are used to enforce group-based privacy policies because the overhead
introduced by encryption operations in order manage very large groups which
can vary in size through the addition and removal of users.

We investigated better the above problem by measuring the overhead intro-
duced by privacy policy management (i.e., initialization and modification of a
privacy policy) and by comparing the performance of each approach in terms
of number of cryptographic keys created (#Key), and number of encryption
operations required (#Enc). These analyses reveal that the most expensive op-
erations are initialization of a privacy policy and removal of a user from the set
of authorized member (which mainly depends on the number of member of the
group). In order to mitigate such cost, some DOSNs (such as Diaspora, Frien-
dica, and RetroShare) prefer to store unencrypted contents on the peers trusted
by the contents’ owner, by avoiding the use of cryptography for protecting the
privacy of such contents.

We investigate in more detail the current DOSNs which exploit other strate-
gies than encryption to enforce the privacy preferences of the users on their
contents. We observed that the most part of DOSNs require that users have
explicitly selected the user’s peers where to store their contents and that users
trust them. Instead, only a few existing DOSNs perform automatic selection of
the replica peers based on either trust model (such as DiDuSoNet) or privacy
policy defined by users.

Finally, we have also summarized whether changes in privacy policies ensure
(or not) the Backward Secrecy property and the Backward Right Revocation
property. We noted that current DOSNs does not prevent a new user to access
old contents published by the contents’ owner. However, users of the DOSNs
could benefit from such property in the case they want to add a new member to a
group without disclosing the contents already published in the group. Instead, in
the case of user’s removal, the Backward Right Revocation property is typically
guaranteed by current DOSNs because the removed users cannot still access old
contents. However, the proposed solutions lack of flexibility because they are
fixed and the users cannot customize these property for a specific user or group.
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[31] S. Buchegger, D. Schiöberg, L.-H. Vu, A. Datta, Peerson: P2p social net-
working: early experiences and insights, in: Proceedings of the Second
ACM EuroSys Workshop on Social Network Systems, ACM, 2009, pp. 46–
52.

46

https://joindiaspora.com/
https://joindiaspora.com/
http://friendi.ca/
http://retroshare.sourceforge.net/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126987
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126987
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