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Abstract

The peak stress method (PSM) is an engineering, finite element (FE)‐oriented

method to rapidly estimate the notch stress intensity factors by using the singu-

lar linear elastic peak stresses calculated from coarse FE analyses. The average

element size adopted to generate the mesh pattern can be chosen arbitrarily

within a given range.

Nomenclature: a, characteristic size of the analysed sharp V‐notch; d, average size of a finite element mesh; e1, e2, parameters for the evaluation of the
averaged strain energy density (SED); E, elastic modulus; fw1fw2, weight parameters of the peak stresses; K1, K2 , mode I and II notch stress intensity
factors (NSIFs); K*

FE,K
**
FE, non‐dimensional K1 and K2 relevant to the peak stress method (PSM); R0, radius of the control volume for the averaged

SED evaluation; r, θ, polar coordinates; ux, uy, displacement components in the Cartesian frame of reference; W , strain energy density averaged
over the control volume; x, y, Cartesian coordinates
Symbols: 2α, opening angle; Δ, range of the considered quantity; λ1, λ2, mode I and mode II eigenvalues in Williams' equation; ν, Poisson's ratio; σI,peak,
singular, linear elasticmaximumprincipal stress evaluated at a V‐notch tip by FEMusing themesh according to the PSM; σeq,peak, linear elastic equivalent
peak stress evaluated at a V‐notch tip; σij,c

(A), centroidal stress component in element A; σij,k
(A), stress component, referred to node k of element A; σij,k,

stress component, referred to node k; σnom, applied nominal stress; σθθ,, τrθ normal and shear stress components in the polar frame of reference; σyy,peak,
singular, linear elastic, opening peak stress evaluated at a V‐notch tip by FEM according to the PSM; τII,peak,τxy,peak, singular, linear elastic, sliding peak
stress evaluated at the crack tip by FEM according to the PSM; [σ]k

(A), stress tensor, referred to node k of element A; [σ]k, stress tensor, referred to node k
Abbreviations: FE, finite element; FEM, finite elementmethod; NSIF, notch stress intensity factor; PSM, peak stressmethod; SED, strain energy density;
SIF, stress intensity factor
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Originally, the PSM has been calibrated under pure mode I and pure mode II

loadings by means of Ansys FE software. In the present contribution, a round

robin between 10 Italian universities has been carried out to calibrate the

PSM with 7 different commercial FE codes. To this aim, several 2‐dimensional

mode I and mode II problems have been analysed independently by the partic-

ipants. The obtained results have been used to calibrate the PSM for given stress

analysis conditions in (i) FE software, (ii) element type and element formula-

tion, (iii) mesh pattern, and (iv) criteria for stress extrapolation and principal

stress analysis at FE nodes.

KEYWORDS

coarse mesh, finite element (FE) analysis, notch stress intensity factor (NSIF), peak stress method

(PSM)

1 | INTRODUCTION

In plane problems, the local linear elastic stress fields
close to the tip of sharp V‐notches, like those shown in
the welded joint of FigureF1 1, can be expressed as func-
tions of the relevant notch stress intensity factors
(NSIFs), which quantify the magnitude of the asymptotic
singular stress distributions, according to the original
analysis performed by Williams1 under mode I (opening)
and mode II (sliding) stresses. The mode I and mode
II NSIFs can be defined according to Gross and
Mendelson2 by means of Equations 1 and 2, respectively
(see Figure 1B).

K1 ¼
ffiffiffiffiffiffi
2π

p
⋅ lim
r→0

σθθð Þθ¼0⋅r
1−λ1

� �
(1)

K2 ¼
ffiffiffiffiffiffi
2π

p
⋅ lim
r→0

τrθð Þθ¼0⋅r
1−λ2

� �
(2)

In previous expressions, λ1 and λ2 are the stress singu-
larity exponents,1 which depend on the notch opening
angle 2α, while the stress components σθθ and τrθ are

calculated along the notch bisector line, identified by the
angular coordinate θ = 0 (see Figure 1). Values of λ1
and λ2 for the notch opening angles considered in the
present contribution are reported in Table T11.

Notch stress intensity factors (NSIFs) have proved to
efficiently correlate the static strength of components
made of brittle or quasi‐brittle materials and weakened
by sharp V‐notches,3-9 as well as the medium and high‐
cycle fatigue strength of notched components made of
structural materials.10,11 Concerning welded joints, NSIFs
have been used to analyse the fatigue strength under both
uniaxial12-17 and multiaxial cyclic loadings.18 However,

(A)

(B) (C)

FIGURE 1 Sharp V‐shaped notches in a welded joint A, at the root (2α = 0°) B, and at the toe (2α typically equal to 135°) C, sides.

Definition of peak stresses σI,peak and τΙΙ,peak evaluated at the weld toe and the weld root by means of a linear elastic finite element analysis

TABLE 1 Values of notch parameters considered in the present

work

2α (deg) λ1 e1
a λ2 e2

a

0 0.500 0.133 0.500 0.340

90 0.544 0.145

135 0.674 0.118

aValues from Lazzarin and Zambardi.3
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calculating the NSIFs by means of finite element (FE)
analyses presents a major drawback in engineering prob-
lems, because definitions 1 and 2 need very refined FE
meshes to evaluate the NSIFs. Finite elements as small
as 10−5 mm have been adopted in a previous study14; in
case of 3‐dimensional components, numerical analyses
could be even more time‐consuming.

Recently, a simplified and rapid technique, the so‐
called peak stress method (PSM), has been proposed to
speed up the numerical evaluation of the NSIFs, thanks
to FE models with coarse meshes, ie, some orders of mag-
nitude larger than that required to apply definitions 1 and
2. The PSM is based on the numerical procedure proposed
by Nisitani and Teranishi19,20 to rapidly estimate the
mode I SIF of a crack emanating from an ellipsoidal cav-
ity. The method has been theoretically justified and
extended to estimate also the mode I NSIF of sharp and
open V‐notches,21,22 the mode II SIF of cracks,23 and also
the mode III NSIF of open V‐notches.24

Essentially, the PSM rapidly estimates the NSIFs K1

and K2 (Equations 1 and 2) from the singular, linear elas-
tic, opening (mode I) and sliding (mode II) FE peak
stresses σI,peak and τΙΙ,peak, respectively, which are calcu-
lated at the node located at the V‐notch tip (as an exam-
ple, see Figure 1).

In more detail, the expressions of the PSM are the fol-
lowing22,23:

K1≅K*
FE⋅ σI;peak⋅d

1−λ1 (3)

K2≅K**
FE⋅ τII;peak⋅d

0:5 (4)

In previous relations, d is the so‐called “global ele-
ment size” parameter adopted by the FE analyst, ie, the
average size of the FEs generated by the free mesh gener-
ation algorithm available in the numerical code; K*

FE and
K**

FE are nondimensional NSIFs, which must be cali-
brated to take into account the following parameters of
the FE analysis:

• the element type and formulation
• the FE mesh pattern
• the criteria for stress extrapolation and principal stress

analysis at FE nodes

In previously published papers, the PSM has been cal-
ibrated by using the Ansys code and the following nondi-
mensional NSIFs have been obtained: K*

FE ≅ 1.38 and
K**

FE ≅ 3.38.22,23 The conditions of applicability of such
nondimensional NSIFs will be summarized in the next
paragraph. Besides the much coarser mesh, the PSM
has an additional advantage, which is illustrated by

Equations 3 and 4 as compared to previous expressions
1and2: only the singular, linear elastic peak stresses eval-
uated at the V‐notch tip are sufficient, instead of a num-
ber of stress‐distance numerical results.

Any structural strength assessment criterion, which is
based on NSIF parameters, can in principle be
reformulated by using the PSM, thanks to Equations 3
and 4. In the recent literature, the PSM has been coupled
to the averaged strain energy density (SED) fatigue crite-
rion to assess the fatigue strength of welded joints sub-
jected to axial23,25-27 and torsion24 loading conditions.
An example of such application will be given in the next
paragraph.

To extend the use of the PSM in practical engineering
problems, it is of paramount importance to calibrate the
parameters K*

FE (Equation 3) and K**
FE (Equation 4) by

using commercial FE codes different from Ansys. There-
fore, a round robin between some Italian universities
has been carried out to fill this gap, ie, to check whether
or not the parameters K*

FE ≅ 1.38 and K**
FE ≅ 3.38, previ-

ously calibrated by using Ansys, can be used also with
other software packages. Possibly, parameters K*

FE and
K**

FE must be updated. It should be noted that to the best
of authors' knowledge, some attempts to apply the PSM by
adopting FE codes other than Ansys have already been
reported in recent contributions by Ranieri et al,28 who
analysed the fatigue strength of steel butt‐welded joints
according to the PSM by using Adina®, and by Ferro
et al,29 who adopted Sysweld® to rapidly estimate the
residual NSIFs again in steel butt‐welded joints. However,
in these contributions, no systematic calibration of the
PSM has been carried out for the adopted FE code. In
the present paper, the PSM has been applied to sharp V‐
notches with different opening angles under pure mode
I and cracks under pure mode II loadings by adopting dif-
ferent FE codes. After having calculated the peak stresses,
the nondimensional ratios K*

FE and K**
FE have been eval-

uated according to Equations 3 and 4, but now expressed
in the following fashion:

K*
FE ≅

K1

σI;peak⋅d1−λ1
(5)

K**
FE ≅

K2

τII;peak⋅d0:5
(6)

For each FE software used, the calibration has been
performed for fixed stress analysis conditions in (i) ele-
ment type and element formulation, (ii) mesh pattern,
and (iii) criteria for stress extrapolation and principal
stress analysis at FE nodes.
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2 | CALIBRATING THE PEAK
STRESS METHOD WITH ANSYS®
FINITE ELEMENT CODE

The nondimensional K*
FE and K**

FE appearing in
Equations 3 and 4 have been calibrated in previous contri-
butions,22,23 to which the reader is referred. Here only a
summary of the conditions to apply K*

FE ≅ 1.38 and
K**

FE ≅ 3.38 will be reported, according to the following
items:

• Element types can be chosen among the next ones
available in Ansys element library:
○ two‐dimensional, 4‐node quadrilateral FEs with
linear shape functions (PLANE 42 or alternatively
PLANE 182 with K‐option 1 set to 3, ie, “simple
enhanced strain” formulation activated);

○ three‐dimensional, 8‐node brick elements (SOLID
45 or equivalently SOLID 185 with K‐option 2 set
to 3, ie, “simple enhanced strain” option activated);

○ two‐dimensional, harmonic, 4‐node linear quadri-
lateral elements, to analyse axis‐symmetric compo-
nents subjected to external loads that can be
expressed according to a Fourier series expansion
(PLANE 25).

• The FE mesh pattern close to the notch or crack tip
must be that reported in FigureF2 2 (see also previous

studies22,23); in more detail, 4 elements share the node
located at the notch tip if the notch opening angle 2α
is equal to or lower than 90°, while 2 elements share
the node at notch tip when the notch opening angle
is 2α > 90°. Figure 2 shows examples of such mesh
patterns in case of symmetric FE models. It should
be noted that the mesh patterns according to the
PSM are automatically generated by the free‐mesh gen-
eration algorithm of Ansys code, after having input the
average FE size d by means of the “global element
size” command available in the software. There are
no additional parameters or special settings to input
to generate the mesh.

• Equation 3 can be applied to sharp V‐notches with an
opening angle 2α between 0° and 135°, while calibra-
tion for mode II loading (Equation 4) is restricted to
the crack case (2α = 0).

• The average element size d can be chosen arbitrarily,
but within a range of applicability defined in
the relevant literature22,23: for mode I loading
(Equation 3), the mesh density ratio a/d must exceed
3 to obtain K*

FE ¼ 1:38%±3%; in case of mode II load-
ing (Equation 4), more refined meshes are needed, the
mesh density ratio a/d having to be greater than 14 to
obtainK**

FE ¼ 3:38%±3%. The dimension a is the char-
acteristic size of the analysed sharp V‐notch; for exam-
ple, it is the notch depth in Figure 2. More precisely, a
is the minimum between the notch depth and the

FIGURE 2 Mesh patterns according to the PSM.22,23 Symmetry boundary conditions have been applied to the FE model [Colour figure can

be viewed at wileyonlinelibrary.com]
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ligament size, indicated as h in the example of next
Figure 7, which will be commented later. In all
geometries analysed in the present study, the charac-
teristic size a resulted equal to the notch depth
because a < h. There is only one exception in
Table 3 (Figure 7C with a = 15 mm and h = 10 mm)
where h > a; however, to simplify the presentation of
results, a was kept equal to the notch depth also in this
case. The FE size d has been intentionally taken as the
“global element size” input by the FE analyst before
running the free mesh generation algorithm available
in the FE code. Obviously, the edge lengths of the
actually generated FEs will fulfil the prescribed size
d only approximately. Nevertheless, the average FE
size d has been adopted in Equations 3 and 4, the
effects of the variability of the FE size in the vicinity
of the V‐notch tip being included in the scatter band
of K*

FE and K**
FE.

3 | A PRACTICAL EXAMPLE: THE
PEAK STRESS METHOD APPLIED TO
FATIGUE ASSESSMENT OF A
WELDED JOINT

To illustrate the PSM in practical design situations, the
fatigue strength assessment of conventional arc‐welded
joints made of structural steel is reported below. Load‐
carrying cruciform welded steel joints are considered (see
the geometry in FigureF3 3), which were fatigue tested by
Ouchida and Nishioka30 under axial loading. The detailed
analysis according to the PSM is reported in Meneghetti

and Lazzarin,31 to which the reader is referred. Only the
main steps of the analysis are reported here.

The SED averaged over a structural volume of radius
R0 surrounding the weld root or the weld toe (see
Figure 3), as proposed by Lazzarin and co‐workers,3,16 is
adopted as fatigue damage parameter. The averaged SED
under mode I + II loading can be expressed in closed
form as a function of the relevant NSIFs according to
Equation 7.

ΔW ¼ e1
E

ΔK1

R1−λ1
0

 !2

þ e2
E

ΔK2

R1−λ2
0

 !2

(7)

where R0 represents the control radius; ΔK1 and ΔK2 are
the ranges of the NSIFs relevant to mode I and mode II,
respectively; E is the Young's modulus, while e1 and e2
are known parameters depending on the notch opening
angle 2α and the Poisson's ratio ν.3,16 The size of the struc-
tural volume was calibrated on experimental fatigue test
data and resulted R0 = 0.28 mm for welded joints made
of structural steel.16

Taking advantage of the equality
W ¼ 1−ν2ð Þ⋅σ2eq;peak=2E valid under plane strain condi-

tions, an equivalent peak stress, σeq,peak, can be derived as
follows23:

Δσeq;peak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1−ν2
⋅ e1

ΔK1

R1−λ1
0

 !2

þ e2
ΔK2

R1−λ2
0

 !2" #vuut (8)

where e1 and e2 are known coefficients that depend on the
notch opening angle 2α and the Poisson's ratio; values rel-
evant to the present paper are listed in Table 1. If ΔK1 and
ΔK2 are evaluated directly at the weld toe and at the weld
root by means of definitions (Equations 1 and 2), the mesh
density must be very refined, as reported in Figure F44. After
applying definition 1, the mode I NSIFs were determined
at the toe and root resulting in ΔK1,toe = 3.40 MPa mm0.326

andΔK1,root = 2.95MPamm0.5, respectively, while mode II
is not singular at weld toe and it is negligible at weld root in
this case (ΔK2,root ≈ 0). It is worth noting that Figure 4
reports the nodal stresses; therefore, the minimum ele-
ment size of 10−5 mm adopted in the FE simulation can
be appreciated.

By using the PSM‐based relationships (Equations 3
and 4), Equation 8 can be rewritten as a function of
the singular, linear elastic FE peak stresses σΙ,peak and
τΙΙ,peak

23:

Δσeq;peak ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
f 2w1⋅Δ

q
σ2I;peak þ f 2w2⋅Δτ

2
II;peak (9)

All parameters appearing in Equations 3, 4, and 8 are
included in coefficients fw1 and fw2, whose expression has
been reported in the literature.23

FIGURE 3 Geometry of the load‐carrying steel weld joint tested

in Ouchida and Nishioka.30 Control volumes for the averaged SED

evaluation at the weld toe and the weld root sides
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The peak stresses were calculated by using the FEmesh
reported in FigureF5 5, according to the following steps:

• A 2D FE analysis was performed under plane strain
conditions by adopting 4 node quadrilateral elements
(PLANE 182 of Ansys element library, with K‐option
1 set to 3, ie, “simple enhanced strain” formulation
activated).

• The mesh density ratio a/d was established as follows:
a is the precrack length at the root side, so that the
maximum FE size d is equal to a/3 = 3.5/3 → ≈1 mm
and is appropriate to apply Equation 9; at the toe side,
a is half the main plate thickness, ie, a = 8 mm; there-
fore, the maximum FE size is 8/3 = 2.66. In conclu-
sion, d = 1 mm is appropriate both at the root and at
the toe side.

• The free‐mesh pattern (see Figure 5A) was generated by
setting a “global element size” parameter d = 1 mm in
the free mesh generation algorithm.

• The maximum principal stress ΔσI,peak was evaluated
at the FE nodes located at the weld toe and root;
by using Equation 3, it is obtained ΔK1,

toe ≅ 1.38 · 2.389 = 3.30 MPa mm0.326 and ΔK1,root ≅
1.38 · 2.178 = 3.01 MPa mm0.5: both values are in very
good agreement with those calculated with very
refined meshes by means of definition 1.

• Figure 5B shows the results according to PSM:
○ weld toe side: Δσeq,peak≅ fw1 · ΔσI,peak = 1.064 · 2.389
= 2.54 MPa

○ weld root side:Δσeq,peak≅ fw1 ·ΔσI,peak = 1.410 · 2.178
= 3.07 MPa

As a conclusion, according to the PSM, the weld root
is more critical than the weld toe, because Δσeq,peak is
higher at the root (3.07 MPa) than at the toe (2.54 MPa).
This is in agreement with the fatigue crack initiation
point experimentally observed by Ouchida and
Nishioka.30 Subsequently, the original experimental data
have been reconverted in equivalent peak stress evaluated
at the weld root by means of Equation 9. Finally, Figure F66
shows the comparison between the experimental results
and the fatigue design scatter band previously calibrated
in Meneghetti and Lazzarin.31 A good agreement between
theoretical estimations and experimental results can be
observed.

4 | PARTICIPANTS AND FINITE
ELEMENT CODES INVOLVED IN
THE ROUND ROBIN

The participants and the FE codes involved in the round
robin are listed in Table T22. Ten universities took
part to the project, and 7 commercial FE codes were
calibrated.

Table 2 shows that Optistruct and Ls‐Dyna were used
to solve the numerical models, while Hypermesh and

FIGURE 4 Singular, linear elastic stress fields at the weld toe and

the weld root, obtained from very refined FE mesh patterns

(minimum FE size dmin ≈ 10−5 mm) and comparison with the

asymptotic solutions based on the relevant NSIF. The nominal

applied stress Δσnom is equal to 1 MPa

(A) (B)

FIGURE 5 Application of the PSM to the fatigue strength assessment of a load‐carrying arc‐welded joint made of structural steel and tested

in Ouchida and Nishioka30 [Colour figure can be viewed at wileyonlinelibrary.com]
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Hyperview were used as preprocessor and postprocessor
codes, respectively.

5 | GEOMETRIES, MATERIAL, AND
FINITE ELEMENT MESH PATTERNS

A number of 2‐dimensional geometries subjected to mode
I or mode II loading conditions were analysed by using
the different FE codes. Geometries involved cracks as well
as pointed V‐notches and not necessarily reproduce
welded joint geometries, because of the general validity
of expressions 5 and 6 to be calibrated. Geometries,

material properties, boundary conditions, and FE type
were obviously the same in all FE codes involved in the
round robin. Conversely, as far as possible, specific
options concerning element formulation, free mesh gen-
eration algorithms, stiffness matrix inversion algorithms,
stress extrapolation, and stress averaging rules at FE
nodes have been set to default options in each software.
Sometimes, with the sole aim to investigate the reasons
for different results obtained, the FE mesh pattern gener-
ated with a given software has been imported into another
software, so that the results could be compared for pre-
cisely the same adopted mesh. All details concerning the
analyses performed and the obtained results are given in
the following.

5.1 | 2D problems (plane strain), mode I
loading, 0° ≤ 2α ≤ 135°

Different geometries subjected to pure mode I as reported
in Figure F77 have been considered. All these case studies
are the same adopted in the original calibration of the
PSM under mode I loading, which was performed by
using Ansys FE code.22 In particular, they consist of the
following geometries: a crack located at the U‐notch tip
(Figure 7A), a crack at the free surface of a finite‐width
plate (Figure 7B), a plate with lateral open V‐notches
(Figure 7C), and, finally, a typical full‐penetration cruci-
form welded joint with a weld toe angle equal to 135°
(Figure 7D). The material is a structural steel with
Young's modulus E = 206 000 MPa and Poisson's ratio
ν = 0.3.

To calculate the peak stress values, linear elastic static
analyses under plane strain conditions have been carried
out and a FE pattern of 4‐node linear quadrilateral ele-
ments has been used as shown in the examples of
Figure F88, which refers to Ansys software. Only a quarter
of each model has been analysed by taking advantage of
the double symmetry condition. The free mesh generation
algorithm was run in each software after setting the aver-
age element size d to adopt. The mesh density ratio a/d
was varied in a wide range by considering either a varia-
tion of the notch/crack size a or a variation of the FE size
d, as reported in Table T33.

All generated meshes were checked to assure that the
FE pattern at the notch or crack tip was of the type shown
in Figure 2. If the mesh pattern generated by the free
mesh generator was not the standard 1 reported in
Figure 2 (in a symmetric model, 1 element was sometimes
obtained at the notch tip when 2α = 90°, instead of 2, or 2
elements were sometimes obtained when 2α = 135°,
instead of one), then mesh generation was repeated by
changing slightly the average element size d up to 10%
of the nominal values reported in Table 3 until the

TABLE 2 List of participants (alphabetic order) and FE codes

Universities
(Alphabetical Order)

FE Codes
(Alphabetical Order)

Bologna (UNIBO) Ansys 16 and 17

Genova (UNIGE) Abaqus 6.13 and 6.14

Messina (UNIME) Hypermesh 14a/Optistruct 14
implicit/Hyperview 14b

Modena and Reggio
Emilia (UNIMORE)

Hypermesh 13a/Ls‐Dyna R7.1.3
implicit/Hyperview 13b

Padova (UNIPD) Lusas 14.6‐2

Palermo (UNIPA) MSC Patran/Nastran 2014 and 2016

Parma (UNIPR) Straus 7 R.2.4.6

Pisa (UNIPI)

Politecnico di Torino
(POLITO)

Trento (UNITN)

aPreprocessor.
bPostprocessor.

FIGURE 6 Fatigue assessment of load‐carrying steel welded

joints according to the PSM. Comparison between the fatigue

design scatter band of the PSM31 and experimental fatigue results

from Ouchida and Nishioka30
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standard mesh was obtained. In these cases, the actual d
value has been adopted to calculate the ratio a/d and
K*

FE (Equation 5). Figure 8 highlights that the area of
the models has not been divided into subareas. The exter-
nal load has been applied as a nominal gross‐section stress
equal to 1 MPa.

After solving the FE model, the peak value of the max-
imum principal stress σI,peak was taken at the FE node
located at the V‐notch tip (see Figure 8). Stress averaging
at FE nodes was activated in each FE code, so that only a
single stress value for σI,peak has been obtained per node
by averaging the nodal stresses from all elements that
share the node. To this end, the default options of each
FE code have been used, whenever possible, as it will be
explained in detail in the following.

The exact mode I NSIFs K1, to input in Equation 5,
were derived by using Ansys software and by applying
definition 1 to the stress‐distance numerical results
obtained from very refined FE mesh patterns (the size of

the smallest element close to the V‐notch tip was of the
order of 10−5 mm).

5.2 | 2D problems (plane strain), mode II
loading, 2α = 0°

A crack (2α = 0°) centred in a plate having the geometry
reported in Figure F99 and subjected to pure mode II load-
ing was considered. The case study has been taken from
the original calibration of the PSM under mode II loading
conditions for Ansys FE code.23 The considered material
is a structural steel with Young's modulus
E = 206 000 MPa and Poisson's ratio ν = 0.3.

The peak stresses were calculated by means of linear
elastic static analyses under plane strain conditions and
a pattern of 4‐node linear quadrilateral elements as shown
in the example of Figure F1010. The mesh density ratio a/d
was varied in a wide range from 1 to 200 as reported in
Table T44. Only a quarter of the cracked plate was analysed

(A) (B) (C)

(D)

FIGURE 7 Geometries of 2D problems (plane strain) under mode I loading. Dimensions in [mm]
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by taking advantage of the double antisymmetry bound-
ary conditions (see Figure 10).

The external load was applied to the FE model by
means of displacements ux = uy = 1.262 · 10−3 mm at
the plate free edges. Such displacements translate into a
nominal gross shear stress equal to 1 MPa in absence of
the crack, while the presence of the crack alters the shear
stress distribution in the gross section. However, the same
loading condition in prescribed displacement has been
maintained to evaluate the exact SIF K2 (using extremely

refined FE meshes) as well as to calculate the sliding FE
peak stress τΙΙ,peak (using coarse meshes according to the
PSM). After solving the FE model, the peak value of the
(mode II) shear stress τxy,peak = τII,peak has been taken at
the node located at the crack tip (see Figure 10). Stress
averaging at FE nodes has been activated as explained
for mode I analyses. Again, the exact mode II SIFs K2, to
input in Equation 6, were calculated by using Ansys and
by applying definition 2 to the stress‐distance numerical
results obtained from very refined FE mesh patterns (the

(A) (B) (C)

FIGURE 8 FE mesh patterns and boundary conditions applied into the FE analyses of 2D problems (plane strain) under mode I loading.

Geometries are reported in Figure 7. FE patterns shown in the figure have been generated by using Ansys [Colour figure can be viewed at

wileyonlinelibrary.com]
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size of the smallest element close to the crack tip was of
the order of 10−5 mm).

6 | DETAILS OF MESH
GENERATION SETTINGS

It has been mentioned that 2‐dimensional, 4‐node, linear
quadrilateral elements under plane strain hypothesis
were adopted in the FE analyses. The element was inte-
grated by using 2 × 2 Gauss points. After selecting the
proper element type, the average element size d has been
the sole parameter used by the FE analyst, to drive the

automatic free mesh generation algorithm. Specific details
concerning element type/options along with the adopted
mesh generation settings are reported for each FE code
in Appendix A.

7 | RESULTS OF FE ANALYSES

The results obtained from the participants to the Round
Robin are reported in Figures F1111A‐G and F1212 for mode I
and mode II problems, respectively. The figures show
the nondimensional ratios K*

FE and K**
FE, defined in

Equations 5and 6, respectively, as a function of the mesh
density ratio a/d. Results shown in Figures 11A‐G and 12
have been obtained with the default options of the
postprocessing environment, which are listed in
Appendix B for the sake of clarity.

FIGURE 9 Geometry of 2D problems (plane strain) under mode

II loading. Dimensions in [mm]

FIGURE 10 FE mesh pattern and boundary conditions applied

into the FE analyses of 2D problems (plane strain) under mode II

loading. Geometry is reported in Figure 9. The FE pattern shown in

the figure has been generated by using Ansys [Colour figure can be

viewed at wileyonlinelibrary.com]
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TABLE 3 FE analyses of 2D problems (plane strain) under mode I loading

Analysed Geometries

Figure a [mm] d [mm] 2α [°] b [mm] t [mm] Number of Analysesa

7A 1, 2, … ,9, 10 1 0 ‐ ‐ 10

7B 1, 2, … ,19, 20 1 0 ‐ ‐ 20

7B 10 1, 2, 5, 10 0 ‐ ‐ 4

7C 10 1, 2.5, 5, 10 135 ‐ ‐ 4

7C 5 0.5, 1, 2, 2.5, 5 90 ‐ ‐ 5

7C 10 0.6, 1, 2.5, 3, 5, 7.5 90 ‐ ‐ 6

7C 15 0.6, 1, 2, 5 90 ‐ ‐ 4

7C 6.5 1, 1.64, 6.5 135 10 8 3

7C 50 1, 2, 5, 10, 25 135 50 16 5

aTotal number of analyses: 61.
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Dealing with mode I loading, it can be observed from
Figure 11B‐E that most of the considered FE codes, ie,
Abaqus, Straus 7, MSC Patran/Nastran, and Lusas, pres-
ent the same parameter K*

FE ≅ 1.38 that had been previ-
ously calibrated in Ansys22 and it is reported in
Figure 11A. It should be noted that for all FE codes, con-
vergence is achieved for a mesh density ratio a/d ≥ 3, such
value being consistent once more with the original cali-
bration.22 A slightly greater scatter band of ±5% should
instead be accepted, as compared to Meneghetti and
Lazzarin22 where ±3% was found.

On the other hand, Figure 11F,G shows that
the FE packages Hypermesh/Optistruct/Hyperview and
Hypermesh/Ls‐Dyna/Hyperview present a different cali-
bration constant, ie, K*

FE ≅ 1.84. This peculiar behaviour
depends on stress extrapolation rules at FE nodes and will
be analysed later on. Moreover, the scatter ±8% (see
Figure 11F,G) is higher as compared to ±5% obtained
with the other FE codes (see Figure 11A,E).

Dealing with mode II loading, Figure 12 reports the
results and shows that all considered FE codes converge
to K**

FE ≅ 3.38 ± 3%, ie, the values calibrated previously

for Ansys software.23 Convergence is achieved for a mesh
density ratio a/d ≥ 14, which is consistent with the origi-
nal calibration.23

All results reported in Figures 11 and 12 are summa-
rized in Table T55, which reports the nondimensional ratios
K*

FE and K**
FE to use in Equations 3, 4, and 9 and the

minimum mesh density ratio a/d for all considered FE
codes.

8 | DISCUSSION

In the previous paragraph, it has been observed that
under mode I loading, there are some discrepancies
among the results delivered by the different FE codes.
As a major discrepancy, Figure 11 and Table 5 show that
Hypermesh/Optistruct/Hyperview and Hypermesh/Ls‐
Dyna/Hyperview converge to K*

FE = 1.84, while all other
FE codes converge to K*

FE = 1.38. Minor differences in
results delivered by the different FE codes also exist, but
they are taken up by the scatter bands. Such discrepancies
have been explained by examining the different proce-
dures for stress extrapolation and principal stress analysis
at FE nodes, mesh patterns adopted by the different FE
codes, and numerical integration schemes. Detailed expla-
nations are given in the following.

8.1 | Stress extrapolation at finite element
nodes

Finite element codes compute results at the integration
(or Gauss) points. Afterwards, results can be computed
at nodal or centroidal locations, on the basis of the
element shape functions. Once the nodal or centroidal
stress in the element is obtained, it is possible to calculate
the stress at a node shared by more than 1 element
according to 2 different procedures, which are sketched in
Figure F1313:

a. The nodal stresses in the element (σij,k
(A) and σij,k

(B) in
Figure 13A) are extrapolated from the stresses at the
integration points. Afterwards, the stress at the shared
node (σij,k in Figure 13A) is calculated by averaging
the nodal stresses per element according to the
expression:

σij;k ¼ σij;k Að Þ þ σij;k Bð Þ

2
(10)

b. The centroidal stresses in the element (σij,c
(A) and

σij,c
(B) in Figure 13B) are interpolated from the

stresses at the integration points and are attributed
to the shared node (σij,k in Figure 13B). Then, the

TABLE 4 FE analyses of 2D problems (plane strain) under mode

II loading

Analysed Geometries

a [mm] d [mm] 2α [°]
Number of
Analysesa

1 0.5, 1 0 2

2 0.5, 1, 2 0 3

3 0.5, 1, 3 0 3

4 0.5, 1, 2, 4 0 4

5 0.5, 1, 5 0 3

6 0.5, 1, 2, 3 0 4

7 0.5, 1 0 2

8 0.5, 1, 2, 4 0 4

9 0.5, 1, 3 0 3

10 0.5, 1, 2, 5, 10 0 5

20 0.5, 1, 2, 4, 5, 10 0 6

30 0.5, 1, 2, 3, 5, 10, 15 0 7

40 0.5, 1, 2, 4, 5, 10, 20 0 7

50 0.5, 1, 2, 5, 10 0 5

60 0.5, 1, 2, 3, 4, 5, 10, 15, 20 0 9

70 0.5, 1, 2, 5, 10 0 5

80 0.5, 1, 2, 4, 5, 10, 20 0 7

90 0.5, 1, 2, 3, 5, 10, 15 0 7

100 0.5, 1, 2, 4, 5, 10, 20 0 7

aTotal number of analyses: 93.
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(A)

(C)

(B)

(E)

(G)

(F)

(D)

FIGURE 11 Results of round robin for mode I loading: Non‐dimensional ratio K*
FE for each FE code
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stress at the shared node is calculated according to the
expression:

σij;k ¼ σij;c Að Þ þ σij;c Bð Þ

2
(11)

It should be noted that stress extrapolation at nodes
according to Figure 13A and Equation 10 is carried out
by most of the considered FE codes, ie, Ansys, Abaqus,
Straus 7, MSC Patran/Nastran, and Lusas. On the other
hand, the postprocessor Hyperview allows to adopt either
Equation 10 or Equation 11; however, both Optistruct and
Ls‐Dyna do not calculate the nodal stresses in the ele-
ment, so that Hyperview can extrapolate stress at nodes
only according to Figure 13B and Equation 11. This is
the reason why K*

FE obtained with Optistruct and Ls‐
Dyna (Figure 11F,G) is different from that obtained with
the other FE codes (Figure 11A‐E).

To support this conclusion, calibration under mode I
was repeated by adopting Ansys FE software, but now
forcing the use of Equation 11 (see Figure 13B) to calcu-
late the nodal stresses. The obtained results are reported
in FigureF14 14, where it is seen that under these conditions,
Ansys converges to the same value K*

FE ≅ 1.84 reported in
Figure 11F,G for Hypermesh/Optistruct/Hyperview and
Hypermesh/Ls‐Dyna/Hyperview. To mimic these soft-
ware packages with Ansys as accurately as possible, the
averaging option (b) reported in next TableT6 6, and the full
integration option, as reported in next Table 9, were
adopted. This point will be clarified when commenting
on the relevant tables.

8.2 | Principal stress averaging

Whatever the nodal stress evaluation technique (either
Equation 10 or Equation 11), the principal stresses at a
node shared by more than 1 element can be calculated

FIGURE 12 Results of round robin for mode II loading: Non‐

dimensional ratio K**
FE for all considered FE codes
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by adopting one of the following averaging procedures
(see also FigureF15 15):

a. The nodal stress tensors per element ([σ]k
(A) and [σ]k

(B)

in Figure 15A) are averaged at the shared node ([σ]k in
Figure 15A), and then nodal principal stresses are
calculated (σ11,k is the maximum principal stress in
Figure 15A).

b. The nodal principal stresses per element (σ11,k
(A) and

σ11,k
(B) in Figure 15B) are calculated from the relevant

nodal stress tensor per element ([σ]k
(A) and [σ]k

(B) in
Figure 15B), and then nodal principal stresses per ele-
ment are averaged at the shared node (σ11,k in
Figure 15B).

Table 6 reports the nomenclature adopted by each FE
code to define options (a) and (b) for principal stress aver-
aging. The default option is also indicated in the table, and
it has been adopted to calibrate the PSM. It should be
noted that option (a) is the default for Ansys and Lusas,
while option (b) is the default for all other FE codes. This
is the reason why averaging option (b) was adopted in
Ansys to prepare Figure 14. The different principal stress
averaging techniques are one of the reasons for small dis-
crepancies among the results provided by the FE codes:
however, such differences are taken up by the scatter
band reported in previous Figure 11.

8.3 | Finite element mesh pattern

Different mesh patterns were generated by the different
FE codes for the same analysed geometry and adopted

(A) (B)

FIGURE 13 Stress extrapolation at the nodes based on A, nodal stresses or B, centroidal stresses [Colour figure can be viewed at

wileyonlinelibrary.com]
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TABLE 6 Options for principal stress averaging available in the considered FE codes

FE Software Averaging Option (a) Averaging Option (b)

Ansys AVPRIN,0 or “from components” (default) AVPRIN,1 or “from principals”

Abaqus “Compute scalars after averaging” “Compute scalars before averaging” (default)

Straus 7 Not available Node average: “Always” (default)

MSC Patran/Nastran Average/derive Derive/average (default)

Lusas Averaged nodal (default) Not available

Hyperview Averaging method: “Advanced” Averaging method: “Simple” (default)

aPostprocessor adopted to calibrate both Optistruct and Ls‐Dyna.

FIGURE 14 Nondimensional ratio K*
FE for Ansys FE code.

Results for mode I loading based on centroidal stresses (according to

Figure 13B)
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global element size d. However, it is worth noting that
such differences did not involve the number of elements
sharing the node at the V‐notch tip, because in all cases
the standard pattern prescribed in Figure 2 were obtained,
as pointed out previously.

The influence of different mesh patterns was investi-
gated by considering a case study consisting of the mode
I problem of Figure 7C with notch depth a = 15 mm,
notch opening angle 2α = 90°, and global element size
d = 1 mm. The FE meshes generated by a selection of
FE codes, namely Ansys, Abaqus, and MSC Patran/
Nastran, are reported in TableT7 7 along with the results

in peak stresses evaluated at the notch tip. Again, stress
values obtained by adopting the default options
(which have been used here to calibrate the PSM) are
indicated.

Table 7 allows to quantify the effect of different mesh
patterns (in shape and arrangement of the elements) on
the peak stress values for the same principal stress averag-
ing option. However, in the context of the present round
robin, comparison among the 3 FE codes should not be
made for the same averaging option, but rather for the
default option of each FE code. It is seen that the differ-
ences among the calculated stresses (6.309, 6.093, and

(A) (B)

FIGURE 15 Principal stress averaging options. A, Principal stresses from average stress tensor. B, Principal stresses from element principal

stresses [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 7 FE mesh patterns relevant to the case of Figure 7c with a = 15 mm, 2α = 90°, and d = 1 mm, as obtained with different FE codes

Ansys Abaqus MSC Patran/Natran

σyy,peak/σnom = 6.185 σyy,peak/σnom = 5.833 σyy,peak/σnom = 6.092

σI,peak/σnom = 6.309 (default)
averaging option (a)

σI,peak/σnom = 5.918 averaging
option (a)

σI,peak/σnom = 6.183 averaging
option (a)

σI,peak/σnom = 6.514 averaging
option (b)

σI,peak/σnom = 6.093 (default)
averaging option (b)

σI,peak/σnom = 6.386 (default)
averaging option (b)

Results in peak stresses evaluated at the notch tip. Peak stress values obtained by adopting the default options, which have been used to calibrate PSM, are
indicated.
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6.386 in Ansys, Abaqus, and MSC Patran/Nastran, respec-
tively) is reduced and it is included in the scatter bands
reported in Figure 11.

8.4 | Numerical integration scheme

Each FE software provides different integration scheme
options for the same element type, which typically cover
full and reduced integrations, but, optionally, include also
some enhanced formulations that allow to avoid numeri-
cal errors, associated to shear locking, hourglass effect,
and volumetric locking.

To investigate the effect of different integration
schemes, the 2D mode I problem of Figure 7C with notch
depth a = 15 mm, notch opening angle 2α = 90°, and
global element size d = 1 mm was considered again as
a case study. To exclude the effect of the mesh pattern,
an FE mesh has been generated in Ansys by using the
free mesh generation algorithm (see FigureF16 16), and
afterwards, it has been imported into all FE codes
involved in the present round robin. By doing so,
identical mesh patterns have been used with different
FE codes. All available options associated to a 2 × 2
Gauss point integration scheme have been adopted in
each FE code.

The results in peak stresses evaluated at the notch tip
are reported in TablesT8 8 andT9 9, where default options are
indicated. Table 8 lists the results calculated with FE
codes that use Equation 10 to evaluate nodal stresses,
while Table 9 reports the stress values calculated by FE
codes that adopt Equation 11. In Table 9, results from
Ansys and Straus 7 have been included for comparison
purposes: it is worth noting that all calculations were
made by hand, because Ansys and Straus 7 do not imple-
ment stress averaging at FE nodes when stresses at
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FIGURE 16 FE mesh pattern relevant to case 7c with a = 15 mm,

2α = 90°, and d = 1 mm, as obtained by means of Ansys free mesh

generation algorithm
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element centroids are used. Table 8 shows the perfect
match of the fully integrated elements between Ansys
and Abaqus. Moreover, the simple enhanced strain for-
mulation in Ansys, adopted to perform the original cali-
bration of the PSM,22 fully agrees with the standard
formulation of MSC Patran/Nastran. Table 9 shows the
excellent agreement of Hypermesh/Optistruct/Hyperview
and Hypermesh/Ls‐Dyna/Hyperview software packages
with the fully integrated plane elements of Ansys. This
is the reason why full integration was adopted in Ansys
to compile previous Figure 14.

The different integration scheme options adopted by
the different FE packages are a further source of scatter
of results; however, all of them are taken up by the pro-
posed scatter bands.

It is interesting to note that some commercial FE
codes, other than those considered here, provide the full
integration scheme as the default setting(an example of
these codes is Adina®), or even as the sole option (an
example of these codes is Sysweld®). Therefore, calibrat-
ing the PSM by adopting this formulation might be
useful. To this aim, mode I analyses have been repeated
by adopting Ansys and Abaqus FE codes, by adopting
the full integration scheme, Equation 10 to extrapolate
nodal stresses, and the averaging option (b) (see
Figure 15B) to calculate principal stresses. The results
are reported in FigureF17 17, and it is seen that both FE
codes converge to the value K*

FE ≅ 1.55. However, a
slightly greater scatter band of ±8% should be accepted
for Abaqus (Figure 17B) as compared to ±5% valid for
Ansys (Figure 17A). This difference can be explained on
the basis of the different local mesh patterns generated
by Ansys and Abaqus FE codes: 2 examples are
highlighted inside Figure 17A,B, which show that the free

mesh generation algorithm of Ansys provides very similar
mesh patterns for the 2 cases; differently, Abaqus pro-
vides quite different mesh patterns for the same cases,
giving rise to a slightly increased scattering of results.

TABLE 9 Peak stresses evaluated at the V‐notch tip by using the mesh pattern of Figure 16

Software
Hypermesh/Ls‐Dyna/
Hyperview

Hypermesh/Optistruct/
Hyperview Ansys Straus 7

Element type Shell 4 node, Element
formulation 13

Shell CQUAD4 Plane 182 QUAD4

Integration n.a. n.a. Simple Enh. strain Enh. strain Full Incomp. modes

Gauss points 2 × 2 2 × 2 2 × 2 2 × 2

Stress state Plane strain Plane strain Plane strain Plane strain

σyy,peak/σnom 4.770 4.743 4.720 4.720 4.781 4.718

σI,peak/σnom
averaging
option (a)

4.898 4.874 4.840 4.840 4.910 n.a.

σI,peak/σnom
averaging
option (b)

5.019 (default) 5.003 (default) 4.962 4.962 5.031 4.965

Results based on centroidal stresses (according to Equation 11 and Figure 13B). Peak stress values obtained by adopting default options are indicated.

(A)

(B)

FIGURE 17 Nondimensional ratio K*
FE for A, Ansys and

B, Abaqus FE codes. Results for mode I loading obtained by

activating the full integration scheme and by adopting the principal

stress averaging option of Figure 15B
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Finally, it should be noted that for both Ansys and
Abaqus FE codes, the convergence is guaranteed for a
mesh density ratio a/d > 3, such value being consistent
with previous calibrations reported in Figure 11.

9 | CONCLUSIONS

A round robin has been carried out to calibrate the PSM to
rapidly estimate the linear elastic NSIF parameters rele-
vant to mode I andmode II loadings. Different commercial
FE codes and a range of coarse mesh patterns have been
used. Essentially, the PSM is a simplified, FE‐oriented
numerical technique originally calibrated by using Ansys
software, which takes the singular, linear elastic peak
stresses calculated at the point of singularity with coarse
FE meshes to estimate the mode I NSIF and the mode II
SIF. Two calibration constants are needed, namely K*

FE

(Equation 3) and K**
FE (Equation 4), respectively, which

have been calibrated in this paper for 4‐node quadrilateral
FEs with linear shape functions available in some FE soft-
ware packages, other than Ansys. The following conclu-
sions can be drawn from the present study:

• Dealing with mode I loading, FE codes that extrapolate
nodal stresses per element from stresses at the integra-
tion points, namely Ansys, Abaqus, Straus 7, MSC
Patran/Nastran, and Lusas, exhibit the same calibra-
tion constant, ie, K*

FE ≅ 1.38, as originally found for
Ansys software. Finite element results fall within a
scatter band of ±5% when the mesh density ratio a/d
is equal to or greater than 3. On the other hand, FE
codes that attribute the centroidal stress to the element
nodes, namely Hypermesh/Optistruct/Hyperview and
Hypermesh/Ls‐Dyna/Hyperview, present a different
value, ie, K*

FE ≅ 1.84. In this case, FE results were seen
to fall in a slightly wider scatter band of ±8%, when the
mesh density ratio is again a/d ≥ 3.

• Dealing with mode II loading, all FE codes involved in
the round robin present the same calibration constant
independently of the nodal stress extrapolation proce-
dure, ie, K**

FE ≅ 3.38 with a scatter band of ±3% for a
mesh density ratio a/d ≥ 14. All these results are con-
sistent with the original calibration of Ansys software.

• The effects of principal stress averaging options, mesh
patterns, and element formulation settings have been
investigated. In summary, when adopting the default
options of each software, the influences of all previous
analysis features are taken up by the scatter bands of
±5% or ±8% defined for the calibration constant K*

FE

and ±3% valid for K**
FE.

• As a side result, Ansys and Abaqus were run also by
setting fully integrated, 4‐node elements, nodal stress

extrapolation from integration points, and principal
stress averaging from principals. These settings
are the default ones for existing FE packages other
than those analysed in the present work. The result
obtained was K*

FE ≅ 1.55 with a scatter band of
±5% for Ansys and of ±8% for Abaqus, provided
that the mesh density ratio a/d is equal to or greater
than 3.
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APPENDIX A

DETAILS OF MESH GENERATION
SETTINGS

In the following, details concerning element type/options
along with the adopted mesh generation settings are
reported for each FE code:

• Ansys
Element type: Solid → Quad 4‐node (PLANE 42 or
PLANE 182)
Element options: Plane strain, Simple enhanced
strain (only for PLANE 182)
Element size: Size Cntrls → Manual
Size → Global → Size = d
Mesh generation: Mesh → Areas → Free

• Abaqus
Element type: Standard → linear → Quad
Element options: Plane strain, Incompatible modes
(CPE4I)
Element size: Global Seeds → Sizing Cntrls →
Approximate global size = d
Mesh generation: Mesh Cntrls → Free → Advanc-
ing front → “Use mapped meshing where
appropriate” MUST BE INACTIVE; Mesh Part
Instance → Ok
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• Straus 7
Element type: linear 4‐node quadrilateral plate
(QUAD4)
Element options: Plane strain
Element size: Automeshing → Surface mesh →
Sizes → Maximum edge length = d
Mesh generation: Automeshing → Surface
mesh → Mesh

• MSC Patran/Nastran
Element type: 2D Solid (CQUAD4)
Element options: Plane strain, Standard
formulation
Element size: Mesh → Surface → Global Edge
Length → Value = d
Mesh generation: Mesh → Surface → Elem Shape
→ Quad; Mesher → Paver; Topology → Quad4

• Lusas
Element type: 2D continuum element with
enhanced strains (QPN4M)
Element options: Plane strain, Quadrilateral, Lin-
ear interpolation
Element size: Mesh → Surface Mesh → Irregular
mesh → Element size = d
Mesh generation: Mesh → Surface Mesh

• Hypermesh/Optistruct/Hyperview
Element type: Shell 4‐node (Hypermesh), CQUAD4
(Optistruct)
Element options: MID2 = −1 (plane strain),
MID3 = blank (Optistruct)
Element size: Mesh→ Surfs→ Size and bias→ Ele-
ment size = d (Hypermesh)
Mesh generation: Mesh → Surfs → Mesh type →
quads; mesh (Hypermesh)

• Hypermesh/Ls‐Dyna/Hyperview
Element type: Shell 4‐node (Hypermesh)

Element options: Element formulation 13 (Plane
strain x‐y plane) (LS‐Dyna)
Element size: Mesh → Surfs → Size and bias-
Element size = d (Hypermesh)
Mesh generation: Mesh → Surfs → Mesh type-
quads; mesh (Hypermesh)

APPENDIX B

DEFAULT OPTIONS OF THE
POSTPROCESSING ENVIRONMENT

The default options of the post‐processing environment of
each FE code considered here are listed in the following:

• Ansys
Options for outputs: Principal stress calcs → from
components (or equivalently AVPRIN = 0)

• Abaqus
Result options: Averaging → Compute order →
Compute scalars before averaging → Averaging
threshold = 100%

• Straus 7
Node average: Always

• MSC Patran/Nastran
Averaging definition: Method → Derive/Average

• Lusas
Properties: Value results → Location → Averaged

nodal
• Hypermesh/Optistruct/Hyperview

Averaging method: Simple
• Hypermesh/Ls‐Dyna/Hyperview

Averaging method: Simple.
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