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In financial markets, greater volatility is usually considered synonym of greater risk and instability.
However, large market downturns and upturns are often preceded by long periods where price returns
exhibit only small fluctuations. To investigate this surprising feature, here we propose using the
mean first hitting time, i.e. the average time a stock return takes to undergo for the first time a large
negative or positive variation, as an indicator of price stability, and relate this to a standard measure
of volatility. In an empirical analysis of daily returns for 1071 stocks traded in the New York Stock
Exchange, we find that this measure of stability displays nonmonotonic behavior, with a maximum,
as a function of volatility. Also, we show that the statistical properties of the empirical data can
be reproduced by a nonlinear Heston model. This analysis implies that, contrary to conventional
wisdom, not only high, but also low volatility values can be associated with higher instability in
financial markets.

PACS numbers: 89.20.-a, 89.65.Gh,02.50.-r

Volatility is typically considered a monotonic indicator
of financial markets risk and instability. Recently, how-
ever, such a conventional wisdom has been questioned
by the observation that sizeable market downturns or
upturns can be anticipated by periods of low volatility.
Notable examples of this phenomenon include the 2008
financial crisis, preceded by the so called "great moder-
ation", and the Chinese crash in 2015. These episodes
have received a lot of attention in the specialized press
and have popularized the so called Minsky’s financial in-
stability hypothesis [1] that periods of calm can project a
false sense of security and lure agents into taking riskier
investment, preparing for a crisis [2]. Therefore, a bet-
ter characterization of the relationship between volatility
and market stability seems particularly important.

Searching for the empirical regularities and modeling
complex market dynamics have typically been the objec-
tive of financial times series analysis, econophysics and
complex systems [3–9]. In this literature, the impor-
tance of the statistical properties of volatility for portfolio
optimization strategies, risk management and financial
stability have been underlined in Refs. [10–13]. Along
these lines, investigations have looked at the statistical
properties of large volatilities [14], cross-correlations be-
tween volume change and price change [15], and tem-
poral sequences of financial market fluctuations around
abrupt switching points [16]. There, the authors argue
that the end of microscopic or macroscopic trends in fi-
nancial markets have a parallel with metastable physical
systems. Indeed, financial market stability is often asso-
ciated with moderate levels of perceived uncertainty and
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measured-looking at the intensity of price return fluctu-
ations [17–19] or stochastic volatility estimators based
on first passage time statistics [20]. However, both ap-
proaches cannot be reconciled with the observed evidence
discussed above.

In this direction, a fundamental, and yet overlooked,
question has to be addressed: what is the typical time
scale before a large negative or positive stock return vari-
ation? To answer this question, we propose exploiting
the notions of “level crossings” and “hitting times” to
monitor the stability of price returns and observing its
relationship with volatility [21–23]. In particular, the
mean first hitting time (MFHT) or mean first passage
time (MFPT), earlier introduced in [23–27], is the time it
takes, on average, for a variable to cross for the first time
a certain level, and it can provide the above mentioned
time scale to observe modifications in market scenarios.
In finance [24], the MFPT for mean-reverting processes
was recently analyzed in [28, 29].

The MFHT is then utilized to measure the stability of
price returns, defined as the resilience to large negative
price variations: the longer this time, the more stable
the series of price returns [21]. Observing the daily clos-
ing prices of a large number of stocks traded in the New
York Stock Exchange (NYSE), we find that this measure
of stability has a nonmonotonic behavior, with a maxi-
mum, as a function of volatility. This result seems in line
with the view discussed above that higher price return
instability, corresponding here to lower hitting times, is
not only associated with high values but also with low
values of volatility. As such, this measure can be consid-
ered as an important indicator of market stability.

Further, we are able to reproduce all the main statisti-
cal features of the price return dynamics of the considered
stock market by using a nonlinear generalization of the
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Figure 1. Microcrash: a) MFHT as a function of volatility, with the thresholds Θi = −0.1σ̄r and Θf = −1.5σ̄r. Each volatility
value is calculated within the subseries corresponding to the hitting event. Blue circles are MFHTs obtained from empirical
time series. Red triangles represent theoretical results obtained from a nonlinear Heston model (Eqs. (1)-(3)). b) MFHT vs
volatility (real data) for fixed difference between thresholds, Θf −Θi = −1.4σ̄r, with [Θi,Θf ] ranging from [+0.9 σ̄r, −0.5 σ̄r]
to [−1.6 σ̄r, −3.0 σ̄r]; c) MFHT vs volatility (real data) for fixed starting threshold Θi = −0.1σ̄r and different final threshold
Θf , ranging from −0.5 σ̄r to −3.0 σ̄r.

the Heston model proposed in [21]. There, the dynamical
regimes corresponding to different parameter values were
studied and the parameter region was found to observe
a nonmonotonic behavior of the MFHT.

We analyze the daily closing prices for 1071 stocks
traded at the NYSE. These stocks, readily available in
the common financial data sources, have been continu-
ously recorded for twelve years from 1987 to 1998 (3030
trading days) and therefore represent the overall market
performance over a reasonably long time span. Moreover,
this dataset has been used in previous investigations [31–
33]. In order to investigate episodes of instability asso-
ciated with large negative or positive return variations,
following the literature on speculative pressure in the ex-
change market, we identify price changes as “sizeable” if
they are larger than a certain threshold, typically defined
starting from the standard deviation [34, 35]. In line with
this literature, the robustness of the identification mech-
anism is also assessed by considering different thresholds
in the range of 1.5 to 3 times the standard deviation.

In detail, we first transform the series of stock prices
into daily returns, r(t) = [(p(t)− p(t− 1))/p(t− 1)] and
calculate the standard deviation σr

i of each series over the
entire period. By averaging this quantity across all stocks
in the sample, we obtain the overall volatility of the
market over the observed period as σ̄r =

∑N
i=1 σ

r
i /N =

0.02254, with N = 1071. We then proceed to compute
the MFHT by considering the first hitting time (FHT),
see Fig. 1S of the Supplemental Material, and ensemble
averaging over all FHTs measured in the price return se-
ries. This is the “random time to hit” for the first time
the fixed final threshold, Θf , starting from a given initial
position Θi, where the two thresholds are defined, in line
with [34, 35], starting from the market standard devia-
tion, as Θi = θiσ̄

r and Θf = θf σ̄
r. The parameters θi

and θf define the “stability” window and, therefore, how
large a variation has to be in order to determine an es-
cape from a metastable state. To assess the robustness of
the results we consider a wide range of realistic numerical
parameters for θi and θf in the intervals [+0.9,−1.6] and

[−0.5,−3.0], respectively in order to identify an episode
of instability [34, 35].

This allows us to obtain several subseries, each cor-
responding to one first hitting time. The standard de-
viation of each subseries gives the value of volatility v,
corresponding to each FHT. Averaging all the FHTs cor-
responding to the same volatility value yields the non-
monotonic behavior of the MFHT versus the volatility
shown in Fig. 1a (blue circles), where the values of the
threshold parameters are θi = −0.1 and θf = −1.5. In
particular, we note that the MFHT takes smaller values
for lower levels of volatility, i.e. the series of returns ex-
hibit negative jumps equal to or less than −1.5σ̄r, after
short time intervals. This corresponds to a fast exit of the
stock return from the fixed region [Θi, Θf ]. As volatility
increases, the time spent within this region also increases,
which is a signal that the market is becoming more sta-
ble. A further increase of volatility, however, shortens
the MFHT, and stability decreases. This implies that in
the intermediate region we observe a stabilizing effect of
volatility. Fig. 1a is a clear representation of the rela-
tion between MFHT, i.e. the time returns stay within
the fixed region, and the size of volatility v. Considering
the MFHT as a measure of market stability, it is possible
to argue that volatility plays a stabilizing effect when its
values are within the range [0.004, 0.01].

In order to cross-validate the robustness of this re-
sult, we have also investigated whether this effect per-
sists for: (i) different thresholds with fixed interval size,
Θf − Θi = −1.4σ̄r (Fig. 1b); (ii) fixed starting thresh-
old Θi but different final thresholds Θf (Fig. 1c). The
results indicate that the nonmonotonic behavior of the
MFHT as a function of volatility is “robust” to sizeable
variations of the two thresholds.

We perform a similar analysis for stock price up-
turns or rallies. We find that the nonmonotonic behav-
ior, with a maximum, of the MFHT vs volatility occurs
both in real market data and in simulations based on the
proposed nonlinear Heston model (Eqs. (1)-(3)). This
means that we can extend our proposed measure of price

Figure 1. Microcrash: a) MFHT as a function of volatility, with the thresholds Θi = −0.1σ̄r and Θf = −1.5σ̄r, from empirical
time series (blue circles) and theoretical results (red triangles), obtained from a nonlinear Heston model (Eqs. (1)-(2)). b) MFHT
vs volatility (real data) for fixed difference between thresholds, Θf−Θi = −1.4σ̄r, with [Θi,Θf ] ranging from [+0.9 σ̄r, −0.5 σ̄r]
to [−1.6 σ̄r, −3.0 σ̄r]; c) MFHT vs volatility (real data) for fixed starting threshold Θi = −0.1σ̄r and different final threshold
Θf , ranging from −0.5 σ̄r to −3.0 σ̄r.

Heston model proposed in [21].
We analyze the daily closing prices for 1071 stocks

traded at the NYSE [30–34]. In order to investigate
episodes of instability associated with large negative or
positive return variations, following the literature on
speculative pressure in the exchange market, we iden-
tify price changes as “sizeable” if they are larger than
a certain threshold, typically defined starting from the
standard deviation [35, 36]. In line with this literature,
the robustness of the identification mechanism is also as-
sessed by considering different thresholds in the range of
1.5 to 3 times the standard deviation.

In detail, we first transform the series of stock prices
into daily returns, r(t) = [(p(t) − p(t − 1))/p(t − 1)]
and calculate the standard deviation σr

i of each series
over the entire period. By averaging this quantity across
all stocks in the sample, we obtain the overall volatil-
ity of the market over the observed period as σ̄r =∑N

i=1 σ
r
i /N = 0.02254, with N = 1071. We then proceed

to compute the MFHT by considering the first hitting
time (FHT) [23], and ensemble averaging over all FHTs
measured in the price return series. This is the “random
time to hit” for the first time the fixed final threshold,
Θf , starting from a given initial position Θi, where the
two thresholds are defined, in line with [35, 36], starting
from the market standard deviation, as Θi = θiσ̄

r and
Θf = θf σ̄

r. The parameters θi and θf define the “sta-
bility” window and, therefore, how large a variation has
to be in order to determine an escape from a metastable
state [34–36].

This allows us to obtain several subseries, each cor-
responding to one first hitting time. The standard de-
viation of each subseries gives the value of volatility v,
corresponding to each FHT. Averaging all the FHTs cor-
responding to the same volatility value yields the non-
monotonic behavior of the MFHT versus the volatility
shown in Fig. 1a (blue circles), where the values of the
threshold parameters are θi = −0.1 and θf = −1.5. In
particular, we note that the MFHT takes smaller values

for lower levels of volatility, i.e. the series of returns ex-
hibit negative jumps equal to or less than −1.5σ̄r, after
short time intervals. This corresponds to a fast exit of the
stock return from the fixed region [Θi, Θf ]. As volatility
increases, the time spent within this region also increases,
which is a signal that the market is becoming more sta-
ble. A further increase of volatility, however, shortens
the MFHT, and stability decreases. This implies that in
the intermediate region we observe a stabilizing effect of
volatility. Fig. 1a is a clear representation of the relation
between MFHT, i.e. the time returns stay within the
fixed region, and the size of volatility v [37].

In order to cross-validate the robustness of this re-
sult, we have also investigated whether this effect per-
sists for: (i) different thresholds with fixed interval size,
Θf − Θi = −1.4σ̄r (Fig. 1b); (ii) fixed starting thresh-
old Θi but different final thresholds Θf (Fig. 1c). The
results indicate that the nonmonotonic behavior of the
MFHT as a function of volatility is “robust” to sizeable
variations of the two thresholds.

We perform a similar analysis for stock price upturns
or rallies. We find that the nonmonotonic behavior, with
a maximum, of the MFHT vs volatility occurs both in
real market data and in simulations based on the pro-
posed nonlinear Heston model (Eqs. (1)-(2)). This means
that we can extend our proposed measure of price return
stability not only to negative variations of price returns
but also to positive variations. The results are shown in
Fig. 2. Again, we cross-validate the results of Fig. 2a by
considering different thresholds with fixed interval size
(Fig. 2b), and fixed starting threshold with different fi-
nal thresholds (Fig. 2c) [38].

This finding is similar to what is known to occur also in
all physical systems with metastable states. Indeed, the
behavior of the MFHT as a function of volatility shows
the typical signature of noise enhanced stability (NES)
observed in a variety of physical, biological, chemical and
ecological systems [39–48]: the stability of a metastable
state can be enhanced by the noise and its average life-
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Figure 2. Rally: a) MFHT as a function of volatility, with the thresholds Θi = +0.1σ̄r and Θf = +1.5σ̄r. Blue circles are
MFHTs obtained from empirical time series. Red triangles represent theoretical results obtained from a nonlinear Heston
model. b) MFHT vs volatility (real data) for fixed difference between thresholds, Θf − Θi = +1.4σ̄r, with [Θi,Θf ] ranging
from [−0.9 σ̄r, +0.5 σ̄r] to [+1.6 σ̄r, +3.0 σ̄r]; c) MFHT vs volatility (real data) for fixed starting threshold Θi = +0.1σ̄r and
different final threshold Θf , ranging from +0.5 σ̄r to +3.0 σ̄r.

return stability not only to negative variations of price
returns but also to positive variations. The results are
shown in Fig. 2. Again, we cross-validate the results
of Fig. 2a by considering different thresholds with fixed
interval size (Fig. 2b), and fixed starting threshold with
different final thresholds (Fig. 2c). The coalescence of the
curves of MFHT vs volatility for fixed difference between
thresholds could be ascribed to the asymmetry of the re-
turns distribution, characterized by a negative skewness
(Fig.4a).

This finding is similar to what is known to occur also in
all physical systems with metastable states. Indeed, the
behavior of the MFHT as a function of volatility shows
the typical signature of noise enhanced stability (NES)
observed in a variety of physical, biological, chemical and
ecological systems [36]-[45]: the stability of a metastable
state can be enhanced by the noise and its average life-
time is a measure of this stability. This noise-enhanced
metastability is a consequence of the interplay between
the thermal fluctuations and nonlinearity of the complex
system investigated. This effect is observed by increas-
ing the temperature as by analogy the stabilization of
the price returns occurs for increasing volatility. The
empirical evidence of a NES effect in the behavior of the
MFHT (Figs. 1 and 2) suggests that price return dy-
namics could be depicted by considering the value of the
return as the position of a fictitious Brownian particle,
subjected to noise and moving in an effective potential
with a metastable state.

Models reproducing most of the stylised facts of finan-
cial markets and their dynamics by nonlinear stochas-
tic differential equations, have been presented in litera-
ture [5], [46]-[48]. Moreover, financial markets present
different dynamical regimes with days of normal activ-
ity and days with large price variations, characterized
by a different behavior of volatility. In order to consider
these different dynamical regimes and feedback effects on
the price fluctuations, a Langevin approach to the mar-
ket dynamics was already proposed in Refs. [5, 48, 49],
where a nonlinear stochastic dynamical equation with a
metastable state was considered. The evolution inside

the metastable state represents the normal market be-
havior, while the escape from the metastable state rep-
resents the beginning of large price variations.

Here, we employ a generalization of the Heston
model [50] (see Sec. II of the Supplemental Material)
proposed by [21], where the geometric Brownian motion
is replaced by a random walk in the presence of a cu-
bic nonlinearity. This theoretical approach considers the
financial market as an out-of-equilibrium system, whose
dynamical evolution can be described by a nonlinear He-
ston model defined by the following Ito stochastic differ-
ential equations [51]

dx(t) = −
(
∂U

∂x
+
v(t)

2

)
dt+

√
v(t) dW1(t), (1)

dv(t) = a[b− v(t)] dt+ c
√
v(t) dW2(t), (2)

U(x) = mx3 + nx2, (3)

with the volatility v(t) given by the mean-reverting Cox,
Ingersoll, and Ross (CIR) process [28, 52–54] (see Sec.
II of the Supplemental Material), and U(x) is the effec-
tive cubic potential with a metastable state (Fig. 3a).
As explained in [49], the parameters m and n are influ-
enced by the degree of risk aversion, the market depth,
and the “friction” of prices to changes in demand and
supply in the market. Here, m = 2 and n = 3 are the
potential parameters, identified in line with the consid-
eration of liquid markets. In Eq. (1), x(t) = ln[p(t)/p(0)]
is the return in the time window [0, t], p(t) is the price
andWi are uncorrelated Wiener processes with the usual
statistical properties 〈dWi(t)〉 = 0, 〈dWi(t) dWj(t

′)〉 =
dt δi,jδ(t − t′). We solve Eqs. (1) and (2) numerically,
obtaining a number of time series of returns equal to
1071, with initial position x0 = 0.0 and CIR stochastic
process v(t) defined by vstart = 8.62 · 10−5, a = 2.00,
b = 0.01, and c = 0.83. These values were obtained
by best fitting between theoretical and empirical results
for all the statistical features investigated, by performing

Figure 2. Rally: a) MFHT as a function of volatility, with the thresholds Θi = +0.1σ̄r and Θf = +1.5σ̄r, from empirical
time series (blue circles) and theoretical results (red triangles), obtained from a nonlinear Heston model. b) MFHT vs volatil-
ity (real data) for fixed difference between thresholds, Θf − Θi = +1.4σ̄r, with [Θi,Θf ] ranging from [−0.9 σ̄r, +0.5 σ̄r] to
[+1.6 σ̄r, +3.0 σ̄r]; c) MFHT vs volatility (real data) for fixed starting threshold Θi = +0.1σ̄r and different final threshold Θf ,
ranging from +0.5 σ̄r to +3.0 σ̄r.

time is a measure of this stability. This noise-enhanced
metastability is a consequence of the interplay between
the thermal fluctuations and nonlinearity of the complex
system investigated. This effect is observed by increas-
ing the temperature as by analogy the stabilization of
the price returns occurs for increasing volatility. The
empirical evidence of a NES effect in the behavior of the
MFHT (Figs. 1 and 2) suggests that price return dy-
namics could be depicted by considering the value of the
return as the position of a fictitious Brownian particle,
subjected to noise and moving in an effective potential
with a metastable state.

Models reproducing most of the stylised facts of finan-
cial markets and their dynamics by nonlinear stochas-
tic differential equations, have been presented in litera-
ture [5], [49–51]. Moreover, financial markets present
different dynamical regimes with days of normal activ-
ity and days with large price variations, characterized
by a different behavior of volatility. In order to consider
these different dynamical regimes and feedback effects on
the price fluctuations, a Langevin approach to the mar-
ket dynamics was already proposed in Refs. [5, 51, 52],
where a nonlinear stochastic dynamical equation with a
metastable state was considered. The evolution inside
the metastable state represents the normal market be-
havior, while the escape from the metastable state rep-
resents the beginning of large price variations.

Here, we employ a generalization of the Heston
model [53, 54] proposed by [21], where the geomet-
ric Brownian motion is replaced by a random walk in
the presence of a cubic nonlinearity. This theoretical
approach considers the financial market as an out-of-
equilibrium system, whose dynamical evolution can be
described by a nonlinear Heston model defined by the
following Itô stochastic differential equations [55]

dx(t) = −
(
∂U

∂x
+
v(t)

2

)
dt+

√
v(t) dW1(t), (1)

dv(t) = a[b− v(t)] dt+ c
√
v(t) dW2(t), (2)

with the volatility v(t) given by the mean-reverting
Cox, Ingersoll, and Ross (CIR) process [27, 56–59], and
U(x) = mx3 + nx2 is the effective cubic potential with a
metastable state (Fig. 3a). As explained in [52], the
parameters m and n, identified in line with the con-
sideration of liquid markets, are influenced by the de-
gree of risk aversion, the market depth, and the “fric-
tion” of prices to changes in demand and supply in the
market. In Eq. (1), x(t) = ln[p(t)/p(0)] is the return
in the time window [0, t], p(t) is the price and Wi are
uncorrelated Wiener processes with 〈dWi(t)〉 = 0, and
〈dWi(t) dWj(t

′)〉 = dt δi,jδ(t− t′). We solve Eqs. (1) and
(2) numerically, obtaining a number of time series of re-
turns equal to 1071, with initial position x0 = 0.0 and
CIR stochastic process v(t) defined by vstart = 8.62·10−5,
a = 2.00, b = 0.01, and c = 0.83 [60]. Since we are focus-
ing on the daily returns we have x(t) ' r(t) [61]. We fix
again the two thresholds, Θi = ∓0.1σ̄r and Θf = ∓1.5σ̄r

(− for microcrash, + for rally), where σ̄r = 0.02383 is the
average standard deviation calculated over the numerical
time series. This yields, for the MFHT, the nonmono-
tonic behavior shown in Figs. 1a and 2a (red triangles),
which exhibits a very close agreement with the real data
(blue circles).

To quantitatively characterize the observed empirical
results, we determine the probability distribution func-
tion (PDF) of the first hitting times of the daily returns,
calculated by setting Θi = −0.1σ̄r and Θf = −1.5σ̄r,
and compare it with the corresponding theoretical PDF,
obtaining a good qualitative agreement (Fig. 3b) [62].

We then investigate the probability distribution of
stock price returns, the PDF of volatility, the return
correlation, and the absolute return correlation. We
find that the agreement between theoretical results and
real data of all these statistical characteristics is quite
good [63–65]. In particular, our model fulfills the prop-
erty of the absence of return autocorrelation, which en-
sures a no-arbitrage condition [65].

In summary, we have proposed using the MFHT as an
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Figure 3. a) Cubic potential used in the dynamic equation
for the variable x(t). The black circle denotes the starting
position (x0 = 0.0) used to obtain the theoretical results.
The potential parameters are m = 2 and n = 3. b) PDF of
the first hitting times of the returns for real data (blue circles)
and model (red triangles).

indicator of price returns stability and looking at its rela-
tionship with returns volatility. In an empirical analysis
carried out on stocks traded at the NY Stock Exchange,
the time series of daily returns show limited fluctuations,
that is high stability, when volatility increases. In par-
ticular, there is an intermediate range of volatility values
where price returns show higher stability according to

the proposed indicator. Moreover, the nonlinear Heston
model (Eqs. (1) - (2)) appears to satisfy some of the well-
established properties of financial markets and is able to
reproduce the statistical properties of the hitting times
of daily returns in real stocks. The model is also able
to describe the dynamics of price returns by consider-
ing an analogy between the metastability in the market
and that occurring in a variety of physical and complex
systems [16, 21], [39–48]. Our findings show that lower
stability (smaller mean first hitting times) can be the re-
sult not only of large volatility, as it would be expected
during periods of market “turbulence” [18], but also of
small volatility, which is usually considered an indicator
of “tranquil” periods. This result could bear important
implications both for practitioners and policy-makers re-
sponsible for market stability. Further, the proposed
measure can be considered as an additional useful in-
dicator to monitor market stability.

It is worth mentioning that the clustering phenomenon
of volatility is important for understanding the instabil-
ities in price returns and the nonmonotonic behavior of
the MFHT vs volatility [66].

Finally we note that the applications of our definition
of stability based on the concept of first hitting time can
help to quantitatively characterize the resilience of differ-
ent complex systems, both in physics and biology (such
as in neuronal activity and population dynamics), to vari-
ations of a given feature.
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