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Abstract: We study the behaviour of a charge bound on a graphene annulus under the assump-
tion that the particle can be treated as a massless Dirac electron. The eigenstates and relative en-
ergy are found in closed analytical form. Subsequently, we consider a large annulus with radius
ρ ∈ [5000, 10,000]a0 in the presence of a static magnetic field orthogonal to its plane and again the
eigenstates and eigenenergies of the Dirac electron are found in both analytical and numerical form.
The possibility of designing filiform currents by controlling the orbital angular momentum and the
magnetic field is shown. The currents can be of interest in optoelectronic devices that are controlled
by electromagnetic radiation. Moreover, a small radial force acts upon the annulus with a stretching
effect. A linearly polarized electromagnetic field propagating in the orthogonal direction is added;
the time evolution of the operators show that the acceleration of the electron is proportional to the
rate of change of the spin of the particle.

Keywords: graphene in external fields; Massless Dirac electron; analytic solution of Dirac equation

1. Introduction

The origin of the mass of the electron, perpetual problem of theoretical physics, cannot
be purely electromagnetic, as it would be infinite [1]. Modern field theory’s point of view
pragmatically bypasses the question by using the renormalization concept and subtracting
from the mass divergent terms [2]. Whatever the origin might be, the experimental fact is
that the electron has a non vanishing mass that couples the left and right Weyl spinors in
the relativistic Dirac equation so that the electron state is endowed of parity symmetry, but
it is not eigenstate of the helicity operator. It is astounding that modern materials provide a
way to study massless charges, albeit in an approximated fashion.

Graphene, a monolayer of carbon atoms arranged in an infinite pattern of hexagons,
has a structure recalling a honeycomb. At low energy, the symmetry of the lattice permits
the description of the electrons as massless charges, dubbed Dirac electrons, with velocity
vF = uFc, where c is the speed of the light and uF ≈ 1/300 [3–5]. Hence, the Dirac
electron is described by the relativistic Dirac equation with m = 0 and c → vF. Thus,
present-day technology allows for the theoretical and experimental study of a massless
particle, with states that are eigenstate of the helicity operator and that can interact with
electromagnetic fields through its charge. Analytical solutions of the Dirac equations
are very scarce, and it is remarkable that graphene in few cases permits solutions in a
closed form that can be used as benchmarks for approximated or numerical calculations in
complex problems [6–11]. These properties, together with a wealth of new effects, make
the study of graphene very attractive.

Indeed, graphene is not an isolated example: new nano and mesoscopic materials
present symmetries that, judiciously exploited, permit significant simplification in the
study of complex systems by treating them as reduced dimensionality systems. These
are materials with one (or two) spatial dimensions extending very much more than the
other(s). The quantum modes pertaining to the small dimension(s) can only be populated
by exciting them with a relative large energy and can often be neglected. For instance,
fullerene, a spherical arrangements of 60 carbon atoms with radius 6.7a0 (a0 is the Bohr
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radius), can be considered as a two-dimensional (2D) object [12–15] or even as a zero
dimensional particle [4]. From graphene, it is possible to fabricate very long and narrow
2D strips and, by rolling, 2D tubes and cones.

In this paper, we deal with a Dirac electron bound in a two-dimensional annulus,
the part of the plane between two circles of radius ρ1 and ρ2 (ρ1 < ρ2) in the x1 − x2
plane. Along x3, we set a static magnetic field B0 and the propagation of a laser field of
angular frequency ωL. This might look like an artificial model, since the symmetry that is
required for treating the electron as a massless particle requires an infinite lattice. Besides,
the manufacture of a graphene annulus is rather difficult, and the Klein paradox obstructs
the design of a potential trap [16]; several magnetic schemes have been proposed to bypass
these drawbacks [4,6,7,17–19]. In our model, we adopt a very large annulus that should
make the use of a massless electron in a finite piece of graphene acceptable; as a reward,
analytical solutions are found.

To help in visualisation, we use a coherent notation: a vector is indicated by an arrow
over the symbol and a matrix with the symbol A, thus~� = (�1, �2, �3) is the vector with
the three standard Pauli matrices as components. A two-component spinor is marked with
one dot below the symbol:

�
a; a tilde below a letter (a˜) flags the operator. Always repeated

indices imply summation.

2. Theory

In what follows, we make extensive use of the Heisenberg representation to find the
time evolution of the operators relevant to the problem. Let H˜ be the Hamiltonian of the
problem at hand, then, in the Heisenberg representation, the time evolution of the generic
operator A˜—which can be explicitly time dependent—is given by

dA
d̃t

=
i
h̄
[H˜ A˜ ] + ∂t A˜ ; (1)

the use of of this expression allows the finding of constants of motion by paying the price
of using commutator algebra that, almost always, is straightforward.

2.1. Field Free Case

In order to understand what we should wait for, we start with the rather simple
problem of the annulus in the absence of external fields. In this case, the Dirac equation for
an electron with mass me is(−~� · ~p˜− ih̄∂0) �

Ψ(L) = −mec
�

Ψ(R)

(~� · ~p˜− ih̄∂0) �
Ψ(R) = −mec

�
Ψ(L) (2)

with c∂0 = ∂t; �
Ψ(L) and

�
Ψ(R) the left and right spinorial components of the Dirac spinor;

me the mass of the particle; and, ~p˜ = −ih̄~∇ the canonical momentum, which, in the
absence of vector potential, is equal to the mechanical momentum ~π˜ . Coherently with our
assumption, we set me = 0 and c→ uFc; hence, the equations for the two spinors decouple.
Hereafter, we discuss always the left component alone and omit the superscript (L). Thus,
the equation for the left spinor assumes the form of a standard Schrödinger equation

ih̄∂t �
Ψ = H˜ �

Ψ (3)

with Hamiltonian
H˜ = −uFc~� · ~p˜. (4)
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2.1.1. Time Evolution of the Operators

Let h̄~L˜ ≡~r×~p˜ be the angular momentum of the particle (throughout this paper, the
traditional operators of the angular momenta are taken dimensionless). By use of the
commutator

[p˜j, L˜1] = −iε1jn p˜n (5)

with εjkm the Levi–Civita symbol, it is easy to obtain

h̄
d~L
d̃t

= −uFc~�× ~p˜. (6)

Let h̄~S ≡ h̄~�/2 be the spin angular momentum operator; use of

[�j p˜j, �k] = p˜j[�j�k − �k�j] = 2iεmjk�m p˜j = 2i(~�× ~p˜)k (7)

gives the time evolution of the spin:

h̄
d~S
dt

= uFc~�× ~p˜ (8)

thus,~L˜ and~S are not constant, but the total angular momentum~J˜= ~L˜+~S is constant:

d~J

d̃t
=~0. (9)

2.1.2. The Charge’s States

The constancy of the total angular momentum can be exploited for finding the general
form of the spinor

�
ψ in the annulus. According to our 2D model, the motion along x3 is

forbidden; thus, working with cylindrical variables, we may write:

J˜3
�
ψ(ρ, φ) = j3

�
ψ(ρ, φ) (10)

with
J˜3 = −i∂φ +

1
2

�3. (11)

Equation (10) can be solved by the separation of the variables with the boundary conditions

�
ψ(ρ1, φ) =

�
ψ(ρ2, φ) =

�
0:

(
−i∂φ +

1
2

�3

)(
Φ1(φ)R1(ρ)
Φ2(φ)R2(ρ)

)
= j3

(
Φ1R1
Φ2R2

)
=

(
m +

1
2

)(
Φ1R1
Φ2R2

)
(12)

with solution 
Φ1(φ) =

eimφ

√
2π

Φ2(φ) =
ei(m+1)φ
√

2π

; (13)

thus the general spinor is

�
ψ(ρ, φ) =

eimφ

√
2π

(
R1(ρ)

eiφR2(ρ)

)
. (14)

We wish to solve the time independent Schrödinger equation H˜ �
Ψ = E

�
Ψ. In plane

circular variables, the Hamiltonian assumes the form

H˜ = ih̄uFc
{(

0 e−iφ

eiφ 0

)
∂ρ +

1
ρ

(
0 −ie−iφ

ieiφ 0

)
∂φ

}
(15)
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that, applied to the eigenstate (14) after some elementary algebra, gives:
ih̄uFc

(
d

dρ
+

m + 1
ρ

)
R2 = ER1

ih̄uFc
(

d
dρ
− m

ρ

)
R1 = ER2

; (16)

this can be cast in the form of the Bessel equation

(κρ)2 d2R1

d(κρ)2 + (κρ)
dR1

d(κρ)
+ [(κρ)2 −m2]R1 (17)

with

κ2 =
E2

h̄2(uFc)2
. (18)

The most general solution for R1(ρ) is

R1;m(ρ) = µ1 Jm(κρ) + µ2Ym(κρ); (19)

the boundary conditions R(ρ1) = R(ρ2) = 0 give{
µ1 Jm(κρ1) + µ2Ym(κρ1) = 0
µ1 Jm(κρ2) + µ2Ym(κρ2) = 0

(20)

with non-trivial solution for µ1 and µ2 only if the determinant of the coefficients vanishes:

Jm(κρ1)

Ym(κρ1)
=

Jm(κρ2)

Ym(κρ2)
. (21)

The values of κ that satisfy this equality give the eigenstates. For any value of the orbital
angular momentum m, there is an infinite number of zeros; thus, the eigenvalues are
labelled by the indices m and n. From the physical point of view, n counts the number of
nodes of the wave function between the borders of the annulus. In Table 1, we list a few
eigenvalues κm,n; the eigenenergy can be obtained from (18); thus, the knowledge of the
experimental value of the Fermi velocity uFc is not needed at this stage.

Table 1. The selected values of κm,n in atomic units; the value of of the eigenenergy can be obtained
by Emn = uFcκm,n with uF ≈ 1/300 and c = 137 au. The values of the inner and outer radii of the
annulus are ρ1 = 10a0 and ρ2 = 20a0.

n κ1,n κ10,n

0 0.3197 0.7253
1 0.6315 0.9416
2 0.9451 1.1790
3 1.2578 1.4422
4 1.5714 1.7230
5 1.8865 2.0129
6 2.2001 –

In Figure 1, we plot few eigenstates of the Dirac electron in the annulus for m = 1
and several values of n. The eigenstates oscillate with decreasing amplitude toward the
outer radius.



Symmetry 2021, 13, 642 5 of 18

10 11 12 13 14 15 16 17 18 19 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

R
1(

)

n=0
n=1
n=2
n=3
n=10

Figure 1. (Color on line) Normalised wavefunction of the Dirac electron in the non-magnetized
annulus for m = 1 and different values of n as a function of ρ in au.

In Figure 2, we show eigenfuctions for m = 10; the behaviour of R1(ρ) maintains the
same characteristics than for m = 1, but the eigenstates are pushed toward the external
part of the annulus.
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Figure 2. (Color on line) Normalised wave functions of the Dirac electron in the non-magnetized
annulus for m = 10 and different values of n as a function of ρ in au.
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This feature is mostly evident in Figure 3, where we compare the eigenstates for n = 0
with m = 1 and m = 10: this is hardly surprising.

10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
1

m=1
m=10

Figure 3. (Color on line) Normalised wave functions of the Dirac electron in the non-magnetized
annulus for n = 0 and two different values of m as a function of ρ in au.

3. Static Magnetic Field

The trapping of a Dirac electron within a region by an applied potential is made
difficult by the Klein paradox, an epiphany of negative energy states. As mentioned in
the Introduction, a plethora of schemes, requiring the presence of a magnetic field, has
been advanced to overpass the problem. Rings and annuli are perfectly suitable to be
used with a magnetic field because of their circular symmetry; they provide a fundamental
environment for basic and applicative use [20–35].

Now, we discuss the problem of the annulus crossed by an orthogonal static magnetic
field ~B0. The Hamiltonian for the left spinor can be rapidly obtained from Equation (4)
with the usual substitution ~p˜ → ~π˜ ≡ ~p˜− q~A0/c, where q is the charge (for the electron

q = −e) and ~A0 the vector potential. Here, ~π˜ is the operator of the mechanical momentum;
thus, the Hamiltonian is::

H˜ = −cuF~� ·
(
~p˜− q

c
~A0

)
= −cuF~� · ~π˜ ; (22)

in quantum theory, the helicity is defined as the projection of the spin along the mechanical
momentum, thus energy and helicity share the eingevectors. For convenience sake, in the
following, the form

~A0 =
1
2
~B0 ×~r (23)

is used.
The time evolution of few relevant operators can be obtained via the Heisenberg

equation. The commutator algebra is straightforward, but, occasionally, cumbersome. For
example, the time evolution of the vector potential is
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[H˜ A0;k] =
[
−cuF~� ·

(
~p˜− q

c
~A0

)
, A0;k

]
= −cuF�j[p˜j, A0;k]

= ih̄cuF�j(∂j A0;k) = i
h̄cuF

2
�j∂jεkmnB0;mxn

= i
h̄cuF

2
εkmj�jB0;m = −i

h̄cuF
2

(~�× ~B0)k (24)

leading to
d~A0

dt
=

cuF
2

(~�× ~B0). (25)

We list the time evolution of a few relevant operators in Table 2.

Table 2. Time derivative of few operators. ~B0 is the static magnetic field. For the spin~S two useful
forms are listed.

O˜ dO˜ /dt

~p˜ − quF
2

(~�˜× ~B0)

~A0
cuF

2
(~�× ~B0)

~π˜ −quF(~�× ~B0)

h̄~L˜ −cuF

{
~�× ~p˜+ q

2c
[~r× (~�× ~B0)]

}
h̄~S cuF~�×

(
~p˜− q

c
~A0

)
h̄~S cuF

{
~�× ~p˜+ q

2c
[~r× (~�× ~B0) + ~B0 × (~r×~�)]

}
h̄~J˜ quF

2
(~�×~r)× ~B0

~r −cuF~�

~̇r −cuF
d~�
dt

The form that is assumed by d~π˜/dt is suggestive: a comparison with the force acting
on a classical charge by a magnetic field

d~π
dt

= q
~v
c
× ~B (26)

shows that, cum grano salis, the Pauli vector~� can be seen as the operator of the velocity;
this vision is reinforced by the equation for d~r/dt. One important consideration can be
still obtained from the rate equations and, specifically, from d~π˜/dt: the charge appears
multiplied by the velocity factor uF ≈ 1/300; thus, the magnetic force is decreased by the
same factor. The magnetic forces acting on Dirac electrons are small. A rapid look to the
table shows that the spin flip rate gives the acceleration. Even if it appears to be obvious,
the equation for~J˜ shows that the total angular momentum is constant along the external

magnetic field. This conservation law is not true for~L˜ and~S separately.

Solution

Setting
~B0 = B0(0, 0, 1) (27)

makes J˜3 = −i∂φ + �3/2 constant. Again, this can be exploited to obtain the general form
of the spinor

�
ψ(ρ, φ);

J˜3
�
ψ(ρ, φ) = j3

�
ψ(ρ, φ). (28)

By using cylindrical variables and the separation of the variables



Symmetry 2021, 13, 642 8 of 18

(
−i∂φ +

1
2

�3

)(
Φ1(φ)R1(ρ)
Φ2(φ)R2(ρ)

)
= j3

(
Φ1R1
Φ2R2

)
=

(
m +

1
2

)(
Φ1R1
Φ2R2

)
(29)

we readily obtain the angular part:
Φ′1 = i

(
j3 −

1
2

)
Φ1

Φ′2 = i
(

j3 +
1
2

)
Φ2

(30)

i.e., 
Φ1(φ) =

eimφ

√
2π

Φ2(φ) =
ei(m+1)φ
√

2π

, m = . . . ,−2,−1, 0, 1, 2, . . . (31)

thus the spinor is:

�
ψ(ρ, φ) =

eimφ

√
2π

(
R1(ρ)

eiφR2(ρ)

)
. (32)

Lengthy algebra permits casting the Hamiltonian in cylindrical variables:

H˜ = ih̄cuF

{(
0 e−iφ

eiφ 0

)
∂ρ +

1
ρ

(
0 −ie−iφ

ieiφ 0

)
∂φ

}
+

quFB0

2
ρ

(
0 −ie−iφ

ieiφ 0

)
. (33)

The time independent Schrödinger equation H˜ �
ψ = E

�
ψ becomes:


iuF

[
h̄c
(

d
dρ

+
m + 1

ρ

)
− qB0

2
ρ

]
R2 = ER1

iuF

[
h̄c
(

d
dρ
− m

ρ

)
+

qB0

2
ρ

]
R1 = ER2

(34)

where E is the energy of the eigenstate. The two coupled equations can be cast into one,
for example, for R1(ρ):

R′′1 +
1
ρ

R′1 +

(
E2

h̄2(uFc)2
+

qB0(m + 1)
h̄c

−
q2B2

0

4h̄2c2
ρ2 − m2

ρ2

)
R1 = 0 (35)

that can be simplified with the substitution

x =
ρ2

λ2 λ2 ≡ 2h̄c
|q|B0

(36)

(the parameter λ introduces into the problem a length scale absent in the non-magnetized
annulus). The form of the differential equation becomes:x2 d2R1

dx2 + x
dR1

dx
+

(
− x2

4
+

v2

4
x− m2

4

)
R1 = 0

R1(x1) = R1(x2) = 0
(37)

with

v2 =
2E2

h̄u2
Fc|q|B0

+ 2η(m + 1) (38)

and η = q/|q| the sign of the charge. The substitution
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R1(x) = e−
1
2 xx

|m|
2 f (x) (39)

transforms the equation into the one of the confluent hypergeometric function

x f ′′ + (|m|+ 1− x) f ′ −
(
|m|+ 1

2
− v2

4

)
f = 0. (40)

The equation
zw′′ + (b− z)w′ − aw = 0 (41)

has two independent solutions that are generally indicated with M(a, b, z) and U(a, b, z)

M(a, b, z) = 1 +
a
b

z
1!

+
a(a + 1)
b(b + 1)

z2

2!
+ . . . (42)

U(a, b, z) =
π

sin πb

[
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−b M(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

]
(43)

(written in this form U(a, b, z) is always defined [36]).
In our case,

a =
|m|+ 1

2
− E2

2h̄u2
Fc|q|B0

− 2η(m + 1) (44)

and
b = |m|+ 1. (45)

The most general solution is

R1(x) = e−
1
2 xx

|m|
2 [λM(a, b, x) + µU(a, b, x)] (46)

with boundary conditions
R1(x1) = R2(x2) = 0 (47)

that can be fulfilled if
U(a, b, x1)

M(a, b, x1)
=

U(a, b, x2)

M(a, b, x2)
. (48)

A quick look to the expression for a in Equation (44) shows that the eigenenergies can
be analytically found by setting

E = AB
1
2
0 ; (49)

two indices are needed to list them: m, which gives the x3 angular momentum, and n,
which enumerates the energy at the chosen value of m. Thus

am,n =
|m|+ 1

2
−

A2
m,n

2h̄u2
Fc|q|

− 2η(m + 1) (50)

and, of course, x1 and x2 determine the value of Am,n. For checking purpose, a few values
of Am,n are listed in Table 3.

Table 3. Selected values of Am,n; the inner and outer radia of the annulus are: x1 = 20a0 and
x2 = 40a0.

m Am,1 Am,2 Am,3

0 2.988 3.355 3.836
1 3.258 3.627 4.046
2 3.551 3.864 4.289
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Many discontinuities and rapid oscillations between positive and negative values of
the function

Tg(a, b, x) ≡ U(a, b, x)
M(a, b, x)

(51)

make the numerical solution of Equation (48) by finding the zeros of the equation
Tg(a, b, x1)− Tg(a, b, x2) = 0 difficult. Calculating Tg(a, b, x) to reach numerical converge
is difficult and, thus, painstaking attention must be devoted to independent checks of the
numerical results. The expression shown in Equation (49) is one of the main results of
this work.

This discussion shows that x, as defined in (36), is the natural variable of the problem,
but it is not a physically convenient one, as it contains, in its definition, the magnetic
field B0; to change the value of the magnetic field would affect the value of ρ1 and ρ2 thus
making messy any regular study. In general one wants the dependence of the eigenenergies
versus B0, and the plot of the eigenstates as a function of ρ with fixed ρ1 and ρ2. In the
following, we show the eigenstates of the annulus in the presence of a magnetic field. We
use large values of the radii of the annulus (ρ1 = 5000a0 and ρ2 = 10,000a0) to approximate
the electron as a Dirac charge and let the magnetic field span over more than two orders
of magnitude.

In Figure 4, the normalised wave function for n = 0 and different values of m at
B0 = 2 · 10−5 au (B = 1 au = 2.35 · 105 T) is displayed. For small m, the wave functions
are weakly dependent upon m; however, when m is large, the electron state peaks near the
external edge of the annulus. Accordingly, we perceive the possibility of creating stationary
filiform currents for m = 10 and n = 0 that is at the lowest possible energy. Figures 5 and 6
show a few eigenstates for m = 1 and m = 10.

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0

0.5

1

1.5

2

2.5

3

R
1

10-4

m=0
m=1
m=2
m=10

Figure 4. (Color on line) Normalised wave function of the Dirac electron in the annulus for
n = 0 and different values of m as a function of ρ in au; B0 = 2.0 · 10−5 au. The energy
of the states are: E0,0/uF ∼= 9.09 · 10−3 au, E1,0/uF ∼= 1.09 · 10−2 au, E2,0/uF ∼= 1.26 · 10−2 au,
E10,0/uF ∼= 1.63 · 10−2 au.

Figure 7 presents the distortions introduced by the magnetic field in the wave func-
tions, showing a peculiar effect: by increasing B0 the peak of the radial wave function
moves inward and then outward. A large magnetic field confines the electron in the outer
region of the annulus. Subsequently, it is possible, by using the orbital angular momentum
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m and the magnetic field B0 as control knobs of an experiment, to produce filiform currents
circulating in a reduced portion of the annulus. Such currents may be used in informatics
technology [20,29,31,34,35,37–42]. Furthermore, an adiabatic increase of B0 does not induce
transition amongst the levels, but pushes the electron towards large ρ.

In Figure 8, we show Em,n/uF versus B0 for m = 0: in the range chosen here E0,0 has an
almost linear dependence upon B0. This linear dependence spans over more than 2 orders
of B0 and is somehow surprising; in fact, in Equation (44), B0 enters the definition of the
parameter a; the dependence of the functions M(a, b, z) and U(a, b, z) from a is highly non
linear and it would hint a more structured pattern of the eigenenergy vs. B0.

In Figure 9, we show the value of Em,n/uF versus n for m = 0. Figure 10 shows the
same kind of plot for m = 1.

The problems of convergence in the numerical calculation allow the determination
of few eigenenergies at the lowest values of B0. The eigenenergies have almost a linear
dependence upon n.

As is to be expected, the energy of the levels decreases by increasing the area of the
annulus; thus, a radial stretching force F acts on the annulus. The force depends on the
electron state on the annulus and acts on both the border circles. By keeping ρ1 constant
for the state when m = 0 and n = 1, we get F ≈ uF · 10−13 N.

The size of the annulus is important in the control of the shape of the eigenfunctions.
In Figure 11, the eigenstates for n = m = 0 are shown for a few selected values of the
outer radius of the annulus. It is evident that the shape of R1 qualitatively changes and the
possibility of confining the electron in the external region of the annulus appears.

By giving an orbital angular momentum to the electron, a filiform current in the
external border is created. Figure 12 shows this feature.
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Figure 5. (Color on line) Normalised wavefunction of the Dirac electron in the annulus for m = 1
and different values of n as a function of ρ in au; B0 = 2.0 · 10−5 au.; n gives the number of
nodes between the borders of the ring. The energy of the states are: E1,0/uF ∼= 1.09 · 10−2 au,
E1,1/uF ∼= 1.39 · 10−2 au, E1,2/uF ∼= 1.78 · 10−2 au, E1,3/uF ∼= 2.22 · 10−2 au.
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Figure 6. (Color on line) Normalised wave function of the Dirac electron in the annulus as a function
of ρ in au for m = 10 and different values of n B0 = 2.0 · 10−5 au; n gives the number of nodes between
the edges of the ring. The energy of the states are: E10,0/uF ∼= 1.63 · 10−2 au, E10,1/uF ∼= 2.53 · 10−2 au,
E10,2/uF ∼= 2.80 · 10−2 au, E10,3/uF ∼= 3.07 · 10−2 au, E10,4/uF ∼= 3.43 · 10−2 au.
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Figure 7. (Color on line) Normalised wave function of the Dirac electron in the annulus as a
function of ρ in au for m = 0 and different values of B0 in au; here n = 1. The energy of the
states are: B0 = 1 · 10−6 ⇒ E0,1/uF ∼= 1.07 · 10−2 au, B0 = 1 · 10−4 ⇒ E0,1/uF ∼= 2.73 · 10−2 au,
B0 = 2 · 10−4 ⇒ E0,1/uF ∼= 4.52 · 10−2 au.
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Figure 8. (Color on line) Eigenenergies in au of the annulus as a function of the static magnetic field
B0 in au for few values of n with m = 0. The radia of the annulus are: ρ1 = 5000a0 and ρ2 = 10,000a0.

0 5 10 15 20 25 30
n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E 0
,n
/u
F

B0=1  10-6

B0=2  10-6

B0=5  10-6

B0=7  10-6

B0=1  10-6

B0=2  10-5

B0=3  10-5

B0=5  10-5

B0=7  10-5

B0=1  10-4

B0=1.3  10-4

B0=1.5  10-4

B0=2  10-4

Figure 9. Eigenenergies in au of the annulus vs. n at different values of the static magnetic field B0 in
au for m = 0. The radia of the annulus are: ρ1 = 5000a0 and ρ2 = 10,000a0.
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Figure 10. Eigenenergies in au of the annulus as a function of n for several values of B0 in au for
m = 1. The radia of the annulus are: ρ1 = 5000a0 and ρ2 = 10,000a0.
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Figure 11. (Color on line) Normalised eigenstates E0,0 (m = n = 0) as a function of the outer
radius of the annulus; in the inset the ρ2 in unit of the Bohr radius a0 is given. The inner radius
of the annulus is kept at: ρ1 = 5000a0; always B0 = 5 · 105 au. The energy of the states are:
ρ2,0 = 9 · 103a0 ⇒ E0,0/uF ∼= 1.526 · 10−2 au, ρ2,0 = 1.2 · 102a0 ⇒ E0,0/uF ∼= 1.5038 · 10−2 au,
ρ2,0 = 1.4 · 10a0 ⇒ E0,0/uF ∼= 1.5024 · 10−2 au, ρ2,0 = 1.6 · 104a0 ⇒ E0,0/uF ∼= 1.5017 · 10−2 au.



Symmetry 2021, 13, 642 15 of 18

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
104

0

0.5

1

1.5

2

2.5

3

R 1

10-4

2=9  103

2=1.2  104

2=1.4  104

2=1.6  104

Figure 12. (Color on line) Normalised eigenstates E1,0 (m = 1, n = 0) as a function of the outer
radius of the annulus; in the inset the ρ2 in unit of the Bohr radius a0 is given. The inner radius
of the annulus is kept at: ρ1 = 5000a0; always B0 = 5 · 105 au. The energy of the states are:
ρ2,0 = 9 · 103a0 ⇒ E1,0/uF ∼= 1.7925 · 10−2 au, ρ2,0 = 1.2 · 104a0 ⇒ E1,0/uF ∼= 1.7752 · 10−2 au,
ρ2,0 = 1.4 · 104a0 ⇒ E1,0/uF ∼= 1.7750 · 10−2 au, ρ2,0 = 1.6 · 104a0 ⇒ E1,0/uF ∼= 1.7749 · 10−2 au.

4. Adding a Laser

It has been proven that electrons bound on a one-dimensional (1D) ring and acted upon
by a strong laser field of frequency ωL generate currents [22,30,43] and emit electromagnetic
radiation with a broad spectrum of harmonics of ωL [15,21,25,27,33,44]. Thus, it is proper
to investigate the behaviour of a Dirac electron on an annulus shown by a laser field. Here,
we consider a pulse propagating along x3, linearly polarized along x1 and described by the
vector potential

~AL(~r, t) = − c
ωL
E~ε1 f (t) cos(kLx3 −ωLt) (52)

with f (t) describing the pulse profile. The electric and magnetic fields are:

~EL(~r, t) =~ε1
E

ωL

√
[ωL f (t)]2 +

[
ḟ (t)

]2 sin(kLx3 −ωLt + β(t)) (53)

~BL(~rt) =~ε2E f (t) sin(kLx3 −ωLt) (54)

with the chirp term β(t) given by

β(t) = arctan
(

ḟ
ωL f

)
(55)

the effects of which are negligible in the case of adiabatic variation of the laser field.
Moreover the dependence upon x3 disappears, since the active particle is bound to move
on the (x1, x2) plane. The full vector potential is

~A(~r, t) = ~A0 + ~AL(~r, t) (56)
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and the full Hamiltonian

H˜ = −cuF~� ·
(
~p˜− q

c
~A(~r, t)

)
= H˜ + quF~� · ~AL (57)

with H˜ the Hamiltonian of the magnetized annulus in Equation (22). If O˜ is a generic
operator, then

dO
d̃t

=
i
h̄
{[H˜O˜ ] + quF[~� · ~AL,O˜ ]}+ ∂O

∂̃t
. (58)

The lengthy application of commutator algebra for the time derivatives of the operators
produces Table 4.

The electric field now has a role in determining the change of the mechanical mo-
mentum ~π, but the charge is not multiplied by the factor uF; thus, the electric force is the
dominant one. Moreover, the electric field causes periodic oscillations of the total angular
momentum J˜3, which is not any more a constant of the motion.

Again, the Pauli’s matrices play the role of the velocity operator; thus, the acceler-
ation is ruled by the spin flip d~S/dt. In classical physics, the spectrum that is emitted
by an accelerated charge can be obtained from the Fourier transform of the acceleration
~̈r(ω). From the last equation in Table 4, we see that the parameter that is relevant to the
spectrum is the quantum averaged dipole moment 〈t|~r|t〉 with |t〉 the time dependent
state of the Dirac electron. The application of a weak microwave field couples the annu-
lus’ eigenstates and permits the fast excitation of the states with the possibility of rapid
information exchange between storage and reading devices. From the theoretical point of
view, the dipole matrix elements between the eigenstates and the relative selection rules
are needed. The calculations are made difficult by the presence of the hypergeometric
functions M(a, b, z) and U(a, b, z). Currently, they are the object of a dedicated analysis
and of a subsequent publication.

Table 4. Time derivative of few operators in the presence of a laser field.

O˜ dO˜ /dt

~p˜ − quF
2

(~�˜× ~B0)− quF�1~ε1 × ~BL

~A(~r, t) cuF
2

(~�× ~B0) + cuF�3(~ε3 × ~BL)−
ic
h̄
~EL(~r, t)

~π˜ −quF~�× (~B0 + ~BL) +
iq
h̄
~EL

h̄~L˜ −cuF(~�× ~p˜)− quF
2

[~r× (~�× ~B0)] + quFx2[~ε3 × ~BL + ~BL]�1

h̄~S cuF

{
~�× ~p˜+ q

2c
[~r× (~�× ~B0) + ~B0 × (~r×~�)]

}
− quF(~�× ~AL)

h̄~J˜ quF
2

~B0 × (~r×~�)− quF(~�× ~AL) + quFx2[~ε3 × ~BL + ~BL]�1

h̄J˜3 −�2
qcuF
ωL
E f (t) cos(ωLt)

~r −cuF~�

~̇r 2cuF
d~S
dt

5. Conclusions and Comments

The special symmetry of a graphene layer permits the description of an electron as a
massless charge, called Dirac electron, by means of the Dirac relativistic equation with the
speed of the light that is replaced by the Fermi velocity, which, in graphene, is vF ∼= c/300,
even smaller than the average electron speed in the Hydrogen ground state (vH = c/137).
This characteristic permits the theoretical and experimental study of massless charges
interacting with fields.

In this paper, we study the response of a Dirac electron bound on a finite graphene
annulus. The finiteness of the the annulus implies that, strictly speaking, the electron can
no longer be considered to be massless and edge effects should be taken into considera-
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tion; to make these approximations less stringent, we consider a very large annulus with
ρ ∈ [5000, 10,000]a0. We consider the annulus crossed by an orthogonal static magnetic
field and solve the Dirac equation for the electron in closed form in terms of the two
independent confluent hypergeometric functions. Detailed forms of the eigenstates and
plots of their energy as a function of the parameter of the calculations are obtained. The
energy of the levels is very small; for example, at B0 = 5 · 10−5 au, E0,0 ∼= 1.5 · 10−2 · uF
au ∼= 1.4 · 10−3 eV and E1,0

∼= 1.78 · 10−2 · uF au ∼= 1.6 · 10−3 eV; thus, the levels can be
coupled by microwaves, which, in terms of stability, are more easily handled than optical
or near infrared photons. By tuning the angular momentum and the static magnetic field,
the eigenstates and relative energy of the Dirac electron can be controlled and filiform
currents circulating along the annulus can be created. Such currents are of interest in
designing logical ports and memory mass storage that are relevant in electronic devices
controlled by electromagnetic radiation.

The presence of a sinusoidal, linearly polarised, electromagnetic field propagating
along the annulus axis induces spin flip, the rate of which is proportional to the electron
acceleration and, via the Larmor formula, permits the determination of the spectrum that
is emitted by the annulus driven by the external field.
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