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“You are strong because you are imperfect. You are wise because you have doubts.”

Clementine Churchill - Darkest Hour (2017)
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Abstract

The study of the dynamics of open quantum systems sheds light on dissipative pro-
cesses in quantum mechanics. Any system under continuous measurement is open
and the act of measuring induces abrupt changes of the system’s state (collapses).
The evolution conditioned to measurement records generates the so-called quan-
tum trajectories. A continuous (unconditioned) evolution of the system is recovered
by averaging over a large number of trajectories. Historically this kind of evolution
has been the main focus of theoretical investigations. In this dissertation we consider
both conditional and unconditional dynamics of quantum optical systems. Uncondi-
tioned dynamics is studied through the collision model paradigm. The formalism is
described in detail and used for describing generic systems featuring many quantum
emitters coupled to a usually one-dimensional field. The negligible-delay regime is
widely explored. Collision models are used to unveil the mechanisms underlying
the decoherence-free evolution regime typical of these systems, which has received
considerable attention in the last years. Then we investigate conditioned dynamics
by broadening the study of statistics of quantum trajectories. Specifically, we exploit
the information about the emission’s full-counting statistics from large deviations to
define a nonclassicality witness. Finally we come back to collision models in order
to extend the theory of biased quantum trajectories from Lindblad-like dynamics
to sequences of arbitrary dynamical maps, providing at once a transparent physical
interpretation.
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Introduction

At macroscopic scales the effects of the laws of quantum mechanics are often hidden,
so that they look really weird and counterintuitive, but become more and more ev-
ident dealing with the microscopic components of matter, if properly isolated from
the external environment. Experiments on isolated, or closed quantum systems al-
lowed to observe quantum superposition, correlation and entanglement and have
been fundamental to test the predictions of quantum mechanics. On the other hand,
the study of open quantum systems enabled the jump from individual systems to
the description of a full quantum world encompassing systems that interact with
each other in countless ways and irreversible dynamics. An open quantum system
exchanges information with another one, that we call environment, and we are gen-
erally interested in knowing how it evolves in time.

In general system and environment get entangled, and distinguishing the former
from the latter one translates into the partial trace operation over the degrees of free-
dom of the environment. This process returns an average continuous evolution of
the system (described, in the Markovian case by the celebrated Gorini-Kossakowsky-
Sudarshan-Lindblad (GKSL) master equation [1, 2, 3, 4]) but, on the other hand it
deletes every information about exchanges of information between the two.

Notwithstanding, such exchanges are important in themselves and deserve in-
vestigation. In fact following the evolution of an open system in the laboratory cor-
responds typically to follow all the traces it leaves in the surrounding environment,
e.g. we can say with absolute certainty that an atom prepared in an excited state has
decayed if we detect the excitation (photon) emitted into the environment (electro-
magnetic field). Note that in general each exchange event corresponds to a sudden,
instantaneous modification of the state of the system (e.g. a decaying atom changes
from |e〉 to |g〉).

The discussion above, even if very simplified, encompasses two important fea-
tures of the dynamics of open quantum systems, which echo the well-known exist-
ing dichotomy within continuous evolution and collapses in closed system theory.
Indeed closed systems’ states evolve according to the Schrödinger equation, but a
measurement causes the wavefunction collapse, breaking the continuous evolution.

However, measuring is nothing but coupling the system to another one (the de-
tector) that gathers information from it [5, 4]. An average over such information
(i.e. maximizing our ignorance about the result of a measurement) returns a contin-
uous evolution without any traces of collapses, in other words an evolution that is
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not conditioned by past outcomes. Instead, keeping trace of the results, the evolu-
tion is said to be conditioned: the detector outcome is in general a signal featuring
phases of continuous evolution interspersed with abrupt jumps which we call tra-
jectory. Trajectories correspond to fluctuating signals obtained by monitoring single
quantum systems in the laboratory [6].

In this dissertation we consider both kinds of open evolution within the context
of quantum optics.

This Introduction has the purpose of guiding the reader in a simple way through
these two central topics and formulating the main questions we will address in the
main text. For what concerns the unconditioned evolution of open quantum sys-
tems, our main question will be how a new but well-established method for study-
ing it, known as collision model [7, 8], extends to generic one-dimensional optical
setups of great interest.

Then we focus on conditioned evolution, dealing with the information from the
statistics of time records of quantum jumps occurring along the evolution of optical
systems. Here also the study of the asymptotic features of quantum trajectories, al-
though based on basic principles of thermodynamics [9], are becoming increasingly
popular within the field of statistical mechanics applied to open quantum systems In
this regard, the main purpose of the present study is investigating if these methods
can go beyond the pure theoretical speculation and find applications in quantum
optics. The answer to this question, as we will see, is yes, and not only that: we will
discover that, through the lenses of thermodynamics of quantum trajectories [10],
collision models theory yields us remarkable insights and also possible experimen-
tal implementations.

The study of the interaction of quantum emitters, such as multi-level systems or
resonators, with a field modeled as a continuum of bosonic modes, is one of the main
topics in quantum optics. For this purpose we introduce the paradigm of quantum
collision models, with special attention to the extension to one-dimensional optical
systems with many emitters [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Colli-
sion models are being routinely used in various areas such as weak continuous mea-
surements [17, 25, 26], non-Markovian quantum dynamics [8, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36], quantum thermodynamics [37, 38, 39, 40, 41, 42] and even quantum
gravity [43, 44]. The basic idea is decomposing the field into discrete time bins (each
with an associated bosonic mode) travelling at constant speed and colliding one at
a time with the emitter. The trace over the time bin’s degrees of freedom yields the
unconditioned evolution of the system. In layman’s terms, we introduce a simplified
environment simulator [4] which captures the main features of the overall environ-
ment. This responds to the idea that, in general, only few environmental degrees of
freedom are decisive in driving the evolution of the system. Within the framework
of waveguide QED [45, 46, 47, 48, 49, 50], time bin of one-dimensional field takes the
form of discrete slices traveling in line along the waveguide. For this reason some
refers to collision models in one-dimensional quantum optics as to Space Discretized
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Waveguide models [51].
So far only collision models for pointlike quantum emitters were fully devel-

oped (only one coupling point). While systems with emitters featuring two coupling
points were considered in the regime of long time delays [11, 12, 14], a comprehen-
sive formulation of the negligible-delay regime (occurring in most experiments) has
been lacking until now.

Recently the interest about negligible-delay regime has grown [52, 53, 54, 55, 56]
because setups with multilocal (or giant) emitters coupled to a waveguide provide
a platorm in which decoherence-free dynamics [57], i.e. , particular dynamics which
is less sensitive to decoherence due to the form of their coupling to the dissipative
environment, naturally arises. The collison model picture is not only a tool useful
to derive the time evolution of open systems, but it also allows to answer to fun-
damental questions about the origin of such remarkable effects in waveguide QED
systems.

A quantum trajectory can be defined as the evolution of a system conditioned on
the results of measurements made on that system [58]. Since in general system and
environment get entangled during evolution, an ideal measurement on the bath has
the effect to disentangle them and, in particular, project them into a pure state.

This means that it is possible, in principle, to monitor the system by only project-
ing the state of the environment over an appropriate orthonormal basis. Note that
this implies that we have a freedom in choosing this basis, and moreover that the
same dynamics can produce infinite ensembles of quantum trajectories [26, 59, 58].
As specified before, we will focus on quantum optical systems under photon count-
ing measurements, which corresponds to projecting the state of the environment
over the Fock basis.

It is worth noting that in many situations of interest in quantum optics, such as
cavity fields and atoms interacting with vacuum-state environment [4, 60], a quan-
tum jump corresponds to the loss or the gain of a photon exchanged with the envi-
ronment, hence the statistics of quantum jumps corresponds exactly to the photon
counting statistics (assuming perfect detection).

Driven by this correspondence, the question arises whether the information gained
through the statistical-physics approach to quantum trajectories, in particular the so-
called thermodynamics of quantum trajectories [61] based on large deviation theory [62,
63, 64, 65], might prove useful for applications. This is one of the main aims of this
dissertation. This approach is based on considering each trajectory as a realization
of a stochastic process, and the set of all the possible realizations as a statistical en-
semble. The full-counting statistics (FCS) of photon counting distribution is a very
important source of knowledge about the system [66, 67, 68, 69] and offers in gen-
eral a powerful theoretical method to study fluctuations in nonequilibrium quantum
systems.

Within the large deviation formalism it is possible to derive the full-counting
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statistics and, by consequence, characterize the trajectories ensemble through func-
tions analogous to thermodynamic potentials.

The aforementioned correspondence between quantum jumps and measurements
suggest that it could be possible to use the info from large deviation approach to
make predictions about the statistical features of the emitted radiation. This, in a
way, reverses the usual point of view of theory of open quantum systems, by look-
ing at the system as to a source of radiation to be characterized. We will put forward
a methodology to witness nonclassicality of the output field from a generic quantum
optical setup via the statistics of time-integrated photocurrents. Specifically we will
express a known nonclassicality witness (Vogel’s criterion [70, 71, 72]) for bosonic
fields fully in terms of the source master equation, thus bypassing the explicit calcu-
lation of the output light state.

Furthermore, large deviation theory provides powerful tools both for studying
rare events or emission patterns and, more interestingly, for tuning the open system
dynamics by acting on master equations, in order to enhance the occurrence of such
rare events [73]. The formalism used so far did not allow to go far beyond numerical
applications due to the complexity of the operations involved even for small systems
nor to provide a transparent physical interpretation to them. Thus, our last question
will be whether it is possible to describe such tuning simply in terms of changes
performed on a microscopic model underpinning the open dynamics. We will see
that it is possible just invoking collision models.

Next we provide an outline of this dissertation. The first three chapter of this
dissertation consist of essentially known material. In Chapter 1 we review the basics
of open quantum systems theory. In the discussion we focus on simple but paradig-
matic examples to emphasize the physical motivations behind the Introduction of
the well known tools, which commonly apply within the literature. We will then
focus on memoryless dynamics and derive the general master equation (Lindblad
master equation) governing the system’s time evolution. In Chapter 2 we review the
general theory of collision models. We will show how, under minimal assumptions,
they are powerful in describing a wide variety of dynamics. In Chapter 3 we will fo-
cus on quantum trajectories by introducing the main tools of large deviation theory.
Based on this background, in the last two chapters we present our original results.
In Chapter 4 we apply collision models to derive the Lindblad master equation of a
set of multi-local (giant) emitters coupled to a one-dimensional field in an arbitrary
white-noise Gaussian state, which condenses into a single equation and extends a
variety of quantum optics and, in particular, waveguide QED. Furthermore we will
see how the collision model framework can capture the microscopic mechanism be-
hind the emergence of nontrivial decoherence-free subspaces in these systems. In
Chapter 5 we show two applications of the quantum trajectory formalism. Statis-
tical properties of photon-counting trajectories carry remarkable information about
quantum correlations of the emitters. We will express a known nonclassicality wit-
ness for bosonic fields fully in terms of the source master equation. In the last part
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we present a microscopic theory for biasing the quantum trajectories is formulated,
based on collision model. In this case too, collision models provide both a simplifi-
cation and clear physical interpretation of the theory of biased quantum trajectories
generated by the action of arbitrary dynamical maps.

Chapters on applications end with a small summary of the main results. Details
about calculations and insights will be presented inside boxes, in order to avoid the
use of appendices and make the text easier to read.
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Chapter 1

Open quantum systems

῎Ακουσον τοίνυν, υἱέ, ἅ μοι δοκεῖ δεῖν σε

μή ἀγνοεῖν , καὶ νοήμων γενοῦ, ἵνα

κτήσῃ κυβέρνησιν.

"Hear now, my son, those things of
which I think you should not be
ignorant"

Constantine VII Flavius

De Administrando imperio, 1

In this chapter we introduce the basic formalism of quantum mechanics and open
quantum system theory. Our goal will be the formulation of the Lindblad master
equation which governs the evolution of the open quantum systems in the Marko-
vian regime. Basic references on this subject are provided by seminal works by
Kossakowsky and Lindblad [1, 2] and Refs. [4, 3, 74]. Here we will try a differ-
ent approach: we highlight the limits of the usual unitary quantum theory when
considering the interaction with the environment, using as example the dynamics of
a decaying two-level atom.

1.1 Closed memoryless dynamics

The behaviour of closed quantum systems, i.e. quantum systems which do not ex-
change energy and matter with another one [74], is efficiently predicted according
to Schrödinger equation

i h̄
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (1.1)

where Ĥ is a self-adjoint operator. The formal solution of (1.1) is

|Ψ(t)〉 = Û(t, t0) |Ψ(t)〉 , Û(t, t0) = T exp
{
− i

h̄

∫ t

t0

dt′Ĥ(t′ − t0)

}
, (1.2)
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where we introduced the unitary propagator Û(t, t0) from time t0 to t and the time-
ordering operator T . Unitarity of evolution operator [Û(t, t0)

† = Û(t, t0)
−1] guar-

antees probability (norm) conservation and, more in general, the time invariance of
scalar product between any quantum state of the system’s Hilbert spaceH:

〈Ψ| Û†Û |Φ〉 = 〈Ψ|Φ〉 ∀ |Ψ〉 , |Φ〉 ∈ H. (1.3)

The main consequence of Eq. (1.3) is that unitary time evolution is a bijection on the
Hilbert spaceH, implying that it is reversible. Note that the set of propagators has the
structure of a group under matrix product operation, and in particular they satisfy
semigroup composition (semigroup property)

Û(t2, t1) · Û(t1, t0) = Û(t2, t0) for t0 < t1 < t2. (1.4)

Thus the time evolution of the state |Ψ(t0)〉 from t0 to t2 and that of |Ψ(t1)〉 from
t1 to t2 will return the same state |Ψ(t2)〉. This means that the system follows a
deterministic trajectory in the state space regardless of the past history. This property
is usually referred as to lack of memory or Markovianity. Remarkably, it is easy to note
that Eq. (1.4) for unitary propagators implies Eq. (1.1): according to Eq. (1.4) the time
evolution of a state from time t to t + dt reads

|Ψ(t + dt)〉 = Û(t + dt, t0) |Ψ(t0)〉 = Û(t + dt, t) |Ψ(t)〉 , (1.5)

with the infinitesimal propagator given by

Û(t + dt, t) = 1 + Ĝ(t)dt +O(dt2) , Û(t + dt, t)†Û(t + dt, t) = 1 +O(dt2) .
(1.6)

Thus, up to the first order in dt, it must be Ĝ(t) = −Ĝ(t)†, which implies that the
generator is given by Ĝ = −iĤ with Ĥ Hermitian, thus recovering Eq. (1.1). Note
that the demonstration works only if non-identity terms in infinitesimal generator
are proportional to the first power of t.

1.2 Non-unitary dynamics and density matrix

What we have seen in the previous paragraph changes radically when dealing with
an open quantum system, i.e. a system which interacts with another one (usually
referred as to external environment or bath). In this section we introduce the paradig-
matic example of the decay process of a two-level atom. This example will accom-
pany us throughout this chapter and beyond. Here we will use it to convince our-
selves that:

• time evolution of open quantum systems is not unitary;

• kets are not appropriate for the description of open quantum systems.
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The system under consideration is the atom, while the environment is the elec-
tromagnetic field, which we assume for simplicity to be initially the vacuum state
|0〉. If the atom is initially in the excited state |e〉, after some time it will release the
excitation to the environment (i.e. it emits a photon), collapsing in the ground state
|g〉. If however the initial state is |g〉, the atom will remain in the ground state. This
well-known transformation preserves the norm of quantum states but violates the
bijectivity.

More in detail assume we can represent the environment as an ancillary two-
level system (probe) coupled to the atom, and that the system-environment coupling
Hamiltonian is of the form

Ĥ = J(σ̂A
+ σ̂E
− + σ̂A

− σ̂E
+) , (1.7)

where superscripts A and E indicate the atom and the probe, respectively, and J is
the coupling strength. Thus we are dealing with a new closed system composed of
the atom and the probe. If the state at time t0 is |Ψ(t0)〉 = |e〉A ⊗ |g〉E ≡ |e g〉, after
evolution under Û(t, t0) = exp

{
− i

h̄ Ĥ(t− t0)
}

, we find

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 = α |g e〉+ β |e g〉 , (1.8)

where α and β are complex amplitudes depending on t and J, and |α|2 + |β|2 = 1.
What is the state of the atom at time t? It’s easy to convince ourselves that this

state cannot be represented by a ket.
Here we assume using ordinary projective measurement (measurement theory

will be reviewed in the next section). A projective measurement on the system
checking whether it is in its ground or excited state is defined through the projec-
tion operators

P̂g = |g〉〈g| ⊗ 1 , (1.9)

P̂e = |e〉〈e| ⊗ 1 , (1.10)

thus we have probability pg = 〈Ψ(t)| P̂g |Ψ(t)〉 = |α|2 and pe = 〈Ψ(t)| P̂e |Ψ(t)〉 =
|β|2 to measure the atom in ground and excited state respectively. The state of the
atom after evolution therefore can be represented as a classical average

ρA = |α|2 |g〉〈g|+ |β|2 |e〉〈e| = TrE{|Ψ(t)〉〈Ψ(t)|} = TrE{ρAE(t)} , (1.11)

where ρA and ρAE = |Ψ(t)〉〈Ψ(t)| are matrices and TrE encodes the operation of
partial trace over the probe’s degrees of freedom. Notice that the state of the atom
is no more described by a ket but through a matrix, ρA, called density operator of
the atom. The partial trace in the last term takes the meaning of an average over all
the possible states of the probe. Given a quantum state lying in a bipartite Hilbert
space HA ⊗ HB, partial trace over B returns a state of the Hilbert space HB. For
this reason, since the projector ρAE(t) = |Ψ(t)〉〈Ψ(t)| in Eq. (1.11) encodes all the
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information about the joint atom-probe state, the state ρA obtained by partial trace
over probe’s space is called reduced state.

A density operator represents an ensemble of possible quantum states of the sys-
tem that occur according to a classical probability distribution, i.e. a classical (in-
coherent) superposition of quantum states. Density operators are Hermitian, posi-
tive and have unit trace. Like for all Hermitian operators, there are infinitely many
decompositions, in particular they can be decomposed in terms of an orthonormal
basis {|ei〉} of Hilbert space of the system (dim{H} = d)

ρ =
d

∑
i

λi |ei〉〈ei| . (1.12)

A quantum state which is known without (classical) uncertainty is said to be a
pure state. Otherwise it is mixed, like the state in Eq. (1.11). A pure state is what
can be exactly described through a ket. States entering the average in definition
Eq. (1.12) are pure. Classical probabilities λi encode our uncertainty on the state
under consideration. However, given a mixed state ρA = ∑

i
pi(|i〉〈i|)A, it is always

possible to define a pure state |ΨAB〉 in an enlarged Hilbert spaceHA⊗HB such that
the reduced density matrix inHA corresponds to ρA

|ΨAB〉 = ∑
i

√
pi |i〉A |i〉B . (1.13)

The new state is said to be a purification for ρA [75]. In general for a pure state
Tr{ρ2} = 1 , while in general Tr{ρ2} ≤ 1.

Here we introduced density matrices as the correct solution of the problem of
describing open systems’ states that are in general mixed (as shown in the example),
but they are the most general way of defining any quantum state: a pure state’s
density matrix is a single projector, like the state ρAE of atom-probe joint system
shown in Eq. (1.11).

We conclude this section with general considerations about the time evolution
of density operators. Closed systems’ states evolve according to Eq. (1.1), hence,
assuming unchanged statistical weights, i.e. convexity-preserving evolution

ρ(t) = ∑
i

λi |ei(t)〉〈ei(t)| = ∑
i

λiÛ(t, t0) |ei(0)〉〈ei(0)| Û†(t, t0) = Û(t, t0)ρ(t0)Û†(t, t0) .

(1.14)

Plugging Eq. (1.6) into the above equation we have

ρ(t + dt) = ρ(t)− i
h̄
[Ĥ, ρ(t)]dt , (1.15)
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thus the infinitesimal variation of density operator (Liouville-Von Neumann equa-
tion) reads

ρ̇ = − i
h̄
[Ĥ, ρ] , (1.16)

which carries the same information in Eq. (1.1).
If the system is open things get complicated. Basically we start from the state ρSE

describing the closed system composed of the system S and the environment E and,
from Eq. (1.14), we have

ρS(t + dt) = TrE{Û(t + dt, t) ρSE(t) Û†(t + dt, t)} . (1.17)

Deriving a general analogue of Eq. (1.16) for the reduced density matrix ρS is cur-
rently an open problem, which can be solved only in special cases.

In the following we will deepen the study of a particular class of open dynamics
governed by the celebrated GKSL or Lindblad master equation (ME). First, however,
we will focus on the structure of dynamical maps borrowing the language of mea-
surement theory.

Actually a quantum system being measured is the most familiar example of open
quantum system, as we need it to interact with a detector, which plays the role of the
environment. System and detector get correlated and measurement outcomes un-
veil properties of the system, as we can see also in our basic example (see Eq. (1.8)).
Viceversa, any Markovian open quantum dynamics can be seen as the time evolu-
tion of a system under continuous monitoring performed by a "watching environ-
ment" [4].

1.3 Quantum measurement theory: projection and POVMs

We briefly review the measurement theory starting from the first ones which are
usually introduced: projective (orthogonal) measurements. Given an observable Â,
i.e. an Hermitian operator on Hilbert space of the system H, it can be decomposed
as

Â = ∑
i

ai |ai〉〈ai| = ∑
i

ai P̂i , (1.18)

with P̂i = |ai〉〈ai| orthogonal projector (P̂i P̂j = δijP̂j, ∑
i

P̂i = 1) onto the eigenspace

with eigenvalue ai. Each eigenvalue corresponds to one possible outcome of a mea-
surement. Assuming the system in state ρ, the expectation value of the measurement
of observable Â reads

Tr{ρ Â} = ∑
i

ai Tr{ρ P̂i} , (1.19)
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which means that we can obtain the outcome ai with probability pi = Tr{ρ P̂i}.
Given the outcome ai, the normalized state of the system is

ρi =
P̂i ρ P̂i

pi
. (1.20)

Despite they are the usual paradigm of measurement in many introductory text-
books, projective measurements often do not correspond to what happens in a labo-
ratory [75]. As an example, consider photodetection performed on the state |ψ〉S =

α0 |0〉 + α1 |1〉 of the electromagnetic field through a unit-efficiency detector. Stan-
dard photodetectors convert radiation into electric pulses and incoming photons
are usually destroyed. Thus, whatever the measurement outcome is, the final state
of the electromagnetic field will be |0〉. This process cannot be described through
a projective measurements scheme. Notwithstanding, as we did for the decaying
atom example, we can enlarge the system by coupling it to a probe D simulating the
detector behaviour, with initial state |χ〉E = |0〉. The interaction, ÛSE, swaps system
and environment according to

ÛSE |ψ〉S |0〉E = |0〉S |ψ〉E , ÛSE =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.21)

Then a standard projective measurement performed on D (P̂i = |i〉〈i|, i = 0, 1) does
the job and the final state of the field is the vacuum. Since we are actually interested
in the system, it is more useful to describe the process above in terms on opera-
tors acting only on the system. This can be done by projecting the evolved state in
Eq. (1.21) on the state of D

〈0|E ÛSE |ψ〉S |0〉E = M̂0 |ψ〉S , (1.22)

〈1|E ÛSE |ψ〉S |0〉E = M̂1 |ψ〉S , (1.23)

where operators M̂0 = |0〉〈0| and M̂1 = |0〉〈1| act on the system’s space and corre-
spond to zero and one detected photon respectively, with pj = 〈ψ|S M̂†

j M̂j |ψ〉S =

|αj|2, (j = 0, 1) associated probabilities. Note that, since ∑
j

pj = 1, then

∑
j

M̂†
j M̂j = 1 . (1.24)

This scheme can be used to describe any measurement process on quantum systems.
Assume the joint system-probe initial state be a product state

ρ(t0) = ρS ⊗ |0〉E〈0| . (1.25)
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Then it evolves according to Eq. (1.14) and measurements on probe are introduced
through the projectors P̂k = |k〉E〈k|

P̂k ÛSE ρS ⊗ (|0〉〈0|)E Û†
SE P̂k = M̂k ρS M̂†

k ⊗ (|k〉〈k|)E . (1.26)

The probability associated to each outcome is pk = TrS{ρS M̂†
k M̂k}, and normaliza-

tion of probability ensures that Eq. (1.24) holds.
Since operators M̂k are positive, each M̂k is said to be the POVM (Positive Operator-

Valued Measure) element associated to the outcome k of our measurement and the
set M̂k is the POVM. Given an outcome k, the state of the system reads

ρ
(k)
S =

M̂k ρS M̂†
k

pk
, (1.27)

which is the equivalent of Eq. (1.20) for POVMs. A projective measurement is a
particular case of a POVM with Hermitian rank-1 elements [17, 75].

1.4 Quantum operations

We can use the same formalism to describe a generic open quantum dynamics since,
as in the first example, the environment can be seen as a (in general complex) quan-
tum system which correlates with system S collecting information about its state,
i.e. performing a continuous monitoring on the system [4]. Again, a projective mea-
surement on the closed system’s state ρSE returns, for the reduced state ρS, the com-
bination of all the possible outcome-conditioned states of the system with probabil-
ities associated to each result as weights

ρS(t + ∆t) = ∑
k

pk ρ
(k)
S (t) = ∑

k
M̂k ρS(t) M̂†

k = TrE{Û ρS(t)⊗ (|0〉〈0|)EÛ †} , (1.28)

where ∆t the duration of interaction between system and environment and the last
identity comes from Eq. (1.26). Given a POVM, it is always possible to recover a uni-
tary matrix Û acting on system and environment, so that the last identity holds: this
important result is known as Stinespring dilation theorem. Note that we are assuming
the environment in pure state |0〉E, but this does not affect the generality of Eq. (1.28)
since we can always take a purification of the environment.

Although measurements and evolution of systems interacting with environment
can be thought as very distant concepts, the mathematical tools we use in describing
them are just the same. This unified framework is known as quantum operation for-
malism [75]. In general whenever we transform a quantum state we are performing
a quantum operation

ρ′ = E(ρ) , (1.29)
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where E is the operation or map, i.e. a superoperator acting on the state space asso-
ciated with the system. An operation is a well-defined physical map if the following
three requirements are fulfilled:

1. E is trace preserving, i.e. Tr{E(ρ)} = 1 ;

2. E is convex-linear, i.e. E(∑
i

pi ρi) = ∑
i

pi E(ρi)

3. E is completely positive, i.e. for any extension of system’s Hilbert space H =

HS ⊗HE, the map E ⊗ 1E is positive.

The map must transform a density matrix into a new one, so the first assumption
implies the conservation of probability. We already assumed the second one in
Eq. (1.14): the components of statistical mixture evolve independently of each other.
Finally, the third requirement corresponds to the statement that if the system is cou-
pled to another one which does not evolve, any density matrix describing the two
systems must evolve into another well defined density matrix [76].

These three requirements are equivalent to the following definition of quantum
map

E(ρ) = ∑
k

K̂kρK̂†
k , ∑

k
K̂†

k K̂k = 1 , (1.30)

which is known as Kraus representation of map E , where the K̂k are linear opera-
tors acting on the system’s Hilbert space. Note that this expression matches with
Eq. (1.28). Here POVM elements are replaced by Kraus operators {K̂k}

K̂k = E〈k| Û |0〉E (1.31)

where Û is the unitary operator describing the interaction between system and envi-
ronment. If only one Kraus operator is sufficient for describing the action of a map,
for completeness relation in Eq. (1.30), it turns out that this operator must be unitary.
Thus the quantum operation framework encompasses both open and closed system
dynamics.

1.5 Memoryless quantum map: GKSL master equation

Armed with tools of quantum operation formalism, we finally come back to the
problem of finding a closed form of master equation for open quantum systems. We
assume system and environment in product state at initial time t0 (Eq. (1.25)) and
the evolution of reduced density matrix of the system ρ (from here the label S will
be dropped when not necessary) reads

ρ(t) = Φ(t, t0)ρ(t0) . (1.32)
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The evolution of a closed system is unitary and memoryless in terms of Eq. (1.4).
We now relax the unitary constraint but we keep the Markov property, which in the
quantum map formalism takes the form

Φ(t, t0) = Φ(t, t1) Φ(t1, t0) , t0 < t1 < t. (1.33)

Thus, under these hypotheses, we have

ρ(t + dt) = Φ(t + dt, t) ρ(t) = ∑
k

K̂k ρ(t) K̂†
k , (1.34)

where dependences of Kraus operators on time are omitted. We also require that the
analogous of Eq. (1.6) for maps holds

Φ(t + dt, t) = I + Gdt , (1.35)

where I is the identity map and G is a quantum map that in general depends on
time. We take the following expansion of Kraus operators in time

K̂k = K̂(0)
k + K̂(1)

k dt +O(dt2) . (1.36)

According to Eq. (1.35), for dt = 0 the map reduces to the identity map I(ρ) = 1 ρ 1,
thus only one of the Kraus operators must have the identity as zero-th order compo-
nent (we choose K̂(0)

0 ), and K̂(0)
k = 0 if k 6= 0. This condition unveils that expansion

in Eq. (1.36) is not correct for describing open systems, since contributions of K̂k 6=0

are ∝ dt2 and the map reduces to only one Kraus operator, K̂0 ρ K̂†
0 (K̂†

0 K̂0 = 1) up
to the first-order in dt, i.e. the evolution must be unitary. Since the map depends
quadratically on Kraus operators, we take the

√
dt-expansion

K̂k = K̂(0)
k + K̂(1)

k

√
dt + K̂(2)

k dt +O(dt2) . (1.37)

Constraint on K̂(0)
0 still holds and, in addition, we have K̂(1)

0 = 0 because at lower
order there should be no terms ∝

√
dt (cf. Eq. (1.35)). Plugging Eq. (1.36) in Eq. (1.34)

(we omit the time dependence of ρ) we get

∑
k

K̂k ρ K̂†
k = ρ + K̂(2)

0 ρ dt + ρK̂(2) †
0 dt + ∑

k 6=0
K̂(1)

k ρ K̂(1) †
k dt , (1.38)

which leads to the finite-difference equation

dρ

dt
= Â ρ + ρ Â† + ∑

k
L̂k ρ L̂†

k , (1.39)

where for the sake of clarity we replaced K̂(2)
0 by Â and K̂(1)

k by L̂k. In terms of the
hermitian and anti-hermitian parts of Â, K̂ = 1

2 (Â + Â†) and −i Ĥ = 1
2 (Â − Â†)
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respectively, we get

dρ

dt
= −i[Ĥ, ρ] + {K̂, ρ}+ ∑

k
L̂k ρ L̂†

k . (1.40)

Due to the completeness relation Eq. (1.30)

∑
k

K̂†
k K̂k = 1 + ∑

k
L̂†

k L̂k dt + 2K̂ dt ⇒ K̂ = −1
2

L̂†
k L̂k , (1.41)

we finally end up with the GKSL or Lindlad master equation

ρ̇ = −i[Ĥ, ρ] + ∑
k

(
L̂k ρ L̂†

k −
1
2
{L̂†

k L̂k, ρ}
)

. (1.42)

The Lindblad master equation is the most general way to describe the evolution of a
density matrix under the Markov hypothesis.
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Chapter 2

Memoryless Collision models and
stochastic evolution

Si può fare con il collisionale.

"It can be done using collision models."

Francesco Ciccarello

Quantum Collision Models for open quantum systems were first introduced in [77]
and have been a recurrent subject in the past 50 years, within the context of weak
measurements theory [26], non-Markovian quantum dynamics [78] and, with a wide
variety of applications, in quantum thermodynamics [41]. The basic idea is to de-
scribe the interaction between a quantum system and its environment as resulting
from repeated interactions with ancillary systems (probes) which jointly embody
the environment. So far collision models have been mainly intended as toy mod-
els enabling to tackle conceptual problems in open quantum systems theory, which
would be most probably intractable with standard microscopic models. Notwith-
standing, even in the case of Markovian dynamics, the collision model description
often turns out to be a powerful and advantageous tool to work out MEs in a simpler
way compared to traditional methods [3]. On the other hand, the repeated interac-
tion pattern allows a deeper understanding of interesting phenomena occurring in
optical systems. In the first part of this chapter we will review the formalism of
memoryless collision models considering an abstract model in which system and
environment are unspecified. The goal will be the full derivation of the Lindblad
ME (cf. Eq. (1.42)) under minimal hypotheses. The model described in the first part
provides theoretical foundation of applications in Chapter 4. The second part will
be devoted to the study of conditioned evolution of quantum states and formulation
of stochastic Schrödinger equation for photon counting within the collision model
formalism. This result will allow us to introduce and discuss the thermodynamic
formalism of quantum trajectories and applications in the next chapters.
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FIGURE 2.1: Basic memoryless collision model. The system (blue ball)
interacts with the environment composed of a collection of ancillae
(yellow balls) sharing a common state. (a): Conditions 2.1: ancil-
lae are uncorrelated (1) and non-interacting (2); each ancilla interacts
with the system only once, then it is discarded (3). Additionally, sys-
tem and bath are initially uncorrelated (0). (b): Sketch of a memory-
less collision model. Top: the n − 1-th collision between S and an-
cilla. After interacting (bottom) they are disentangled and ancilla is
discarded. Then the system interacts with the next ancilla and cycle

repeats.

2.1 Review of Collision Models

The main idea underpinning collision models can be summarized in few lines: a
quantum system S interacts with an environment (or bath) E composed of a large
collection of identical probes (ancillae) in a common initial state η. The system
evolves through a sequence of pairwise interactions with each probe, we call col-
lisions. Although the model looks quite simple, it can describe a wide variety of
complex dynamics depending on the assumptions we make about the form of the
interaction and the dynamics of the probes.

We will consider the following three minimal assumptions (see Fig. 2.1):

1. probes are uncorrelated, i.e. the initial state of the bath is (η ⊗ η ⊗ ...);

2. probes do not interact with each other;

3. each probe is discarded after the interaction with the system and is replaced
with a fresh one before the next collision.

As zeroth assumption we also have Eq. (1.25), which in this context reads

σ0 = ρ0 ⊗ (η ⊗ η ⊗ ...) , (2.1)

where subscript 0 indicates the initial time, σ the joint system-environment state and
ρ0 is the state of S.
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We now demonstrate that these assumptions imply the system undergoes a Marko-
vian dynamics, thus we can derive a ME in Lindblad form in order to describe the
dynamics of the system.

Each collision is a unitary transform Ûn involving system and probe for a time
∆t, generated by the global Hamiltonian

Ĥn = ĤS + V̂S n , (2.2)

where ĤS = ω0 ĥS is the free Hamiltonian of the system at the characteristic fre-
quency ω0 while V̂S n = g v̂S n couples the system and the n-th ancilla at the charac-
teristic frequency g. After n collisions, according to assumptions 2.1, the state of the
system will read

ρn = TrB{Ûn...Û1 σ0 Û†
1 ...Û†

n} = TrBn{Ûn ρn−1 η Û†
n} , (2.3)

which, in terms of the completely positive map

E [ρ] = TrBn{Ûn ρ η Û†
n} (2.4)

can be expressed as

ρn = E [ρn−1] = En[ρ0] . (2.5)

Note that the last identity is a discrete version of the semigroup property in Eq. (1.4).
Thus a collision model under hypotheses 2.1 returns a Markovian dynamics. We
expect this dynamics to be governed by a Lindblad ME in the continuous time limit.

For small ∆t and assuming ω0 � g we expand the collision unitary as (from now
on we take h̄ = 1)

Ûn = e−iĤn∆t = 1− i(ĤS + V̂S n)∆t− V̂2
S n
2

∆t2 +O(∆t3) , (2.6)

and the variation of the state per unit step reads

∆ρn = −i[ĤS, ρn]∆t− i TrBn{[V̂S n, ρ η]}∆t + i TrBn

{
V̂S n ρη V̂S n −

1
2
[V̂2

S n, ρ η]+

}
∆t2 ,

(2.7)

where [ , ]+ denotes the anti-commutator parenthesis. Plugging now the definition
of corrected system Hamiltonian

Ĥ′S = ĤS + gTrBn{v̂S nη} , (2.8)
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and dissipator

D[ρ] = Γ ∑
i j

(
L̂ij ρ L̂†

ij −
1
2
[L̂†

ij L̂ij, ρ]+

)
, (2.9)

with L̂ij =
√

pj〈i|v̂S n|j〉, being pj the classical probabilities defining the state of
probes (η = ∑

k
pk|k〉〈k|), and Γ = g2∆t, we have the finite differences master equa-

tion

∆ρn

∆t
= −i [Ĥ′S, ρn] +D[ρn] . (2.10)

In the limit ∆t → 0 and g → ∞ (keeping Γ positive and finite) we achieve the
continuous-time limit

dρ

dt
= −i [ĤS + Ĥ′S , ρ] +D[ρ] , (2.11)

which corresponds to the Lindblad ME (1.42). In general Ĥ′S can diverge as g → ∞,
but, as we will see later on, in many typical situations it is finite or zero. By the way it
represents an energy shift we can get around by renormalizing the free Hamiltonian
of the system [7]. Remarkably, note that at this point we did not make any assump-
tion on the specific system and ancilla we are considering, but the intrinsic memo-
rylessness of the collision model leads to a Lindblad ME. Therefore, conversely, any
Markovian dynamics can in principle be described through an appropriate collision
model.

The abstract model above is useful to describe how collision models work, but
in general a collisional description of open dynamics requires appropriate process-
ing of the system-environment coupling Hamiltonian, returning the discretized cou-
pling Hamiltonian V̂S n from a system-bath microscopic model. In chapter 4 the col-
lision model description will be decisive in understanding the microscopic physical
mechanisms underlying a wide variety of phenomena of practical interest in quan-
tum optics.

2.2 Quantum trajectories

In Chapter 1 we have shown how any open dynamics can be described as the evolu-
tion of a system under continuous measurement performed by another one we call
environment. The key step from Eq. (1.27) and (1.28) consists in averaging over all
the possible outcomes k of the POVM, yielding an unconditioned evolution for the
open system’s state. Here we step back to conditioned states ρ(k). Conditioned states
are curious object whose dynamics exhibits the double face of quantum theory: a
continuous evolution ruled by Shrödinger’s equation (Eq. (1.1)) punctuated by sud-
den jumps corresponding to instantaneous, discontinuous change of state whenever
the system is observed, i.e. a measurement is performed. Within collision model
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framework, we will formulate here the equation governing the evolution of condi-
tioned states, which, predictably, will feature an explicit measurement-depending
term. Thus we expect to find a stochastic master equation (SME). Differently with
respect to what we have seen in the previous section, we will now read the state of
each ancilla through a projective measurement before throwing it away. Without
loss of generality we will assume the system in a pure initial state. This entitles us
to use kets instead of density operators in the following. SMEs solutions are pat-
terns in space-state of the system usually named quantum trajectories [4, 26]. On the
other hand, there is a one-to-one correspondence between each jump occurring in
system evolution and outcomes of projective measurement on ancillae, therefore in
some literature the complementar point of view is preferred, and quantum trajec-
tory takes the meaning of quantum jump trajectory (see Fig. 2.2), i.e. the time record
of such outcomes (see e.g. [79] for photodetection trajectories). In this work we will
refer mainly to this latter definition of trajectories if not otherwise specified.

2.2.1 Stochastic Schrödinger equation for photon counting

Consider the abstract collision model presented in Sec. 2.1, and the unitary-collision
expansion in Eq. (2.6) which we report here for convenience

Ûn = 1− i (ω0 ĥS + g v̂Sn) ∆t− g2

2
v̂2

Sn ∆t2 +O(∆t3) . (2.12)

Since g =

√
Γ
∆t

we have

Ûn = 1− i ω0 ĥS∆t +
√

Γ ∆t v̂Sn −
Γ
2

v̂2
Sn ∆t +O(∆t3) . (2.13)

At time t, before the collision, system and environment are in product state |ψ〉t =
|ψS〉 ⊗ |0E〉 (cf. Eq. (1.25)), thus after the collision the joint state reads

|ψ〉t+∆t = (1− i ω0 ĥS∆t) |ψS〉 |0E〉+
√

Γ ∆tv̂Sn |ψS〉 |0E〉 −
Γ
2

v̂2
Sn ∆t |ψS〉 |0E〉 .

(2.14)

We are now at the point in which we must choose what kind of measurement we
want to describe, i.e. onto which basis ancilla’s state is going to be projected after
collision. We call this operation defining an unraveling [17, 26, 80]. In particular, for
the purpose of this work, we aim to describe photoncounting measurements, thus
we will project the state of the ancilla onto the z basis {|0〉 , |1〉}E. The jump operators
is then defined as L̂ = 〈1|v̂Sn|0〉 (we assume, for simplicity 〈j|v̂Sn|j〉 = 0 [26]), and
we recast Eq. (2.14) as

|ψ〉t+∆t − |ψ〉t =
√

Γ∆t L̂ |ψS〉 |1E〉 − i ∆t Ĥeff |ψS〉 |0E〉 , (2.15)



26 Chapter 2. Memoryless Collision models and stochastic evolution

0 2 4 6 8 10

FIGURE 2.2: Population Pe of the excited state of a coherently driven
two-level system with damping. (a) Stochastic evolution of popu-
lation. The clearly visible Rabi oscillations are broken by abrupt
changes (jumps) in populations. On the bottom the correspondent
quantum jump trajectory. (b) Averaged continuous evolution. The
continuous evolution (black curve) is recovered by averaging over a
large number of trajectories. Grayscale curves correspond to averages

over an increasing number of trajectories.

where we defined the non-Hermitian effective Hamiltonian Ĥeff = ω0 ĥS −
i Γ
2

L̂† L̂.
In the equation above are clearly identifiable the two kinds of evolution the sys-
tem undergoes: note that the first term, which describes changes in ancilla’s state,
i.e. emission, is ∝

√
∆t. The latter (∝ ∆t) keeps the anicilla’s state unchanged, result-

ing in no emission and free evolution of the system. If the measurement outcome is
0, then the state of the system will read

|ψS〉(0)t+∆t =

(
1− iĤeff∆t

)
|ψS〉t√

〈ψS| 1 + i
(

Ĥ†
eff − Ĥeff

)
∆t |ψS〉

'
(

1− iĤeff∆t +
Γ
2
〈L̂† L̂〉∆t

)
|ψS〉t

(2.16)

where the last approximation holds in the limit of small collision times. The result is
a small perturbative change of the state of the system (continuous evolution). Con-
versely, if the measurement returns 1 we have an abrupt change

|ψS〉(1)t+∆t =
L̂ |ψS〉t√
〈L̂† L̂〉

. (2.17)

Combining the last two results, the Stochastic Schrödinger equation (SSE) is finally
achieved

|ψS〉t+∆t − |ψS〉t =
(
−iĤeff +

Γ
2
〈L̂† L̂〉

)
|ψS〉t ∆t +

 L̂√
〈L̂† L̂〉

− 1

 |ψS〉t δN (2.18)

where δN is a stochastic variable (noise) giving the result of measurement on the
ancilla. In the case of photon counting we deal with Poissonian noise, i.e. (δN)2 =
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δN and 〈δN〉 = 〈L̂† L̂〉Γ∆t. A quantum jump trajectory is then the time record of
the values the stochastic variable δN takes during the evolution, and represents in
all respect a signature of the interaction between system and environment probes.
Averaging over the stochastic process corresponds to tracing over the environment
and lead us to the deterministic evolution Eq. (1.42) [59] (see Fig. 2.2-b). This is the
working principle of quantum jump MonteCarlo method for solving the dynamics
of open quantum systems [4].





29

Chapter 3

Thermodynamics of quantum
trajectories

"Why do we deal with the subject now at all? Why
not wait a half a year, or a year, until we know the
mathematics of probability better, and we learn a
little quantum mechanics, and then we can do it in
a more fundamental way? The answer is that it is a
difficult subject, and the best way to learn is to do it
slowly!"

Richard Feynman, Lectures on Physics 1, 39-1

According to classical thermodynamics, the observed macroscopical state of a sys-
tem is the result of the coexistence of microscopic configurations (microstates) which
determine the value of measurable quantities (observables). In terms of generalized
coordinates, each state is represented by a point σ in the phase space Σ and the
outcome of a measurement of a generic observable f is the well-known ensemble
average [81]

〈 f 〉 =
∫

Σ
d σ f (σ)∆(σ) , (3.1)

where ∆(σ) is a normalized density function in phase space. The values of observ-
able quantities shared by the overwhelming majority of available microstates result
in the typical state of system [9], whereas atypical configurations determine fluctua-
tions. Even in the simplest scenario, typical and often trivial microstates can coexist
together with configurations having features dramatically far from typicality. From
Eq. (3.1) one can straightforwardly note that a change of system capable of turning
rare events typical requires changes in ∆(σ) which definitly depend on extensive
parameters of the system. Note that in principle this may involve deep changes in
the dynamics of microscopic components of the system (note that the expression of
∆(σ) determines the statistical ensemble consistent with the observed behaviour of
the systems [81]). In recent works [82] it has been shown that quantum jump tra-
jectories define a statistical ensemble for the emission dynamics just like microstates
do for classical thermodynamics. Statistics of trajectories and modifications of the
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dynamics enhancing atypical events, i.e. changing the density in phase space, have
been studied in the context of Large Deviation theory [10, 83]. In this chapter we
present the fundamentals of large deviation theory with the aim to introduce the
tools that we will employ to study photon counting in Chapter 5. An comprehen-
sive discussion of large deviation theory is out of the scope of this dissertation. Here
we provide a self-consistent "practical" picture. Further details about large deviation
theory can be found in Refs. [62, 63, 64].

3.1 Elements of Large Deviation theory

Consider a stochastic discrete variable X and the empirical mean over a sample of
size N

〈X〉N =
1
N

N

∑
n=0

Xn . (3.2)

In the limit of large N the behaviour of the empirical mean is described by the Law
of Large Numbers. The Central Limit Theorem rules small fluctuations around the
asymptotic value. The Large Deviation Theory instead describes large fluctuations
and rare events and can be seen as a generalization of the Central Limit Theorem. In
general, let us consider the stochastic variable

AN =
1
N

N

∑
n=0

f (Xn) , (3.3)

with f a function of the random variable. Let P(AN ∈ B) be the probability that the
variable AN takes a value in the set B. The probability P is said to satisfy a large
deviation principle with rate ϕB if the following limit

lim
N→∞

− 1
N

log P(AN ∈ B) = ϕB (3.4)

exists or, in other words, if

P(AN ∈ B) −−−→
N→∞

e−NϕB . (3.5)

For continuous stochastic variables one just needs to consider probability densities
p(AN = b)db = P(AN ∈ [b, b + db]), and in the large N limit

lim
N→∞

− 1
N

log P(AN ∈ [b, b + db]) = − lim
N→∞

(
1
N

log p(AN = b) + log(db)
)
= ϕ(b) ,

(3.6)

where we assumed db 6= 0.
Rate functions (also called Cramér functions) encode all the information about the

behaviour of the stochastic process AN at large N. In particular for values of b such
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that ϕ(b) 6= 0 the probabilities decrease exponentially as N grows, whereas they
survive as ϕ approaches zero, corresponding to a certain value b̃. We call the latter
typical values, and untypical or rare the former. Thus large deviation theory can be
defined, in practice, as a set of efficient tools to establish if a large deviation principle
holds for a given stochastic process and to evaluate the corresponding rate function.

Deriving rate functions through direct calculation of limit in Eq. (3.6) in general
may be non-trivial. We next introduce a fundamental result due to Gärtner and Ellis
that will be useful in practical situations and allow to circumvent the problem.

Theorem 1 (Gärtner-Ellis)
Let AN be a random variable indexed by positive integers N and let us define the scaled

cumulant generating function of AN as

θ(s) = lim
N→∞

1
N

log〈eNsAN 〉 , (3.7)

with s ∈ R and

〈eNsAN 〉 =
∫

R
da eNsa p(AN = a) , (3.8)

the moment generating function of the variable AN . If θ(s) exists and is differentiable ∀s ∈
R, then it is possible to formulate a large deviation principle for p(AN) as

p(AN) ' e−Nϕ(a) (3.9)

with the rate function given by the Legendre-Fenchel transform

ϕ(a) = sup
s∈R

{sa− θ(s)} . (3.10)

The Gärtner-Ellis Theorem includes two fundamental results: it characterizes the
asymptotic behaviour of scaled cumulant generating function through the function
θ(s). On the other hand, it provides a way to calculate the rate ϕ(a). Another re-
markable consequence is that, since rate functions are Legendre-Fenchel transforms,
they are convex functions and, by inversion, θ(s)= sup

a
{sa− ϕ(a)}. This implies that

rate functions are always non-negative since θ(s = 0)=0 by definition. On the other
hand, this was expected since a negative value of ϕ leads to a diverging probability.

In the case that the rate function has a global minimum a0, i.e. ϕ(a0) = 0, the
expansion around a0 up to the 2nd order in a reads

ϕ(a) ' 1
2

∂2
a ϕ
∣∣∣

a0

(a− a0)
2 , (3.11)

hence the probability density can be approximated as

p(AN = a) ' e−
1
2 ∂2

a ϕ|a0 (a−a0)
2

, (3.12)
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which is a form of the Central Limit theorem. This Gaussian approximation works
in a small range around the typical value, whereas adding terms to the expansion in
Eq. (3.11) allows to encompass more details about the behaviour of the distribution
p(a) far from a0, up to the tails (hence the name large deviation).

3.2 Large deviation theory of Markov processes

In this section we show the application of large deviation theory to homogeneous
Markov processes (see Box 1).This example is paradigmatic since it marks the start-
ing point for applying large deviations to quantum trajectories in quantum Marko-
vian dynamics.

Box 1: Markov processes: definitions and notation

A generic stochastic process {Xi} (with Xi belonging to a finite set) is called stationary if

p(X1 = x1, X2 = x2, ..., Xn = xn) = p(X1+m = x1, X2+m = x2, ..., Xn+m = xn) ∀n, m , (3.13)

i.e. the joint probability is invariant under arbitrary index shifts. Xi takes the name of state
of the process at time n. The process is a Markov process if, for n ∈N,

p(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) = p(Xn+1 = xn+1|Xn = xn) , (3.14)

thus the joint probability distribution reads

p(x1, x2, ..., xn) = p(x1)p(x2|x1)...p(xn|xn−1) , (3.15)

which is the analogous of property (1.4) for probabilities. A Markov process in which
p(xn+1|xn) does not depend on n is called homogeneous and is characterized only by the
initial state and a probability transition matrix P = Pij, with Pij = p(Xn+1 = i|Xn = j). A
Markov process is said to be irreducible if, starting from a state Xi, it is possible to reach
any other state in a finite number of steps. If Pii 6= 0∀i, i.e. the minimum path from Xi to
itself has only one step, the Markov process is called aperiodic. Finally it can be proved that
a Markov process which is irreducible and aperiodic (ergodic) features a unique stationary
distribution

p(xn+1) = ∑
xn

p(xn)Pxn xn+1 . (3.16)

We denote with {Xi} the Markov process and consider the sample mean in
Eq. (3.3) with each Xi belonging to a set denoted with Λ, and f : Λ → Rd, d ≥ 1.
Hence the joint probability distribution (cf. Eq. (3.15) in Box 1) reads

p(X1, X2, ..., XN) = p(X1)
n

∏
i=2

p(Xi|Xi−1) . (3.17)
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Our goal is deriving the large deviation principle for this probability distribution.
The associated moment generating function is

〈eNsAN 〉 = ∑
{Xi}

p(X1)es· f (X1)p(X2|X1)es· f (X2)...p(XN |XN−1)es· f (XN) . (3.18)

Defining the biased probabilities

ps(X1) := ps(X1)es· f (X1) (3.19)

ps(Xi|Xi−1) := p(Xi|Xi−1)es· f (Xi) , (3.20)

and plugging them into Eq. (3.18) we have

〈eNsAN 〉 = ∑
{Xi}

ps(X1)ps(X2|X1)...ps(XN |XN−1) . (3.21)

This expression can be further simplified as follows. Consider the simple case of a
single step in a Markov process with only two distinct states, i.e. Λ = {a, b}. Thus
in this case the moment generating function reads

∑
X1,X2=a,b

ps(X1)ps(X2|X1) = ps(a)ps(a|a) + ps(a)ps(b|a) + ps(b)ps(a|b) + ps(b)ps(b|b)

= ∑
j∈Λ

(Ps · ps)j . (3.22)

Where (Ps)ji = ps(j|i) are the elements of the transition matrix and we defined the
probability vector (ps)i = ps(X1 = i). The extension to N steps yields

〈eNsAN 〉 = ∑
j∈Λ

(PN−1
s · ps)j . (3.23)

The asymptotic behaviour of moment generating function depends on the behaviour
of transition matrix PN

s as N → ∞. If the Markov process is ergodic, then there is
a unique stationary probability distribution and the transition matrix, according to
Perron-Frobenius theorem [84], has a unique dominant eigenvalue Θ(Ps). For large
N the contribution of Θ(PN) will be the most relevant, i.e. 〈eNsAN 〉 ' Θ(Ps)

N and the
smaller eigenvalues, together with the related components of ps, will be neglected.
Thus, according to Eq. (3.7)

θ(s) = log Θ(Ps) , (3.24)

hence the rate function reads (cf. Eq. (3.10))

ϕ(k) = sup
s
{k · s− log Θ(Ps)} . (3.25)

The above provides a general recipe to work out rate functions for ergodic Markov
processes. For completeness we conclude this section by commenting also the cases
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in which the process is not ergodic. If the Markov process is not irreducible we
have more than one stationary distribution and a rate function exists but strictly
depends on the initial state. In terms of transition matrix elements, there are several
competing eigenvalues. Finally, if the process is periodic there are no stationary
distributions and the large deviation principle in the form above does not hold [63].

3.3 Large deviations in open quantum systems

The formalism in the previous sections can be employed mutatis mutandis for de-
scribing quantum Markovian dynamics. We will assume that the considered Markov
processes are ergodic or at least aperiodic. The main goal of this section is to provide
a non-comprehensive but essential explanation of the way in which large deviation
theory tools can be used to infer long-time properties of the unconditional dynamics
ρ(t) and the respective quantum jump trajectories.

Quantum jump operators L̂j in Eqs. (1.42) and (2.18) describe non-unitary relax-
ation processes. Here we call event the action of a specific jump operator on the
system. In these terms a quantum trajectory is a collection of time-ordered events.
In practical problems we will often focus on events due to a single jump operator,
but in general we have the freedom of choosing which subset of the jump operators
generates an event and which do not. Let K be the number of such events after time
t and ρ(K)(t) the reduced density matrix of the system obtained by projecting the full
density operator ρS onto the subspace with K recorded events [60], i.e.

ρS(t) = ∑
K

ρ(K)(t) . (3.26)

Thus the probability to observe K events after time t reads

Pt(K) = Tr{ρ(K)(t)} . (3.27)

Our aim is to derive a large deviation principle for this probability distribution. At
long times the moment generating function reads (cf. Eq. (3.7))

Zt(s) =
∞

∑
K=0

Pt(K)e−sK ' etθ(s) . (3.28)

We will refer to the real variable s as the conjugate field of K. Thus the Gärtner-Ellis
theorem implies that

Pt(K) ' etϕ(K/t) (3.29)

with the large deviation function given by ϕ(k) = sup
s
{ks − θ(s)}. So far, this is

quiet similar to the procedure shown in the previous section. What remains to do is
finding the θ(s). Here, a problem arises since we are dealing with the evolution of
the conditioned density operator ρ(K), which obeys the hierarchical master equation
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(time dependences are omitted)

ρ̇(K) = L0 ρ(K) + L+1 ρ(K−1) + L−1 ρ(K+1) , (3.30)

where we decomposed the full generator L into three different contributions, the
first one responsible for the continuous evolution (L0), and the other two for the
jump evolution, resulting in the addition (L+1) and the subtraction (L−1) of an event
to the total number K. The Laplace transform

ρs = ∑
K

ρ(K)e−sK (3.31)

yields

ρ̇s =
(
L0 + e−sL+1 + esL−1

)
ρs = Ls ρs . (3.32)

We call ρs the tilted density matrix and Ls the tilted Lindblad (or Liouvillian) superop-
erator. In the reminder of this dissertation, we will not consider incoherent driving
processes, thus L+1 will be always zero. Thus, for example, if we have NJ jump op-
erators in our dynamics and we count only jumps due to operator L̂1, the resulting
ME will take the form

Lsρ = −i[Ĥ, s] +
NJ

∑
µ=1

(
L̂µρL̂†

µ −
1
2
{L̂†

µ L̂µ, ρ}
)
+ (e−s − 1)L̂1ρL̂†

1 . (3.33)

This is very similar to the standard one (cf. Eq. (1.42)), except for the last term. When
s 6= 0 Eq. (3.32) indeed does not correspond to a well-defined physical dynamics
since Ls is not trace preserving. However, as will be clear shortly, it provides the
solution to our problem. We indeed note that Eq. (3.28) can be rearranged as

Zt(s) = Tr

{
∞

∑
K=0

ρ(K)(t)e−sK

}
= Tr {ρs(t)} = Tr

{
etLs ρs(0)

}
. (3.34)

The last identity is the equivalent of Eq. (3.23), therefore θ(s) is the largest eigenvalue
of Ls. Once θ(s) is known, we have direct access to the full counting statistics, i.e. all
the scaled cumulants and, consequently, the moments of the distribution [85]. In
particular the events’ occurrence rate, also called average activity [10], reads

∂sθ(s) =
1
t

1
Zt(s)

∑
K
(−K)Pt(K)e−sK = −〈K〉s

t
. (3.35)

Analogously, the 2nd order derivative of θ(s) corresponds to the scaled variance

∂2
s θ(s) =

1
t

(
∑K K2Pt(K)e−sK) Zt(s)− (∑K KPt(K)e−sK)2

Z2
t (s)

=
1
t
(〈K2〉s − 〈K〉2s ) . (3.36)

Higher-order cumulants are obtained likewise.
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3.4 From rare to typical: the Quantum Doob transform

In the previous section we introduced large deviation functions ϕ and θ and the way
in which they characterize the behaviour of average quantities defined on a quantum
trajectories ensemble. In fact we formulated a proper thermodynamics of counting
process [82] in which the counting variable K is a macroscopic observable while
single trajectories the microstates. The moment generating function takes the role
of a partition function while ϕ and θ embody entropy and free energy, respectively
[10]. As promised in the Introduction, we next consider the problem of enhancing
the probabilities of rare events. We will refer to this task as biasing the trajectories.
Here we summarize the main theoretical results that will be used in Chapter 5. A
comprehensive study can be found in [73].

Setting s = 0, Eq. (3.28) is a simple sum of probabilities. For s 6= 0 the exponential
bias breaks the normalization and each term of the sum Pt(K)e−sK can no longer be
considered as a proper probability. Notwithstanding, we can fix this issue by defing

Ps
t (K) =

e−sKPt(K)
Zt(s)

. (3.37)

Now each Ps
t (K) is a well defined probability. We call them biased probabilities. For

s > 0 these probabilities enhance the occurrence of trajectories featuring smaller-
than-typical values of K, while for s < 0, instead, larger values of K are favored [61,
86].

A question naturally arises: what kind of dynamics can produce an ensemble of
trajectories such that the counting statistics is that described by the biased distribu-
tion Pt(K)? Also, is there a way to reproduce this dynamics from the information we
have?

The answer to the last question is yes and the solution is the quantum Doob trans-
form, which turns the original dynamics into a new one making rare trajectories typ-
ical. Basically, for a given value of s, just like dividing by Zt(s) "adjusts" the biased
probabilities so quantum Doob transform fixes the tilted Liouvillian superoperator
defined in Eq. (3.32), which returns a well-defined ME. The price to pay is a dramatic
change of the original Hamiltonian and jump operators.

Assume now that we are interested in the statistics described by the distribution
Ps=z

t (K) and that we are counting events due to the jump operators belonging to the
subset J (dimJ ≤ NJ). Then the Doob transformed Lindblad ME reads [73]

L̃(z)ρ =− i[H̃(z), ρ] +
NJ

∑
µ=1

(
L̃(z)

µ ρL̃(z)†
µ − 1

2
{L̃(z)†

µ L̃(z)
µ , ρ}

)
, (3.38)
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with

L̃(z)
µ = e

1
2 fµ(z)`1/2

z L̂µ`
−1/2
z (3.39)

H̃z =
1
2
`1/2

z

(
H − i

2

NJ

∑
µ=1

L̂†
µ L̂µ

)
`−1/2

z + H.c. , (3.40)

the new jump and Hamiltonian operator. Here, fµ(z) = −z if L̂µ ∈ J and zero
otherwise while `z is the left eigenmatrix of Ls=z, i.e. the solution of the eigenvalue
equation

L∗z [`z] = θ(z)`z , (3.41)

where L∗ is the dual of L. The dynamics described by L̃0,z is completely positive
and trace preserving whose trajectory statistics is fully described by the moments
given by the derivatives of θ(s) for s = z.

Quantum Doob transform is the formal solution to our problem. Nevertheless a
clear microscopic interpretation of the changes affecting the original system evolu-
tion under this operation is still difficult. Indeed, even for small systems analytical
expressions of θ(s) and `s may be demanding to work out. In Chapter 5, by ex-
ploiting quantum collision models, we will extend the theory of biased quantum
trajectories from Lindblad-like dynamics to sequences of arbitrary dynamical maps,
providing at once a transparent physical interpretation. In particular we will show
how, from a microscopic viewpoint and for short collision times, the quantum Doob
transform corresponds to adding extra collisions which enforce the system to follow
a desired rare trajectory.
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Chapter 4

Collisional picture of quantum
optics with multi-local couplings

In this chapter we will apply the collision model framework on particular quantum
optical systems of many emitters (atoms or resonators), each generally interacting
with an electromagnetic field at many coupling points (“giant” emitters, see Box 2).
We will derive a Lindblad master equation (ME) of a set of giant atoms coupled
to a (generally chiral) waveguide field in an arbitrary white-noise Gaussian state,
which condenses into a single equation and extends a variety of quantum optics
and waveguide-QED MEs. In Sec. 4.9 we will study in detail the mechanisms un-
derpinning the rise of DF subspaces in such systems, showing the predictive power
of collision models in a problem of practical interest. More details are available in
our recent publications [87, 88].

4.1 Introduction

We present a general theory of the collision model-based description of quantum
optics in the case of many emitters. We allow each of these to generally couple to the
field at many coupling points so as to encompass systems such as the so called “gi-
ant” atoms , or bosonic oscillators/atomic ensembles coupled to 1D fields in looped
geometries [89, 90] as explicitly discussed in Ref. [91]. The framework is first for-
mulated by considering a unidirectional field (just like in standard input-output for-
malism [92]) and then extended to a bidirectional field. While both the regimes of

7

field time bins

emitter(s)

collision

nn+1n+2n+3 n�1 n�2 n�3

FIGURE 4.1: Basic collision-model description of the emitter-field dy-
namics. The field is decomposed into non-interacting time bins trav-
eling at constant speed. One at a time, these undergo a short two-
body interaction with the emitter (collision). In the regime of neg-
ligible time delays, a similar conveyor-belt picture holds for many
emitters each of which can be giant (i.e., interacting with the field at

many coupling points).
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negligible and long time delays are discussed, our main focus is the former. In the
latter case, it will be proven that each collision can be effectively represented as a
collective coupling of all the emitters with one field time bin (playing the role of the
ancilla in the abstract collision model) plus an internal coherent dipole-dipole in-
teraction between the emitters.The latter is described by a Hamiltonian originating
from the intrinsic system’s chirality (in the conveyor-belt picture of Fig. 1 time bins
travel from left to right).

Box 2: Giant atoms [49, 54]

Small Atom

Giant Atom

x
1

Q

Q

x
1

x
2

λ

λ

Giant atom
(from Kannan et al. Nature 583,775-

779(2020)) [93]

Natural atoms are considered pointlike when they in-
teract with optical frequencies. Indeed according to
the dipole approximation

r � λ

where r represents the size of the atom and lambda
the wavelength of the field (see figure on the right).
Recently in circuit [56] and waveguide QED exper-
iments [94, 46], multilevel systems (in this context
called "artificial atoms") were coupled to guided fields
at multiple points with spacing ∆x ' λ.

Although these systems, which in this context are referred as "giant atoms", have a size of the

order of the field wavelength (far from dipole approximation range), they can be treated as

dipole at each coupling point. Multiple coupling points give origin to interesting nontrivial

interference effects that can result in unexpected time evolution in system with many giant

atoms.

As will be illustrated in detail, the results in this section extend to a variety of
master equations used in waveguide QED [95, 48, 47, 49]. Moreover, we show that
the recently discovered possibility to realize decoherence-free Hamiltonians with
giant emitters [53, 91] is naturally predicted in the collisional picture, without the
need to resort to a master equation formulation.

4.2 Microscopic model

The general emitters-field microscopic model we consider is essentially the same as
that underpinning the standard input-output formalism of quantum optics [92] and
related theories such as SLH [96].

Let S be a system made out of Ne quantum “emitters” of frequency ω0 and as-
sociated ladder operators Âj, Â†

j for j = 1, ..., Ne. The nature of these operators is
left unspecified, hence in particular each emitter could be a harmonic oscillator or
a pseudo-spin. The emitters are weakly coupled to a unidirectional bosonic field
with normal-mode ladder operators b̂ω, b̂†

ω such that [b̂ω, b̂ω′ ] = [b̂†
ω, b̂†

ω′ ] = 0 and
[b̂ω, b̂†

ω′ ] = δ(ω−ω′). The jth emitter interacts with the field at Nj distinct coupling
points. For Nj = 1 we retrieve the standard local coupling and the emitter is called
“normal” [see Fig. 4.2(a)]. Instead, if Nj ≥ 2, the coupling is multi-local and the
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FIGURE 4.2: A set of (generally giant) emitters coupled to a unidi-
rectional field. (a): A normal emitter (such as 1) interacts with the
field at a single coupling point (x11 in the figure), while a giant emit-
ter has two or more coupling points (like emitters 2 and 3 here). (b):
Instead of a double index as in (a), we can use a single index ν to label
coupling points from left to right, defining for each a ladder operator
Âν. By doing so, we can incorporate the coordinate-dependent phase
factor (e.g., Â4 = e−ik0x22 Â2). Thus, formally, the system is equiva-
lent to a set of normal but not independent emitters, i.e., [Âν, Â†

ν′ ] for
ν 6= ν′ is generally non-zero (e.g., [Â1, Â†

2] = eik0(x21−x11)[Â1, Â†
2] = 0

but [Â2, Â†
4] = eik0(x22−x21)[Â2, Â†

2] 6= 0). (c): Mapping from index-
ing (b) to (a) is described by the pair of index functions j = Jν and
` = Lν. These and the inverse mapping can be represented through
the plotted diagram, where values of ν (in red) label the black dots.
The Cartesian coordinates of each dot indicate the corresponding pair
(j, `). The diagram thus encodes the coupling points topology. (d):
Implementation of the setup in (a) via a looped unidirectional waveg-

uide.

emitter is dubbed “giant” [see Figs. 4.2(a) and (d)]. The spatial coordinate of the
`th coupling point of the jth emitter is xj` (the field is along the x-axis). Under the
usual rotating-wave approximation (RWA) and assuming white coupling, the total
Hamiltonian reads (we set h̄ = 1)

Ĥ = ĤS + Ĥ f + V̂ (4.1)

ĤS =
Ne

∑
j=1

ω0 Â†
j Âj , Ĥ f =

∫
dω (ω0 + ω) b̂†

ω b̂ω , (4.2)

V̂ =
Ne

∑
j=1

Nj

∑
`=1

√
γ

2π eiω0τj`

∫
dω eiωτj` Â†

j b̂ω + H.c. , (4.3)

where all integrals run over the entire real axis compatibly with the RWA.
Here, τj` = xj`/v is the coordinate in the time domain of each coupling point

(the field dispersion law is ω = vk). Note that here ω are frequencies measured
from the emitters’ energy ω0 (i.e., detunings in fact). We also point out that each
coupling point has an associated position-dependent phase factor eiω0τj` , which can
be equally written in the space domain as eik0xj` with k0 = ω0/v.
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Instead of ω-dependent normal modes, the field can be equivalently represented
in terms of time modes with ladder operators

b̂t =
1√
2π

∫
dω b̂ωe−iωt , (4.4)

fulfilling bosonic commutation rules

[b̂t, b̂†
t′ ] = δ(t− t′), [b̂t, b̂t′ ] = [b̂†

t , b̂†
t′ ] = 0 . (4.5)

In the interaction picture with respect to Ĥ0 = ĤS + Ĥ f the ladder operators
transform as Âj→Âje−iω0t and b̂ω → b̂ωe−i(ω0+ω)t, respectively, so that the joint
emitter-field state σ now evolves according to σ̇ = −i [V̂t, σ], where

V̂t =
√

γ ∑
j,`

Â†
j eiω0τj` b̂t−τj` + H.c. (4.6)

Now, following Ref. [91], it is convenient to introduce an index ν = 1, ...,N labeling
all the coupling points from left to right, i.e., x1 < x2 < ... < xN [see Fig. 4.2(b)] or

equivalently in the time domain τ1 < τ2 < ... < τN (here N =
Ne

∑
j=1
Nj is the total

number of coupling points). For each coupling point ν, we define a corresponding
ladder operator as

Âν = Âj e−ik0xj` , (4.7)

with Âj the ladder operator of the corresponding atom and e−ik0xj` the correspond-
ing phase shift. For instance, in the case of Fig. 4.2(a): A5 = Â3e−ik0x32 = Â3e−iω0τ32 .
Formally, the mapping between (j, `) and ν is a expressed by a pair of discrete func-
tions j = Jν and ` = Lν, a diagrammatic representation of which is shown in
Fig. 4.2(c). Note that ladder operators {Âν}with different indexes do not necessarily
commute, that is [Âν, Â†

ν′ 6=ν] is generally non-zero [e.g., in Fig. 4.2(b), [A1,A†
3] = 0

but [A3,A†
5] 6= 0]. In this way the system could be thought as a set of N normal

emitters (as many as the coupling points), which yet are not independent. Their
dynamics is governed by the Hamiltonian [cf. Eq. (4.6)]

V̂t =
√

γ
N
∑
ν=1
Â†

ν b̂t−τν + H.c. (4.8)

For a bidirectional field, each normal frequency ω now has associated right-
going and left-going modes with ladder operators b̂ω and b̂′ω, respectively (b̂′ω ful-
fill commutation rules analogous to b̂ω). In the total Hamiltonian (4.1), the field and
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coupling Hamitonians are replaced by

Ĥ f =
∫

dω (ω0 + ω) (b̂†
ω b̂ω + b̂′

†
ω b̂′ω) , (4.9)

V̂ =
√

γ
2π ∑

j,`
eiω0τj`

∫
dω eiωτj` Â†

j b̂ω +

√
γ′
2π ∑

j,`
e−iω0τj`

∫
dω eiωτj` Â†

j b̂′ω + H.c. ,

(4.10)

where we allowed generally different coupling strengths to right- and left-going
modes so as to encompass chiral dynamics [97] (the previous unidirectional case
is retrieved for γ′ = 0).

Note the different phase factors in right-going terms compared to left-going ones.
A detailed derivation of the microscopic Hamiltonian is reviewed in Box 3.
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Box 3: Derivation of the microscopic Hamiltonian

Consider a one-dimensional bosonic field with normal-mode ladder operators âk and â†
k

(k ∈ R continuous wavevector), weakly and non-locally coupled to Ne quantum emitters.

Dispersion law linearization

Let ωk with ωk = ω−k be the dispersion law.
By defining b̂k = âk≥0 and b̂′k = âk<0, the free field and coupling
Hamiltonian read

Ĥ f =
∫ 0

−∞
dk ωk b̂′

†
k b̂′k +

∫ ∞

0
dk ωk b̂†

k b̂k , V̂ =
Ne

∑
j=1

Nj

∑
`=1

V̂j` .

(4.11)

with

V̂j` = Â†
j

∫ ∞

0
dk gk√

2π
eikxj` b̂k + Â†

j

∫ 0

−∞
dk gk√

2π
eikxj` b̂′k + H.c.

(4.12)

where gk is the coupling rate with mode k and xj` the coordinate of the `th coupling point
of the jth emitter. Since the coupling is weak, the emitters significantly interact only with a
narrow field’s bandwidth centered at the emitter frequency ω0 = ωk0 = ω−k0 . Accordingly
(see insert figure), the dispersion law and coupling rates are approximated as [50]

ωk≥0 ' ω0 + v(k− k0) , ωk<0 ' ω0 − v(k + k0) , (4.13)

gk≥0 ' gk0 = g , gk<0 ' g−k0 = g′ , (4.14)

with v = ∂kωk the field’s group velocity. At the same time, the limits of integration in each
integral in Eqs. (4.11) and (4.12) can be extended to the entire real axis. Next, by making the
variable change k− k0 → k in integrals featuring b̂k’s and −(k + k0)→ k in integrals featuring
b̂′k’s, (4.11) and (4.12) are turned into

Ĥ f = ω0

∫ ∞

−∞
dk (b̂†

k b̂k + b̂′
†
k b̂′k) +

∫ ∞

−∞
dk vk b̂†

k b̂k +
∫ ∞

−∞
dk vk b̂′

†
k b̂′k , (4.15)

V̂j` = Â†
j eik0xj`

∫ ∞

−∞
dk g√

2π
eikxj` b̂k + Â†

j e−ik0xj`

∫ ∞

−∞
dk g′√

2π
e−ikxj` b̂′k + H.c. , (4.16)

Note the appearance of phase factors e±ik0xj` . Finally, changing to the frequency domain ω

we end up with

Ĥ f =
∫ ∞

−∞
dω ω b̂†

ω b̂ω +
∫ ∞

−∞
dω ω b̂′

†
ω b̂′ω , (4.17)

V̂j` = Â†
j eiω0τj`

∫ ∞

−∞
dω
√

γ
2π eiωτj` b̂ω + Â†

j e−iω0τj`

∫ ∞

−∞
dω

√
γ′
2π e−iωτj` b̂′ω + H.c. , (4.18)

where τj` = xj`/v, b̂ω = b̂k/
√

v, b̂′ω = b̂′k/
√

v, γ = g2/v and γ′ = g′2/v.

Left-going time modes are defined analogously to (4.4) as

b̂′t = 1√
2π

∫
dω b̂′ω e−iωt , (4.19)

fulfilling commutation rules analogous to (4.5).
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Proceeding similarly to the unidirectional case leads to the interaction-picture
coupling Hamiltonian [cf. Eq. (4.8)]

V̂t =
√

γ
N
∑
ν=1
Â†

ν b̂t−τν +
√

γ′
N
∑
ν=1
Â′†ν b̂′t+τν + H.c. (4.20)

with Âν defined as in (4.7) and Â′ν

Â′ν = Âj eik0xj` , (4.21)

where j = Jν and ` = Lν (note however the change of phase compared to Âν).

4.3 Collision model derivation

Here we address the derivation of the collision model for a unidirectional field (the
generalization to the bidirectional case is presented in Section 4.8 ).

Two regimes stand out:

1. Negligible time delays: τN − τ1 � γ−1 (hence τN − τ1 can be replaced with
τν − τν−1 for all ν’s);

2. Non-negligible time delays: significant value of γ(τν − τν−1) for any ν (say of
the order of ∼ 0.1 or larger).

Most of the present section concerns the regime of negligible time delays (1) (our
main focus), which still occurs in the vast majority of experimental setups (see e.g. Ref. [45]
for a discussion on circuit-QED systems). Nevertheless, we begin with some general
considerations and properties common to both regimes.

Consider a time mesh defined by tn = n∆t with n = 0, 1, ... integer and ∆t the
time step (later on this will be interpreted as the collision time). In the interaction
picture the propagator Ût can be decomposed as [98]

Ût = T̂ e−i
∫ t

t0
ds V̂(s)

=
[t/∆t]

∏
n=1

Ûn , (4.22)

with V̂(s) given in Eq. (4.6) and T̂ the usual time-ordering operator, and where each
unitary Ûn describes the evolution in the time interval t ∈ [tn−1, tn]

Ûn = T̂ e−i
∫ tn

tn−1
ds V̂s . (4.23)

This discretization of the joint dynamics underpins the collision-model description
(in any regime). Throughout, we will consider a time step much shorter than the
characteristic interaction time, i.e., ∆t � γ−1. Accordingly, we apply Magnus ex-
pansion [99] and approximate (4.23) up to second order in ∆t as

Ûn ' 1− i (Ĥ(0)
n + Ĥ(1)

n )∆t− 1
2 (Ĥ

(0)
n )2∆t2 (4.24)
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with 1 the identity operator and

Ĥ(0)
n = 1

∆t

∫ tn

tn−1

ds V̂s , (4.25)

Ĥ(1)
n = i

2∆t

∫ tn

tn−1

ds
∫ s

tn−1

ds′ [V̂s′ , V̂s] (4.26)

(note that Ĥ(0)
n and Ĥ(1)

n are Hermitian).
Using (4.8), Ĥ(0)

n more explicitly reads

Ĥ(0)
n =

1
∆t

∫ tn

tn−1

ds
√

γ ∑
ν

Âν b̂†
s−τν

+ H.c. =
√

γ
∆t ∑

ν

Âν

(
1√
∆t

∫ tn−τν

tn−1−τν

ds b̂†
s

)
+ H.c. ,

(4.27)

while Ĥ(1)
n is the sum of three terms

Ĥ(1)
n = Ĥ(1)

vac + Ĥ(1)
th + Ĥ(1)

sq (4.28)

with [100]

Ĥ(1)
vac = i γ

2∆t∑
νν′
Â†

ν′Âν

∫ tn

tn−1

ds
∫ s

tn−1

ds′ [b̂s′−τν′ ,b̂
†
s−τν

] + H.c. , (4.29)

Ĥ(1)
th = i γ

2∆t ∑
νν′

[Â†
ν′ , Âν]

∫ tn

tn−1

ds
∫ s

tn−1

ds′ b̂†
s−τν

b̂s′−τν′ + H.c. , (4.30)

Ĥ(1)
sq = i γ

2∆t ∑
νν′

[Âν′ , Âν]
∫ tn

tn−1

ds
∫ s

tn−1

ds′ b̂†
s−τν

b̂†
s′−τν′

+ H.c. . (4.31)

4.4 Negligible time delays

When time delays are negligible we can coarse grain the dynamics over a time scale
defined by ∆t such that

τN − τ1 � ∆t� γ−1 , (4.32)

meaning that the overall length of the coupling points array (hence the distance
between any pair τν − τν′) is negligible compared to the time step defining the time
scale [see Fig. 4.3(a)].

We can take advantage of (4.32) and obtain approximated expressions of Ĥ(0)
n

and Ĥ(1)
n . As for Ĥ(0)

n , the lower and upper limits of integration of each integral
appearing in (4.27) can be approximated as tn−1 − τν ' tn−1 and tn − τν ' tn so that
(we set τ1 = 0 throughout)

∫ tn−τν

tn−1−τν

ds b̂s '
∫ tn

tn−1

ds b̂s =
√

∆t b̂n , (4.33)

where we defined the b̂n’s as
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FIGURE 4.3: Effective collision model for a unidirectional field in the
regimes of negligible (a) and non-negligible (b) time delays. (a): Neg-
ligible time delays, τν − τν−1 � ∆t � γ−1 for any ν. The time bin is
much larger than the distance (in the time domain) between coupling
points. Note, though, that so long as time delays are finite (no matter
how short) the behavior is different from the ideal case of colocated
coupling points: the fact that each time bin collides first with ν = 1,
then ν = 2 etc. produces the effective Hamiltonian (4.40). (b): Non-
negligible time delays, ∆t� τν− τν−1 � γ−1 for any ν. Distinct cou-
pling points collide with different, generally non-consecutive, time

bins.

b̂n = 1√
∆t

∫ tn

tn−1

dt b̂t . (4.34)

It is easily checked that the commutation rules for the b̂t’s [cf. Eq. (4.5)] entail
[b̂n, b̂†

m] = δnm and [b̂n, b̂m] = [b̂†
n, b̂†

m] = 0. Thus the b̂n’s define a discrete collection of
bosonic modes, which we will usually refer to in the remainder as “time-bin modes“
or just “time bins”.

Thus (4.27) in the present regime reduces to

Ĥ(0)
n ' V̂n =

√
γ
∆t (Â b̂†

n + H.c.) , (4.35)

where Â = ∑
ν

Âν is a collective operator of the emitters. Note the characteristic

scaling ∼ ∆t−1/2 of the emitter-(time bin) coupling strength, which is a hallmark of
collision models [7].
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Box 4: Terms Ĥ(1)
th and Ĥ(1)

sq

As anticipated in the main text, for τν − τν−1 � ∆t for all ν’s (negligible time delays) and
setting τ1 = 0, in Eqs. (4.30) and (4.31) all time delays can be neglected replacing s − τν

(s′ − τν′) with s (s′). This yields

Ĥ(1)
th '

iγ
2∆t ∑

νν′
[Âν, Â†

ν′ ]
∫ tn

tn−1

ds
∫ tn

tn−1

ds′sgn(s′−s)b̂†
s b̂s′ , (4.36)

Ĥ(1)
sq ' iγ

4∆t ∑
νν′

[Âν, Âν′ ]
∫ tn

tn−1

ds
∫ tn

tn−1

ds′sgn(s′−s)b̂†
s b̂†

s′ + H.c. , (4.37)

where we introduced the sign function to get more compact expressions. The integral in Ĥ(1)
sq

vanishes identically, due to the antisymmetry of the integrand under the exchange s � s′.
The same argument applies for a bidirectional field [cf. Eqs. (4.63)], in which case the integrals
in Ĥ(1)

sq features extra terms with the same symmetry.
To evaluate Ĥ(1)

th , we expand the field b̂t in terms of time-bin modes b̂n,k [cf. Eqs. (4.42) and
(4.43)]. This yields

Ĥth = −γ ∑
ν,ν′

[Âν, Â†
ν′ ] ∑

k 6=0

b̂†
n,k b̂n,k −

(
b̂†

n,k b̂n,0 + H.c.
)

2πk
. (4.38)

As discussed in Section 4.5, for ∆t short enough, each mode b̂n,k 6=0 is in its own vacuum state
|0〉n,k [cf. Eq. (4.44)]. Thus, effectively, Ĥth = 0.

For a bidirectional field, we will additionally expand b̂′t in terms of left-going time-bin modes

b̂′n,k [defined in full analogy with (4.43)]. This results in an expression similar to (4.38),

featuring overall terms of type ∼ β̂′†n,k β̂n′ ,k′ with β, β′ = b, b′ and where at least one among k

and k′ is non-zero. Thus Ĥ(1)
th is negligible when modes bn,k 6=0 and b′n,k 6=0 are in the vacuum

state.

In line with approximation (4.33), in Eqs. (4.30) and (4.31) all time delays can
be neglected replacing s− τν (s′ − τν′) with s (s′). Based on this, in Box 4 we show
that both Ĥ(1)

th and Ĥ(1)
sq can be neglected (note that Box 4 refers to Section 4.5 to be

discussed shortly).
Thus we are left only with the vacuum contribution Ĥ(1)

vac. To work this out, we
first note that the each double integral in Eq. (4.29) runs over the shaded triangle
sketched in Fig. 4.4. For a given pair (ν, ν′), the two-variable δ function

δ(s′ − τν′ − s + τν) = [b̂s′−τν′ ,b̂
†
s−τν

] (4.39)

is peaked on the line s′ = s− (τν − τν′). As shown in Fig. 4.4, this line falls within
the triangle for ν > ν′ and outside of it for ν < ν′ (since τν − τν′ > 0 for ν > ν′).
Hence, only terms ν > ν′ contribute to Ĥ(1)

vac and we conclude that Ĥ(1)
vac ≡ Ĥvac :

Ĥvac = i γ
2 ∑

ν>ν′

(
Â†

ν′Âν − Â†
νÂν′

)
. (4.40)

Note that this dipole-dipole Hamiltonian has a chiral origin: it arises because each
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FIGURE 4.4: Calculation of double integrals appearing in the vacuum
term (4.29). The shaded region (triangle) represents the domain of
integration. The integrand δ(s′ − s + (τν − τν′)) vanishes everywhere
except on the red line s′ = s − (τν − τν′). This line lies within the
triangular domain for ν > ν′ and outside of it for ν < ν′. Thereby, the

integral is equal to ∆t in the former case and vanishes in the latter.

time bin (see Fig. 1) collides first with coupling point ν = 1, then ν = 2 and so on.
Indeed if all the coupling points had the same location, V̂n would still be present but
Ĥvac = 0. Eq. (4.40) shows that, for delays negligible with respect to ∆t, which in
turn is much shorter than the interaction characteristic time scale γ−1, in Eq. (4.24)
we can approximate Ĥ(0)

n ' V̂n and Ĥ(1)
n ' Ĥvac. Thereby,

Ûn ' 1− i (Ĥvac + V̂n)∆t− 1
2 V̂2

n ∆t2 , (4.41)

showing that in this regime the joint emitter-field dynamics can be effectively pic-
tured as a sequence of short pairwise interactions (collisions) of duration ∆t (colli-
sion time), as sketched in Figs. 4.1 and 4.3(a). In each interaction the emitters collec-
tively couple to a fresh time bin (only one) according to the coupling Hamiltonian V̂n

and at the same time coherently interact with one another through the second-order
many-body Hamiltonian Ĥvac. Note that time bins are uncoupled from one another
and that each collides with the emitter only once in a “conveyor-belt” fashion (see
Fig. 4.1).

As said, to arrive at Eq. (4.41), all time delays τν − τν′ were neglected. We point
out that this is different from setting τν − τν′ = 0. Instead, it corresponds to per-
forming the limit τν − τν′ → 0+ for all pairs (ν, ν′) with ν > ν′. Indeed, it is easily
checked that setting τν − τν′ = 0 entails Ĥ(1)

vac = 0 since in this case both terms ν > ν′

and ν < ν′ exactly cancel out (the two dashed lines in Fig. 4.4 now both reduce to
s′ = s). Physically, this means that the effective Hamiltonian Ĥvac stems from the
fact that, while traveling from left to right [see Fig. 4.3(a)], the nth time bin interacts
first with the coupling point ν and only afterwards with ν + 1, no matter how short
the delay τν+1 − τν is. This is in line with similar observations made in derivations
of cascaded MEs through other methods (see e.g. [101]). Interestingly, the collisional
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picture allows for a complementary interpretation of this phenomenon in terms of
far-detuned time-bin modes b̂n,k, which we introduce next.

4.5 Time-bin modes b̂n,k

It should be clear from their definition (4.34) that, for a finite ∆t, modes b̂n generally
capture only part of the field degrees of freedom. Formally, this can be seen by
expanding the continuous time modes as [17]

b̂t =
1√
∆t ∑

n

∞

∑
k=−∞

Θn(t)e−i2πkt/∆t b̂n,k , (4.42)

with Θn(t) = 1 for t ∈ [tn−1, tn] and 0 otherwise, and where

b̂n,k =
1√
∆t

∫ tn

tn−1

dt ei2πkt/∆t bt . (4.43)

The ladder operators b̂n,k fulfill [b̂n,k, b̂†
n′,k′ ] = δn,n′δk,k′ , [b̂n,k, b̂n′,k′ ] = [b̂†

n,k, b̂†
n′,k′ ] = 0.

Moreover, for k = 0 we retrieve modes b̂n [cf. Eq. (4.34)], i.e., b̂n,0 ≡ b̂n. A straightfor-
ward Fourier analysis shows that time-bin modes b̂n,k 6=0 are dominated by field nor-
mal modes whose detunings from the emitter grow as ∼ |k|/∆t, (while modes b̂n,0

contain field frequencies quasi-resonant with the emitter) [17]. In the continuous-
time limit of the dynamics, which corresponds to the limit ∆t→ 0, these frequencies
become divergent. Accordingly, it is reasonable to assume there are no photons pop-
ulating modes b̂n,k 6=0. This is equivalent to stating that the most general field state is
of the form

ρ f = ηbins
⊗

n,k 6=0

|0〉n,k〈0| (4.44)

with ηbins the (generally mixed) state of modes b̂n ≡ b̂n,0 and |0〉n,k the vacuum state
of mode b̂n,k.

For a single coupling point (N = 1) Ĥvac cannot arise and we are only left with
V̂n (containing only b̂n ≡ b̂n,0), meaning that the coupling to time-bin modes k 6= 0 is
negligible. Yet, for two or more coupling points (N ≥ 2), these off-resonant modes
yield non-negligible effects despite they do not explicitly appear in Ĥvac (not even
in V̂n, of course). Indeed, they are in fact responsible for the emergence of Ĥvac.
This can be seen from Eq. (4.29) featuring a singularity in the integrand function due
to the field commutator. Such a singular behavior forbids to retaining only k = 0
terms in expansion (4.42) no matter how small ∆t (indeed it is easily checked that
expanding each field operator entering Eq. (4.29) and retaining only modes b̂n,0 = b̂n

would yield a vanishing Ĥvac).
Thus all time-bin modes b̂n,k in fact contribute to the dynamics for N > 1. How-

ever, unlike k = 0 modes, off-resonant modes k 6= 0 are only virtually excited, ex-
plaining why they do not explicitly appear in Ĥvac.
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4.6 Non-negligible time delays

A comprehensive treatment of the regime of non-negligible delays is beyond our
scope. Yet, we wish to highlight a major difference from the negligible delays regime,
this being that at each time step the emitters collide with as many time bins as the
number of coupling points (instead of only one). To illustrate this, we work out next
Ĥ(0)

n [cf. Eq. (4.25) and its equivalent expression (4.27)].
In contrast with the negligible delays regime, now one can take a time step neg-

ligible compared with all the system’s time delay, i.e., ∆t � τν − τν−1 for all ν

(note that this is compatible with condition ∆t � γ−1 that we assume through-
out). For sufficiently short ∆t, the coupling points coordinates can be discretized as
τν = mν∆t, where {mν} are N integers such that m1 < m2 < ... < mN , and set
τ1 = m1 = 0. Accordingly, (4.27) becomes [recall that tn = n∆t]

Ĥ(0)
n =

√
γ
∆t ∑

ν

(Âν b̂†
n−mν

+ H.c.) , (4.45)

showing that, during a given time interval [tn−1, tn], each coupling point ν interacts
with a different time bin n−mν [see Fig. 4.3(b)].

In the presence of giant emitters (even a single one), this dynamics is tough to
tackle analytically. Through an elegant diagrammatic technique, Grimsmo found
an analytical solution for the open dynamics of a driven giant atom with two cou-
pling points [12], while Pichler and Zoller found an efficient matrix-product-state
approach which they applied to a pair of driven normal atoms coupled to a bidi-
rectional field [11] A major reason behind the complexity of this dynamics lies in its
generally non-Markovian nature (conditions for Markovian behaviour are discussed
in Section 4.7).

4.7 Master equation for negligible time delays

In section 4.4, we focused on the total propagator showing that for negligible time
delays it can be decomposed as a sequence of collisions between the emitters (jointly)
and a field time bin, each described by the two-body elementary unitary Ûn in
Eq. (4.41), which is fully specified by Ĥvac and V̂n. In this section, we derive master
equations for the emitters and time bin in the regime of negligible time delays.

Based on (4.44) and related discussion, from now on time-bin modes b̂n,k 6=0 will
be ignored. The joint state of the emitters and all time bins (modes b̂n ≡ b̂n,0)
evolves at each time step as σn = Ûnσn−1Û†

n with σn = σt=tn . A corresponding
finite-difference equation of motion is worked out by replacing Ûn with (4.41) and
retaining only terms up to second order in ∆t

∆σn

∆t
= −i [Ĥvac + V̂n, σn−1] + ∆t

(
V̂nσn−1V̂n − 1

2

[
V̂2

n , σn−1
]
+

)
, (4.46)
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where ∆σn = σn − σn−1 (recall that V̂n ∼ 1/
√

∆t). Under the usual assumption of
zero initial correlations between the emitters and the field, the initial condition reads
σ0 = ρ0 ⊗ ηbins, where ρ0 and ηbins are the initial states of all emitters and all time
bins, respectively.

We next ask whether or not the reduced dynamics of the emitters ρn = Trbins{σn}
is Markovian and describable by a Lindblad master equation. We note that this is
generally not the case when time bins are initially correlated, namely ηbins is not a
product state, since in these conditions the emitters can get correlated with a time bin
even before colliding with it [35, 7]. This indeed rules out that that the evolution of
the emitters (open system) at each elementary collision be described by a completely
positive and trace preserving (CPT) quantum map [3], which is the key requirement
in order for a Lindblad master equation to hold. A typical instance is a single-photon
wavepacket of bandwidth comparable with γ [19, 20, 21, 22, 102].

We thus consider the case in which the time bins are initially uncorrelated, that
is

ηbins =
⊗

n
ηn (4.47)

with ηn the reduced state of the nth time bin mode having ladder operator b̂n = b̂n.0.
Note that time bins define a set of ancillae fulfilling hypotheses 2.1. This entails

ρn = Trbins

{
Ûnσn−1Û†

n

}
= Trn

{
Ûnρn−1ηnÛ†

n

}
, (4.48)

where Trn is the partial trace over the time bin n (mode b̂n ≡ b̂n,0). This defines a CPT
map describing how the emitters’ state ρn is changed by the nth collision. Likewise,
the nth time bin evolves according to

η′n = TrS

{
Ûnρn−1ηnÛ†

n

}
(4.49)

with TrS the partial trace over the emitters. This is a CPT map describing the change
of the single time bin state due to collision with the emitters (after the collision this
state will no longer change since time bins are non-interacting). Note that map (4.49)
depends parametrically on the current reduced state of emitters (updated at each
collision).

4.7.1 Master equation for the emitters

To work out the Lindblad master equation of the emitters corresponding to map
(4.48) we simply trace off all time bins from Eq. (4.46), which yields

∆ρn

∆t
=− i[Ĥvac + 〈V̂n〉, ρn−1] +D[ρn−1] (4.50)

with 〈...〉 = Trn {... ηn}, ∆ρn = ρn − ρn−1 and

D[ρn−1] = ∆tTrn

{
V̂nρn−1ηnV̂n − 1

2

[
V̂2

n , ρn−1ηn
]
+

}
. (4.51)
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Although not explicit, this equation is in Lindblad form as is easily checked by spec-
trally decomposing ηn [103]. The Linbdlad form is a guaranteed by the fact that
the emitters evolution at each collision is described by a CPT map [last identity in
Eq. (4.48)].

Using (4.35) the first-order Hamiltonian and second-order dissipator can be put
in the more explicit form

〈V̂n〉 =
√

γ
∆t

(
〈b̂n〉 Â† + H.c.

)
(4.52)

D[ρn−1] = γ ∑
µµ′
〈ĉµ ĉµ′〉

(
Ĉµ′ρn−1Ĉµ− 1

2

[
ĈµĈµ′ , ρn−1

]
+

)
.

with µ, µ′ = 1, 2 and where we set

ĉ1 = b̂n , ĉ2 = b̂†
n , Ĉ1 = Â† , Ĉ2 = Â . (4.53)

Now Eq. (4.50) is expressed fully in terms of the time-bin moments 〈b̂n〉, 〈b̂†
nb̂n〉 and

〈b̂2
n〉, which depend on ηn in turn dependent on the initial field state [cf. Eq. (4.47)].

The time-bin moments can be determined for the most general white-noise Gaus-
sian state of the field, which is fully specified by the 1st and 2nd moments [80]

〈db̂t〉 = αt dt , 〈db̂†
t db̂t〉 = N dt , 〈db̂t db̂t〉 = M dt . (4.54)

with db̂t =
∫ t+dt

t
ds b̂s the well-known quantum noise increment. Correspondingly,

the most general Gaussian, uncorrelated state of the time bins is fully specified by
the moments

〈b̂n〉 = αn
√

∆t, 〈b̂†
n b̂n′〉 = δn,n′ N, 〈b̂n b̂n′〉 = δn,n′ M . (4.55)

with αn = αt=tn , N ≥ 0 and |M|2 ≤ N(N + 1).

Noting that b̂n =
∫ tn

tn−1

dbt/
√

∆t, it is evident that for such a field state, 〈b̂†
nb̂n′〉 =

〈b̂nb̂n′〉 = 0 for n 6= n′. This, because of the Gaussianity hypothesis, is equivalent
to Eq. (4.47). Thus time bins are initially uncorrelated. Their 1st and 2nd moments

are given by (4.55), where αn =
∫ tn

tn−1

dt αt/∆t (for ∆t short enough, this reduces to

αn ' αtn ). Note that 〈b̂n〉 ∝
√

∆t, which cancels the 1/
√

∆t factor in Eq. (4.52).
Plugging moments (4.55) into the finite-difference Eq. (4.50) and taking the continuous-

time limit such that γ∆t → 0, tn → t, ρn−1 → ρt, ∆ρn/∆t → dρ/dt we end up with
the general master equation

dρ

dt
=− i [Ĥvac +

√
γ (α∗t Â+ H.c.), ρ] + γ(N + 1)DÂ[ρ] + γNDÂ† [ρ]

+ γ
(

M(Â† ρÂ† − 1
2 [Â†2, ρ]+) + H.c.

)
. (4.56)
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This can be expressed in terms of original ladder operators Âj using (4.7) and
recalling Â = ∑

ν

Âν.

Time bin master equation

An equation for the rate of change of the single time bin state, ∆ηn/∆t with ∆ηn =

η′n − ηn, can be similarly worked out. We again start from Eq. (4.46) but now trace
over all emitters and all time bins n′ 6= n, obtaining

∆ηn

∆t
=− i[〈V̂n〉ρ, ηn] +Dρ[ηn] (4.57)

with 〈...〉ρ = TrS {... ρ} and

Dρ[ηn] = ∆t TrS

{
V̂nρn−1ηnV̂n− 1

2

[
V̂2

n , ρn−1ηn
]
+

}
(4.58)

where TrS {...} is the partial trace over the system. Note that this equation paramet-
rically depends on the state of the emitters, ρn−1, which changes at each time step.
Eq. (4.57) expresses map (4.49) in the short-collision-time limit.

4.8 Generalization to bidirectional field and examples

For a bidirectional field unitaries Ût and Ûn are formally the same as (4.22) and (4.23),
respectively, but V̂t is now given by Eq. (4.20). The Ûn’s lowest-order expansion
(4.24) is formally unchanged. Through a reasoning analogous to that in Section 4.3,
in light of (4.20), Eqs. (4.27) and (4.28) are generalized as

Ĥ(0)
n =

√
γ
∆t ∑

ν

Âν

(
1√
∆t

∫ tn

tn−1

ds b̂†
s−τν

)
+

√
γ′
∆t ∑

ν

Â′ν
(

1√
∆t

∫ tn

tn−1

ds b̂′
†
s+τν

)
+ H.c. ,

(4.59)

Ĥ(1)
n = Ĥ(1)

sq + Ĥ(1)
th + Ĥ(1)

vac (4.60)
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FIGURE 4.5: Collision-model description for a bidirectional field.
Each time bin is now bipartite, comprising a right-going mode (bot-
tom) and a left-going mode (top). At each collision the emitters jointly
collide with the two-mode time bin according to the coupling Hamil-
tonian (4.64) and, additionally, are subject to an internal coherent dy-

namics corresponding to the dipole-dipole Hamiltonian (4.66).

with Â′ν is defined as in (4.21) and

Ĥ(1)
vac =

i
2∆t ∑

ν,ν′
Â†

ν′Âν

∫ tn

tn−1

ds
∫ s

tn−1

ds′
(

γ [b̂s′−τν′ ,b̂
†
s−τν

] + γ′ [b̂′s′+τν′ ,b̂
′†
s+τν

]−H.c.
)

,

(4.61)

Ĥ(1)
th = i

2∆t∑
νν′

∫ tn

tn−1

ds
∫ s

tn−1

ds′
(

γ [Â†
ν′ , Âν] b̂†

s−τν
b̂s′−τν′ + γ′[Â′†ν′ , Â

′
ν] b̂′

†
s+τν

b̂′s′+τν′ −H.c.
)

+ i
2∆t

√
γγ′∑

νν′

∫ tn

tn−1

ds
∫ s

tn−1

ds′
(
[A†

ν,A′ν′ ] b̂s−τν b̂′
†
s′+τν′

+ [A′†ν ,Aν′ ] b̂†
s′−τν′

b̂′s+τν −H.c.
)

,

(4.62)

Ĥ(1)
sq = i

2∆t∑
νν′

∫ tn

tn−1

ds
∫ s

tn−1

ds′
(

γ [Âν′ , Âν] b̂†
s−τν

b̂†
s′−τν′

+ γ′ [Â′ν′ , Â
′
ν] b̂′

†
s+τν

b̂′
†
s′+τν′

−H.c.
)

+ i
2∆t

√
γγ′∑

νν′

∫ tn

tn−1

ds
∫ s

tn−1

ds′
(
[A′†ν′ ,A†

ν] b̂s−τν b̂′s′+τν′ + [A†
ν′ ,A

′†
ν ] b̂s′−τν′ b̂

′s+τν −H.c.
)

.

(4.63)

In the present regime, an argument analogous to that leading to (4.35) yields
Ĥ(0)

n ' V̂n with V̂n given by

V̂n = 1√
∆t

(√
γ Â†b̂n +

√
γ′ Â′†b̂′n + H.c.

)
. (4.64)

with
Â = ∑

ν

Âν , Â′ = ∑
ν

Â′ν . (4.65)

As in the unidirectional case, the terms Ĥ(1)
th and Ĥ(1)

sq are also negligible in the
limit of vanishing delays (see Box 4). Compared to the unidirectional case [cf. Eq. (4.29)],
Ĥ(1)

vac has an extra term, due to the left-going modes, featuring the δ function [b̂′s′+τν′ ,b̂
′†
s+τν

].
This peaks on the line s′ = s− (τν′ − τν), which differs from the δ function coming
from right-going modes [cf. Eq. (4.39)] for the exchange ν ↔ ν′. Accordingly, in
Fig. 4.4, the lines corresponding to ν < ν′ and ν > ν′ are swapped, hence now only
terms ν < ν′ (instead of ν > ν′) contribute to Ĥ(1)

vac. Thus we end up with Ĥ(1)
vac ≡ Ĥvac
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FIGURE 4.6: Bidirectional field for non-negligible time delays. Left-
going time bins (top) and right-going time bins (bottom). We set τ1 =

m1 = 0.

with Ĥvac given by

Ĥvac =
i
2 ∑

ν>ν′

(
γÂ†

ν′Âν + γ′Â′†νÂ′ν′ −H.c.
)

, (4.66)

Thereby, for τN − τ1 � ∆t � (1/γ, 1/γ′), the joint dynamics can be be repre-
sented by an effective collision model (see Fig. 4.5), where at each collision the emit-
ters jointly collide with a right-going and a left-going time bin, at once being subject
to an internal coherent dynamics governed by the second-order Hamiltonian (4.66).
Note that, formally, this can still be thought as a collision model featuring a single
stream of time bins [like Fig. 4.1] provided that one defines a two-mode time bin (b̂n,
b̂′n).

An argument analogous to that used in Section 4.6 generalizes Eq. (4.45) as

Ĥ(0)
n = 1√

∆t ∑
ν

(√
γ Âν b̂†

n−mν
+
√

γ′Â′ν b̂′n+mν+H.c.
)

. (4.67)

In the case of a bidirectional field, the time bin is now bipartite (see Fig. 4.5)
having associated ladder operators b̂n [cf. Eq. (4.34)] and b̂′n, the latter given by

b̂′n = 1√
∆t

∫ tn

tn−1

dt b̂′t , (4.68)

defining a discrete collection of left-going bosonic modes analogous to b̂n (commut-
ing with them).

Note the different subscripts in b̂n−mν and b̂′n+mν , reflecting that right- and left-
going time bins travel in opposite directions as sketched in Fig. 4.6.

Similarly to the unidirectional case discussed in Section 4.6, analytical descrip-
tions of this dynamics are demanding [11, 104, 105].

With the extended definitions of Ĥvac and V̂n for a bidirectional field the finite-
difference equation of motion (4.46) for the joint dynamics still holds. The initial
state of the time bins ηbins is obtained from the initial field state by using (4.42) and
tracing off time-bin modes k 6= 0 (with left-going time-bin modes b̂′n,k also accounted
for).

Also in the bidirectional case, when the field state are assumed uncorrelated state
of the time bins, the collisional picture give rise to a Markovian open dynamics.
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Specifically, when
ηbins =

⊗
n
(ηr,n ⊗ ηl,n) (4.69)

with ηr,n (ηl,n) the reduced state of the nth right-going (left-going) time bin. Un-
der this assumption, the emitters evolve at each collision according to a CPT map
[cf. Eq. (4.48)] and so do time bins [see Eq. (4.49)].

The finite-difference master equation of the emitters (4.50) holds, where 〈V̂n〉 and
D[ρn−1] are now given by

〈V̂n〉 =
√

1
∆t

(√
γ 〈b̂n〉 Â† +

√
γ′ 〈b̂′n〉 Â′† + H.c.

)
, (4.70)

D[ρn−1] = Dr[ρn−1] +Dl [ρn−1] (4.71)

with Dr[. . . ] the same as (4.53) and Dl [. . . ] obtained from (4.53) through the replace-
ments γ → γ′, b̂n → b̂′n, Â → Â′. The master equation is expressed in terms of first
and second moments of right-going and left-going time bins, respectively depend-
ing on ηr,n and ηl,n [cf. Eq. (4.69)].

The most general white-noise Gaussian state of the field is now specified by
right-going moments (4.54) plus the analogously defined left-going moments α′t, N′

and M′. The latter determine the time-bin moments 〈b̂′n〉 = α′n
√

∆t, 〈b̂′†nb̂′n〉 = N′

and 〈b̂′2n〉 = M′. Plugging these into the finite-difference Eq. (4.50) and taking next
the continuous-time limit as done in the unidirectional case, we end up with master
equation

dρ

dt
=− i [Ĥvac +

√
γ (α∗t Â+ α′∗t Â′ + H.c.), ρ] + γ(N + 1)DÂ[ρ] + γNDÂ† [ρ]

+ γ′(N′ + 1)DÂ′ [ρ] + γ′N′DÂ′† [ρ] + γ
(

M(Â†ρ Â† − 1
2 [Â†2, ρ]+) + H.c.

)
+ γ′

(
M′(Â′†ρ Â′† − 1

2 [Â′
†2

, ρ]+) + H.c.
)

. (4.72)

where D Ĵ [ρ] = Ĵρ Ĵ† − 1
2 [ Ĵ

† Ĵ, ρ]+ and we recall (4.66). This can be expressed in terms
of original ladder operators Âj through (4.7), (4.21) and (4.65). Master equation (4.56)
for a unidirectional field is retrieved for γ′ = 0.

The aim of this section is to illustrate how (4.72) encompasses and generalizes
various quantum optics and waveguide QED master equations with a special focus
on giant atoms and decoherence-free Hamiltonians. As such, it could be skipped by
a reader solely interested in the collision-model derivation.

For a single normal emitter, Ne = N = 1, Â1 ≡ Â (setting x1 = τ1 = 0) and
Ĥvac = 0. Thus ME (4.56) [or (4.72) for γ′ = 0] reduces to the well-known general
ME of quantum optics for a point-like atom or harmonic oscillator [80].

For a pair of normal emitters coupled to a unidirectional field, we have: Ne =

N = 2 and Âν ≡ e−iω0τν Âν = e−ik0xν Âν with ν = 1, 2 (operators with different ν’s in
this case commute). Hence, Ĥvac = i γ

2 (Â†
1Â2 − Â†

2Â1) and Â = Â1 + Â2 so that for
αt = N = M = 0 (vacuum) (4.56) [or (4.72) for γ′ = 0] reduces to the well-known
ME of a pair of cascaded emitters in vacuum [101, 106].
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FIGURE 4.7: Possible topologies for the pattern of coupling points of
two giant emitters: serial, nested and braided.

For Ne = N normal emitters coupled to a bidirectional field (such that γ′ = γ =

Γ/2) Eq. (4.72) reduces to

ρ̇ =− i Γ
2 ∑

i 6=j
sin(k0x−ij )[Â

†
i Âj, ρ] +Γ(N+1)∑

ij
cos(k0x−ij )

(
ÂiρÂ†

j− 1
2 [Â

†
j Âi, ρ]+

)
+ΓN∑

ij
cos(k0x−ij )

(
Â†

i ρÂj− 1
2 [Âj Â†

i , ρ]+
)

+Γ∑
ij

cos(k0x+ij )
(

M(Â†
i ρÂ†

j− 1
2 [Â

†
j Â†

i , ρ]+)+H.c.
)

(4.73)

with x±ij = xj ± xi and where we used that Âj = Âje−ik0xj , Â′ j = Âjeik0xj (atom
and coupling-point indexes coincide). For N = N′ = sinh2(|ξ|) and M = M′ =
e−iθ sinh(|ξ|) cosh(|ξ|) Eq. (4.73) reduces to the master equation found through stan-
dard methods in Ref. [107] (ξ = |ξ|e−iθ is the squeezing parameter, where θ can
include contributions depending on the distance from the source).

For zero squeezing, ξ = N = M = 0, Eq. (4.73) reduces to the standard waveguide-
QED master equation of a set of atoms [108, 109].

Thus Eq. (4.72) generalizes the squeezed-bath master equation to giant emitters.
For a single giant emitter with two coupling points in a bidirectional waveguide:

γ′ = γ = Γ/2 (with Γ the total decay rate), Ne = 1, N = 2, Â1 = Â′1 = Â1 = Â,
Â2 = e−iϕ Â, Â′2 = eiϕ Â, where we set x1 = τ1 = 0 and ϕ = k0x2 = ω0τ2 (Â could
be a spin-1/2 or bosonic ladder operator). The collective operators (4.65) thus read

Â = (1 + e−iϕ) Â , Â′ = (1 + e+iϕ) Â . (4.74)

Plugging these into Eq. (4.72), for αt = α′t = N = N′ = M = M′ = 0 we retrieve
the vacuum master equation [110, 53]

ρ̇ = −i Γ
2 sin ϕ [Â† Â, ρ] + Γ(1 + cos ϕ)DÂ[ρ] . (4.75)

For a pair of giant emitters with two coupling points each and a bidirectional
waveguide: γ′ = γ = Γ/2, Ne = 2, N = 4. The Âν’s and Â′ν’s depend on the
pattern of coupling points, for which three different topologies are possible: serial,
nested and braided (see Fig. 4.7). Setting ϕν = k0xν = ω0τν and as usual x1 = τ1 = 0,
in the braided configuration in particular one gets Â1 = Â1, Â2 = Â2e−iϕ2 , Â3 =
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Â1e−iϕ3 and Â4 = Â2e−iϕ4 . Hence [cf. Eq. (4.65)],

Â = (1 + e−iϕ3)Â1 + (e−iϕ2 + e−iϕ4)Â2 , (4.76)

while Â′ has an analogous expression with ϕν → −ϕν. Plugging these into (4.72),
for ϕν = νϕ (uniform spacings) and the field vacuum state, one gets

ρ̇ =− i Γ
2 (3 sin ϕ+ sin 3ϕ)

[
Â†

2 Â1+Â†
1 Â2, ρ

]
+ 2Γ (1+ cos 2ϕ)

(
DÂ1

[ρ]+DÂ2
[ρ]
)

+ Γ (3 cos ϕ+ cos 3ϕ)∑
i 6=j

(
ÂiρÂ†

j − 1
2 [Â

†
j Âi, ρ]+

)
, (4.77)

which was derived through the SLH formalism in Ref. [53] alongside other mas-
ter equations for different configurations and number of atoms [these can all be re-
trieved from (4.72) likewise].

4.9 Mechanism of decoherence-free coupling between giant
atoms

While a longstanding way for matching the Decoherence-Free (DF) condition in
quantum optics is coupling atoms to single- or multi-mode photonic environment
dispersively (off-resonantly), Decoherence-free Hamiltonians via giant atoms work
in the regime in which the atomic frequency ω0 is well within a photonic band which
can thus be approximated as infinite. This is possible due to non-local coupling (the
hallmark of giant atoms) as will become clear later.
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Box 5: General scheme for Decoherence-Free Hamiltonians

The averaged interaction Vn = Ĥ(0)
n and Hamiltonian Ĥ(1)

n (Eqs. (4.25) and (4.26)) are the
two central quantities to consider for implementing DF Hamiltonians. In sketchy terms, one
seeks to fulfill Vn = 0 (henceforth referred to as the “DF condition") in a way that Ĥn yields
(upon partial trace) a dissipationless effective Hamiltonian of S, Ĥeff. This is formalized in
detail in the following.
Let σn be the joint S-E state at time tn and ρn = TrE{σn} the reduced state of the system at
the same time. We will consider a coarse-grained time scale defined by ∆t short enough that
(4.24) holds. In the corresponding continuous-time limit, tn → t, σn → σt, σ̇ ' ∆σn/∆t where
we set ∆σn = σn − σn−1 (analogously for ρn). We also define

〈Ĥ(1)
n 〉ρ0 = TrS

{
Ĥ(1)

n ρ0 ⊗ 1E

}
, (4.78)

Ĥeff = TrE

{
Ĥ(1)

n 1S ⊗ ρE

}
(4.79)

with TrS(E){} the partial trace over S (E). These are effective Hamiltonians on E and S, re-
spectively. When S is multipartite, in particular, Ĥeff will generally feature mutual couplings
between subsystems of S.
The following property holds.

Property. Let the system and environment be initially in the uncorrelated state ρ0 ⊗ ρE with
ρ0 (ρE) the initial state of the system (environment). If

Vn = 0 (4.80)

in each time interval [tn−1, tn], and
[Ĥn, 1S ⊗ ρE] = 0 (4.81)

then in the continuous-time limit
ρ̇ = −i [Ĥeff, ρ] . (4.82)

This embodies a rather general working principle for realizing DF effective Hamiltonians:
conditions (4.80) and (4.81) entail a unitary reduced dynamics of S generated by the effective
Hamiltonian Ĥeff. Among (4.80) and (4.81), the former (DF condition) is the most relevant:
it means that the interaction Hamiltonian V̂t averages to zero over the coarse-grained time
scale ∆t.
The above property is easily shown (see [88] for further details), from which in particular it
turns out that σn = ρn ⊗ ρE namely E remains in its initial state, uncorrelated with S.

A typical case where (4.81) occurs is when Ĥn acts trivially on E, then (4.81) is matched for

any ρE and Ĥn ≡ Ĥeff (this happens with giant atoms as we will see). Another instance

is when S is a two-level system and E a harmonic oscillator with Ĥn ∼ σ̂z b̂† b̂ (dispersive

regime of the Jaynes-Cummings model [4]; see next section). Then (4.81) holds when ρE is

any mixture of Fock states.

A paradigmatic instance is the braided configuration in Fig. 4.7. By adjusting a π-
phase shift between the coupling points of the same emitter, e.g., setting ϕ = π/2, all
the dissipative terms in Eq. (4.77) vanish but the Hamiltonian Ĥvac, which effectively
seeds a dissipationless coherent interaction [53].

As illustrated in Box 5, in the collisional picture this phenomenon can be pre-
dicted without working out the master equation, making clear at once that it occurs
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regardless of the field state [thus being not limited to the vacuum state assumed in
the derivation of Eq. (4.77)]. Indeed, we can easily anticipate that the condition that
collective operators (4.65) vanish,

Â = Â′ = 0 (4.83)

(or just Â = 0 with a unidirectional field), guarantees that the joint emitters-field
propagator reduces to Ût = exp(−iĤvact). This is because (4.83) effectively decou-
ples the emitters from the field time bins in light of Eqs. (4.22), (4.66) and (4.64), thus
inhibiting dissipation. Having giant emitters is clearly indispensable since for nor-
mal emitters there is no way for Â and Â′ to identically vanish in the entire Hilbert
space. The question is now whether or not (4.83) yields a null Ĥvac (if so no evolution
takes place). In the rest of this chapter this problem will be addressed by formulating
a collision model-based microscopic theory of DF coupling.

4.9.1 Giant atoms in a broadband waveguide

We study now in detail the occurrence of DF Hamiltonians for giant atoms. Consider
a set of giant two-level atoms weakly coupled to a one-dimensional waveguide with
ω0 inside a band of the waveguide field. For the sake of clarity, but without loss of
generality, in this section we address the one-directional field configuration.

We report the interaction Hamiltonian in the interaction picture (see Box 3)

V̂t = gk0 ∑
j,`

e−iϕj` σ̂j ∑
k

e−iωk(t−τj`) b̂†
k + H.c. . (4.84)

where Âj → σ̂j = |g〉j〈e| and ϕj` = k0 xj`.
Averaging (4.84) over a time interval [tn−1, tn] yields

Vn = gk0 ∑
j

(
∑
`

e−iϕj`

)
σ̂j

∫ tn

tn−1

ds ∑
k

e−iωk(s−τj`) b̂†
k + H.c. (4.85)

(we have also split the sum over j and `). If all these time delays are negligible
compared to ∆t, then (4.85) can be approximated as

Vn ' gk0 ∑
j

(
∑
`

e−iϕj`

)
σ̂j

∫ tn

tn−1

ds ∑
k

e−iωks b̂†
k + H.c. (4.86)

Now, the key point is that each atomic operator σ̂j comes with a pre-factor ∑
`

eiϕj` ,

which – due to non-local coupling – can vanish for all atoms at the same time. This
occurs when the coupling point phases are adjusted so as to match the condition

Nj

∑
`=1

e−iϕj` = 0 for any j , (4.87)
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which is the DF condition (4.80) for giant atoms equivalent to Eq. (4.83). Note that
this cannot be satisfied by normal atoms: each atom must have at least two coupling
points (Nj ≥ 2).

4.9.2 Effective Hamiltonian

When Vn = 0, atoms will evolve unitarily with effective Hamiltonian [recall Eq. (4.79)]
Ĥeff = Ĥ(1)

n (which acts trivially on the field).
We write now more explicitly the effective Hamiltonian Ĥeff = Ĥ(1)

n for generic
two-dimensional bath as [cf. Eqs. (4.7) and (4.66)]

Ĥeff = i
2 ∑

ν>ν′

(
γ ei(ϕj′`′−ϕj`)σ̂†

j′ σ̂j + γ′ ei(ϕj′`′−ϕj`)σ̂†
j σ̂j′ −H.c.

)
, (4.88)

where (j, `) are understood as the pair of indexes corresponding to ν [and likewise
(j′, `′) with respect to ν′]. This in turn can be expressed in the compact form

Ĥeff = ∑
jj′

Jjj′ σ̂
†
j σ̂j′ + H.c. (4.89)

with

Jjj′ = ∑
νj′`′>νj`

[
γ+γ′

2 sin(ϕj′`′ − ϕj`) + i γ−γ′
2 cos (ϕj′`′ − ϕj`)

]
, (4.90)

and where νj` is the (previously introduced) discrete map returning the coupling
point index for each pair (j, `). Note that for isotropic coupling (γ = γ′), each Jjj′ (for
given j and j′) reduces to a sum of sines, where the argument of each sine is the phase
shift associated to a pair of coupling points (one of atom j one of j′). Alternatively,
Jjj′ can be expressed by separating the right- and left-going contributions as

Jjj′ = γKjj′ + γ′K∗jj′ (4.91)

with
Kjj′ =

1
2 ∑

νj′`′>νj`

ei(ϕj`−ϕj′`′+
π
2 ) . (4.92)

The issue is now raised as to whether or not Ĥeff 6= 0 when decoherence is in-
hibited [condition (4.87)]. It turns out that there generally exist patterns of coupling
points such that Ĥeff = 0 and patterns for which Ĥeff 6= 0, where the former yield a
trivial dynamics (the system just does not evolve) and are thus unwanted. The best
instance for illustrating this is a pair of giant atoms 1 and 2, such that N1 = N2 = 2,
with equally-spaced coupling points

k0xν = (ν− 1)ϕ with ν = 1, 2, 3, 4 , (4.93)
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the field being unidirectional (γ′ = 0). Three different types of patterns are then
possible: serial, nested and braided [see Fig. 4.7(a), (c), (e)]. For the serial and nested
topology, we choose ϕ = π while in the braided case we take ϕ = π/2. Each of
these settings ensures that there is (2n+1)π-phase-shift between the two coupling
points of each giant atom, thus matching the DF condition [recall Eq. (4.87)]. Using
(4.89), in the serial and nested topologies we get Heff = 0, while the braided yields
[53]

Ĥeff = γ (σ̂1σ̂†
2 + σ̂†

1 σ̂2) , (4.94)

(we absorbed a phase factor e−iπ/2 in the definition of σ̂2). Analogous conclusions
hold for isotropic coupling (γ′ = γ = Γ/2), in which case (4.94) is generalized by
replacing γ with Γ.

4.9.3 Mapping into a cascaded collision model

While, as pointed out in the previous section, the collision Ûn formally describes
a simultaneous collision with all the atoms (recall Fig. 4.5), we show next that it
can be effectively decomposed as a cascade of sub-collisions each involving only one
coupling point. Cascaded collision models (for normal atoms) were introduced in
Refs. [8, 111] (see also Ref. [112]).

For each coupling point ν, let us define the interaction Hamiltonian

V̂nν =
√

γ
∆t

(
Âν b̂†

n + H.c.
)

(4.95)

coupling the nth time bin to atom j with phase ϕj` [cf. Eq. (4.7)], where (j, `) is the
pair correspond to coupling point ν (in the remainder we introduce a convenient
terminology and say that the time bin “interacts with the coupling point"). Using
(4.76), (4.64) and (4.95), it is easily immediately checked that the average interaction
Hamiltonian is just the sum of the V̂nν’s

Vn = ∑
ν

V̂nν . (4.96)

More importantly, as shown in the remainder, it turns out that, when the DF condi-
tion (4.87) is matched, the unitary collision Ûn can be decomposed as

Ûn = e−iV̂nN∆t · · · e−iV̂n1∆t . (4.97)

Thereby, one can think of each collision (see Fig. 4.8) as the result of N cascaded
sub-collisions in each of which the time bin “collides" with one of the coupling points
according to unitary e−iV̂nν∆t with V̂nν given by (4.95) . Of course, this in particular
entails that the same time bin collides with a given atom as many times as the num-
ber of respective coupling points Nj. Yet, the sub-collisions with the same atom
occur with different coupling Hamiltonians and are generally non-consecutive (i.e.,
between two sub-collisions with the same atom j there may be sub-collisions with
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atoms j′ 6= j), which is key to the occurrence of a non-trivial DF Hamiltonian as we
will see shortly.

To prove (4.97), we expand to second order each sub-collision unitary on the
right hand side as e−iV̂nν∆t ' 1− iV̂nν∆t− 1

2 V̂2
nν∆t2. This yields (to leading order)

N
∏
ν=1

e−iV̂nν∆t ' 1− i (Vn + H̃n)∆t− 1
2 V2

n ∆t2 (4.98)

with the order in the product understood as in (4.97) and

H̃n = i ∆t
2 ∑

ν>ν′

[
V̂nν′ , V̂nν

]
, (4.99)

where we used (4.96). Using (4.87), it is easily shown that H̃n = Ĥ(1)
n ≡ Ĥeff. Indeed

in the unidirectional case each commutator in (4.99) is explicitly worked out as

[
V̂nν′ , V̂nν

]
= γ

∆t

([
Âν′ , Â†

ν

]
−H.c.

)
b̂†

nb̂n+
γ
∆t

(
Â†

ν′ Âν−H.c.
)

. (4.100)

Upon comparison with (4.66) , the proof thus reduces to showing that the sum over
ν>ν′ of terms ∝ b̂†

nb̂n vanishes.
Each commutator

[
Âν′ , Â†

ν

]
is non-zero only when coupling points ν and ν′ be-

long to the same atom. Thus, in light of (4.7),

∑
ν>ν′

[
Âν, Â†

ν′

]
−H.c. = ∑

j
∑
`>`′

ei(ϕj`−ϕj`′ )
[
σ̂j, σ̂†

j

]
−H.c.

= ∑
j

(
∑
`>`′

ei(ϕj`−ϕj`′ )−c.c.

)
σ̂jz (4.101)

(recall that xj1 < xj2 < ... ). When (4.87) holds, the coefficient of σ̂jzvanishes for each
j

∑
`>`′

ei(ϕj`−ϕj`′ ) − c.c. =
Nj

∑
`=`′

eiϕj`

Nj

∑
`′=1

e−iϕj`′ − c.c. = 0 . (4.102)

Thus

∑
ν>ν′

[
V̂nν′ , V̂nν

]
= γ

∆t ∑
ν>ν′

(
Â†

ν′ Âν−H.c.
)

, (4.103)

completing the proof.
Upon comparison with (4.24), we thus conclude that (4.97) holds true.
The decomposition in terms of cascaded sub-collisions in particular highlights

the physical origin of effective Hamiltonian (4.66): if, instead of being sequential,
the sub-collisions occurred simultaneously (corresponding to perfectly co-located
coupling points) then the overall collision unitary would be e−i(∑νV̂nν)∆t ≡ e−iVn∆t,
the corresponding second-order expansion being just (4.98) without term H̃n ≡ Ĥeff.
Thus the effective Hamiltonian arises precisely because the time bin collides with
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FIGURE 4.8: Under the DF condition (4.87), each collision in Fig. 4.5
(we address here the case γ′ = 0) can be effectively decomposed into
N cascaded sub-collisions according to Eq. (4.97). Each sub-collision
is between the same time bin n and a different coupling point cor-
responding to coupling Hamiltonian (4.95) (time grows from top to

bottom).

the coupling points in a cascaded fashion. This is in fact the same mechanism under-
pinning emergence of effective Hamiltonians in chiral quantum optics with normal
atoms [97], the difference yet being that decoherence cannot be suppressed in the
latter case (because Vn cannot vanish with normal atoms).

The generalization for a bidirectional waveguide is straightforward: under the
DF condition (4.87) the cascaded sub-collision decomposition takes the form

Ûn = e−i(V̂nN+V̂′n1)∆t · · · e−i(V̂n1+V̂′nN )∆t . (4.104)

with
V̂ ′nν =

√
γ′
∆t

(
Ŝ′ν b̂′

†
n + H.c.

)
. (4.105)

Thus H̃n [cf. Eq. (4.99)] is now generally defined as

H̃n = i ∆t
2 ∑

ν>ν′

[
V̂n,ν′+V̂ ′n,N+1−ν′ , V̂n,ν+V̂ ′n,N+1−ν

]
. (4.106)

Each commutator reads

[
V̂n,ν′ + V̂ ′n,N+1−ν′ , V̂n,ν + V̂ ′n,N+1−ν

]
=
[
V̂n,ν′ , V̂n,ν

]
+
[
V̂ ′n,N+1−ν′ , V̂ ′n,N+1−ν

]
+
[
V̂n,ν′ , V̂ ′n,N+1−ν

]
+
[
V̂ ′n,N+1−ν′ , V̂n,ν

]
.

(4.107)

The last line features terms ∝ [b̂†
n, b̂′n] and ∝ [b̂′

†
n, b̂n], which vanish because left- and

right-going time-bin operators commute. Additionally, there are terms ∝ b̂†
nb̂′n (or

∝ b̂
′†
n b̂n) featuring quantities like (4.101) where however one of the two phases is

primed: these vanish as well since (4.102) holds even if ϕj`′ → ϕ′j`′ . We are thus only
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left with terms analogous to (4.100) given by

[
V̂n,ν′ , V̂n,ν

]
+
[
V̂ ′n,N+1−ν′ , V̂ ′n,N+1−ν

]
= γ

∆t

(
Â†

ν′ Âν+Â′
†
N+1−ν′ Â′N+1−ν−H.c.

)
.

(4.108)

Summing this over ν > ν′ yields γ
∆t

(
Â†

ν′ Âν+Â′
†
ν Â′ν′−H.c.

)
(where we used that

N+1−ν′ > N+1−ν for ν > ν′), yielding the complete Hamiltonian (4.89).

4.9.4 Mechanism behind emergence of non-trivial Ĥeff

Occurrence of non-trivial (i.e., non-zero) DF Hamiltonians is simply interpreted in
the cascaded-collision-model picture.

As in Section 4.9.2, throughout this and the next section we consider a unidirec-
tional waveguide and giant atoms with two coupling points each, which captures most
of the essential physics.

Let us consider first a single giant atom and set x1 = τ1 = 0, ϕ = k0x2. The DF
condition Vn = 0 then simply reads ϕ = (2n+1)π with n an integer number. Hence,
Ŝ1 = −Ŝ2 = σ̂1 and [cf. Eq. (4.95)]

V̂n1 =
√

γ
∆t (σ̂1 b̂†

n + H.c.) , V̂n2 =
√

γ
∆t (−σ̂1 b̂†

n + H.c.) . (4.109)

Thus V̂n1 = −V̂n2 and [see Eq. (4.97)]

Ûn = e−iV̂n2∆t e−iV̂n1∆t = 1 , (4.110)

meaning that the collision has no effect overall. This, in particular, necessarily entails
Ĥeff = 0 [recall Eq. (4.24)]. In other words, the two sub-collisions are the time-reversed
of one another (so that the net effect is null). To sum up, in order to ensure the DF
condition Vn = 0 for a single giant atom, one must adjust the phase shift so that
V̂n2 = −V̂n1. This yet brings about that one sub-collision is just the other one time-
reversed, trivially yielding Ûn = 0 hence Ĥeff = 0.

When it comes to a pair of giant atoms, instead, conditions Vn = 0 and Ûn 6= 0
can be matched simultaneously. To see this, we reconsider uniformly-spaced atoms
as in Eq. (4.93) and always set ϕ so as to ensure a (2n+1)π-phase-shift between the
pair of coupling points of each atom, hence Vn = 0 (similarly to the single-atom
instance just discussed).

For convenience, we define the coupling Hamiltonians

V̂j =
√

γ
∆t

(
σ̂j b̂†

n + H.c.
)

(4.111)

with j = 1, 2 (the dependence on n is left implicit). No phase factor appears in this
definition.
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Consider first the serial scheme in Fig. 4.7, in which case we set ϕ = π. Then [see
Fig. 4.7],

V̂n1 = V̂1 , V̂n2 = −V̂1 , V̂n3 = V̂2 , V̂n4 = −V̂2 . (4.112)

This results in the collision unitary [cf. (4.97)]

Ûn = eiV̂2∆te−iV̂2∆teiV̂1∆te−iV̂1∆t = 1 , (4.113)

that is a trivial dynamics such that Ĥeff = 0. This case is in fact an extension the
single giant atom considered above.

For the nested case in Fig. 4.7, we set ϕ = π. Then [see Fig. 4.7(d)],

V̂n1 = V̂1 , V̂n2 = −V̂2 , V̂n3 = V̂2 , V̂n4 = −V̂1 , (4.114)

Thus the second pair of sub-collisions is the first pair time-reversed

Ûn = eiV̂1∆te−iV̂2∆teiV̂2∆te−iV̂1∆t = 1 , (4.115)

ensuing again a trivial dynamics and Ĥeff = 0. Equivalently, the pair of central sub-
collisions, both involving atom 2, are the time-reversed of one another. Thus atom 2
simply disappears from Ûn, which reduces to Ûn = eiV̂1∆te−iV̂1∆t = 1.

For the braided arrangement of Fig. 4.7(e), we set ϕ = π/2. Then [see Fig. 4.7],

V̂n1 = V̂1 , V̂n2 = V̂2 , V̂n3 = −V̂1 , V̂n4 = −V̂2 (4.116)

[with V̂2 now defined by (4.111) for j = 2 under the replacement σ̂2 → −iσ̂2]. The
collision unitary is given by

Ûn = eiV̂2∆teiV̂1∆te−iV̂2∆te−iV̂1∆t = e−iγ(σ̂1σ̂†
2+σ̂†

1 σ̂2)∆t 6= 1 . (4.117)

Therefore, Vn = 0 is fulfilled but now Ĥeff 6= 0.
The above shows that, while being irrelevant for realizing the DF condition Vn =

0, the coupling points topology is crucial in order to have a non-vanishing effective
Hamiltonian. In terms of propagators [cf. Eqs. (4.22) and (4.24)], this is ultimately
due to the fact that the second-order term Ĥn is affected by the time-ordering oper-
ator, while Vn and (of course) Vn

2 are fully insensitive to it.

4.9.5 More than two coupling points

The discussion in Section 4.9.4 in many respects relied on the property that a single
giant atom with a π-phase shift between its two coupling points (i.e., the DF condi-
tion) fully decouples from the field, i.e., Ûn = 1 [cf. Eq. (4.110)]. For more than two
coupling points, the DF condition for a single giant atom does not necessarily entail
Ûn = 1. The simplest example to see this is a single giant atom with three coupling
points (N ≡ N1 = 3). The DF condition (4.87) occurs for (we drop subscript j since
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there is only one atom; also we set ϕ1 = 0)

ϕ2 = 2π
3 + 2nπ, ϕ3 = 4π

3 + 2mπ (4.118)

with n, m integers. Plugging these into the effective Hamiltonian (4.89) for γ′ = 0
we get

Ĥeff =
γ
2

(
2 sin( 2π

3 ) + sin( 4π
3 )
)

σ̂z 6= 0 (4.119)

(the sum of the three sines is ' 0.87).
For an atom j such that xj′ 6=j,`′ 6∈ [xj,1, xj,Nj ] and fulfilling the DF condition ∑

`

V̂n,νj,` =

0, in general

e
−iV̂n,νj,Nj

∆t
. . . e−iV̂n,νj,1 ∆t 6= 1 , (4.120)

where Nj > 2 (if Nj = 2, the identity holds). However, (4.120) is anyway of the
form e−iδj σ̂z∆t (with δj a frequency shift), hence all terms of Ĥeff coupling j to any
other atom will vanish, i.e., in (4.89) Jjj′ 6= 0 only for j′ = j. Thus, if the only focus
is coupling the atoms, then the braided topology remains the only one yielding a
non-trivial Ĥeff. This remains true for a chiral waveguide (γ′ 6= 0) since (4.91) shows
that if Jjj′ = 0 for γ′ = 0 then it vanishes also for γ′ 6= 0.

4.10 Summary

In this chapter, we formulated the collision-model-based description of quantum op-
tics dynamics in the presence of many quantum emitters, each able to interact with
a generally chiral field at many coupling points. We focused on the regime of negli-
gible time delays, in which the dynamics is effectively represented as a sequence of
pairwise collisions each between a field time bin and all the emitters collectively.
These at once undergo an internal dynamics ruled by an effective second-order
Hamiltonian describing dipole-dipole interaction originating from the fact that the
traveling time bin reaches the system’s coupling points in sequence, no matter how
short the delays. As such, the effective Hamiltonian depends on the coupling points
topology. We then derived a general master equation for system of giant emitters
coupled to a generally chiral waveguide.

We finally investigated the physical mechanism underpinning implementation
of DF Hamiltonians with giant atoms. We introduced a general framework for ob-
taining DF Hamiltonians through second-order interactions mediated by an envi-
ronment and showed that collision models allow an intuitive understanding of the
origin of the effective Hamiltonian.
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Chapter 5

Large deviations in open quantum
systems

As anticipated in Chapter 3, we show here some original applications of thermo-
dynamics of quantum trajectories to problems of particular interest in the theory of
open quantum systems.

In Sec. 5.1 we exploit the predictive power of large deviation theory in order
to put forward a method for witnessing non-classicality of the output field from a
generic quantum optical setup via the statistics of time-integrated photo currents.
Specifically, exploiting the thermodynamics of quantum trajectories, we express a
known non-classicality witness for bosonic fields fully in terms of the source master
equation, thus bypassing the explicit calculation of the output light state. Further
details can be found in [113]. Sec. 5.2 summarizes the main results in [114]. We
present a microscopic (collisional) framework for the statistical characterization of
quantum trajectories in discrete-time processes. We formulate a protocol to turn
a preselected set of rare quantum trajectories into typical upon addition of extra
collisions between the system and each probe. This provides a quantitative tool
for studying dynamical fluctuations beyond the standard continuous-time regime
corresponding to the Lindblad master equation.

5.1 Witnessing non-classicality through large deviations in
quantum optics

5.1.1 Introduction

During the last decades, several platforms have been proposed for implementing
efficiently quantum computing tasks [115, 116, 117]: all of them suffer from the ef-
fect of decoherence given by the coupling to the environment [5], which ultimately
deteriorates the non-classical properties of the considered systems. In fact, for a
quantum computational scheme to outperform a classical one, one requires that at
least one of its components exhibits genuinely quantum features [118]. When the en-
vironment is the electromagnetic vacuum causing photon emission, as in dissipative
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FIGURE 5.1: Sketch of dissipative quantum optical network. A
generic quantum network is composed of a series of interconnected
elements (system) emitting continuously detected radiation in the en-
vironment. The emitted fields can be manipulated and transformed
via a series of unitary operations in an optical circuit using beam split-
ters and phase shifters. The photo-detectors (D1 and D2) allow the si-
multaneous reconstruction of the quantum trajectories for two emis-
sion channels. Their correlation properties are studied to uncover

quantum non-classicality of the emitted radiation.

optical networks [119], the statistical analysis of the output light contains the infor-
mation about the dynamical features of the open quantum systems [6]. In particular,
the emitted photons can be used as a resource for quantum information process-
ing [120]. Hence, the detection and optimization of non-classical correlations in the
photons emitted by a general optical setup is of primary relevance for a variety of
technological applications.

Specifically, the type of setups we consider includes an open quantum system,
which is the source of photons, and an optical circuit used to manipulate the emis-
sion, as shown in Fig. 5.1. To obtain the statistical properties of the photons arriving
at the detectors we make use of the large deviations approach (see Chapter 3).This al-
lows to access the joint probability distribution of the photon counting at long times,
together with relevant statistical quantities such as the fluctuations of the counting
fields and corresponding cross-correlation functions. In this way a non-classicality
criterion is formulated based on the time-integrated observables of the detection [10,
61, 121, 122].

From the theoretical point of view this establishes a natural link between the
statistical-physics approach for analyzing the dynamics of open quantum systems
[10], and a general class of non-classicality measures in quantum optics. We provide
simple but instructive examples, where non-classical correlations are witnessed in
different dynamical regimes of the sources, and for a broad range of parameters.
Our theoretical scheme is effective in predicting the outcomes of quantum optics
experiments that make use of photon countings to witness non-classicality [123, 124,
72, 125, 126, 127].
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5.1.2 Open quantum systems and Large Deviation

Our goal is to infer the statistical properties of the output light of an open quantum
system emitting into NL different modes called Bµ, with µ = 1, ..., NL. The photon
counting statistics at the detectors (see Fig. 5.1) provides information about the state
of the open system and about the properties of the optical circuit [6].

The counting statistics is fully characterized by the cumulants of the associated
photon counting probability distribution which are encoded in the cumulant gener-
ating function (see Chapter 3).

The evolution of the reduced density operator of the open system ρ in the Marko-
vian approximation, is given by the Lindblad ME

ρ̇ = −i[Ĥ, ρ] +
NJ

∑
µ=1
D(L̂µ)ρ ≡ L[ρ], (5.1)

where the jump operator L̂µ corresponds to the interaction with the field mode Bµ.
Let us divide our jump operators in N subsets, Ji, each of size ni, with i = 1, ..., N,

such that
N

∑
i=1

ni = NL. Suppose we record the occurrence of jump events due to the

action of the operators in the first M subsets (M < N), and let Km be the number of
detected jumps corresponding to each subset Jm with m = 1, 2..., M. Furthermore
we assume that the action of these jump operators induces photoemission. Introduc-
ing a short notation, let the vector K = (K1, K2, ..., KM) be the collection of the photon
counts associated with each Jm. The probability to observe K counts from each de-
cay channel after a time t is Pt(K) = Tr{ρK(t)}, where ρK(t) is the un-normalized
reduced density operator conditioned to K [60]. The moment generating function

associated with Pt(K) reads Zt(s) =
∞

∑
K=0

Pt(K)e−s·K with s = (s1, ..., sM). Here sm is

the conjugated field corresponding to Km. The outcomes of photocount experiments
are time-integrated photocurrents given by

〈ki〉 =
1
t

ni

∑
j=1

Tr
{∫ t

0
dτL̂†

j L̂jρ(τ)

}
, (5.2)

with i = 1, 2, ..., M. For t much greater than the typical timescale of the system τc,
the probability distribution associated to the photon counting measurements takes a
large deviation form. Specifically, at long times the moment generating function can
be asymptotically approximated in virtue of large deviation theory as an exponential
function of time

Zt(s) ∼ etθ(s). (5.3)

The analogue for the count probability reads Pt(K) ∼ etϕ(K/t), where ϕ(x) = −min
s
{xs+

θ(s)}. The function θ(s) = 1
t ln Zt(s) is the scaled cumulant generating function. It
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can be proven [63, 86] that this is given by the maximum real eigenvalue of the de-
formed superoperator

Ls[ρ] = L[ρ]−
M

∑
i=1

(1− e−si)
ni

∑
µi=0

L̂µi ρL̂†
µi

, (5.4)

which features the standard Liouvillian L and the dissipator D, with the jump parts
corresponding to each subset Ji, the latter being weighted by the factor e−si . Note
that Eqs. (5.3) and (5.4) are the direct generalization of Eqs. (3.28) and (3.33) for vec-
tors s and K. The cumulants of the distribution Pt(K) at long times are given by
the derivative of θ(s) at s = 0: cumulants give direct access to the moments of the
associated distribution [85].

For the sake of argument, we consider the case M = 2 and n1 = n2 = 1, i.e. ,
two distinct counting fields each associated with a single jump operator, as shown
in Fig. 5.1. Then Eq. (5.4) takes the form

Ls1,s2 [ρ] = L[ρ]−
2

∑
µ=1

(1− e−sµ)L̂µρL̂†
µ (5.5)

and the maximum real eigenvalue of Ls1,s2 is θ(s1, s2) =
1
t ln Zt(s1, s2), with Zt(s1, s2)

the moment generating function of the probability distribution Pt(K1, K2) associated
with the photocount measurement described by the jump operators L̂µ in the long-
time limit. In particular, we recover the moments of the marginal distributions P(K1)

and P(K2) by setting s1 = 0 or s2 = 0. By exploiting the double weighting it is
possible to access the correlations between the counting fields at the detectors. In
particular the covariance reads

cov(k1, k2) = 〈k1k2〉 − 〈k1〉〈k2〉 = ∂s1 ∂s2 θ(s1, s2)|s1=s2=0. (5.6)

All the other moments can be easily recovered in terms of higher order derivatives of
θ(s1, s2). The possibility of accessing the full statistics of the joint probability distri-
bution, as we shall see in the following, allows to make use of non-classicality mea-
sures on the bath operators, with the idea of finding possible signatures of quantum
correlations between the detection events (in the long-time limit).

5.1.3 Vogel’s non-classicality criterion (VC)

This criterion [70, 71] gives a necessary and sufficient condition to establish whether
correlations in a stationary radiation field are nonclassical or not. It consists of a
rephrasing of the well-known non-classicality criterion based on the negativity of
the Glauber-Sudarshan distribution (or P-distribution) [128, 129] in terms of photon
counting detection. Referring to the setup in Fig. 5.1, let us consider the generic
bosonic operators ĥi, (i = 1, 2), of the two output fields, and assume they are
normally-ordered functions of the associated destruction and creation operators âi
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FIGURE 5.2: Non-classicality witness for emission from coupled
atoms. (a): Third-order Vogel’s determinant for a system of two
coherently-driven interacting atoms (coupling strength J) subject to
dephasing, as a function of the dephasing rate γφ and Rabi frequency
Ω. Plots (b)-(d) are for different coupling strengths: J = 0.01 (b),
J = 0.1 (c), J = 0.5 (d). In all cases we observe a sharp separation
between classical (positive Vogel’s determinant) and quantum states

of the emitted radiation (negative regions).

and â†
i of the each mode. A generic operator acting on the two-mode field is defined

as f̂ =
∞

∑
n,m=0

fnmĥ†n
1 ĥm

2 , which is a normally-ordered power series of ĥi and ĥ†
i . The

expectation value of 〈: f̂ † f̂ :〉 reads

〈: f̂ † f̂ :〉 =
∞

∑
n,m,k,l=0

fnm f ∗kl〈ĥ†n+k
1 ĥm+l

2 〉 =
∫

C
P(α1, α2)| f (α1, α2)|2d2α1d2α2, (5.7)

where the last identity follows from the optical equivalence theorem [130] while

f (α1, α2) =
∞

∑
n,m=0

fnmĥ†n
1 (α1, α∗1)ĥ

m
2 (α2, α∗2) (5.8)

and where P(α1, α2) is the Glauber-Sudarshan distribution. Since 〈: f̂ † f̂ :〉 < 0
entails P(α1, α2) < 0 for some points (α1, α2) of the phase space, the negativity of
Eq. (5.7) implies non-classicality in radiation fields. Note that Eq. (5.7) is a quadratic
form and is non-negative iff all the principal minors of matrixMnm,kl = 〈ĥn+k

1 ĥm+l
2 〉

are positive according to the Sylvester criterion [131]. Referring to the setup in
Fig. 5.1 and according to [131, 70], we express the VC in terms of click-counting oper-
ators, which, from the open quantum system point of view, take the form ĥj = L̂†

j L̂j.
Thus the elements ofMnm,kl are the moments of the photon counting stationary dis-
tribution P(K1, K2), which gives the probability to record K1 clicks at photodetector
D1 and K2 at D2. Hence, the criterion is now formulated in terms of time-integrated
functions, like the photocurrents defined in Eq. (5.2). The moments in Mnm,kl are
easily calculated through iterative derivation of the two-mode moment generating
function associated to P(K1, K2). Note that the mixed derivatives of the double-
biased scaled cumulant generating function θ(s1, s2) give us the mixed scaled cumu-
lants directly linked to the two-mode moments inMnm,kl .

Different setups have been proposed, realized and successfully used [125, 126,
127] in order to measure the click-counting distribution thus uncovering quantum
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correlations of radiation fields. The click-counting distribution can approximate
P(K1, K2) involving photon counting via a long-time measurement through photon-
number-resolving detectors. As shown in [131] once the estimated stationary prob-
abilities are known it is clearly possible to recover the moments in Mnm,kl . Usu-
ally, the higher the order of the calculated moment, the less accurate our estimate
will be. In the cases we study next, low-order moments are enough to determine
non-classical features of radiation. It was shown [131] that the binomial form for
the click-counting probability distribution holds for any positive-operator valued
measurement (POVM) either linear or non-linear in the number of emitted photons.
Thus the large deviation formalism allows us to inherently access all the cumulants
associated to any photon counting process defined by the unraveling of the master
equation.

5.1.4 Non-classicality in dissipative circuits.

Typical coherent and squeezed radiation sources (pumped cavities, nonlinear active
media) can be studied from the point of view of open quantum system theory [6].
Referring to the generic setup in Fig. 5.1, we now consider two different source struc-
tures: a pair of coupled two-level atoms, each coherently driven and subject to decay
in its own emission channel and two non-interacting atoms whose outputs are cor-
related via a beam splitter and a phase shifter. In both cases we introduce dephasing
on each atom with rate γφ: such dephasing channel spoils coherence, hence it is ex-
pected to affect non-classicality of emitted light.

Two coupled atoms

The total Hamiltonian of the system reads

Ĥ =
2

∑
i=1

[Ω
2 (σ̂

+
i + σ̂−i ) +

√
γ
(
σ̂+

i âi + H.c.
)
] + J

(
σ̂+

1 σ̂−2 + H.c.
)

, (5.9)

where γ is the decay rate of the each atom, Ω the Rabi frequency, σ̂+
i and σ̂−i are the

ladder operators, âi is the annihilation operator of the bosonic mode coupled to the
ith atom1 and J is the coupling strength. The jump operators of this elementary net-
work are thus Ĵ1 =

√
γσ̂−1 and Ĵ2 =

√
γσ̂−2 . We can straightforwardly compute the

large deviation moments matrix and the corresponding Vogel determinants for the
joint photon counting probability distribution. It is worth noting that the second-
order principal minor (M(2)) does not contain information on the cross-correlations
between the emitted field, which is our focus. Thus, it is necessary to consider the

1 âi operators are intended as time-mode bosonic operator, or input modes i.e. Fourier transform of
field normal mode operators âω under the assumption of white coupling between system and envi-
ronment [92].
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FIGURE 5.3: Non-classicality witness for emission from optical cir-
cuit. The system (a) is composed of a two coherently-driven non-
interacting atoms subject to dephasing γφ, emitting into the input
channel of a generic unitary circuit composed of a phase shifter and
a beam splitter. (b) We show the value of the third-order Vogel deter-

minant as a function of reflectivity R = sin2 ζ and phase shift δ.

next order minor. A numerical investigation of the third-order principal minor re-
veals the presence of quantum correlations between detection events in the emission
channels. Fig. 5.2 showsM(3) as a function of the Rabi frequency Ω and dephasing
rate γφ for three values of the coupling rate J. In each case, non-classicality is re-
duced as the dephasing rate grows. Negativity grows with Ω, reaching a maximum
and then saturating to a positive value. Dephasing destroys quantum coherences
making the atoms behave like classical objects, and this results in classical radia-
tion fields, as expected. Higher values of Ω speed up Rabi oscillations: the effective
coarse-graining time-integration is lower bounded by 1/γ. Hence, we expect the
time integrated photo-current becomes insensitive to the intensity fluctuations, re-
sulting in a crossover between negative and non-negative values of the determinant.
Furthermore we notice that the absolute minimum of the third-order determinant
does not grow linearly with the coupling strength, but rather decreases when in-
creasing J. It is indeed expected that the strong coupling between the two atoms
makes the emission less likely to happen [132]. The strong coupling contribution
results in an effective shift of the energy level of the system so that the perfect reso-
nance condition is lost: the dominant component of the output fields becomes vac-
uum, thus reducing the amount of cross correlations.

Non-interacting atoms and unitary circuit.

We consider next the case in which correlations can arise by processing the emit-
ted fields of two non-interacting atoms (J = 0) through a unitary transformation
employing a beam splitter (ÛBS = cos ζ 1 + i sin ζ σ̂x, with σx = σ̂+ + σ̂−) and a
phase shifter (Fig. 5.3). The transformed jump operators read Ĵ1 =

√
γ1 cos ζ σ̂−1 +

i
√

γ2 sin ζ σ̂−2 and Ĵ2 = i
√

γ1 sin ζ σ̂−1 +
√

γ2 cos ζ σ̂−2 . We set Ω = 0.5γ and γφ = 0.1
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and study non-classicality as a function of the reflectivity R = sin2 ζ and phase dif-
ference δ between the two channels due to the phase shifter. For total transmission
(ζ = 0) and total reflection (ζ = π/2), we notice that the determinant is positive.
The maximum negativity is reached for a 50/50 beam splitter and decreases as the
phase shift δ grows. Thus, by adjusting appropriately the parameters of the optical
circuit, such as the relative phase shift δ, it is possible to enhance or destroy quantum
interference effects of the output state.

5.2 Microscopic biasing of discrete-time quantum trajecto-
ries

Recalling Sec. 3.4, we address here the problem of tailoring trajectories statistics from
a much wider viewpoint in two main respects. On the one hand, we go beyond the
master equation approach addressing the question: how should we modify the way
system and environment interact at a microscopic level in order to turn rare trajec-
tories into typical as desired? On the other hand we go beyond continuous-time
processes and address discrete-time quantum dynamics corresponding to a sequence
of stochastic quantum maps on the open system. To achieve the above, we use a col-
lision model, as described in Sec. 2.2.1: the system of interest unitarily interacts, in a
sequential way, with a large collection of ancillary probes, each of which undergoes
a projective measurement, whose result is recorded.

Exploiting thermodynamic functionals, we characterize the ensemble of trajecto-
ries in collision models and show how the system-probe interaction can be modified
so as to bias the statistics of measurement outcomes on the probes. Notably, this un-
veils the physical mechanism turning rare trajectories into typical. As will be shown,
for short collision times, the modified dynamics is obtained by adding extra colli-
sions which enforce the system dynamics far from the average (i.e. unconditional)
one so as to sustain a trajectory with desired output.

5.2.1 Definition of the collision model

The environmental probes [see Fig. (5.4)] are labeled by n = 1, 2, ..., N and assumed
to be non-interacting, each modeled as a qubit with basis states {|0〉 , |1〉}. Each
system-probe collision is described by the pairwise unitary

U(HS, V) = exp[−i(HS ⊗ 1+V)∆t)], (5.10)

with HS the free Hamiltonian of system S (generally including a drive) and V the
S-probe interaction Hamiltonian. Note that U can be seen as a gate acting on sys-
tem and probe [37, 7] according to an associated quantum-circuit representation (see
Fig. 5.5). Initially, S and the probes are in the uncorrelated state $0 = ρ0

⊗
n

ηn with
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quantum trajectory

system

initialised probe qubits

probe qubit measurement

discrete time

FIGURE 5.4: Quantum collision model. The environment consists of
a large collection of quantum probes, each modeled as a qubit with
computational basis {|0〉 , |1〉}. This environment is initialized in the
state ⊗n|0n〉. The system, whose initial state is described by the den-
sity matrix ρ0, collides with the probes one at a time, the nth collision
being described by a pairwise unitary U on the system and probe n.
As the collision is complete (and before the system collides with the
probe n + 1), probe n is measured in the basis {|k〉} with k = 0, 1.
When the outcome |1〉 is detected, a quantum jump occurs (black
square). The sequence of measurement outcomes uniquely defines
a quantum trajectory. Summing over all possible realizations of the
measurement provides, instead, the dynamics of the average system

state ρn.

ρ0 (ηn) the initial state of S (probe n). We will set ηn = |0〉n〈0| (the generalization to
mixed states is straightforward).

Right after colliding with S according to unitary U(HS, V), each probe is mea-
sured onto the orthonormal basis {|kn〉} with k = 0, 1 [see Fig. 5.5(a)]. In an atom-
field setup (in which case probes are field time bins, see Chapter 4), outcome |0〉
means no emission while |1〉 signals one photon emitted by S and detected. The
state of S after n steps, ρn, is the average over all possible discrete trajectories (un-
conditional dynamics). Between two next steps, it evolves as ρn+1 = E [ρn], where
the map

E [ρ] :=
1

∑
k=0

KkρK†
k with Kk = 〈k|U(HS, V)|0〉 (5.11)

is completely positive and trace preserving (CPT) and Kk are the Kraus operators
acting on S. In particular, trace preservation (equivalent to probability conservation)
holds due to ∑

k=0,1
K†

k Kk = 1.

We take the system-probe coupling in the linear form

V = 1√
∆t
(J ⊗ σ+ + J† ⊗ σ−) , (5.12)

where J is an operator on S having dimensions of the square root of a frequency,
and σ− = σ†

+ = |0〉〈1|. In spite of its simplicity, this model of interaction describes a
wide variety of representative physical situations [17, 133]. Also, note that (5.11) is
independent of the probe label since so are U and ηn.
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FIGURE 5.5: Quantum circuits. (a): Quantum-circuit representation
of a system-probe collision followed by a probe measurement. The
system, whose state at the discrete time n is given by ρn, collides
with the nth probe, initialized in the state ηn. The collision is uni-
tary and implemented by the operator U = U(HS, V), which can
be represented as a quantum gate. After the collision, measuring
the probe returns the updated state of the system ρn+1 (by averag-
ing over all measurement outcomes). (b): Modified collision turning
rare trajectories into typical: a pair of extra gates U′ = U(H′S, V′) are
added to U (before measurement). (c): Same modified collision as in
(b) implemented through only one additional collision with unitary

U′′ = U(H′′S , V′′).

5.2.2 Biased collisional trajectories

In contrast to the average (deterministic) dynamics generated by (5.11), each specific
quantum trajectory is conditioned to the measurement outcomes on the probes and
is thus stochastic. At each step, the state of S evolves as [59]

|ψn+1〉 = Kk |ψn〉 /‖Kk |ψn〉 ‖ (5.13)

with pk = ‖Kk |ψn〉 ‖2 the probability to measure the nth probe in state |k〉 (we have
assumed an initial pure state for the system, ρ0 = |ψ0〉〈ψ0|, for the sake of argument).

Each Kk is in one-to-one correspondence with a particular measurement out-
come. We focus on K1. To study the fluctuations of the probe measurements we
need to derive the full counting statistics of the action of K1 in a single trajectory [10,
134]. Let then PN(M) be the probability of observing M times the action of the K1 in
a realization of the collision dynamics up to the discrete time N. For large N, this is
expected to have the form (cf. Eq. (3.29))

PN(M) ∼ e−Nϕ(m) , (5.14)

with m = M/N being the frequency with which the probe has been measured in
state |k = 1〉. The related asymptotic moment generating function of the observable
reads

ZN(s) :=
∞

∑
M=0

PN(M)e−s M −−→
N�1

eNθ(s) , (5.15)

where the real variable s is called “counting field", and θ(s) is the scaled cumulant
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FIGURE 5.6: Discrete-time quantum trajectories of a three-level sys-
tem. (a): Level configuration: each transition |g〉 ↔ |ek〉 is driven
with Rabi frequency Ωk with k = 1, 2. During each unitary colli-
sion, a coherent exchange of excitations occurs between the probe
and the system S. In particular, only transition |g〉 ↔ |e1〉 couples
to the probe. Thus, measuring the probe in state |1n〉 signals that
the environment gained an excitation at the expense of the energy of
the system S which decays to the ground state |g〉 (emulating photon
emission). (b): Normalized activity (average emission rate divided
by ∆t) as a function of s and ∆t. The domain close to the boundary
line separating active and inactive phases is a coexistence region. The
variation of contrast for growing ∆t witnesses changes in sharpness
of the active-inactive region crossover. (c): Sampled representative
trajectories for a collision time γ∆t ' 2, with each tick recording a
probe measurement in |1〉. Trajectories in the active phase (see A)
show a dense emission of excitations from S into the environment.
In the inactive regime (C), instead, probes are rarely detected in |1〉.
Close to the boundary line between these two phases (see B), time
intervals in which S emits frequently are intermittent with intervals

during which probes are almost never measured in |1〉.

generating function defined in Eq. (3.28). In line with Section 3.3, the cumulant gen-
erating function can be calculated as the logarithm of the largest real eigenvalue of a
tilted Kraus map [cf. Eq. (5.11)]

Es[X] = K0XK0 + e−sK1XK1 . (5.16)

Here, Es is the dynamical map corresponding to the the tilted Liouvillian superoper-
ator in Eq. (3.33). As shown before, the probability distribution PN(M) is determined
by the behavior of θ(s) through derivatives with respect to s, taken at the "physical
point" s = 0, but a set of biased probabilities can be defined as in Eq. (3.37) (we
report the expression again for convenience)

Ps
N(M) =

e−s MPN(M)

ZN(s)
. (5.17)

So far we have constructed the probabilities Eq. (5.17) by hand and noted that
these describe rare dynamical events. Here, we show how it is possible to modify
the system-probe collision in a way that Ps

N(M) become physical probabilities. In
other words we will show how, by tailoring the interaction between system and
probes, the rare behavior of the original process can become the typical one of the
new dynamics. As mentioned earlier Ps

N(M) is generated by the tilted map Es which
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is not CPT (i.e., it does not represent a legitimate physical process) since probability
is not preserved. The task is thus to turn Es into a well-defined CPT map. This
is achieved by introducing a Doob dynamics [135, 10, 73] for discrete-time quantum
processes, embodied by the auxiliary CPT map

Ẽ [X] = K̃0XK̃†
0 + K̃1XK̃†

1 . (5.18)

with

K̃0 =
1

Λ1/2
s

`1/2K0`
−1/2 , K̃1 =

e−s/2

Λ1/2
s

`1/2K1`
−1/2 . (5.19)

where ` is the left eigen-operator of the tilted map Es associated with largest real
eigenvalue Λs = eθ(s), i.e. ` is the operator such that

E∗s [`] = Λs ` , (5.20)

in analogy with Eq. (3.41) (here we omit the subscript s in ` operators). The map Ẽ
is completely positive and trace preserving since

Ẽ∗[1] = ∑
k=0,1

K̃†
k K̃k =

1
Λs

`−1/2 E∗s [`]`−1/2 =
1

Λs
`−1/2 (Λs`) `

−1/2 = 1 . (5.21)

Hence the map in Eq. (5.19) is a proper discrete quantum dynamics and, by con-
struction, it reproduces as typical the rare event of the original processes Ps

N(M).

5.2.3 Continuous time limit

In the limit of short collision-times ∆t � 1, the tilted Kraus map is approximately
given by

Es[ρ] ≈ e∆tLs [ρ] , (5.22)

where Ls is the tilted Lindblad superoperator (cf. Eq. (3.33))

Ls[ρ] = −i[HS, ρ] + e−s JρJ† − 1
2

{
ρ, J† J

}
, (5.23)

where J is the same operator appearing in (5.12). As such, the left eigen-operator
of Ls is approximately also the eigen-operator of Es, `, at first-order in ∆t. This also
implies that the largest real eigenvalue of the tilted map can be written as

Λs ≈ e∆t χ(s) , (5.24)

where χ(s) = θ(s)/∆t here represents the largest real eigenvalue of the tilted Lind-
bladian map Ls.
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Thus the second term on the right hand side of Eq. (5.19) reads

K̃1ρK̃†
1 ≈

e−s

e∆t χ(s)
∆t `1/2 J`−1/2 ρ `−1/2 J̃†`1/2 ≈ ∆t J̃ρ J̃† ; (5.25)

with J̃ = e−s/2`1/2 J`−1/2 and the last term e∆t χ(s) only contributes at the zero-th
order in ∆t. Considering the first term on the right hand side of Eq. (5.19), up to first
order in ∆t, we obtain

K̃0ρK̃†
0 ≈ 1 +

[
−i`1/2Heff`

−1/2ρ + iρ`−1/2H†
eff`

1/2 − χ(s)ρ
]

∆t , (5.26)

and this, through a procedure similar to that in Ref. [73], gives

K̃0ρK̃†
0 ≈ 1− i

(
H̃S −

i
2

J̃† J̃
)

ρ∆t + iρ
(

H̃S +
i
2

J̃† J̃
)

∆t , (5.27)

where H̃S, J̃ coincide with the Hamiltonian and the jump operator of the continuous
time Doob dynamics. In light of this result, we can write the unitary interaction
between system and probe as a new collision model as

U(H̃S, Ṽ) = exp[−i(H̃S ⊗ 1+Ṽ)∆t)] , (5.28)

with

Ṽ =
1√
∆t

( J̃ ⊗ σ+ + J̃† ⊗ σ−) . (5.29)

The replacement E → Ẽ [cf. Eq. (5.11)] corresponds to a change of the system-
probe collision as

U(HS, V)→ U(H̃S, Ṽ) . (5.30)

where the new Hamiltonian H̃S and jump operator J̃ match those obtained via the
Doob transform for continuous-time Lindblad processes (see Eq. (3.40)). Thus the
corresponding new Kraus operators read

K̃k = 〈k|U(H̃S, Ṽ)|0〉 . (5.31)

Note that the new system-probe collision unitary (5.30) can be expressed as

U(H̃S, Ṽ) = U(H′′S , V ′′)U(HS, V) (5.32)

with
H′′S = 2H′S , V ′′ = 2V ′ + i ∆t

2 [Ṽ, V] . (5.33)

This decomposition makes apparent the mechanism by which rare events can be
sustained so as to make them typical: an extra collision, added to the original one
U(HS, V), drives the system away from typicality, pinning its dynamical behavior
to the fluctuations of interest. Note that the second term in V ′′ (cf. Eq. (5.33)) is of
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order O(1) in ∆t, and represents an extra system-probe coupling. It is worth noting
that the addition of extra collision is reminiscent of a giant-atom dynamics which
can indeed be described as cascaded collisions [8, 111, 136] yet involving the same
system S [88] as we showed in detail in Sec. 4.9.

5.2.4 Driven three-level system

As an example, let S be a coherently driven three-level system [see Fig. 5.6 (a)]. Each
transition |g〉 ↔ |ek〉, with k = 1, 2, is driven with a Rabi frequency Ωk according to
the Hamiltonian

HS = ∑
k

Ωk(σ̂
(k)
+ + σ̂

(k)
− ) , (5.34)

where σ̂
(k)
− = |g〉S〈ek| = σ̂

(k) †

+ . Additionally, we set J =
√

γ σ̂
(1)
− [cf. Eq. (5.12)],

meaning that only state |e1〉 can decay with rate γ by emitting an excitation into the
environment (corresponding to outcome |1n〉). For short collision times, intermit-
tent emission is known to occur [79, 137], which can be explained as the coexistence
of two deeply different phases of emission much like a first-order phase transition
[86]. Notably, the developed framework allows to investigate such transition-like
behaviour away from the Lindblad dynamical regime, i.e., for finite collision times
∆t. To this end, we plot in Fig. 5.6(b) the time-averaged rate of probe measurements
in state |1〉, 〈m〉/∆t = −∂s(θ(s, ∆t))/∆t, as a function of s and ∆t for Ω1/γ = 1
and Ω1/Ω2 = 1/10. This dynamical order parameter allows us to distinguish ac-
tive (bright) and inactive (dark) trajectory regimes [some representative samples of
quantum trajectories are shown in Fig. 5.6(c)]. The clearly visible boundary line in
Fig. 5.6(b) represents a sharp crossover between the two dynamical regimes. Along
this boundary, trajectories feature intermittent emission of excitations from the sys-
tem. As ∆t grows up, the crossover occurs at a different value of s and its sharpness
changes. Thus, away from the short-∆t (Lindblad) regime, both typical and atypical
emission rates are modified.

5.3 Summary

In Sec. 5.1, we have shown how to detect signatures of non-classicality through the
statistics of time-integrated quantities such as the photon counts. This allows to
benchmark approaches for producing quantum resources for information and com-
putation via general optical circuits and open quantum systems. Our findings can
be extended both to imperfect detection and to recently proposed high-performing
photon-number-resolving detection schemes [138].

In Sec. 5.2 we presented a microscopic framework for the statistical characteri-
zation of quantum trajectories in discrete-time processes. We provided a quantita-
tive tool for studying dynamical fluctuations beyond the standard continuous-time
regime corresponding to the Lindblad master equation. A recipe was given allow-
ing to turn a preselected set of rare quantum trajectories into typical upon addition
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of extra collisions between the system and each probe. The method we introduced
shows how to engineer open quantum dynamics in order to produce desired emis-
sion patterns without the need for changing the detection/ post-selection scheme
[82].
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Conclusion

In the Introduction we raised many questions about unconditioned and conditioned
dynamics of open quantum optical systems. Here, we will address them in light of
what we have shown so far.

The basic theory of open quantum systems has been formulated in a very sim-
ple and intuitive way in Chapter 1. We preferred to show this fundamental topic in
terms of a "physics-oriented" description by neglecting deliberately, as much as pos-
sible, any explicit reference to the formalism of stochastic processes so as to achieve a
self-consistent and friendly viewpoint. In the same spirit we formulated the abstract
collision model of Chapter 2.

The above theory largely underpins our study of one-dimensional quantum op-
tical systems in Chapter 4. We applied the collisional picture to derive a general
Lindblad master equation of a set of giant emitters coupled to a generally chiral
waveguide for an arbitrary white-noise Gaussian state of the field (environment).
We obtained a general master equation describing a wide variety of systems of in-
terest in quantum optics and waveguide QED.

Although collision models are, of course, just one of the many possible tools one
can use, the collision unitary concept makes this picture particularly advantageous
to carry out tasks such as deriving in a natural way CPT master equations, jump
operators or effective decoherence-free Hamiltonians, even in presence of generally
complex systems with many emitters. In particular we have seen that it becomes
crucial for the description and the understanding, so far incomplete, of the micro-
scopic mechanisms underlying the emergence of decoherence-free subspaces in one-
dimensional quantum optical systems.

By modelling the interaction between field and coupling points of giant atoms
placed along the waveguide as a cascaded collision model, we have shown how the
topology of coupling points configurations affects the order in which the system un-
dergoes generally non-commuting collisions and how, under particular conditions,
this leads very intuitively to the occurrence of trivial/non-trivial decoherence-free
Hamiltonians. Providing evidence to the reader that collision models have a predic-
tive power beyond derivation of master equations, is the another main result of this
thesis.

Finally if, having reached the conclusion, the reader is of the opinion that the
subject of large deviation theory (Sec. 2.2) is a mostly obvious generalization of the
well-known Central Limit theorem, we have achieved our last goal.
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Large deviation theory is the the proper framework in which problems of sta-
tistical mechanics and classical thermodynamics can be formulated rigorously [63],
and very recently it has been successfully employed for studying quantum jump
trajectories [86, 10, 61, 122].

Even though these studies received wide attention from the statistical mechan-
ics community, this was not the case for the quantum optics community. The main
problem is the asymptotic meaning of the large deviation estimates since many ex-
periments in quantum optics are mostly focused on short-time scale phenomena.

Our idea of exploiting large deviations to set up a protocol for witnessing non-
classicality takes advantages of this asymptotic nature: the Vogel criterion needs
very high emission statistics also in its original formulation. Remarkably, by ex-
ploiting large deviation formalism it is possible to directly link the signatures of
nonclassicality to the physical parameters governing the open dynamics, accessing
the information about many body interactions or other physical processes taking
place inside the source and generating radiation exhibiting manifestly non-classical
features.

In the last part of Chapter 3 we have shown how the knowledge of asymptotic
emission full-counting statistics provides a recipe for biasing quantum trajectories.
This is a rather new subject and, despite the complexity of the formalism as sum-
marized in Sec. 3.4, is receiving growing interest in its growing [139]. Nevertheless
there are lots of open questions that concern the practical implementation as well
as the physical interpretation. We made significant steps forward in both respects.
By linking quantum Doob transform to collision models we provided a solution to
the interpretational issues and a very simple description of the biasing process. We
showed that it can be seen as a simple modular change of the collision model de-
scribing the original dynamics. Furthermore we extended the existing formalism to
generic discrete quantum maps, which in principle applies even beyond the weak
coupling regime.

The formalism here developed can be implemented to tackle a wide variety of
problems ranging from pure quantum optics to many-body quantum physics.

While in the presented collision models we did not consider lossy photonic en-
vironments [140, 141, 91], the framework could be naturally extended to accommo-
date these. Likewise, a generalization to giant atoms in gapped structured reservoirs
[142] appears viable. Moreover, the joint decoherence-free emitters-field dynamics
is in fact mapped into an effective quantum circuit, which can help quantum simu-
lations and allows to potentially take advantage of already developed quantum in-
formation/computing techniques. The circuital description of collision models and
our biasing protocol could find interesting experimental applications in quantum
simulators for instance based on trapped ions [143] or Rydberg atoms [144, 145].
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