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Sharp Poincaré inequalities in a class of non-convex sets
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Abstract. Let  be a smooth, non-closed, simple curve whose image is symmetric with

respect to the y-axis, and let D be a planar domain consisting of the points on one side of

 , within a suitable distance ı of  . Denote by �odd
1
.D/ the smallest nontrivial Neumann

eigenvalue having a corresponding eigenfunction that is odd with respect to the y-axis.

If  satisfies some simple geometric conditions, then �odd
1
.D/ can be sharply estimated

from below in terms of the length of  , its curvature, and ı. Moreover, we give explicit

conditions on ı that ensure �odd
1
.D/ D �1.D/. Finally, we can extend our bound on

�odd
1
.D/ to a certain class of three-dimensional domains. In both the two- and three-

dimensional settings, our domains are generically non-convex.
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1. Introduction

Let D � R
n be a bounded, connected, Lipschitz domain. We study the classical

free membrane problem in D, that is,

8<
:

��u D �u in D;

@u

@n
D 0 on @D;

(1.1)

where n denotes the exterior unit normal to @D. We arrange the eigenvalues

of (1.1) in a non-decreasing sequence ¹�n.D/ºn2N0
, where each eigenvalue is

repeated according to its multiplicity. The first eigenfunction of (1.1) is clearly

a constant with eigenvalue �0.D/ D 0 for any D. We shall be interested in

the first non-trivial eigenvalue �1.D/, which admits the following variational

characterization:

�1.D/ D min

8̂
<̂
ˆ̂:

Z
D

jr j2dx

Z
D

 2dx

W 2 H 1.D/ n ¹0º;

Z
D

 dx D 0

9>>=
>>;
;

whereH 1.D/ is the usual Sobolev space of square-integrable functions with weak

first-order partials that are also square-integrable; all functions considered here

and in what follows are real-valued.

As is well known, many difficulties arise in estimating �1.D/. One reason

for this is the lack of monotonicity of eigenvalues with respect to set inclusion.

Another is the fact that eigenfunctions corresponding to �1.D/must change sign,

and localizing the nodal line seems to be a hard problem (e.g., [15]).

Despite these difficulties, there are lower bounds on �1.D/ in certain situa-

tions. The celebrated Payne-Weinberger [19] inequality states that ifD is a convex

domain with diameter d.D/, then

�1.D/ �
�2

d.D/2
: (1.2)

The above estimate is asymptotically sharp, since �1.D/d.D/
2 tends to �2 for a

parallelepiped all but one of whose dimensions shrink to 0. Estimate (1.2) fails for

general non-convex sets, as can be seen by considering a planar domain consisting

of two identical squares connected by a thin corridor. Such a counterexample

suggests that a lower bound on �1.D/ for non-convex domains should involve

geometric quantities other than the diameter. In [5, 7] such a lower bound involves

the isoperimetric constant relative toD, and in [13] a lower bound is given in terms
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of an L˛ norm of the Riemann conformal mapping of the unit disk onto D. Thus

the problem of finding a lower bound on �1.D/ for non-convex domains is often

shifted to another geometric problem. Related and further results may be found,

for instance, in [6, 8, 10, 11, 12, 20].

We consider a class of domains that have a line or plane of symmetry, but that

are typically non-convex. Letting �odd
1 denote the smallest nontrivial Neumann

eigenvalue having a corresponding eigenfunction that is odd with respect to this

line or plane, we give explicit lower bounds on �odd
1 . In the two-dimensional case,

we let .s/ D .x.s/; y.s//; s 2 Œ0; L�; be a smooth, non-closed, simple curve,

parametrized with respect to its arc length, and whose image is symmetric with

respect to the y-axis. That is,

x.L� s/ D �x.s/; y.L � s/ D y.s/; s 2
h
0;
L

2

i
:

Consider the domainD consisting of the points on one side of  , within a suitable

distance ı of  . Using the normal vector to .s/ obtained by rotating  0.s/

clockwise by �
2

, we may describe D as follows (see Figure 1):

D D
®
.x.s/C ry0.s/; y.s/ � rx0.s//W s 2 .0; L/; r 2 .0; ı/

¯
: (1.3)

x
r

s

Figure 1. A typical domain D described in the Fermi coordinate system.

Denote by �odd
1 the smallest nontrivial Neumann eigenvalue having a corre-

sponding eigenfunction that is odd with respect to the y-axis. Our main result is

the following theorem.
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Theorem 1.1. Suppose that the curvature k.s/ of  is concave in Œ0; L� and let

ı > 0 be such that 1C ık.s/ > 0 in Œ0; L�. If D is simply connected, then

�odd
1 .D/ � B

�2

L2
;

where

B D min
r2Œ0;ı�; s2Œ0;L�

1

.1C rk.s//2
I

equality holds if  is a line segment.

Thus we give a sharp lower bound on �odd
1 that is reminiscent of the bound

in [19], with a correction factor that encodes the relevant geometry of our domains.

We stress that this result falls in the category of lower bounds obtained in [19,

5, 7, 13], since under certain explicit assumptions on L and ı, we show that

�1.D/ coincides with �odd
1 .D/ (see Propositions 3.1 and 3.2). Roughly speaking,

this phenomenon occurs whenever ı is sufficiently smaller than L. If such a

relationship does not hold, Theorem 1.1 is still relevant, as�odd
1 .D/ can be realized

as the lowest eigenvalue of the Laplacian with mixed boundary conditions on

DC D ¹.x; y/ 2 DW x > 0º. Sharp bounds for such eigenvalues have been

obtained in [1] (see also [2, §2.5] and [18]). Finally, we are able to adapt the

argument used to prove Theorem 1.1 to give the same lower bound on �odd
1 for

certain three-dimensional domains that are not necessarily convex.

The paper is organized as follows. In §2, we prove Theorem 1.1. In §3, we

give conditions under which �odd
1 .D/ coincides with �1.D/, as well as examples

illustrating our two-dimensional results. We extend our two-dimensional results

to certain three-dimensional domains in §4, and conclude with an appendix (§5)

that details some of the computations associated with the Fermi coordinate system

that we use in our proofs.

2. Proof of the main result

The focus of this section will be the proof of Theorem 1.1. We will introduce a

Fermi coordinate system on D and slice D into thin pieces, with the mean value

of an odd eigenfunction vanishing on each slice. Since the slices are thin, we are

close to being in a one-dimensional setting and the following lemma from [19, §2]

will play a key role.
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Lemma 2.1. Let p.s/ be a concave, non-negative function on the interval Œ0; L�.

Then for any piecewise twice differentiable function v.s/ that satisfies

Z L

0

v.s/p.s/ds D 0;

it follows that Z L

0

.v0.s//2p.s/ds �
�2

L2

Z L

0

v.s/2p.s/ds:

Remark 1. Suppose p is also even with respect to L
2

, and v.s/ is a sufficiently

smooth function satisfying v
�
L
2

�
D 0. Define a new function w.s/ that is equal

to v.s/ on
�
0; L

2

�
, and is equal to the odd reflection of v.s/ in the line s D L

2
on�

L
2
; L

�
. Then Lemma 2.1 applies tow.s/ and a straightforward computation shows

that Z L
2

0

.w0.s//2p.s/ds �
�2

L2

Z L
2

0

w.s/2p.s/ds:

Since w.s/ D v.s/ on Œ0; L
2
�, we may replace w by v in the preceding inequality.

We will use this observation in our proof of Proposition 3.2.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix n 2 N. Let us denote by dist .x; y/ the distance of a

generic point .x; y/ 2 D to  and, for any i D 0; : : : ; n� 1, by

Di D
°
.x; y/ 2 DW

i ı

n
< dist .x; y/ <

.i C 1/ ı

n

±
:

Let u be an odd eigenfunction corresponding to �odd
1 .D/ (from now on, for the

sake of brevity, we will omit “with respect to the y-axis”). Using the definition of

eigenfunction and a Green’s formula, we see that

�odd
1 .D/ D

Z
D

jruj2dxdy

Z
D

u2dxdy

I

moreover, the fact that u is odd implies

Z
Di

udxdy D 0 for all i D 0; : : : ; n� 1:
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We want to evaluate the energy of u in any Di . We construct a Fermi coordinate

system .r; s/whereby points .x; y/ inD are determined by specifying the distance

r D dist .x; y/ to the curve  , and the arc length s of the point on  nearest to

.x; y/. Alternatively, we observe that the co-area formula on the level sets of

the distance to  yields the same results. Changing from rectangular to Fermi

coordinates (see §5 for details), we have

Z
Di

jruj2dxdy

D

Z L

0

� Z .iC1/ ı
n

i ı
n

� 1

1C rk.s/
u2s .r; s/C .1C rk.s//u2r .r; s/

�
dr

�
ds

� min
s2Œ0;L�; r2

�
i ı
n ;

.iC1/ ı
n

� 1

.1C rk.s//2

Z L

0

� Z .iC1/ ı
n

i ı
n

u2s .r; s/.1C rk.s// dr

�
ds

� B

Z L

0

� Z .iC1/ ı
n

i ı
n

u2s .r; s/.1C rk.s// dr

�
ds;

where the first inequality follows from the hypothesis that 1C ık.s/ > 0 in Œ0; L�,

and the second from the definition of B . Let us write

Z L

0

� Z .iC1/ ı
n

i ı
n

u2s .r; s/.1C rk.s// dr

�
ds D I1 C I2;

where

I1 D

Z L

0

� Z .iC1/ ı
n

i ı
n

�
u2s .r; s/� u2s

� i ı
n
; s

��
.1C rk.s//dr

�
ds

and

I2 D

Z L

0

� Z .iC1/ ı
n

i ı
n

u2s

� i ı
n
; s

�
.1C rk.s//dr

�
ds

D
ı

n

Z L

0

u2s

� i ı
n
; s

��
1C

1C 2i

2

ı

n
k.s/

�
ds:

Let A be a common bound for the absolute value of each of u and its first and

second derivatives when expressed in Fermi coordinates. Applying the Mean

Value Theorem, we deduce that

jI1j �
2A2ı

n
jDi j: (2.1)
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We will return to I2 in a moment; first, we note that the arguments used above

may be applied to show that

Z
Di

u2dxdy D

Z L

0

� Z .iC1/ ı
n

i ı
n

u2.r; s/.1C rk.s// dr

�
ds D J1 C J2;

where

J1 D

Z L

0

� Z .iC1/ ı
n

i ı
n

�
u2.r; s/ � u2

� i ı
n
; s

��
.1C rk.s//dr

�
ds;

J2 D

Z L

0

� Z .iC1/ ı
n

i ı
n

u2
� i ı
n
; s

�
.1C rk.s//dr

�
ds

D
ı

n

Z L

0

u2
� i ı
n
; s

��
1C

1C 2i

2

ı

n
k.s/

�
ds;

and

jJ1j �
2A2ı

n
jDi j:

We will next relate I2 and J2 via Lemma 2.1. Using the expression for signed

curvature that may be found in §5, it is straightforward to show that k.s/ is even

with respect to L
2

. Since u is odd with respect to L
2

, we have that

Z L

0

u
� i ı
n
; s

��
1C

1C 2i

2

ı

n
k.s/

�
ds D 0:

Our hypothesis that 1C ık.s/ > 0 for s in Œ0; L� implies that 1C 1C2i
2

ı
n
k.s/ > 0.

Since we have also assumed that k.s/ is concave in Œ0; L�, Lemma 2.1 implies that

I2 �
�2

L2
J2: (2.2)

We now combine the above estimates. We haveZ
Di

jruj2dxdy

� B.I1 C I2/

� B
ı

n

� Z L

0

u2s

� i ı
n
; s

��
1C

1C 2i

2

ı

n
k.s/

�
ds � 2A2jDi j

�

� B
ı

n

�
�2

L2

Z L

0

u2
� i ı
n
; s

��
1C

1C 2i

2

ı

n
k.s/

�
ds � 2A2jDi j

�
;
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where we used (2.1) and (2.2), respectively. Using an equivalent expression for

J2, converting back to rectangular coordinates, and subtracting a positive term,

we conclude thatZ
Di

jruj2dxdy � B
�2

L2

� Z
Di

u2 dxdy �
2A2ı

n
jDi j

�
� B

2A2ı

n
jDi j:

Summing over i , we obtainZ
D

jruj2dxdy � B
�2

L2

Z
D

u2dxdy �
Cı

n
jDj;

with C > 0. Taking the limit as n goes to C1 yields the claim.

Finally, to establish the case of equality, we take .s/ D
�
L
2

� s; 0
�

with

s 2 Œ0; L� so that D D
�

� L
2
; L
2

�
� .0; ı/. In this case, �odd

1 .D/ D �2

L2 . �

Remark 2. If  is a curve as in Theorem 1.1, but is closed, it follows from the

Four Vertex Theorem that  is a circle and D is an annulus; the eigenvalues of

such domains may be found exactly from equations that involve cross products of

derivatives of Bessel functions.

Remark 3. If  is part of the boundary of a convex domain T , so that k.s/ � 0

in Œ0; L�, then 1C ık.s/ is clearly positive for any choice of ı > 0. Thus one may

remove the restriction on the value of ı from Theorem 1.1 for such a  .

Some concrete examples to which Theorem 1.1 applies will be provided at the end

of §3.

3. A sufficient condition for �1.D/ D �odd
1

.D/

In this section we give some geometric conditions to ensure that �1.D/ coincides

with �odd
1 .D/. Arguments of a similar flavor have been used in [3, 15].

Proposition 3.1. Let  and D be as in Theorem 1.1 and suppose that  may

be realized as the graph of a function. We denote by …x.D/ D .�P; P / the

projection of D onto the x-axis. Let Sx denote the vertical cross sections of D,

i.e., Sx D ¹. Qx; Qy/ 2 DW Qx D xº, and define S D max
x2Œ0;P /

jSxj. If

S2 < P 2

Z
D

sin2
� �

2P
x

�
dxdy

Z
D

cos2
� �

2P
x

�
dxdy

; (3.1)

then

�1.D/ D �odd
1 .D/:



Sharp Poincaré inequalities in a class of non-convex sets 1591

Proof. Suppose for the sake of reaching a contradiction that there is no odd

eigenfunction corresponding to �1.D/. Therefore if v.x; y/ is any eigenfunction

corresponding to �1.D/, then u.x; y/ D v.x; y/C v.�x; y/ is an eigenfunction

that is even.

We begin by showing that the curve ı parallel to  at distance ı must also

be the graph of a function. Note that .s/ restricted to either
�
0; L

2

�
or

�
L
2
; L

�
lies in the first quadrant; we assume that

�
0; L

2

�
is the relevant interval. Thus

.s/, for 0 � s � L
2

, is the graph of a function in the first quadrant and may be

parametrized by .t/ D .T �t; f .T �t // for 0 � t � T and some function f . Our

parametrization is constructed so that we traverse  with its original orientation.

The curve

ı.s/ D .x.s/C ıy0.s/; y.s/ � ıx0.s//; for 0 � s �
L

2
;

may then be parametrized by

 ı.t / D

�
T � t � ı

f 0.T � t /p
1C .f 0.T � t //2

; f .T � t /C ı
1p

1C .f 0.T � t //2

�
;

for 0 � t � T , where, as we did for ı.s/, we are again translating along a normal

vector obtained by rotating our original tangent vector clockwise by
�

2
. Taking the

derivative with respect to t of the first coordinate of  ı.t /, we find that it equals

�1�ık.t/, where k.t/ is the signed curvature of  .t/. However, we parametrized

 .t/ so that it would have the same orientation as .s/, so our assumption that

1 C ık.s/ > 0 implies that 1 C ık.t/ > 0. Hence the first coordinate of  ı.t / is

strictly decreasing, and we deduce that  ı.t / is also the graph of a function.

Next we use nodal considerations to restrict our attention to a subset ofD. As

is well-known (e.g., [9]), the nodal line u D 0 is a smooth curve; moreover, it

cannot enclose any subdomain of D. Our assumption that u is even implies that

the nodal domains corresponding to u are symmetric with respect to the y-axis,

and Courant’s theorem implies that there are exactly two such nodal domains.

Thus the nodal line intersects @D in exactly two symmetric points and it crosses

the y-axis at precisely one point inside D. Let …x.¹u D 0º/ D Œ�Z;Z� be the

projection of the nodal line onto the x-axis. Since the nodal line is a smooth curve,

we see that each vertical line x D c, where �Z � c � Z, intersects the nodal

line. Let

DC D ¹.x; y/ 2 DWu.x; y/ > 0º and D� D ¹.x; y/ 2 DWu.x; y/ < 0º:
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We claim that the projection of at least one of DC and D� onto the x-axis is

contained in Œ�Z;Z�. If this were not the case, we could find points .x1; y1/ 2 DC

and .x2; y2/ 2 D� with jx1j; jx2j > Z. Since u is even, we may assume that

x1; x2 > Z. We claim that we may connect .x1; y1/ to .x2; y2/ via a path whose

x-coordinate is always strictly larger than Z. Define

 r.s/ D .x.s/C ry0.s/; y.s/ � rx0.s//; for 0 � s �
L

2
and 0 � r � ı:

Note that, for i D 1; 2, we have .xi ; yi/ D  ri .si / for some ri 2 Œ0; ı� and some

si 2 Œ0;
L

2
�. Fixing s and letting r vary between 0 and ı, we see that  r.s/ traces

out a line segment. Thus we may travel along such line segments from  ri .si /

to either .si / or ı.si / for i D 1; 2 in such a way that the x-coordinate remains

strictly greater than Z. Our path from  r1.s1/ to  r2.s2/ is then completed by

traveling appropriately along the boundary; we know that the boundary portion of

our path has x-coordinate strictly greater thanZ because  and ı are both graphs

of functions, and  r .0/ is a line segment. By the Intermediate Value Theorem, the

nodal line intersects this path, which is a contradiction. Thus the projection of at

least one ofDC andD� onto the x-axis is contained in Œ�Z;Z�; replacing u with

�u as needed, we may assume that the projection of DC is contained in Œ�Z;Z�.

We will now use DC to find a lower bound on �1.D/. We have

�1.D/ D

Z
DC

jruj2 dxdy

Z
DC

u2dxdy

�

Z
DC

u2y dxdy

Z
DC

u2dxdy

D

Z
…x.DC/

� Z
Sx\DC

u2y dy

�
dx

Z
DC

u2dxdy

:

(3.2)

For almost every x we have

Sx \DC D

1[
jD1

I xj ;

where for any j , I xj is an open interval such that u vanishes at one or both

endpoints of I xj . The boundary condition is potentially unknown at one of the

endpoints of I xj , but we may take an odd reflection of u in the Dirichlet end of I xj .

Thus u has mean value equal to zero on the doubled I xj , and we have

Z
Ix

j

u2y dy �
�2

4jI xj j2

Z
Ix

j

u2dy �
�2

4S2

Z
Ix

j

u2dy:

This last consideration, together with (3.2), yields

�1.D/ �
�2

4S2
:
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On the other hand, choosing sin
�
�
2P
x

�
as a test function for �1.D/ we obtain

�1.D/ �
�2

4P 2

Z
D

cos2
� �

2P
x

�
dxdy

Z
D

sin2
� �

2P
x

�
dxdy

I

combining these two inequalities on �1.D/, we see that we have a contradiction

to our hypothesis (3.1). �

Remark 4. Proposition 3.1 can be stated in different ways depending on the choice

of the test function used to obtain the upper bound for �1.D/. A rough estimate

can be obtained by choosing x as a test function. In this case condition (3.1)

becomes

S2 <
�2

4

Z
D

x2dxdy

jDj
:

Since our domainD has a special shape, we can alternatively use cos
�
�
L
s
�

as a test

function in the Rayleigh quotient written in Fermi coordinates and (3.1) becomes

S2 <
L2

4

Z L

0

� Z ı

0

cos2
��
L
s
�
.1C rk.s//dr

�
ds

Z L

0

� Z ı

0

sin2
��
L
s
� 1

1C rk.s/
dr

�
ds

: (3.3)

In the next proposition we show that, if  is not the graph of a one-dimensional

function, it is still possible to give a condition ensuring that �1.D/ D �odd
1 .D/.

Proposition 3.2. Let  and D be as in Theorem 1.1. Then

�1.D/ D �odd
1 .D/

if one of the following alternatives holds:

(1) k.s/ � 0 for all s 2 Œ0; L� and

max
s2Œ0;L�

ı2.2C ık.s//2 <
L2

�2

Z L

0

� Z ı

0

cos2
��
L
s
�
.1C rk.s//dr

�
ds

Z L

0

� Z ı

0

sin2
��
L
s
� 1

1C rk.s/
dr

�
ds

I (3.4)
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(2) k.s/ < 0 for all s 2 Œ0; L� and

max
s2Œ0;L�

4ı2

.1C ık.s//2
<
L2

�2

Z L

0

� Z ı

0

cos2
��
L
s
�
.1C rk.s//dr

�
ds

Z L

0

� Z ı

0

sin2
��
L
s
� 1

1C rk.s/
dr

�
ds

I (3.5)

(3) k.s/ changes its sign in Œ0; L�, and

max
°

max
s2Œ0;L�

ı2.2C ık.s//2; max
s2Œ0;L�

4ı2

.1C ık.s//2

±

<
L2

�2

Z L

0

� Z ı

0

cos2
��
L
s
�
.1C rk.s//dr

�
ds

Z L

0

� Z ı

0

sin2
��
L
s
� 1

1C rk.s/
dr

�
ds

:

(3.6)

Proof. As in the proof of Proposition 3.1, suppose for the sake of reaching a con-

tradiction that there is no odd eigenfunction corresponding to �1.D/. There-

fore if v.x; y/ is any eigenfunction corresponding to �1.D/, then u.x; y/ D

v.x; y/C v.�x; y/ is an eigenfunction that is even.

Denote @D D  [ ı [ S , where S is the union of the two segments joining 

and ı , and let ¹PL; PRº D @D \ ¹u D 0º. Of course, PL and PR are symmetric

points with respect to the y-axis. Exactly one of the following cases occurs:

(i) PL; PR 2  ;

(ii) PL; PR 2 S ; or

(iii) PL; PR 2 ı .

We begin by treating case (1) in the statement of Proposition 3.2; we will

analyze subcase (i) first, and then handle subcases (ii) and (iii) together. We denote

by �ND.D/ the lowest eigenvalue of the following mixed Dirichlet-Neumann

problem: 8̂
<̂
ˆ̂:

�� D � in D;

@ 
@n

D 0 on ÁPLPR;
 D 0 on @D n ÁPLPR;

(3.7)

where ÁPLPR is the connected portion of  with endpoints PL and PR. Without

loss of generality we may assume that u > 0 in DC, where @DC \  D ÁPLPR.
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Let uC denote the positive part of u. Using uC as a test function in the variational

characterization of �ND.D/, we obtain

�1.D/ D

Z
DC

jruj2dxdy

Z
DC

u2dxdy

D

Z
D

jruCj2dxdy

Z
D

u2Cdxdy

� �ND.D/

D

Z
D

jr j2dxdy

Z
D

 2dxdy

;

(3.8)

where is an eigenfunction of problem (3.7) corresponding to �ND.D/:By using

a Fermi coordinate system we can estimate the last term in (3.8), obtaining

�1.D/ �

Z L

0

� Z ı

0

 2r .1C rk.s//dr

�
ds

Z L

0

� Z ı

0

 2.1C rk.s//dr

�
ds

: (3.9)

Note that if r D ı, then  D 0 for any s 2 Œ0; L�. To estimate the integralR ı
0  

2
r .1C rk.s//dr , we consider the odd and even extensions (with respect to ı)

of  and 1C rk.s/ to Œ0; 2ı�, respectively. Since k.s/ � 0, the latter extension is

concave in r . Hence Remark 1 implies

Z ı

0

 2r .1C rk.s//dr �
�2

4ı2

Z ı

0

 2.1C rk.s//dr:

Integrating with respect to s gives

Z L

0

� Z ı

0

 2r .1C rk.s//dr

�
ds �

�2

4ı2

Z L

0

� Z ı

0

 2.1C rk.s//dr

�
ds;

and combining this inequality with (3.9) yields

�1.D/ �
�2

4ı2
�

1

max
s2Œ0;L�

ı2.2C ık.s//2
; (3.10)
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with the last inequality holding by the non-negativity assumption on k. On the

other hand, choosing cos
�
�
L
s
�

as test function in the variational characterization

of �1.D/ where the Rayleigh quotient is written in Fermi coordinates, we obtain

�1.D/ �
�2

L2

Z L

0

� Z ı

0

sin2
��
L
s
� 1

1C rk.s/
dr

�
ds

Z L

0

� Z ı

0

cos2
��
L
s
�
.1C rk.s//dr

�
ds

;

reaching a contradiction.

In subcase (ii), define ÁPLPR to be the path on @D connecting PL and PR with

nonempty intersection with ı ; in subcase (iii), define ÁPLPR to be the path on @D

connecting PL and PR that has empty intersection with S . We denote by �ND.D/

the lowest eigenvalue of the mixed Dirichlet-Neumann problem given by (3.7).

Without loss of generality we may assume that @DC \ .ı [ S/ D ÁPLPR. We

proceed as in subcase (i) through (3.9). Note that if r D 0, then  D 0 for any

s 2 Œ0; L� since ÁPLPR \  D ;. Suppose k.s/ D 0 so that we wish to estimateR ı
0  

2
r dr ; we consider the odd extension (with respect to 0) of  to Œ�ı; ı�. Then

Remark 1 implies Z ı

0

 2r dr �
�2

4ı2

Z ı

0

 2dr: (3.11)

Suppose k.s/ > 0 and define

B21 .s/ D max
r2Œ0;ı�

� Z ı

r

.1C tk.s//dt

�� Z r

0

1

1C tk.s/
dt

�

D max
r2Œ0;ı�

.ı � r/
�
1C .ı C r/

k.s/

2

� log.1C rk.s//

k.s/
:

(3.12)

By [17, p. 40, Thm. 1], we have

Z ı

0

 2r .1C rk.s//dr � C1.s/

Z ı

0

 2.1C rk.s//dr; (3.13)

where

C1.s/ �
1

4B21 .s/
:

Set

b1.r/ D .ı � r/
�
1C .ı C r/

k.s/

2

� log.1C rk.s//

k.s/
:
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Then b1.0/ D b1.ı/ D 0 and

b0
1.r/ D �

�
1C .ı C r/

k.s/

2

� log.1C rk.s//

k.s/

C .ı � r/
k.s/

2

log.1C rk.s//

k.s/

C .ı � r/
�
1C .ı C r/

k.s/

2

� 1

1C rk.s/
:

Thus, if Nr 2 .0; ı/ is a maximum point for b1, so that b0
1. Nr/ D 0, then we have

log.1C Nrk.s//

k.s/
D .ı � Nr/

�
1C .ı C Nr/

k.s/

2

� 1

.1C Nrk.s//2
:

This implies that

B21 .s/ D max
r2Œ0;ı�

b1.r/

D .ı � Nr/2
�
1C .ı C Nr/

k.s/

2

�2 1

.1C Nrk.s//2

� ı2
�
1C ı

k.s/

2

�2
;

(3.14)

and hence

C1.s/ �
1

ı2.2C ık.s//2
: (3.15)

Using (3.11), (3.13), and (3.15), we deduce that

Z ı

0

 2r .1C rk.s//dr �

8̂
ˆ̂<
ˆ̂̂:

�2

4ı2

Z ı

0

 2.1C rk.s//dr if k.s/ D 0;

1

ı2.2C ık.s//2

Z ı

0

 2.1C rk.s//dr if k.s/ > 0;

and therefore

Z ı

0

 2r .1C rk.s//dr �
1

ı2.2C ık.s//2

Z ı

0

 2.1C rk.s//dr:

Combining this inequality with (3.9) yields

�1.D/ �
1

max
s2Œ0;L�

ı2.2C ık.s//2
: (3.16)

We conclude as in subcase (i), thus completing case (1).
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Next we treat case (2). In all three subcases, we proceed as in case (1)

through (3.9). In order to estimate from below the ratio on the right-hand side

in (3.9), we will again use [17, p. 40, Theorem 1]. In subcase (i), we take � D � D

.1C .ı � x/k.s//1Œ0;ı�.x/ in that statement. Denoting

B22 .s/ D max
r2Œ0;ı�

� Z ı�r

0

.1C tk.s//dt

�� Z ı

ı�r

1

1C tk.s/
dt

�

D max
r2Œ0;ı�

.ı � r/
�
1C .ı � r/

k.s/

2

� 1

.�k.s//
log

�1C .ı � r/k.s/

1C ık.s/

�
;

we have Z ı

0

 2r .1C rk.s//dr � C2.s/

Z ı

0

 2.1C rk.s//dr; (3.17)

where

C2.s/ �
1

4B22 .s/
:

Set

b2.r/ D .ı � r/
�
1C .ı � r/

k.s/

2

� 1

.�k.s//
log

�1C .ı � r/k.s/

1C ık.s/

�
:

Then b2.0/ D b2.ı/ D 0 and

b0
2.r/ D �

�
1C .ı � r/

k.s/

2

� 1

.�k.s//
log

�1C .ı � r/k.s/

1C ık.s/

�

C
.ı � r/

2
log

�1C .ı � r/k.s/

1C ık.s/

�

C .ı � r/
�
1C .ı � r/

k.s/

2

� 1

1C .ı � r/k.s/
:

Thus, if Nr 2 .0; L/ is a maximum point for b2, so that b0
2. Nr/ D 0, then we have

1

.�k.s//
log

�1C .ı � Nr/k.s/

1C ık.s/

�

D .ı � Nr/
�
1C .ı � Nr/

k.s/

2

� 1

.1C .ı � Nr/k.s//2
:

This implies that

B22 .s/ D max
r2Œ0;L�

b2.r/ D .ı � Nr/2
�
1C .ı � Nr/

k.s/

2

�2 1

.1C .ı � Nr/k.s//2
;

and hence

C2.s/ �
.1C ık.s//2

4ı2
:
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Combining this inequality with (3.17) implies

Z ı

0

 2r .1C rk.s//dr �
.1C ık.s//2

4ı2

Z ı

0

 2.1C rk.s//dr I

hence from (3.9) we deduce that

�1.D/ � min
s2Œ0;L�

.1C ık.s//2

4ı2
: (3.18)

If we are in subcase (ii) or in subcase (iii), we note that if r D 0, then

 D 0 for all s 2 Œ0; L�. We define B21 .s/ as in (3.12) and follow that argument

through (3.14). Then (3.14) may be replaced by

B21 .s/ �
ı2

.1C ık.s//2

and we conclude as in subcase (i).

For case (3), we combine cases (1) and (2). We note that if k.s/ D 0 on a set

I � Œ0; L� with positive measure, then (3.11) holds true for every s 2 I . �

Remark 5. In [19], Payne and Weinberger establish a lower bound for �1.D/

when D is convex. As an application, they obtain a pointwise estimate for the

solution u to the interior Neumann problem:8<
:
�u D 0 in D;

@u

@n
D g on @D;

in terms of square integrals of @u
@n

and �1.D/. The argument that gives the

pointwise estimate is still valid for our non-convex domain, provided there exists

a vector field satisfying the same conditions as in [19]. Thus, when D is such

that �1.D/ D �odd
1 .D/ and such a vector field exists, we get analogous pointwise

estimates.

Remark 6. Let  and D be as in Proposition 3.2, assuming in particular that

one of the conditions (3.4), (3.5), or (3.6) is fulfilled. Then we claim that �1.D/

is simple. Indeed, we may view �odd
1 .D/ as the smallest eigenvalue of a mixed

Dirichlet-Neumann eigenvalue problem with Dirichlet boundary conditions on

¹x D 0º \ .D [ @D/ and Neumann boundary conditions on ¹x > 0º \ @D.

The smallest eigenvalue of such a mixed problem is always simple, so there

exists a unique (up to a multiplicative constant) odd eigenfunction whose Rayleigh

quotient is equal to�odd
1 .D/. If �1.D/ D �odd

1 .D/were not simple, then we could

create an even eigenfunction corresponding to �1.D/ as done at the beginning of

the proof of Proposition 3.2 and reach a contradiction.
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We have thus established various conditions under which �1.D/ D �odd
1 .D/.

For a given domainD, we may combine a relevant condition with the lower bound

on �odd
1 .D/ given by Theorem 1.1 to give an explicit and easily computable lower

bound on �1.D/. We illustrate this idea with several examples.

Example 1 (Annular sector). Let R > 0 and consider the annular sector

D D
°
�ei� WR < � < RC ı;

�

2
� ˛ < � <

�

2
C ˛

±
;

with ˛ 2 .0; �/. Then condition (3.4) in Proposition 3.2 becomes

.2Rı C ı2/
�

log
�RC ı

R

��
<
2˛2R2

�2
:

Thus, if ı satisfies this inequality, Theorem 1.1 tells us that

�1.D/ D �odd
1 .D/ �

�2

4˛2.RC ı/2
:

Note that we have given a lower bound on �1.D/ D �odd
1 .D/ without any

reference to zeros of Bessel functions.

Example 2 (Arch of catenary). Let a > 0 and consider the arch of catenary

.s/ D .x.s/; y.s//, s 2 Œ0; 2 sinh a�, where
8<
:
x.s/ D arcsinh.s � sinh a/;

y.s/ D
p
1C .s � sinh a/2:

We find k.s/ D 1
1C.s�sinha/2

, and k is concave if a � arcsinh
�
1p
3

�
. Since k.s/ > 0

for all s, any positive ı will satisfy the constraint given by Theorem 1.1. If ı is

small enough for condition (3.1) in Proposition 3.1 to hold, Theorem 1.1 gives the

following explicit bound:

�1.D/ D �odd
1 .D/ �

�2

4.1C ı/2 sinh2 a
:

Example 3 (Handlebar moustache). We begin by considering the following con-

cave function on the interval Œ0; 1:6�:

k.s/ D

8̂
ˆ̂<
ˆ̂̂:

50s � 25 if 0 � s � 0:6;

5 if 0:6 � s � 1;

�50s C 55 if 1 � s � 1:6:
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Up to a rotation and a translation, there exists a unique curve .s/ D .x.s/; y.s//

(parametrized with respect to its arc length) having curvature k.s/. If F.u/ DR u
0
k.t/dt , u 2 Œ0; 1:6�, then  has the following parametrization:

.s/ D

� Z s

0

cosF.u/ du;

Z s

0

sinF.u/ du

�
; 0 � s � 1:6:

By rotating and translating so that  is symmetric with respect to the y-axis, we

may build D as in Theorem 1.1 (see Figure 2).

x0

y

Figure 2. The “handlebar moustache” domain of Example 3 with ı D :03.

We next find positive values of ı so that (3.6) is satisfied. First observe that the

requirement 1C ık.s/ > 0 on Œ0; 1:6� forces ı < 0:04. Next, note that

max
s2Œ0;1:6�

ı2.2Cık.s//2 D ı2.2C5ı/2 and max
s2Œ0;1:6�

4ı2

.1C ık.s//2
D

4ı2

.1 � 25ı/2
:

Since 1� 25ı > 0, the inequality

4ı2

.1 � 25ı/2
> ı2.2C 5ı/2

is equivalent to 2 > .1�25ı/.2C5ı/ D 2�45ı�125ı2, which holds since ı > 0.

It follows that inequality (3.6) in Proposition 3.2 holds precisely when

Q.ı/ D
1:62

�2

Z 1:6

0

cos2
� �
1:6
s
��
ı C

ı2

2
k.s/

�
ds

Z 1:6

0

sin2
� �
1:6
s
� log.1C ık.s//

k.s/
ds

�
4ı2

.1� 25ı/2
> 0:
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We graph Q.ı/ in Figure 3 below and find using Mathematica that Q.ı/ > 0

provided ı < :03393. We therefore have

�1.D/ D �odd
1 .D/ �

�2

2:56.1C 5ı/2

for such values of ı.

Figure 3. A graph of Q.ı/ from Example 3.

4. Some considerations in the three-dimensional case

Let � be a bounded subset of R
2 and let '.s; t / D .x.s; t /; y.s; t /; z.s; t //,

.s; t / 2 �, be a smooth surface. Consider the three-dimensional domain D

consisting of the points on one side of ', within a suitable distance ı of '. If

we denote by

� D .�x; �y; �z/ D
's � 't

k's � 'tk

a chosen unit normal vector to ', D can be described as follows:

D D ¹.x.s; t /C r�x.s; t /; y.s; t /C r�y.s; t /; z.s; t /C r�z.s; t //W

.s; t / 2 �; r 2 .0; ı/º:
(4.1)
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In order to evaluate integrals over D, we introduce a Fermi coordinate system

using r D dist'.x; y; z/ as one coordinate and s; t , the coordinates in � of the

point on ' nearest to .x; y; z/, as the other ones. The domains D that we will

consider arise from smooth surfaces ' that are generalized cylinders and surfaces

of revolution.

4.1. Generalized cylinders. A generalized cylinder is a special case of a ruled

surface, which is a surface that is a union of straight lines. We have a generalized

cylinder when the straight lines, or rulings, are all parallel to each other. Given a

set of parallel rulings, a parametrized curve ˛ in R
3 that meets each of these rul-

ings, and a constant unit vector ˇ that is parallel to the rulings, the corresponding

generalized cylinder may be described as

'.s; t / D ˛.s/C tˇ; t 2 R: (4.2)

It can be shown that we may always assume that ˛ is parametrized with respect

to arc length and contained in a plane that is perpendicular to ˇ. Without loss

of generality, suppose that ˛.s/ D .x.s/; 0; z.s//, s 2 Œ0; L�, is a smooth, non-

closed, simple curve, parametrized with respect to its arc length, whose image is

contained in the plane y D 0. Moreover, suppose ˛.s/ is symmetric with respect

to the z-axis so that

x.L � s/ D �x.s/; z.L � s/ D z.s/; s 2
h
0;
L

2

i
:

Take ˇ D .0;�1; 0/ and consider the surface ' given by (4.2) with s 2 .0; L/ and

t 2 .0; T / for some T > 0. A typical domain D constructed from a generalized

cylinder as in (4.1) is shown in Figure 4.

Figure 4. A typical domain D constructed from a generalized cylinder.
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We see that ¹'s; 't ; �º forms an orthonormal basis for R3. Recalling notation

from §5, we compute

E D j's j
2 D 1; F D 's � 't D 0; G D j't j

2 D 1;

a D
FM � LG

EG � F 2
D �L D �'ss � � D k.s/;

b D
LF �EM

EG � F 2
D �M D �'st � � D 0;

c D
FN �MG

EG � F 2
D 0;

d D
MF �NE

EG � F 2
D �N D �'t t � � D 0;

where k.s/ is the curvature of ˛. Moreover, the Jacobian of the Fermi transforma-

tion is independent of t :

det.J.r; s; t // D det.J.r; s// D 1C ar D 1C rk.s/:

With this setup, we can now give a lower bound on �odd
1 for generalized

cylinders.

Theorem 4.1. Suppose that the curvature k.s/ of ˛ is concave in Œ0; L� and let

ı > 0 be such that 1Cık.s/ > 0 in Œ0; L�. IfD is simply connected and�odd
1 .D/ is

the smallest nontrivial Neumann eigenvalue having a correspondingeigenfunction

that is odd with respect to the plane x D 0, we have

�odd
1 .D/ � B

�2

L2
;

where

B D min
Œ0;ı��Œ0;L�

1

.1C rk.s//2
:

Proof. We will argue as in the two-dimensional case. Fix n 2 N. For any

i D 0; : : : ; n� 1, and any j D 0; : : : ; n� 1, let us denote by

Dij D
°
.x; y; z/ 2 DW

iı

n
< dist'.x; y; z/ <

.i C 1/ı

n
;
jT

n
< t <

.j C 1/T

n

±
:
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Let u be an eigenfunction corresponding to �odd
1 .D/ that is odd with respect to

the plane x D 0. Using the definition of eigenfunction and a Green’s formula, we

see that

�odd
1 .D/ D

Z
D

jruj2dxdydz

Z
D

u2dxdydz

I

moreover, the fact that u is odd implies

Z
Dij

udxdydz D 0 for all i D 0; : : : ; n� 1 and for all j D 0; : : : ; n� 1:

We want to evaluate the energy of u in any Dij . Using the Fermi coordinate

system and denoting J D j det.J /j, we have

Z
Dij

jruj2dxdydz

D

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

�
u2r C u2s

.1C dr/2

J2
C u2t

.1C ar/2

J2

�
J drdt

�
ds

� min
Dij

J�2
Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

u2s J drdt

�
ds

� B

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

u2s J drdt

�
ds:

Let us write

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

u2s J drdt

�
ds D I1 C I2;

where

I1 D

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

�
u2s .r; s; t /� u2s

� iı
n
; s;

jT

n

��
J.r; s; t /drdt

�
ds;

I2 D

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

u2s

�
iı

n
; s;

jT

n

�
J.r; s; t /drdt

�
ds

D
T ı

n2

Z L

0

u2s

� iı
n
; s;

jT

n

��
1C

1C 2i

2

ı

n
k.s/

�
ds:
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Analogously, it holds that

Z
Dij

u2dxdydz D

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

u2 Jdrdt

�
ds D H1 CH2;

where

H1 D

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

�
u2.r; s; t /� u2

� iı
n
; s;

jT

n

��
J.r; s; t /drdt

�
ds;

H2 D

Z L

0

� Z .j C1/T
n

jT
n

Z .iC1/ı
n

iı
n

u2
�
iı

n
; s;

jT

n

�
J.r; s; t /drdt

�
ds

D
T ı

n2

Z L

0

u2
� iı
n
; s;

jT

n

��
1C

1C 2i

2

ı

n
k.s/

�
ds:

Let A be a common bound for the absolute value of each of u and its first and

second derivatives when expressed in Fermi coordinates. Applying the Mean

Value Theorem, we deduce that

jI1j �
2A2.T C ı/

n
jDij j; jH1j �

2A2.T C ı/

n
jDij j:

Using that k.s/ is even and u is odd with respect to L
2

, we see that

Z L

0

u
� i ı
n
; s;

jT

n

��
1C

1C 2i

2

ı

n
k.s/

�
ds D 0:

Thus, arguing as in the two-dimensional case, we may apply Lemma 2.1 to con-

clude that I2 �
�2

L2
H2. We combine our estimates in a manner parallel to that

of the two-dimensional case, summing over i and j ; taking the limit as n goes to

C1 yields the result. �

Remark 7. Let D be constructed from a generalized cylinder as in Theorem 4.1.

By separation of variables, the eigenvalues of D take the form

�.D/ D �m. zD/C
n2�2

T 2
; m; n � 0;

where zD is a two-dimensional domain in the xz-plane as in (1.3). If T is suffi-

ciently large, then �1.D/ D �2

T 2 with corresponding eigenfunction u.x; y; z/ D

cos
�
�y
T

�
. Observe that u is odd with respect to the plane y D �T

2
. Thus as T

becomes large, we expect eigenfunctions for �1.D/ to exhibit odd symmetry with
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respect to the plane y D �T
2

rather than the plane x D 0. On the other hand, if T

is sufficiently small, then �1.D/ D �1. zD/ and eigenfunctions for �1.D/ take the

form u.x; y; z/ D v.x; z/, where v is an eigenfunction for �1. zD/. Hence we may

apply Proposition 3.2 to give conditions on ı that guarantee �1. zD/ D �odd
1 . zD/

and therefore �1.D/ D �odd
1 .D/.

4.2. Surfaces of revolution. Let ˛.s/ D .x.s/; 0; z.s//; s 2 Œ0; L�, be the curve

considered in §4.1. We assume, without loss of generality, that x.s/ � 0 for

s 2
�
0; L

2

�
. Our aim is to construct a three-dimensional domain D consisting

of certain points on one side of the surface of revolution obtained by a � rotation

of ˛ around the z-axis. We consider the surface

'.s; �/ D .x.s; �/; y.s; �/; z.s; �// D .x.s/ sin �; x.s/ cos �; z.s//; (4.3)

for s 2
�
0; L

2

�
; � 2 .0; �/, and the domain

DC D
°
.x.s; �/C r�x.s; �/; y.s; �/C r�y.s; �/; z.s; �/C r�z.s; �//W

.s; �/ 2
�
0;
L

2

�
� .0; �/; r 2 .0; ı/

±
:

Then,D D DC [D� [.int.@DC \¹x D 0º//, whereD� is the domain symmetric

to DC with respect to the yz-plane, and int denotes the two-dimensional interior

taken in the plane ¹x D 0º. Note that the parametrization of ' is not regular at

s D L
2

or at s D 0; we identify all points corresponding to each such s-value

and define � at those points by continuous extension. Had we done a rotation

through� of the whole curve ˛, we would have more serious issues with regularity.

A typical domainD constructed from a surface of revolution is shown in Figure 5.

Figure 5. A typical domain D constructed from a surface of revolution.
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We see that ¹'s ; '� ; �º forms an orthonormal basis for R3. Recalling notation

from §5, we compute

E D j's j
2 D 1; F D 's � '� D 0; G D j'� j2 D x.s/2;

a D
FM � LG

EG � F 2
D �L D �'ss � � D k.s/;

b D
LF �EM

EG � F 2
D �

M

G
D �

's� � �

G
D 0;

c D
FN �MG

EG � F 2
D �M D �'s� � � D 0;

d D
MF � NE

EG � F 2
D �

N

G
D �

'�� � �

G
D
z0.s/

x.s/
;

where k.s/ is the curvature of ˛. Moreover, the Jacobian of the Fermi transforma-

tion is independent of � :

det.J.r; s; �// D det.J.r; s// D .x.s/C rz0.s//.1C rk.s//:

With this setup, we may now give a lower bound on �odd
1 for surfaces of

revolution.

Theorem 4.2. Let ı > 0 be such that det.J.r; s// > 0 on Œ0; ı� �
�
0; L

2

�
and

1Cık.s/ > 0 for s 2 Œ0; L�. Suppose that for each r 2 Œ0; ı�, the function J.r; s/ D

j det.J.r; s//j is concave in s 2
�
0; L

2

�
. AssumeD is simply connected and denote

by �odd
1 .D/ the smallest nontrivial Neumann eigenvalue with a corresponding

eigenfunction that is odd with respect to the plane x D 0. Then

�odd
1 .D/ � B

�2

L2
; (4.4)

with B D min
Œ0;ı��Œ0;L�

1

.1C rk.s//2
:

In order to prove this theorem we need a variant of Lemma 2.1.

Lemma 4.1. Let p.s/ be a concave, non-negative function on the interval
�
0; L

2

�
such that p

�
L
2

�
D 0. Then for any piecewise twice differentiable function v.s/

that satisfies

v0.0/ D v
�L
2

�
D 0;

it follows that

Z L
2

0

.v0.s//2p.s/ds �
4�2

L2

Z L
2

0

.v.s//2p.s/ds:
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The proof of Lemma 4.1 is similar to that of Lemma 2.1 (cf. [4], [19]). Note that

v.s/ satisfies a singular Sturm-Liouville problem and that we may make a change

of variables as in the original proof:

w D v0p1=2:

Since we are assuming that v0.0/ D v
�
L
2

�
D 0, we see that w satisfies homoge-

neous Dirichlet boundary conditions and can thus serve as a test function in the

Rayleigh quotient for a vibrating string of length
L

2
with fixed ends.

Proof of Theorem 4.2. In addition to Lemma 4.1, we will use a slight modification

of the arguments in the proof of Theorem 4.1. First, we observe that an eigenfunc-

tion u corresponding to �odd
1 .D/ is the first eigenfunction of the Laplace operator

on DC with mixed boundary conditions: Dirichlet on @DC \ ¹x D 0º and Neu-

mann on the remaining part of @DC. Fixing n 2 N, we partition DC as

D
ij
C D

°
.x; y; z/ 2 DCW

iı

n
< dist'.x; y; z/ <

.i C 1/ı

n
;
j�

n
< � <

.j C 1/�

n

±
;

for i D 0; : : : ; n� 1 and j D 0; : : : ; n� 1. We observe that

Z
D

C

ij

jruj2dxdydz

D

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

�
u2r C u2s

x2.1C dr/2

J2

C u2�
x2.1C ar/2

J2

�
Jdrd�

�
ds

� min
D

C

ij

x2.1C dr/2

J2

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

u2sJ drd�

�
ds

� B

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

u2sJ drd�

�
ds;

(4.5)

where in the last line, we have used that

x2.1C dr/2

J2
D

1

.1C rk.s//2
:

Let us write

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

u2sJ drd�

�
ds D I1 C I2;
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where

I1 D

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

�
u2s .r; s; �/� u2s

� iı
n
; s;

j�

n

��
Jdrd�

�
ds;

I2 D

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

u2s

� iı
n
; s;

j�

n

�
Jdrd�

�
ds

D

Z L
2

0

u2s

� iı
n
; s;

j�

n

�
p.s/ds;

with

p.s/ D

Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

J.r; s/ drd�: (4.6)

Analogously, it holds that

Z
D

C

ij

u2dxdydz D

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

u2.r; s; �/J drd�

�
ds D H1 CH2;

where

H1 D

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

�
u2.r; s; �/ � u2

� iı
n
; s;

j�

n

��
Jdrd�

�
ds;

H2 D

Z L
2

0

� Z .j C1/�
n

j�
n

Z .iC1/ı
n

iı
n

u2
� iı
n
; s;

j�

n

�
Jdrd�

�
ds

D

Z L
2

0

u2
� iı
n
; s;

j�

n

�
p.s/ds:

Since J.r; s/ is concave in s 2
�
0; L

2

�
and J

�
r; L
2

�
D 0 for each r , we see that

p.s/ as defined in (4.6) satisfies the hypotheses of Lemma 4.1. The lemma gives

a relationship between I2 and H2, and the remainder of the proof follows that of

Theorem 4.1. �

Example 4 (half-spherical shell). If

˛.s/ D
�
R sin

� s
R

�
; 0;�R cos

� s
R

��
; s 2 Œ0; 2�R�;

then for any ı > 0 we get the half spherical shell

DC D
°�
.r CR/ sin

� s
R

�
sin �; .r CR/ sin

� s
R

�
cos �; �.r CR/ cos

� s
R

��
W

r 2 .0; ı/; s 2 Œ0; �R�; � 2 .0; �/
±
:
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In this case, we have
1

.1C rk.s//2
D

R2

.r CR/2
:

In [16], Li proves that �1.D/ has multiplicity 3. Thus �1.D/ must correspond to

the angular eigenfunctions in the usual separation of variables, and hence there is

an odd eigenfunction associated to �1.D/. Theorem 4.2 gives

�1.D/ D �odd
1 .D/ �

1

4.ı CR/2
:

5. Appendix

Here we provide some details about the Fermi coordinate systems in two and

three dimensions. For the two-dimensional computations, let .s/ D .x.s/; y.s//,

s 2 Œ0; L�; be a smooth, non-closed, simple curve, parametrized with respect to

arc length. LetD be a simply connected domain described with coordinates .r; s/

as in (1.3). Consider the coordinates X D X.r; s/ and Y D Y.r; s/; where

X D x.s/C ry0.s/;

Y D y.s/ � rx0.s/:

Recall that the signed curvature k.s/ is defined by

k.s/ D x0.s/y00.s/ � y0.s/x00.s/:

It is straightforward to verify that the Jacobian matrix is

J D
@.X; Y /

@.r; s/
D

�
y0 x0 C ry00

�x0 y0 � rx00

�
:

Assuming that 1C ık.s/ > 0 for s 2 Œ0; L�, we see that the absolute value may be

dropped:

J D j det.J /j D 1C rk.s/ > 0 for every s 2 Œ0; L�; r 2 Œ0; ı�: (5.1)

We explicitly observe that (5.1) and the Inverse Function Theorem imply that

the Fermi coordinates from Œ0; ı� � Œ0; L� to xD are locally one-to-one. Moreover,

since D is simply connected, the Global Invertibility Theorem ensures that the

Fermi coordinates are globally one-to-one. For smooth functions u, we have

Z
D

u.X; Y /dXdY D

Z L

0

Z ı

0

u.r; s/.1C rk.s//drds: (5.2)
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Similarly, one calculates

uX D �
1

1C rk.s/
.�x0us C .rx00 � y0/ur /;

uY D �
1

1C rk.s/
.�y0us C .x0 C ry00/ur /;

from which one deduces

jru.X; Y /j2 D
1

.1C rk.s//2
u2s C u2r :

In the three-dimensional case, let ' be a surface described as '.s; t / D

.x.s; t /; y.s; t /; z.s; t //; .s; t / 2 � with � a bounded domain in R
2. Let D be

a simply connected three-dimensional domain described with coordinates .r; s; t /

as in (4.1), and suppose that ¹'s; 't ; �º forms an orthonormal basis for R3. Con-

sider the coordinates X D X.r; s; t /, Y D Y.r; s; t / and Z D Z.r; s; t /, where

X D x.s; t /C r�x.s; t /;

Y D y.s; t /C r�y.s; t /;

Z D z.s; t /C r�z.s; t /:

The Jacobian matrix of this transformation is

J D
@.X; Y; Z/

@.r; s; t /
D

0
@
�x xs C r�x;s xt C r�x;t

�y ys C r�y;s yt C r�y;t

�z zs C r�z;s zt C r�z;t

1
A :

To simplify the computation of the determinant of this Jacobian, we recall

some notation. Let

E D j's j
2; F D 's � 't ; G D j't j

2;

LD 'ss � �; M D 'st � �; N D 't t � �;

aD
FM � LG

EG � F 2
; b D

LF �EM

EG � F 2
; (5.3a)

c D
FN �MG

EG � F 2
; d D

MF � NE

EG � F 2
; (5.3b)

H D �
aC d

2
D
LG C NE � 2MF

2.EG � F 2/
mean curvature,

K D ad � bc D
LN �M 2

EG � F 2
Gauss curvature:
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We can simplify

det.J / D � � Œ.'s C r�s/ � .'t C r�t /�

D
's � 't

k's � 'tk
� Œ.'s C r�s/ � .'t C r�t /�

using properties of the dot and cross products. In addition to well-known

properties, we use Lagrange’s identity, which states that .a � b/ � .c � d/ D

.a � c/.b � d/ � .a � d/.b � c/ for vectors a; b; c; d. We obtain

J D j det.J /j D .1� 2rH C r2K/.EG � F 2/1=2I

here we have assumed 1 � 2rH C r2K > 0 in order to drop the absolute values.

Thus for a smooth function u, we haveZ
D

u.X; Y; Z/dXdYdZ

D

Z L

0

Z T

0

Z ı

0

u.r; s; t /.1� 2rH C r2K/.EG � F 2/1=2drdtds:

(5.4)

Finally, we need to express jru.X; Y; Z/j2 with respect to Fermi coordinates.

We first compute

ur D ru � �;

us D ru � 's C r.ru � �s/;

ut D ru � 't C r.ru � �t /:

Then the reader may verify that, using the notation given in (5.3),

�s D a's C b't and �t D c's C d't ;

ru � 's D
.1C dr/us � brut

1� 2rH C r2K
and ru � 't D

.1C ar/ut � crus

1 � 2rH C r2K
:

Combining these expressions and making the additional assumption b D c D 0,

we obtain

jruj2 D u2r C u2s
.1C dr/2

.1 � 2rH C r2K/2
C u2t

.1C ar/2

.1 � 2rH C r2K/2
:
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