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SOME REMARKS ON THE EXTINCTION FOR THE

MEANCURVATURE FLOW

B. BRANDOLINI - M. CICALESE - C. NITSCH - C. TROMBETTI

1. Introduction.

Let us consider a family of bounded open sets (�t )t≥0 in R
n (n ≥ 2) and

sets �t = ∂�t . If �t is a smooth (n − 1)-dimensional hypersurface it is said to
be moving by mean curvature if the following initial value problem is satisfied

(1.1)

{
V = H on �t

(�t )t=0 = �0

where V (x , t) and H (x , t) denotes respectively the inward normal velocity and
(n − 1) times the mean curvature of �t at a point x ∈ �t .

It is well known (see [9] for smooth convex, and [4] for general continuous
hypersurfaces) that �t shrinks to a point in a finite time t∗ defined as

t∗ = t∗(�0) = inf{t : �t �= ∅}

and called extinction time. The simplest upper bound estimate for t∗ relies on
a monotonicity property of the mean curvature equation according to which,
given two sets �0 and D0 in R

n such that �0 ⊂ D0, the inclusion remains true
during the whole evolution of their boundaries: �t ⊂ Dt . Therefore, denoting

by d0 the diameter of �0, since �0 lies in a ball of radius R =
(

n
2(n+1)

)1/2
d0,
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by the monotonicity it follows that t∗ can be estimated with the extinction time
of a ball of radius R, that is

(1.2) 0 ≤ t∗ ≤ n

4(n2 − 1)
d20 .

This estimate is not sharp and it has been refined in [6], where the authors have
proved that

(1.3) 0 ≤ t∗ ≤ C
(
(H)n−1(�0)

)2/n−1
.

Here (H)n−1 denotes the (n − 1)-dimensional Hausdorff measure and the
constant C = C(n) comes from a Sobolev type inequality on manifolds whose
best constant is still unknown (see [10]). In this paper we will prove a sharp
upper bound for t∗ involving the n−dimensional measure of �0 rather than the
(n − 1)-dimensional measure of its surface. More precisely we will show that
the extinction time of �0 can be estimated from above by the extinction time of
the ball having the same volume as �0. The sharpness of our estimate relies on
an isoperimetric inequality involving the total mean curvature of mean convex
sets (see Section 2 for definitions). For this reason our upper bound holds true
in the case of general bounded convex sets and smooth mean convex sets.

2. Notation and Preliminaries.

We begin by recalling some definitions and properties of rearrangements
of functions. Let � be a bounded open set of R

n and let u : � →] − ∞, 0] be
a measurable function. We denote by

μ(θ ) = (L)n({x ∈ � : u(x ) < θ}), θ ≤ 0,

the distribution function of u, where (L)n will denote here and in what follows
the Lebesgue measure in R

n , and by

u∗(s) = sup{θ ≤ 0 : μ(θ ) < s}, s ∈ (0, |�|)
the increasing rearrangement of u. In the following we will denote by �# the
ball centered at the origin having the same measure as � and by u# the negative
spherically symmetric increasing function whose level sets are balls having the
same measure as the corresponding level sets of u. This means

u#(x ) = u∗(ωn |x |n) x ∈ �#,
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where ωn is the Lebesgue measure of the unit ball in R
n . If u : � →]− ∞, 0]

is a function whose level sets {x ∈ � : u(x ) = θ} have finite perimeter, then we
denote by

λ(θ ) = Hn−1({x ∈ � : u(x ) = θ}), θ ≤ 0,

and we define the rearrangement of u with respect to the perimeter of its level
sets as

u∗
1(s) = sup{θ ≤ 0 : λ(θ ) < s}, s ∈ (0, Hn−1(∂�)).

We will denote by �� the ball centered at the origin having the same perimeter
as � and set

u�(x ) = u∗
1(nωn|x |n−1), x ∈ ��.

We explicitly remark that u� is a negative spherically symmetric increasing
function whose level sets are balls having the same perimeter as the correspond-
ing level sets of u.

If � has a C2 boundary, then the principal curvature (oriented so that
convex sets have non-negative curvatures) will be denoted by k1, ...., kn−1 and
(n − 1) times the mean curvature will be denoted by H [∂�], that is

H [∂�] = k1 + k2 + ... + kn−1 .

It easily follows from the above definitions and the classical isoperimetric
inequality that

(2.1) H [{u� = θ}] ≥ H [{u# = θ}].

According to [13] we will say that a domain � is mean convex or 1−convex if
and only if H [∂�] ≥ 0.

Finally we recall the following Alexandrov-Fenchel inequality involving
the total mean curvature of level sets of a function u (see [2], [12]).

Theorem 2.1. Let u be a nonpositive measurable function having mean convex
level sets; then

(2.2)
∫
u=θ

H [{u = θ}] dHn−1 ≥
∫
u�=θ

H [{u� = θ}] dHn−1, θ < 0.
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3. A sharp estimate of the extinction time.

We first recall a different approach to motion by mean curvature first
proposed by Osher and Sethian in a numerical framework (see [11]) and then
studied by Evans and Spruck in [4].
Let � be a bounded open set in R

n and let us choose a continuous function
f : Rn → R such that

�0 = ∂� = {x ∈ R
n : f (x ) = 0}.

In the following parabolic problem

(3.1)

⎧⎨
⎩

wt = |Du|div
(
Dw

|Dw|
)

in R
n × (0, T )

w(x , 0) = f (x );
the equation states that each level set of w evolves according to its mean
curvature. Consequently, the evolution of �0 is given by �t = {x ∈ R

n :
w(x , t) = 0}, for each time t > 0. In particular, if � is a mean convex open set,
we can set

w(x , t) = u(x )+ t

and problem (3.1) becomes

(3.2)

⎧⎨
⎩

|Du|div
(
Du

|Du|
)

= 1 in �

u = 0 on ∂�.

Note that, in general, neither a smooth solution to (3.1) nor a smooth solution
to (3.2) exists, but it has been proved in [4] (see also [3], [5], [6] and [7]), that
problems (3.1) and (3.2) admit a unique viscosity solution which provides a
possible generalization of the classical mean curvature motion (1.1).

Proposition 3.1. Let u be a smooth solution to problem (3.2) and let v be the
solution of the following symmetrized problem

(3.3)

⎧⎨
⎩

|Dv| div
(
Dv

|Dv|
)

= 1 in ��

v = 0 on ∂��.

Then

(3.4) 0 ≥ u#(x ) ≥ v(x ), x ∈ ��.
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Proof. Let θ ≤ 0; by integrating on the set {u < θ} the equation in (3.2), using
the coarea-formula, and the fact that div

(
Du

|Du|
) ∣∣{u=σ } = H [{u = σ }] we get

μ(θ ) =
∫ θ

−∞

(∫
u=σ

H [{u = σ }] dHn−1
)
dσ.

Differentiating with respect to θ , using the Alexandrov-Fenchel inequality (2.2)
and (2.1) we have

μ′(θ ) =
∫
u=θ

H [{u = θ}]dHn−1 ≥
∫
u�=θ

H [{u� = θ}]dHn−1

≥
∫
u#=θ

H [{u# = θ}]dHn−1 = Cnμ(θ )(n−2)/n,

where Cn = n(n − 1)ω2/nn . Thus μ solves the following problem

{
μ′(θ ) ≥ Cnμ(θ )(n−2)/n, θ ≤ 0
μ(0) = |�|.

Arguing for v in an analogous way, all the inequalities become equalities and
then the distribution function ν of v solves the problem

{
ν′(θ ) = Cnν(θ )(n−2)/n, θ ≤ 0
ν(0) = |�|.

Then μ(θ ) ≤ ν(θ ) and the claim immediately follows. �

From (3.4) straightly follows our main theorem.

Theorem 3.1. Let � be a smooth mean convex bounded open set in R
n and let

�0 = ∂�. If �t denotes the evolution of �0 by mean curvature and �t = ∂�t ,
where �t is a smooth mean convex bounded open set in R

n, then the following
estimate holds

(3.5) 0 ≤ t∗ ≤ 1

2(n − 1)

( |�|
ωn

) 2
n

.

Actually, we can prove a more precise pointwise comparison result as
stated in the following
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Proposition 3.2. Under the assumptions of Proposition 3.1 we get

(3.6) 0 ≥ u�(x ) ≥ v(x ), x ∈ ��.

Proof. Let θ ≤ 0. It is well known (see [9]) that

λ′(θ ) =
∫
u=θ

H 2[{u = θ}] dHn−1.

By Hölder inequality we get

μ′(θ ) =
∫
u=θ

H [{u = θ}]dHn−1 ≤ (λ(θ ))1/2
(∫

u=θ

H 2[{u = θ}] dHn−1
)1/2

= λ(θ )1/2
(
λ′(θ )

)1/2
.

On the other hand

μ′(θ ) ≥
∫
u�
1 =θ

H [{u� = θ}] dHn−1 = c̃(n)λ(θ )(n−2)/(n−1),

where c̃(n) = (n − 1)(nωn)1/n−1 . Hence we can say that λ satisfies

{
λ′(θ ) ≥ c̃(n)(λ(θ ))(n−2)/(n−1)
λ(0) = Hn−1(∂�).

In a similar way we find that the function σ , which denotes the perimeter of the
level sets of v, is the solution of the following problem

{
σ ′(θ ) = c̃(n)(σ (θ ))(n−2)/(n−1)
σ (0) = Hn−1(∂�).

Then λ(θ ) ≤ σ (θ ),for all θ < 0 and the claim follows. �

For the non-smooth case and for some numerical example we refer to [1].



SOME REMARKS ON THE EXTINCTION FOR THE. . . 369

REFERENCES

[1] B. Brandolini - M. Cicalese - C. Nitsch - C. Trombetti, A sharp estimate of the
extinction time for the mean curvature flow, in preparation.

[2] Y.D. Burago - V.A. Zalgaller, Geometric inequalities, New York, Springer Verlag
(1988).

[3] Y.G. Chen - Y. Giga - S. Goto, Uniqueness and existence of viscosity solutions of
generalized mean curvature flow equations, J. Diff. Geom., 3 (1991).

[4] L.C. Evans - J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom.,
33 (1991), pp. 635–681.

[5] L.C. Evans - J. Spruck, Motion of level sets by mean curvature II, Trans. AMS ,
330 (1992), pp. 321–332.

[6] L.C. Evans - J. Spruck, Motion of level sets by mean curvature III, J. Geom. Anal.,
2 (1992), pp. 121–150.

[7] L.C. Evans - J. Spruck, Motion of level sets by mean curvature IV , J. Geom.
Anal., 5 (1) (1995), pp. 77-.114.

[8] Y. Giga - K. Yama-uchi, On a lower bound for the extinction time of surfaces
moved by mean curvature, Calc. Var., 1 (1993), pp. 417–428.

[9] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff.
Geom., 20 (1984), pp. 237-266.

[10] J.H. Michael - L.M. Simon, Sobolev and meanvalue inequalities on generalized
submanifolds of R

n , Comm. Pure Appl. Math., 26 (1973), pp. 361–379.

[11] S. Osher - J.A. Sethian, Fronts propagating with curvature dependent speed:
algorithms based on Hamilton-Jacobi formulations, J. Computational Phys., 79
(1988), pp. 12–49.

[12] N.S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. H.
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