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In this paper we give necessary and sufficient conditions for the convergence of
Kurzweil–Stieltjes integrals with respect to regulated functions, using the notion of
asymptotical equiintegrability. One thus generalizes several well-known convergence
theorems. As applications, we provide existence and closure results for integral
problems driven by regulated functions, both in single- and set-valued cases. In
the particular setting of bounded variation functions driving the equations, we get
features of the solution set of measure integrals problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The role of convergence results for integrals in the theory of differential and integral equations is well-

known. On the other hand, when studying a large number of problems one can notice the appearance of

discontinuities in the behaviour of the functions, so we are led to the idea of working with measure driven

problems, i.e.

x(t) = x0 +

t
∫

0

f(s, x(s))dg(s) (1)

or its multivalued counterpart,
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x(t) ∈ x0 +

t
∫

0

F (s, x(s))dg(s), (2)

where X is a Banach space, Pcc(X) is the family of all nonempty, closed and convex subsets of X, g is a

real bounded variation function, x0 ∈ X and f : [0, 1] × X → X, F : [0, 1] × X → Pcc(X) are functions,

resp. multifunctions.

There is a wide literature treating this subject (we refer to [1], [9], [13], [14] in the single-valued case and

to [8], [11], [31], [37] in the set-valued setting). The motivation comes from the fact that one can thus cover

the framework of usual differential problems (when g is absolutely continuous), of discrete problems (when

g is a sum of step functions), of impulsive equations (for g being the sum between an absolutely continuous

function and a sum of step functions), as well as retarded problems (see [1]). As proven in [13], dynamic

equations on time scales and generalized differential equations can also be seen as measure differential

equations.

On the other hand, it is of interest to develop an existence theory for this kind of problems in the more

permissive case where the function g is only regulated (i.e. it has one-sided limits at every point) but it is

not an easy task since the properties of primitives with respect to such functions are very weak (see e.g.

[20] or [38]).

It is also important to have closure results for the studied problem, namely to check if when considering

a sequence (gn)n of functions converging to a function g the solutions of the equation governed by gn is

“close” (in some sense to be specified) to solutions of the equation governed by g.

To this purpose, it is necessary to have a convergence result for Stieltjes integrals of the following form:

lim
n→∞

1
∫

0

fn(s)dgn(s) =

1
∫

0

f(s)dg(s)

and since when working with regulated functions the most appropriate integration theory is the Kurzweil–

Stieltjes one, we focus in the first section of our paper (after the Preliminaries) on the matter of proving

such a convergence theorem for the Kurzweil–Stieltjes integral.

Thus, we prove a necessary and sufficient assertion: the convergence holds if and only if fn is asymptot-

ically equiintegrable w.r.t. gn on the unit interval. This is a concept (introduced in [2]) which encompasses

that of equiintegrability, often implied when looking for the convergence of integrals. Our result generalizes

[2, Theorem 8.12] where the functions are real-valued and gn = g for every n ∈ N and it is more general

when compared to other results of convergence type (see Section 3).

Next, we apply the main theorem to get the existence of regulated solutions for integral equations and

inclusions driven by regulated functions in general Banach spaces. In the single-valued case we apply a version

of Schauder’s fixed point theorem, while in the multivalued case we make use of a nonlinear alternative of

Leray–Schauder type. In both situations, one of the main tools is the notion of equiregulatedness of a set

of regulated functions (see [15]).

Afterwards, we focus on the closure properties of the solutions set for such problems; namely, to study

if, when taking a sequence of regulated functions (gn)n converging to a regulated function g, the solution

set of the problem governed by gn is close (in a specified sense) to the solution set of the problem governed

by g. Such results are obtained via our main convergence theorem and are very important (in numerical

analysis, for instance) since they allow one to study a general integral problem governed by a rough function

by analysing similar problems governed by functions with much better properties.

We relate them to well-known results in literature in the case of problems governed by functions of

bounded variation ([9], [18], [13], [25] in the single-valued case or [37], [31] in the set-valued setting).
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2. Preliminary results

Let (X, || · ||) be a Banach space. For a function u : [0, 1] → X the total variation will be denoted by

var(u) and u is said of bounded variation (or a BV function) if the total variation is finite. BV ([0, 1], X)

denotes the Banach space of functions u : [0, 1]→ X of bounded variation on [0, 1], endowed with the norm

||u||BV = ||u(0)||+ var(u).

A function u : [0, 1] → X is said to be regulated if there exist the limits u(t+) and u(s−) for all points

t ∈ [0, 1) and s ∈ (0, 1]. It is well-known that the set of discontinuities of a regulated function is at most

countable, any bounded variation function is regulated, regulated functions are bounded and, if G([0, 1], X)

is the set of regulated functions u : [0, 1] → X, then it is a Banach space when endowed with the norm

||u||C = supt∈[0,1] ||u(t)||. If x0 ∈ X, BR(x0) is the open ball of radius R in G([0, 1], X) centred at the

constant function x(t) ≡ x0 and BR(x0) its closure. In particular, when x0 is the origin of the space, i.e.

the null function, denote by BR the open ball of radius R in G([0, 1], X) centered at the origin of the space

and by BR its closure.

Let us recall some basic facts from the theory of Kurzweil–Stieltjes integration in Banach spaces, which

is a particular case of Kurzweil integration ([22]).

A partition of [0, 1] is a finite collection of pairs {(ci, [ti−1, ti]), i = 1, . . . , l}, where [ti−1, ti], i = 1, ..., l

are non-overlapping intervals of [0, 1], ci ∈ [ti−1, ti], i = 1, . . . , l and ∪l
i=1[ti−1, ti] = [0, 1]. A gauge δ is a

positive function on [0, 1]. For a given δ we say that a partition is δ-fine if [ti−1, ti] ⊂ (ci − δ(ci), ci + δ(ci)),

i = 1, . . . , l.

Definition 1. A function f : [0, 1] → X is said to be Kurzweil–Stieltjes integrable (briefly KS-integrable)

w.r.t. g : [0, 1]→ R on [0, 1] if there exists a vector w ∈ X, such that for every ε > 0 there exists a gauge δε

s.t.

∥

∥

∥

∥

∥

l
∑

i=1

f(ci)(g(ti)− g(ti−1))− w

∥

∥

∥

∥

∥

< ε

for any δε-fine partition {(ci, [ti−1, ti]), i = 1, . . . , l} of [0, 1].

We set w := (KS)
∫ 1

0
fdg, or simply, since it is the only integral we consider and no confusion can arise,

w :=
∫ 1

0
fdg. This definition generalizes the usual definition of the Kurzweil–Henstock integral in which the

function g(t) = t. The KS-integral has the usual properties of linearity, additivity with respect to adjacent

intervals and the KS-integrability is preserved on all sub-intervals of [0, 1]; the function t ←→
∫ t

0
fdg is

called the KS-primitive of f w.r.t. g on [0, 1]. We recall that, for X = R
n, if g is a left-continuous function of

bounded variation, the corresponding Kurzweil–Stieltjes integral is equivalent to the Ward–Perron–Stieltjes

integral (see [22, Theorem 1.2.1]), and that the Lebesgue–Stieltjes integrability, when defined over subset

of [0, 1], implies the Ward–Perron–Stieltjes integrability ([28]); but the converse is not true.

The Kurzweil-type integrals have been extensively used in many papers on differential or integral equa-

tions (such as, in [32] or [38], see also [10], [13], [14], [19] or [29]).

Definition 2. A sequence (fn)n∈N is said to be KS-equiintegrable w.r.t. (gn)n on [0, 1] if the integral
∫ 1

0
fndgn

exists for all n ∈ N and for every ε > 0 there exists a gauge δε s.t.

∥

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

1
∫

0

fndgn

∥

∥

∥

∥

∥

∥

< ε

for any δε-fine partition {(ci, [ti−1, ti]), i = 1, . . . , l} of [0, 1] and any n ∈ N.
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The following property of the indefinite Kurzweil–Stieltjes integral implies that we shall obtain regulated

solutions.

Proposition 3. ([38, Proposition 2.3.16] and [33]) Let g : [0, 1] → R and f : [0, 1] → X be KS-integrable

w.r.t. g.

i) If g is regulated, then so is the primitive h : [0, 1]→ X, h(t) =
∫ t

0
fdg and for every t ∈ [0, 1],

h(t+)− h(t) = f(t)
[

g(t+)− g(t)
]

and h(t)− h(t−) = f(t)
[

g(t)− g(t−)
]

.

ii) If g is of bounded variation and f is bounded, then h is of bounded variation.

Definition 4. ([16]) A set A ⊂ G([0, 1], X) is said to be equiregulated if for every ε > 0 and every t0 ∈ [0, 1]

there exists δ > 0 such that for all x ∈ A:

i) for any t0 − δ < t′ < t0: ‖x(t′)− x(t0−)‖ < ε;

ii) for any t0 < t′′ < t0 + δ: ‖x(t′′)− x(t0+)‖ < ε.

In the sequel we will use the following

Theorem 5. ([16, Theorem 5.1]) If an equiregulated sequence converges pointwise, then it converges uniformly

towards its limit.

For applications, the following auxiliary result will be important.

Lemma 6. Let (hα)α∈A be a pointwise bounded family of X-valued functions on [0, 1], KS-equiintegrable w.r.t.

the equiregulated family of real functions (gα)α∈A. Then the family
(∫ ·

0
hα(s)dgα(s)

)

α∈A
is equiregulated.

Proof. We shall prove the condition in the definition of equiregularity only for the left limit (for the right

limit the reasoning is similar).

Let ε > 0 be fixed. There is a gauge δε such that for each δε-fine partition {(ci, [ti−1, ti], i = 1, ..., l}

of [0, 1],

∥

∥

∥

∥

∥

∥

l
∑

i=1

hα(ci)(gα(ti)− gα(ti−1))−

1
∫

0

hαdgα

∥

∥

∥

∥

∥

∥

<
ε

2
, ∀α ∈ A.

Fix t0 ∈ (0, 1]. There exists M > 0 such that ‖hα(t0)‖ ≤M for every α ∈ A.

On the other hand, as (gα)α∈A is equiregulated, there exist δε > 0 such that

∣

∣gα(t′)− gα(t−

0 )
∣

∣ ≤
ε

2M
, ∀α ∈ A,

whenever t0 − δε < t′ < t0.

We shall prove that δ′
ε = min(δε(t0), δε) is such that for every t0 − δ′

ε < t′ < t0:

∥

∥

∥

∥

∥

∥

∥

t′

∫

0

hαdgα −

t
−

0
∫

0

hαdgα

∥

∥

∥

∥

∥

∥

∥

< ε, ∀ α ∈ A.
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Indeed, as in the proof of [32, Theorem 1.16], write:

t′

∫

0

hαdgα −

t0
∫

0

hαdgα (3)

= hα(t0)(gα(t′)− gα(t0))

+





t′

∫

0

hαdgα −

t0
∫

0

hαdgα − hα(t0)(gα(t′)− gα(t0))



 .

By Proposition 3:

t
−

0
∫

0

hαdgα −

t0
∫

0

hαdgα = hα(t0)(gα(t−

0 )− gα(t0)). (4)

We subtract (3) and (4). One gets

t′

∫

0

hαdgα −

t
−

0
∫

0

hαdgα

= hα(t0)(gα(t′)− gα(t−

0 ))

+





t′

∫

0

hαdgα −

t0
∫

0

hαdgα − hα(t0)(gα(t′)− gα(t0))



 .

Taking into account that {t0, [t′, t0]} is a δε-fine (partial) partition of [0, 1] and applying the analogue of

Saks–Henstock Lemma for equiintegrable families ([33, Lemma 16] that can be straight away adapted for

KS integral), we can make the last term, in norm, less than ε
2 for all α ∈ A and so,

∥

∥

∥

∥

∥

∥

∥

t′

∫

0

hαdgα −

t
−

0
∫

0

hαdgα

∥

∥

∥

∥

∥

∥

∥

< M
ε

2M
+

ε

2
= ε

for any α ∈ A and t′ with t0 − δ′
ε < t′ < t0. ✷

In particular, when gα = g for all α ∈ A, we get the following result.

Corollary 7. Let (hα)α∈A be a pointwise bounded family of functions, KS-equiintegrable w.r.t. a regulated

function g. Then the family
(∫ ·

0
hαdg

)

α∈A
is equiregulated.

Remark 8. The preceding corollary generalizes [30, Proposition 3.4] where the stronger notion of variational

Henstock-integrability ([23], [24]) was used instead.

A family A of X-valued functions defined on the unit interval is said to be pointwise relatively compact

if for each t ∈ [0, 1], A(t) ⊂ X is relatively compact.

We refer the reader to [7,21] for notions of set-valued analysis. We denote by Pkc(X) the subset of

Pcc(X) consisting in all non-empty compact convex subsets of X. We endow Pcc(X) and Pkc(X) with
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the Hausdorff–Pompeiu distance; it is well-known that they become complete metric spaces. Any map

Γ : X → Pcc(X) is called a multifunction. A function f : X → X is called a selection of Γ if f(x) ∈ Γ(x),

for all x ∈ X.

A multifunction Γ : X → Pkc(X) is upper semicontinuous at a point x0 if for every ε > 0 there

exists δε > 0 such that the excess of Γ(x) over Γ(x0) (in the sense of Hausdorff) is less than ε whenever

‖x− x0‖ < δε: Γ(x) ⊂ Γ(x0) + εB, where B is the unit ball in X.

3. Convergence results

Let us introduce the following notion.

Definition 9. A sequence (fn)n∈N is said to be asymptotically KS-equiintegrable w.r.t. (gn)n∈N on [0, 1] if:

i) fn is KS integrable w.r.t. gn on [0, 1] for every n ∈ N;

ii) for every ε > 0 there exists a gauge δε s.t. for any δε-fine partition P = {(ci, [ti−1, ti]), i = 1, . . . , l} of

[0, 1] there exists NP ∈ N s.t.

∥

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

1
∫

0

fndgn

∥

∥

∥

∥

∥

∥

< ε, ∀n ≥ NP . (5)

Here is the main result of the paper.

Theorem 10. Let fn : [0, 1]→ X converge pointwise to f : [0, 1]→ X and gn : [0, 1]→ R converge pointwise

to g : [0, 1]→ R.

Then the following conditions are equivalent:

1) the sequence (fn)n is asymptotically KS-equiintegrable w.r.t. (gn)n on [0, 1];

2) fn is integrable w.r.t gn on [0, 1] for each n ∈ N, f is KS-integrable w.r.t. g on [0, 1] and

lim
n→∞

1
∫

0

fndgn =

1
∫

0

fdg. (6)

Proof. 1) ⇒ 2)

Let us first show that the sequence
(

∫ 1

0
fndgn

)

n
is Cauchy (therefore convergent).

Fix ε > 0. From the asymptotical KS-equiintegrability hypothesis, there exists a gauge δε such that for

any δε-fine partition P = {(ci, [ti−1, ti]), i = 1, . . . , l} of [0, 1] there exists NP ∈ N s.t. (5) is satisfied.

Fix now a δε-fine partition Pε = {ci, [ti−1, ti], i = 1, ..., l}.

As the partition is fixed and the sequence (gn)n is pointwise bounded, there exists Mε s.t.
∑l

i=1 |gn(ti)−

gn(ti−1)| ≤Mε for each n and one can choose N1
ε ∈ N s.t. for any m, n ≥ N1

ε ,

‖fn(ci)− fm(ci)‖ ≤
ε

Mε

, ∀i ∈ {1, ..., l} (7)

whence

∥

∥

∥

∥

∥

l
∑

i=1

(fn(ci)− fm(ci))(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

≤ ε. (8)
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On the other hand,

∥

∥

∥

∥

∥

l
∑

i=1

fm(ci)((gn − gm)(ti)− (gn − gm)(ti−1))

∥

∥

∥

∥

∥

≤
l

∑

i=1

‖fm(ci)‖ (|(gn − gm)(ti)|+ |(gn − gm)(ti−1)|).

Now since (fn)n is pointwise bounded and the partition is fixed, there exists Mε s.t.
∑l

i=1 ‖fm(ci)‖ ≤Mε

and one can find N2
ε ∈ N s.t. for any m, n ≥ N2

ε ,

l
max
i=1

(|(gn − gm)(ti)|) ≤
ε

2Mε

,

and so,

∥

∥

∥

∥

∥

l
∑

i=1

fm(ci)((gn − gm)(ti)− (gn − gm)(ti−1))

∥

∥

∥

∥

∥

≤ ε. (9)

Then for every m, n ≥ Nε = max(N1
ε , N2

ε , NPε
), by (5), (7), (8) and (9),

∥

∥

∥

∥

∥

∥

1
∫

0

fndgn −

1
∫

0

fmdgm

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

1
∫

0

fndgn −
l

∑

i=1

fn(ci)(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

l
∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

1
∫

0

fmdgm −
l

∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

∥

< 2ε +

∥

∥

∥

∥

∥

l
∑

i=1

(fn(ci)− fm(ci))(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

fm(ci)((gn − gm)(ti)− (gn − gm)(ti−1))

∥

∥

∥

∥

∥

≤
l

∑

i=1

‖(fn(ci)− fm(ci))‖ |gn(ti)− gn(ti−1)|+ 3ε ≤ 4ε,

and therefore the sequence
(

∫ 1

0
fndgn

)

n
is Cauchy, so convergent. Let us denote by I its limit.

Let us now prove that f is KS-integrable w.r.t. g and that
∫ 1

0
fdg = I.

Indeed, let ε > 0. Choose a gauge δε from the asymptotical KS-integrability assumption, and let P =

{(ci, [ti−1, ti]), i = 1, . . . , l} be any δε-fine partition of [0, 1].

Then there exists NP ∈ N s.t.

∥

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

1
∫

0

fndgn

∥

∥

∥

∥

∥

∥

<
ε

3
, ∀n ≥ NP .
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Therefore passing to the limit for n→∞ we get

∥

∥

∥

∥

∥

l
∑

i=1

f(ci)(g(ti)− g(ti−1))− I

∥

∥

∥

∥

∥

< ε

and the integrability of f w.r.t. g and the equality (6) are proved.

2) ⇒ 1)

Let ε > 0. Since f is integrable w.r.t. g there exists a gauge δε s.t.

∥

∥

∥

∥

∥

∥

l
∑

i=1

f(ci)(g(ti)− g(ti−1))−

1
∫

0

fdg

∥

∥

∥

∥

∥

∥

<
ε

3
(10)

for any δε-fine partition {ci, [ti−1, ti], i = 1, ..., l}.

Fix now a δε-fine partition Pε = {ci, [ti−1, ti], i = 1, ..., l}. We have

∥

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

1
∫

0

fndgn

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

l
∑

i=1

(fn − f)(ci)(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

f(ci)((gn − g)(ti)− (gn − g)(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

l
∑

i=1

f(ci)(g(ti)− g(ti−1))−

1
∫

0

fdg

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

1
∫

0

fndgn −

1
∫

0

fdg

∥

∥

∥

∥

∥

∥

.

As previously seen, there exists N1
Pε
∈ N s.t. for any n ≥ N1

Pε
,

∥

∥

∥

∥

∥

l
∑

i=1

(fn − f)(ci)(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

f(ci)((gn − g)(ti)− (gn − g)(ti−1))

∥

∥

∥

∥

∥

≤
ε

3
.

Besides, one can find Nε ∈ N s.t.

∥

∥

∥

∥

∥

∥

1
∫

0

fndgn −

1
∫

0

fdg

∥

∥

∥

∥

∥

∥

<
ε

3
, ∀n ≥ Nε.

Using the relation (10) we get that for every n ≥ NPε
= max(N1

Pε
, Nε),

∥

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

1
∫

0

fndgn

∥

∥

∥

∥

∥

∥

< ε

so the sequence is asymptotically KS-equiintegrable w.r.t. gn. ✷
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Remark 11. Our result is “the best possible” from the point of view that it asserts sufficiency and necessity.

It is the analogue for the Kurzweil integration theory of [36, Theorem 2.8] (available for Lebesgue integrals).

In particular, for real-valued functions fn and for identical functions gn(s) = g(s) = s for all n ∈ N, this

result for Kurzweil integral can be found in [2, Theorem 8.12].

Remark 12. The notion of asymptotical KS-equiintegrability is more general than that of KS-equiintegrabi-

lity. In [5, p. 295] there is an example (in the particular case gn(t) = t for any n ∈ N) of a sequence of

functions KS-integrable, pointwise convergent to the null function such that the sequence of its primitives

converges to the primitive of the null function (therefore, as a consequence of Theorem 10, it is asymptoti-

cally KS-integrable); though, the sequence of its primitives is not uniformly-ACG∗, therefore the sequence

is not KS-equiintegrable (see [17, Chapter 13]).

Corollary 13. Let fn : [0, 1]→ X converge pointwise to f : [0, 1]→ X and gn : [0, 1]→ R converge pointwise

to g : [0, 1]→ R.

If (fn)n is KS-equiintegrable w.r.t. (gn)n on [0, 1], then f is KS-integrable w.r.t. g on [0, 1] and

lim
n→∞

t
∫

0

fndgn =

t
∫

0

fdg, ∀t ∈ [0, 1]. (11)

Proof. Since each KS-equiintegrable sequence is also asymptotically KS-equiintegrable, by Theorem 10 we

get that f is KS-integrable w.r.t. g on [0, 1] and that equality (11) holds for t = 1.

Repeating the proof as in case of the Henstock–Kurzweil integral with g(t)=t (see [34, Theorem 3.5.5]),

we obtain that (fn)n is KS-equiintegrable w.r.t. (gn)n on [0, t], for all t ∈ [0, 1]. Therefore equality (11)

holds. ✷

Remark 14. Corollary 13 holds true in particular if gn = g for all n ∈ N and generalizes also [4, Theorem 6.1]

(where gn = g for any n ∈ N and g is an ACG∗-function).

We are checking next that Theorems I 4.17, I 4.18 in [35] are generalized as well.

Proposition 15. Let fn : [0, 1] → X converge uniformly to a bounded function f : [0, 1] → X and

gn : [0, 1]→ R converge in variation to a BV function g.

Assume that the integrals
∫ 1

0
fn(s)dgn(s) exist for all n ∈ N. Then (fn)n is KS-equiintegrable (and hence

asymptotically KS-equiintegrable) with respect to (gn)n.

Proof. We want to show that for ε > 0 there exists Nε ∈ N such that for every partition and for every

n, m ≥ Nε

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−
l

∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

< ε. (12)

Since (fn)n is uniformly convergent to a bounded function, it is uniformly bounded by a constant M , also

as gn : [0, 1] → R converge in variation to a BV function g, we can assume that var(gn) < M . Fix ε > 0,

we can find Nε ∈ N such that for every n, m ≥ Nε

‖fn(t)− fm(t)‖ <
ε

2M
, ∀t ∈ [0, 1] and var(gn − gm) <

ε

2M
.
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Let P = {(ci, [ti−1, ti]), i = 1, . . . , l} be any partition of [0, 1], then

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

l
∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

l
∑

i=1

fn(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gm(ti)− gm(ti−1))−
l

∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)[(gn(ti)− gm(ti))− (gn(ti−1)− gm(ti−1))]

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

(fn(ci)− fm(ci))(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

< M

l
∑

i=1

|(gn(ti)− gm(ti))− (gn(ti−1)− gm(ti−1))|

+
ε

2M

l
∑

i=1

|gm(ti)− gm(ti−1)|

≤Mvar(gn − gm) +
ε

2M
var(gm) < ε.

Therefore condition (12) is satisfied. Now doing the same calculation as in [17, exercise 13.10], from the

assumption that each fn is KS-integrable w.r.t. gn and from (12) we get that the sequence (fn)n is

KS-equiintegrable w.r.t. (gn)n and then (fn)n is asymptotically KS-integrable with respect to (gn)n. ✷

Following the same steps as in the previous Proposition 15 and using the idea of the proof of

[18, Lemma 2.2], we get to the same conclusion by weakening the convergence assumptions on gn in the

case fn are regulated.

Proposition 16. Let fn : [0, 1] → X be a sequence of regulated functions which converges uniformly to

f : [0, 1]→ X and let gn : [0, 1]→ R converge uniformly to a BV function g. Assume that var(gn) ≤M for

every n ∈ N.

Then the integrals
∫ 1

0
fndgn exist and (fn)n is KS-equiintegrable (hence asymptotically KS-equiintegrable)

with respect to (gn)n.

Proof. Again we shall show that for every ε > 0 there exists Nε ∈ N such that for every partition and for

every n, m ≥ Nε

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

l
∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

< ε.

Fix ε > 0. Since (fn)n is uniformly convergent to f which is regulated, there exists a step function u :

[0, 1]→ X and there exists Nε > 0 such that for any n > Nε,

‖f − u‖C < ε and ‖fn − u‖C < ε.
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With the remark that u has bounded variation (see [6], page 237), Nε can be chosen such that

‖gn − g‖C <
ε

‖u‖BV

, ∀n > Nε.

Let now P = {(ci, [ti−1, ti]), i = 1, . . . , l} be any partition of [0, 1]. Then for any n, m > Nε,

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−

l
∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

l
∑

i=1

(fn(ci)− u(ci))(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

(fm(ci)− u(ci))(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

u(ci) [(gn − gm)(ti))− (gn − gm)(ti−1))]

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

l
∑

i=1

(fn(ci)− u(ci))(gn(ti)− gn(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

(fm(ci)− u(ci))(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

u(ci) [(gn − g)(ti))− (gn − g)(ti−1))]

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

l
∑

i=1

u(ci) [(gm − g)(ti))− (gm − g)(ti−1))]

∥

∥

∥

∥

∥

.

Then as in the proof of [38, Lemma 2.3.6],

∥

∥

∥

∥

∥

l
∑

i=1

fn(ci)(gn(ti)− gn(ti−1))−
l

∑

i=1

fm(ci)(gm(ti)− gm(ti−1))

∥

∥

∥

∥

∥

≤ ‖fn − u‖C · var(gn) + ‖fm − u‖C · var(gm) + 2‖gn − g‖C · ‖u‖BV + 2‖gm − g‖C · ‖u‖BV

< (2M + 4)ε

and from here the proof goes as in Proposition 15. ✷

4. Existence and closure results in the single-valued setting

We shall start by giving an existence result, using the following generalization of Schauder’s fixed point

theorem.

Theorem 17. Let K be a closed convex set in a Banach space and assume that T : K → K is a continuous

mapping such that T (K) is a relatively compact subset of K. Then T has a fixed point.

Lemma 18. Let h : [0, 1] → R be a regulated function, x0 ∈ X and f : [0, 1]×X → X satisfy the condition

that f(·, x(·)) is KS-integrable w.r.t. h for any x ⊂ G([0, 1], X). Suppose that for some R > 0, the family







·
∫

0

f(s, x(s))dh(s), x ∈ BR(x0)







is equiregulated.
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Then one can find a constant MR > 0 such that for any x ∈ BR(x0),

∥

∥

∥

∥

∥

∥

·
∫

0

f(s, x(s))dh(s)

∥

∥

∥

∥

∥

∥

C

≤MR.

Proof. The collection is equiregulated and
{

∫ 0

0
f(s, x(s))dh(s), x ∈ BR(x0)

}

is bounded. Thus, an applica-

tion of [16, Proposition 5.7] gives us the uniform boundedness. ✷

Theorem 19. Let h : [0, 1] → R be a regulated function and f : [0, 1] × X → X satisfy the following

assumptions:

i) f(s, ·) is continuous, for each s ∈ [0, 1] and for any regulated function x : [0, 1] → X, f(·, x(·)) is

KS-integrable w.r.t. h;

ii1) for any pointwise convergent sequence (xn)n ⊂ G([0, 1], X) bounded in the norm ‖ · ‖C , the sequence

{f(·, xn(·)), n ∈ N} is asymptotically KS-equiintegrable w.r.t. h on [0, t] for every t ∈ [0, 1] and

ii2) for any R > 0, the subset of G([0, 1], X)







·
∫

0

f(s, x(s))dh(s), x ∈ BR(x0)







is equiregulated and pointwise relatively compact;

iii) There exists R0 > 0 such that the constant MR0
whose existence is stated in Lemma 18 satisfies

MR0
≤ R0.

Then the integral measure equation

x(t) = x0 +

t
∫

0

f(s, x(s))dh(s)

has regulated solutions with ‖x− x0‖C ≤ R0.

Proof. Let K = BR0
(x0). It is nonempty, closed and convex.

Define now the operator T : K → K by

(Tx)(t) = x0 +

t
∫

0

f(s, x(s))dh(s)

and prove that it satisfies the hypothesis of Schauder’s fixed point theorem.

Obviously, for any x ∈ K, Tx ∈ K since it is regulated (Proposition 3) and, by Lemma 18,

∥

∥

∥

∥

∥

∥

t
∫

0

f(s, x(s))dh(s)

∥

∥

∥

∥

∥

∥

≤MR0
≤ R0, ∀t ∈ [0, 1].

First, let us check that T (K) is relatively compact. Since it is equiregulated and for each t ∈ [0, 1], TK(t) is

relatively compact in X by hypothesis ii2), the relative compactness of T (K) as a subset of G([0, 1], X) is

a consequence of [16, Theorem 6.2].
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We have to prove the continuity of T . Let xn ∈ K uniformly converge to x. Then f(s, xn(s))→ f(s, x(s))

for each s ∈ [0, 1] and it is asymptotically KS-equiintegrable w.r.t. h on [0, t] for every t ∈ [0, 1] by

assumption ii1). By Theorem 10,

t
∫

0

f(s, xn(s))dh(s)→

t
∫

0

f(s, x(s))dh(s).

At the same time, this sequence is equiregulated, therefore by [16, Theorem 5.1] it converges uniformly and

so, T is continuous.

In conclusion, the conditions of the fixed point result are checked and so, we get the existence of regulated

solutions. ✷

Remark 20. Let us remark that the equiregulatedness hypothesis ii2) is a natural one, it was also used in

some of the previous papers dealing with integral equations in the framework of Kurzweil integrals; e.g.

hypothesis (2) of [14, Theorem 7.1] implies the equiregulatedness of
{

∫ ·

0
f(s, x(s))dh(s), x ∈ BR(x0)

}

, by

[16, Proposition 5.9].

Let us present in the sequel two applications of our result, to very general problems where the assumptions

of Theorem 19 can easily be checked.

Proposition 21. Let h : [0, 1] → R be left-continuous non-decreasing and f : [0, 1] × R
k → R

k satisfy the

following assumptions:

1) f is measurable w.r.t. the first argument, continuous w.r.t. the second one and for any R > 0 there exists

a KS-integrable (w.r.t. h) function MR : [0, 1]→ R such that

‖f(s, x(s))‖ ≤MR(s), ∀s ∈ [0, 1], x ∈ BR(x0);

2) for any pointwise convergent sequence (xn)n ⊂ G([0, 1],Rk) bounded in the norm ‖ · ‖C , the sequence

{f(·, xn(·)), n ∈ N} is asymptotically KS-equiintegrable w.r.t. h on [0, t] for every t ∈ [0, 1].

If one can find R0 > 0 such that

1
∫

0

MR0
(s)dh(s) ≤ R0,

then the problem has regulated solutions with ‖x− x0‖C ≤ R0.

Proof. It suffices to check the hypothesis of the previous theorem.

Thus, for any regulated function x : [0, 1] → R
k, denoting by R = ‖x − x0‖C , the function f(·, x(·))

is measurable and majorized in norm by MR(·) which is positive and KS-integrable. By Proposition 4

in [12], its primitive F (t) =
∫ t

0
MR(s)dh(s) is differentiable w.r.t. h, dh-a.e. and F ′

h(t) = MR(t), dh-a.e (see

[27, Theorem 6.5]).

Besides, as F is non-decreasing, in the same way as in [17, Theorem 4.10] it can be proved that F ′
h is

Lebesgue–Stieltjes integrable w.r.t. h. It follows that MR is Lebesgue–Stieltjes integrable w.r.t. h.

Therefore, f(·, x(·)) is Lebesgue–Stieltjes integrable w.r.t. h, and so KS-integrable as well (see [28]).

The equi-regulatedness of the family







·
∫

0

f(s, x(s))dh(s), x ∈ BR(x0)
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is, by [16, Proposition 5.9], a consequence of the inequality

∥

∥

∥

∥

∥

∥

t1
∫

0

f(s, x(s))dh(s)−

t2
∫

0

f(s, x(s))dh(s)

∥

∥

∥

∥

∥

∥

≤

t2
∫

t1

MR(s)dh(s).

Moreover, for each t ∈ [0, 1] and any x ∈ BR(x0),

∥

∥

∥

∥

∥

∥

t
∫

0

f(s, x(s))dh(s)

∥

∥

∥

∥

∥

∥

≤

t
∫

0

MR(s)dh(s),

therefore







·
∫

0

f(s, x(s))dh(s), x ∈ BR(x0)







is pointwise relatively compact.

The role of MR is played by
∫ 1

0
MR(s)dh(s), therefore hypothesis iii) in Theorem 19 is also verified. ✷

We shall see next that usual locally Lipschitz assumptions guarantee the hypothesis of the previous result.

Corollary 22. Let h : [0, 1]→ R be a left-continuous non-decreasing function and f : [0, 1]×R
k → R

k satisfy

the following assumptions:

i) f is measurable w.r.t. the first argument and for any R > 0, there exists LR > 0 such that for every

x, y ∈ BR(x0) and s ∈ [0, 1],

‖f(s, x)− f(s, y)‖ ≤ LR‖x− y‖.

ii) ‖f(·, x0)‖ is KS-integrable w.r.t. h;

iii) There exists R0 > 0 such that LR0
(h(1)− h(0)) < 1.

Then the integral measure equation

x(t) = x0 +

t
∫

0

f(s, x(s))dh(s)

has regulated solutions with ‖x− x0‖C ≤ R0.

Proof. Indeed, the continuity of f(s, ·) comes from hypothesis i), while for any regulated function

x : [0, 1]→ R
k, denoting by R = ‖x− x0‖C ,

‖f(s, x(s))‖ ≤ ‖f(s, x0)‖+ LR‖x(s)− x0‖ ≤ ‖f(s, x0)‖+ LRR, ∀s ∈ [0, 1]

whence, as seen before, since it is measurable and majorized by a KS-integrable and positive function,

f(·, x(·)) is Lebesgue–Stieltjes integrable and so, KS-integrable w.r.t. h.

It can be seen that hypothesis 1) in Proposition 21 is checked by the Lebesgue–Stieltjes integrable function

MR(s) = ‖f(s, x0)‖+ LRR.

Next, let (xn)n be a pointwise convergent sequence of regulated functions, bounded in ‖ · ‖C-norm

(thus, contained in a ball of radius R) and let x be its limit. Hypothesis i) implies that for all s ∈ [0, 1],

f(s, xn(s))→ f(s, x(s)).
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As for each s ∈ [0, 1]:

‖f(s, xn(s))‖ ≤ ‖f(s, x0)‖+ LR‖xn(s)− x0‖ ≤ ‖f(s, x0)‖+ LRR, ∀ n ∈ N,

the dominated convergence theorem implies that

t
∫

0

f(s, xn(s))dh(s)→

t
∫

0

f(s, x(s))dh(s), ∀t ∈ [0, 1].

As a consequence of [28, Theorem VI.8.1], the KS-integral coincides with the Lebesgue–Stieltjes integral

since h is left-continuous, thus Theorem 10 gives us that the sequence {f(·, xn(·)), n ∈ N} is asymptotically

KS-equiintegrable on [0, t] for every t ∈ [0, 1].

Obviously, in this setting

1
∫

0

MR0
(s)dh(s) =

1
∫

0

‖f(s, x0)‖dh(s) + LRR(h(1)− h(0))

and so, for R0 (which can be supposed to be large enough) satisfying the hypothesis LR0
(h(1)− h(0)) < 1,

we have

1
∫

0

MR0
(s)dh(s) ≤ R0. ✷

Let us now pass to the closure results. Consider thus the problem

x(t) = x0 +

t
∫

0

f(s, x(s))dg(s), (13)

let gn : [0, 1] → R be a sequence of regulated functions convergent pointwise to the regulated function

g : [0, 1]→ R and consider also the approximating problem

xn(t) = x0 +

t
∫

0

f(s, xn(s))dgn(s). (14)

The closure result associated to the existence Theorem 19 states as follows.

Theorem 23. Let gn, g : [0, 1]→ R be regulated, gn → g pointwise and f : [0, 1]×X → X satisfy the following

assumptions:

i1) f(s, ·) is continuous, for each s ∈ [0, 1]

i2) f(·, x(·)) is KS-integrable w.r.t. gk for each k ∈ N and for each x ∈ G([0, 1], X);

ii1) for any pointwise convergent and uniformly bounded sequence (xn)n, the sequence {f(·, xn(·)), n ∈ N}

is asymptotically KS-equiintegrable w.r.t. each gk on any interval [0, t] and

ii2) for any R > 0 and each k,







·
∫

0

f(s, x(s))dgk(s), x ∈ BR(x0)







is equiregulated and pointwise relatively compact;
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iii) There exists R0 > 0 such that the constants Mk
R0

whose existence is stated in Lemma 18 satisfy

Mk
R0
≤ R0.

Suppose also that for any pointwise convergent and uniformly bounded sequence (xn)n, the sequence

{f(·, xn(·)), n ∈ N} is asymptotically KS-equiintegrable w.r.t. (gn)n on any interval [0, t].

Then the problems (14) have regulated solutions for each n (by Theorem 19) and let xn : [0, 1] → X be

such a solution.

If there exists a regulated function x : [0, 1] → X such that xn → x pointwise, then x is a solution of

problem (13).

Proof. One can write

xn(t) = x0 +

t
∫

0

f(s, xn(s))dgn(s).

Since f is continuous w.r.t. the second argument and xn → x pointwise,

f(s, xn(s))→ f(s, x(s)), ∀s ∈ [0, 1].

It is by hypothesis asymptotically KS-equiintegrable w.r.t. gn on any interval [0, t] (because the sequence

(xn)n is contained in the ball centered at x0, of radius R0 of the space G([0, 1], X)), so we can apply

Theorem 10 and one gets

t
∫

0

f(s, xn(s))dgn(s)→

t
∫

0

f(s, x(s))dg(s)

for every t ∈ [0, 1]. Thus,

x(t) = x0 +

t
∫

0

f(s, x(s))dg(s). ✷

Example 24. Since this is, as far as we know, the first closure result for integral equations governed by

regulated functions, it can be applied (unlike the existing results, available for BV functions only, e.g. [13],

[14], [25]) to problems governed, for instance, by

gn(t) =

{

(

1 + 1
n

)

t sin π
t

if 0 < t ≤ 2;

0 if t = 0,

g(t) =

{

t sin π
t

if 0 < t ≤ 2;

0 if t = 0,

which are continuous (therefore regulated), but not of bounded variation on [0, 2] (see [17], page 50).

As a consequence of Theorem 23, we can present a closure result associated to Proposition 21 (with less

restrictive assumptions comparing to other closure results in literature, such as Theorem 6.3 in [13]).

Proposition 25. Let gn, g : [0, 1] → R be left-continuous nondecreasing functions, gn → g pointwise and

f : [0, 1]× R
k → R

k satisfy the following assumptions:
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1) f is measurable w.r.t. the first argument, continuous w.r.t. the second one and for any R > 0 there exists

a constant MR > 0 such that

‖f(s, x(s))‖ ≤MR, ∀s ∈ [0, 1], x ∈ BR(x0);

2) for any pointwise convergent sequence (xn)n ⊂ G([0, 1],Rk) bounded in the norm ‖ · ‖C , the sequence

{f(·, xn(·)), n ∈ N} is asymptotically KS-equiintegrable w.r.t. each gk on [0, t] for every t ∈ [0, 1].

If one can find R0 > 0 such that

MR0
(gn(1)− gn(0)) ≤ R0,∀n ∈ N

then the problems (14) have regulated solutions for each n (by Proposition 21) and let xn : [0, 1] → R
k be

such a solution.

Suppose also that for any pointwise convergent and uniformly bounded sequence (xn)n, the sequence

{f(·, xn(·)), n ∈ N} is asymptotically KS-equiintegrable w.r.t. (gn)n on any interval [0, t].

If there exists a regulated function x : [0, 1] → R
k such that xn → x pointwise, then x is a solution of

measure problem (13).

By stretching condition ii2) we can easily get a continuous dependence result:

Proposition 26. Let gn, n ∈ N, g and f satisfy assumptions i), ii1), iii) and:

ii2’) for any R > 0,







·
∫

0

f(s, x(s))dgn(s), x ∈ BR(x0), n ∈ N







is equiregulated and pointwise relatively compact.

Suppose also that for any pointwise convergent and uniformly bounded sequence (xn)n, the sequence

{f(·, xn(·)), n ∈ N} is asymptotically KS-equiintegrable w.r.t. (gn)n on any interval [0, t].

Then the problem (14) has regulated solutions (by Theorem 19) and let xn : [0, 1]→ X be such a solution.

There exists a subsequence uniformly convergent to a regulated function x : [0, 1]→ X and x is a solution

of problem (13).

Proof. By hypothesis ii2′), the sequence (xn)n is equiregulated and pointwise relatively compact, therefore,

by [16, Theorem 6.2], it is relatively compact in the space of regulated functions. It follows that there

exists a subsequence uniformly convergent to a regulated function x and so, the result is a consequence of

Theorem 23. ✷

5. Existence and closure results in the set-valued setting

First, we prove an existence result, via the following nonlinear alternative of Leray–Schauder type.

Theorem 27. ([26, Theorem 1.1]) Let D be an open subset of a Banach space E such that 0 ∈ D and let

T : D → Pcc(E) be a compact operator with closed Graph. Then either

i) T has a fixed point in D

or

ii) there exists x ∈ ∂D such that λx ∈ T (x) for some λ > 1.
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Theorem 28. Let h : [0, 1] → R be a regulated function and let F : [0, 1] ×X→Pcc(X) satisfy the following

hypothesis:

1) F (t, ·) is upper semi-continuous for every t ∈ [0, 1];

2) For every R > 0, there is MR > 0 s.t. for every x ∈ BR, the map F (·, x(·)) has bounded variation with

respect to the Hausdorff–Pompeiu distance and

var(F (·, x(·))) ≤MR;

3) For every R > 0, there is a multifunction GR : [0, 1]→ Pkc(X) such that

F (t, x) ⊂ GR(t), for all t ∈ [0, 1] and x ∈ BR;

4) any pointwise convergent sequence of selections of GR with equibounded variation is KS-equiintegrable

w.r.t. h.

If moreover there exists R0 such that ‖x‖C 6= R0 for any regulated solution x of

x(t) ∈ λ



x0 +

t
∫

0

F (s, x(s))dh(s)





for all λ ∈ (0, 1), then the integral inclusion (2) possess regulated solutions with ‖x‖C ≤ R0.

Proof. Let N : BR0
→ Pcc(G([0, 1], X)) be the operator defined by

N(x)(t) =







x0 +

t
∫

0

f(s)dh(s), f selection of F (·, x(·)), var(f) ≤MR0







.

We will check the hypothesis of Theorem 27.

Let us note first that the values of N are contained in the space of regulated functions (see Proposition 3),

are convex and non-empty since, by [3, Theorem 2], one can find at least one selection whose variation is

not greater than the variation of the multifunction.

Let us prove that the values are closed. Fix then x ∈ BR0
, consider a sequence



x0 +

·
∫

0

fn(s)dh(s)





n

⊂ N(x)

convergent to y ∈ G([0, 1], X). The sequence (fn)n satisfies the Helly selection theorem, so there exists a

subsequence (fnk
)k of (fn)n pointwise convergent towards a selection f of F (·, x(·)) with variation smaller

than MR0
. It follows by hypothesis 4) and Theorem 10 that

t
∫

0

fnk
(s)dh(s)→

t
∫

0

f(s)dh(s) for every t ∈ [0, 1],

therefore y(t) = x0 +
∫ t

0
f(s)dh(s) for any t ∈ [0, 1].
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In the sequel, let us prove that N is compact. Take (yn)n ⊂
⋃

{N(x), x ∈ BR0
}, so

yn(t) = x0 +

t
∫

0

fn(s)dh(s), ∀t ∈ [0, 1]

where fn is a selection with variation smaller than MR0
of F (·, xn(·)) for some xn ∈ BR0

.

As before, we are able to find a subsequence (fnk
)k pointwise convergent to a function f with variation

smaller than MR0
, whence

∫ t

0
fnk

(s)dh(s)→
∫ t

0
f(s)dh(s), ∀t ∈ [0, 1] and, by Lemma 6 and Theorem 5, the

convergence is uniform. In conclusion, (yn)n has a subsequence convergent in the topology of G([0, 1], X),

so the operator is compact.

Let us now check that it has closed Graph. To this aim, let (xn, yn)n ⊂ Graph(N) converge uniformly

to (x, y) and prove that (x, y) ∈ Graph(N).

As before,

yn(t) = x0 +

t
∫

0

fn(s)dh(s), ∀t ∈ [0, 1]

where fn is a selection with variation smaller than MR0
of F (·, xn(·)) for each n.

The sequence (fn)n satisfies the Helly selection theorem, so it has a subsequence (fnk
)k pointwise con-

vergent to a function f with variation smaller than MR0
. Using Theorem 10,

t
∫

0

fnk
(s)dh(s)→

t
∫

0

f(s)dh(s), ∀t ∈ [0, 1]

so

y(t) = x0 +

t
∫

0

f(s)dh(s), ∀t ∈ [0, 1].

Finally, hypothesis 1) implies that f is a selection of F (·, x(·)) since for each s and ε > 0 there exists

Nε,s ∈ N such that for any n > Nε,s: F (s, xn(s)) ⊂ F (s, x(s)) + εB, where B is the unit open ball of X.

Thus, the closed Graph property is verified.

The conditions of Theorem 27 are satisfied and, as the alternative is excluded by hypothesis, it follows

that the operator N has fixed points and our inclusion has regulated solutions. ✷

Remark 29. The KS-equiintegrability assumption could be replaced by the asymptotical KS-equiintegrability

on any interval [0, t], but in this case we would also need to impose the equiregulatedness of the primitives

(as in Theorem 19) since Lemma 6 cannot be applied.

Remark 30. The strong assumption 2) in our existence result is justified by the fact that g is a very general

function, being only regulated; however, when imposing stronger assumption on g, e.g. to have a bounded

variation, condition 2) could be replaced by the following (more natural) condition:

For every R > 0, there is MR > 0 s.t. for every function x with var(x) ≤ R, the map F (·, x(·)) has

bounded variation with respect to the Hausdorff–Pompeiu distance and var(F (·, x(·))) ≤MR.

For a related result in this particular setting, we refer the reader to [31, Section 3.1].
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Consider in what follows the problem

x(t) ∈ x0 +

t
∫

0

F (s, x(s))dg(s), (15)

let gn : [0, 1] → R be a sequence of regulated functions convergent pointwise to the regulated function

g : [0, 1]→ R and consider the approximating problem

xn(t) ∈ x0 +

t
∫

0

F (s, xn(s))dgn(s). (16)

The closure result can now be proved using the tools of Theorem 28.

Theorem 31. Let gn : [0, 1] → R be a sequence of regulated functions pointwise convergent to a regulated

function g : [0, 1] → R and let F : [0, 1]×X → Pcc(X) satisfy the hypothesis 1), 2) and 3) in the previous

result and:

4’) any pointwise convergent sequence of selections of GR with equibounded variation is KS-equiintegrable

w.r.t. each gk;

4”) any pointwise convergent sequence of selections of GR with equibounded variation is KS-equiintegrable

w.r.t. (gn)n.

Suppose that there exists R0 such that ‖x‖C 6= R0 for any regulated solution x of

x(t) ∈ λ



x0 +

t
∫

0

F (s, x(s))dgn(s)





for all n ∈ N and λ ∈ (0, 1).

Then, by Theorem 28, the inclusions (16) possess regulated solutions with ‖x‖C ≤ R0 (let xn be such

solutions). If there exists a regulated function x such that xn → x pointwise, then x is a regulated solution

for inclusion (15).

Remark 32. Theorems 23 and 31 contain closure results for Stieltjes integral problems (which, in the partic-

ular case of BV functions gn and g become measure integral problems) under convergence assumptions on

the functions gn and g driving the equations. In other related works, the assumptions were given in terms

of convergence of measures (see [37] or [31]).
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