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Achilles: What is that strange flag down at the other end
of the track? It reminds me somehow of a print by my
favorite artist, M.C. Escher.
Tortoise: That is Zeno’s flag.
Achilles: Could it be that the hole in it resembles the holes
in a Möbius strip Escher once drew? Something is wrong
about that flag, I can tell.
Tortoise: The ring which has been cut from it has the shape
of the numeral for zero, which is Zeno’s favorite number.
Achilles: But zero hasn’t been invented yet! It will only be
invented by a Hindu mathematician some millennia hence.
And thus, Mr. T., my argument proves that such a flag is
impossible.
Tortoise: Your argument is persuasive, Achilles, and I must
agree that such a flag is indeed impossible. But it is beau-
tiful anyway, is it not?

Gödel, Escher, Bach: an Eternal Golden Braid
Douglas Hofstadter
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Introduction

MicroRNAs (miRNAs) are small molecules that regulate gene expression through
the binding of the target messenger RNA molecules. MicroRNA activity is
fundamental in development, differentiation, and other cell functions [1]. Al-
terations in miRNA activity have been associated with many human diseases
[2], such as cancer, diabetes, neurological disorders and dysfunctions of the
immune response.
The biological processes related to miRNA activity are extraordinarily com-
plex. For simplicity, we can represent miRNA action as the interaction of two
kinds of molecules:

- MicroRNAs

- Messenger RNAs

where messenger RNAs (mRNAs) represent the targets of miRNA binding.
Those interactions can be represented as a bipartite network in which a miRNA
can bind a vast number of mRNAs, and, vice versa, an mRNA can be the tar-
get of many miRNAs.
Network approach is widely used in molecular biology to study molecular in-
teractions. A network, also called graph in topology, is a mathematical object
that describes a real system’s whole connectivity. It is composed of nodes and
links (also called vertices and edges); miRNAs and mRNAs correspond to the
nodes of a bipartite network, and links represent their interactions.
Network connectivity analysis is closely related to big data and computational
issues. Indeed, the number of interactions is generally much bigger than the
number of elements. For this reason, multivariate statistics and large-scale
inference are helpful in this context.

MicroRNA network construction is strictly related to molecular binding
prediction; the whole thesis focuses on developing and applying computa-
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12 INTRODUCTION

tional methods for miRNA target prediction. In particular, a machine learning
approach is used to upgrade an existing target prediction algorithm named
ComiR.
The thesis is divided into five chapters. Excluding the first one, each chap-
ter corresponds to a paper related to miRNA binding prediction. The order
of the chapters is based on a common thread that conceptually goes through
algorithm development and usage:

1. Design; problem identification and thoroughly understanding it

2. Analysis; selection of the information on which the algorithm will be
based

3. Implementation; algorithm development and performance testing

4. Usage; algorithm running in an empirical application

5. Research for a future upgrade

Following this workflow, we report a brief description of the thesis chapters;

1. Bioinformatics Databases and Techniques for the Analysis of
MicroRNA Interactions
The first chapter is an overview of bioinformatics and statistical issues
related to the study of miRNA and the prediction of their targets.

2. Analysis of miRNA Interactions
The second chapter reports an analysis of two proteins involved in miRNA
activity [3]. This analysis highlights important information that explain
miRNA binding behavior. In particular, mRNA coding region infor-
mation significantly improves the prediction capacity of miRNA target
prediction algorithms.

3. MicroRNA Target Prediction
The third chapter regards the development of an algorithm for miRNA
target prediction [4]. It represents an upgrade of ComiR algorithm. The
results show that the new ComiR version has a higher prediction capacity
than the previous ComiR version.

4. SARS-Cov-2 Sequence Analysis
In the fourth chapter, the major miRNA target prediction algorithms
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(including ComiR) have been used to identify a small group of miRNAs
that potentially bind RNA-sequences of COVID-19 coronavirus [5]. The
activity of those miRNAs has been studied to explain biological processes
that could be involved with COVID-19 inflammatory state. In particular,
miR-1207-5p may contribute to dysregulation of inflammatory responses
in COVID-19 disease by targeting SARS-CoV-2 RNA and causing the
over-expression of the gene CSF1.

5. A Novel Statistical Test For Differential Expression Analysis
The fifth chapter aims to define a novel statistical test for gene differen-
tial expression analysis (DEA).
DEA consists in the analysis of expression profiles over two groups of sam-
ples to identify over-expressed (enriched) and under-expressed (under-
represented) genes. DEA is one of the most used approaches to com-
pare different experimental conditions and highlight differences in gene
functions over tissues [6]. We used DEA for identifying differentially ex-
pressed genes that compose the machine learning training set of ComiR.
The analysis on gene expression data show that the novel statistical test
can be integrated into the classical DEA to better identify differentially
expressed genes. Moreover, the results suggest that our approach for
DEA can be used to upgrade ComiR training set.

Excluding the first chapter, each chapter corresponds to a scientific paper:

2. RIP-Chip analysis supports different roles for AGO2 and GW182 pro-
teins in recruiting and processing microRNA targets
Perconti, Rubino, Contino, Bivona, Bertolazzi, Tumminello, Feo, Gial-
longo, Coronnello (2017) BMC bioinformatics, 20(Suppl 4):120

3. An Improvement of ComiR Algorithm by Exploiting mRNA Coding
Regions
Bertolazzi, Benos, Tumminello, Coronnello (2020) BMC Bioinformatics,
21(Suppl 8):201

4. miR-1207-5p Can Contribute to Dysregulation of Inflammatory Response
in COVID-19 via Targeting SARS-CoV-2 RNA
Bertolazzi, Cipollina, Benos, Tumminello, Coronnello (2020) Frontiers in
Cellular and Infection Microbiology, Vol. 10, Article 586592
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5. A Novel Statistical Test For Differential Expression Analysis
(manuscript in preparation)

An overall reading of the thesis offers a view of miRNA binding prediction
methodologies. Among them, we propose ComiR algorithm as a reliable tool
for miRNA target prediction.
The development of the novel ComiR algorithm is accompanied by real data
analysis. Specifically, ComiR algorithm has been successfully used to predict
human miRNAs that potentially bind COVID-19 genome; we have analyzed
endogenous miRNAs that target viral RNA strands to explain inflammatory
processes probably involved in COVID-19 disease.
This thesis lays the foundations for the upgrade of ComiR webtool. The novel
algorithm significantly improves the ComiR prediction capacity by including
miRNA binding sites located on mRNA coding regions. ComiR facilitates
the investigation of miRNA binding and can be used to build a large mRNA-
miRNA network.



Chapter 1

Bioinformatics Databases and
Techniques for the Analysis of
MicroRNA Interactions

The study of microRNA (miRNAs) is an important branch of molecular biol-
ogy. MicroRNAs are small RNA molecules (20-24 nucleotides) that regulate
gene expression by binding messenger RNA molecules (mRNAs), whereas mR-
NAs represent miRNA binding targets.
The prediction of miRNA binding sites has a key role in the study of miRNA
interactions. It is fundamental for the identification of miRNA targets and
understanding miRNA regulation activity.
The main topic of this thesis is the prediction of miRNA binding sites using a
computational approach. This approach requires a wide variety of multidisci-
plinary skills that involve different fields of scientific and technical knowledge,
such as bioinformatics, molecular biology, chemistry, statistics, and topology.
The present chapter is an overview of multidisciplinary techniques and strate-
gies for the analysis of miRNA interactions. We used these methodologies for
developing miRNA target prediction algorithms and for data analyses. There-
fore, the following sections outline the bioinformatics framework of the thesis:

1. The first section reports a biological introduction to miRNAs and de-
scribes the procedures for predicting miRNA targets; those procedures
include the use of bioinformatics sequencing databases as input for miRNA
target prediction algorithms.

2. The second section describes biological experiments used to measure gene
expression and to validate miRNA interactions. Those experiments pro-
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16 CHAPTER 1. BIOINFORMATICS TECHNIQUES

duce part of the data used in all the analyzes of the thesis.

3. The last section lingers on statistical techniques for the analysis of genetic
big data. It introduces large scale inferences methodologies and clarifies
our strategy for developing miRNA target prediction algorithms.

1.1 MicroRNA molecular interactions

The fist two miRNAs, named lin-4 and let-7, were identified in 1993 as regu-
lators of Caenorhabditis elegans development [7][8]. Initially, those molecules
were considered an unusual worm specific gene expression regulation mecha-
nism. Today, miRNAs are considered important regulators of gene expression
in eukaryotes. MicroRNA-mediated gene regulation is part of a more sweeping
mechanism known as RNA interference (RNAi) [9]. Disorders in RNAi mech-
anism are connected with a wide variety of human pathologies [2].
MicroRNA regulation activity depends on the recognition and binding of mRNA
target molecules. Therefore the prediction of miRNA binding site located on
mRNAs is fundamental in the study of miRNA interactions.
This section focuses on the description of miRNA target prediction proce-
dures. Those procedures include the download and interpretation of databases
containing miRNA and mRNA sequencing; nucleotide sequences represent the
input for many algorithms used to predict miRNA binding sites.
A biological explanation of miRNA activity precedes the description of miRNA
target prediction procedures. Before going into detail about miRNA mecha-
nisms, a brief introduction of basic genetic concepts is reported. Readers with
a basic knowledge of protein synthesis can skip the next paragraph.

1.1.1 Central dogma of molecular biology

The genome is the whole genetic material of an organism. It contains all
the information needed for the growth and development of that organism. A
genome consists of DNA; it incorporates both non-coding and coding DNA.
Genes are generally defined as DNA coding sequences that contain the infor-
mation used to synthesize proteins (non-coding sequences will be described in
the next section).
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Figure 1.1: DNA replication.
The new strands are composed
of complementary nucleotides
[11].

Figure 1.2: Schematic description of
the central dogma of molecular biology
[12].

The central dogma of molecular biology1 describes how DNA information is
transcribed into coding RNA to be used for protein synthesis. This process is
the fundamental basis for life on earth. Below we provide a very brief descrip-
tion of the phases that characterize the flow of genetic information from DNA
to protein synthesis:

1. DNA replication
DNA replication is the process by which DNA makes a copy of itself
during cell division. DNA is composed of a double helix of two com-
plementary strands (Fig.1.1). The elements that compose DNA strands
are called nucleotides; each nucleotide is characterized by a nitrogen-
containing nucleobase (cytosine [C], guanine [G], adenine [A], or thymine
[T]). Those bases determine the complementary pairing of DNA strands

1 The wording dogma has a historical reason, and it is still used although is not a dogma
at all. This word was proposed by Francis Crick in 1958. When Horace F. Judson asked
Crick how and why he coined the expression “the central dogma” he said: “A dogma
was an idea for which there wasn’t reasonable evidence. You see?... I just didn’t know
what dogma meant. And I could just as well have called it the “Central Hypothesis”.
Which is what I mean to say. Dogma was just a catchphrase...[10]”
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(T-A, G-C). During DNA replication, the two strands separate each
other. The separated strands will act as templates for making the new
strands of DNA, where the synthesis of the new strands is driven by an
enzyme called DNA polymerase that allows the binding between com-
plementary nucleotides.

2. Transcription
Transcription is a biological process in which the genetic information
contained within DNA is re-written into messenger RNA (mRNA).
The formation of mRNA is mediated by RNA polymerase. This enzyme
uses DNA strands as a template to create the mRNA. The new RNA
strand is complementary to the DNA strand used as a template, except
that adenine’s complementary nucleobase is uracil [U] and not thymine
anymore.

3. Translation
The translation is the process in which macromolecular machines, called
ribosomes, use mRNA information to synthesize proteins.
After the transcription, mature mRNA molecules leave the nucleus and
travel to the cytoplasm, where they find ribosomes. Ribosomes “read” the
information contained in mRNAs and use this information as a template
to assemble the chain of amino acids that compose a protein.

Figure 1.3: Codons that codify specific amino acids. Multiple codons can code
for the same amino acid [12].
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The language of nucleotides is based on triplets: Each group of three bases
in mRNA constitutes a codon, and each codon is associated with a particular
amino acid (Fig.1.3). The total number of triplets is 43 = 64, which is bigger
than the total number of amino acids (23); it implies that some triplets corre-
spond to the same amino acid.
All the organisms share the same genetic language; it means that the associ-
ation between codons and amino acids is identical all over the living beings.
It is considered evidence that all the organisms of the planet have common
ancestors.

1.1.2 Non-coding RNA

Non-coding DNA composes a large part of eukaryotic genomes. For several
years the role of non-coding DNA was unknown. The scientific community
considered those DNA strands without any biological function because they
don’t encode protein sequences. For this reason, this kind of DNA was named
“junk DNA”.
Today, many studies emphasize the importance of non-coding DNA for cell life
and evolution [13]. Non-coding DNA strands (i.e., non-coding genes) are tran-
scribed into functional non-coding RNAs. Exist different types of non-coding
RNAs (e.g., transfer RNA, ribosomal RNA, regulatory RNA), whereas each
RNA type has a specific function inside the cell.
MicroRNAs are a particular type of regulatory RNA. Their importance is re-
lated to the RNA interference regulatory process. In the next section, miRNA
activity is described as part of a broader mechanism regulating gene expression.

1.1.3 RNA interference and gene expression regulation

A gene is expressed if its information is used in the synthesis of the correspon-
dent RNA.
Gene expression level is estimated as the amount of mRNA molecules in the
cell transcribed from that gene, and gene expression profiling is the expression
measurement of thousands of genes simultaneously. It provides a global view
of cellular activity and functions. The methods used to measure gene expres-
sion will be described in the next section.
The gene expression profile reflects cell functionality; each type of cell produces
its own transcripts that depend on its role inside the organism. Moreover, the
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Figure 1.4: Graphical description of RNA-interference process [14].

transcripts of a single cell depend on organism’s nutrients, environmental re-
sponse, and life cycle; therefore, the transcripts vary over time and are never
stable. For this reason, each cell uses many mechanisms that regulate the ex-
pression of its genes; in this way, a gene could be activated if required. On the
other hand, gene activity can be suppressed if it is temporary not necessary.
The primary control point for gene expression is transcription initiation, but
many other gene regulation mechanisms exist. Among them, we focus on the
RNA-interference regulation process, and in particular on microRNA interfer-
ence.

RNA interference (RNAi) is a cell process in which RNA molecules phys-
ically interact with mRNA molecules to suppress gene expression. RNAi rep-
resents a post-transcription regulation process widely used by eukaryotic or-
ganisms.
Below is a detailed description of the mechanisms that lead the formation,
activation, and action of RNAi molecules (Fig.1.4):
In the first step of the RNAi process, a specific ribonuclease enzyme, called
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Dicer, binds and cleaves long double-strand RNAs yielding short (21-23 nt)
duplexes with 2-overhanged nucleotides at the 3’-ends [14]. RNA molecules
produced by the Dicer are called microRNAs (miRNAs). Those molecules are
the main protagonists during the interaction with mRNAs.
RNAi molecules’ activity depends on the formation of a protein complex called
RNA-induced silencing complex (RISC). The RISC incorporates one strand of
RNAi molecules; that strand acts as a template for RISC to recognize com-
plementary messenger RNA (mRNA) transcript. In different organisms, the
RISC complex varies its composition, but one protein family, called Argonaute,
always composes the RISC.
MicroRNA binding is based on nucleotide complementarity. Perfect comple-
mentarity between miRNA-mRNA pairs is quite rare, but also a six base-pair
match could be sufficient for the binding.
MicroRNA binding is often not specific; indeed, a single miRNA molecule can
potentially bind a vast number of mRNAs. On the other hand, a single mRNA
could be the target of many miRNAs. In this context, an mRNA bounded by
a miRNA represents the target molecule of the binding. Using similar termi-
nology, a gene whose expression is regulated by a miRNA is called target gene.
The whole interactions between miRNAs and mRNAs compose a huge molecu-
lar network that is not entirely known. This thesis focuses on developing novel
algorithms that allow the exploration of miRNA molecular connectivity; the
following sections introduce the main computational methods for miRNA tar-
get prediction and describe the bioinformatics datasets used for the analyzes.
Before going through those computational aspects (that are the thesis central
topics), the next section lingers on the importance of miRNA activity in gene
regulation processes.

1.1.4 Role of microRNAs in biological processes

MicroRNA activity is involved in several biological processes such as cell differ-
entiation, apoptosis, development, and immune response through target gene
regulation [1]. The discovery of miRNAs was a crucial point in molecular bi-
ology; it gives the possibility to study gene expression from a new perspective.
RNAi is used in many experiments by introducing synthetic double-strand
RNAs into cells to suppress specific genes selectively. It can help to identify
the components necessary for a particular cellular process.
It has been proposed that approximately 30% of the human protein coding
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genes are controlled by miRNAs [15]. For this reason, the processes in which
miRNAs are involved are very heterogeneous.
Recent evidence supports the idea that miRNAs are fundamental during devel-
opment; a development arrest has been observed in animal embryos character-
ized by dysregulations in RNAi process, e.g., Dicer deficiency caused death in
invertebrates and zebrafish embryos. MicroRNA are also important in nervous
system development, and miRNAs have been found in dendrites and axons of
neurons [16]. During cardiac muscle development, miR-1 and miR-133 have
been recognized as important regulators [17]. MicroRNAs have been found to
regulate immune responses [18] and regulate genes involved in inflammatory
states [19][20]. Host miRNAs also interact with viruses; many complex virus-
specific mechanisms are not yet fully understood [21]. Finally miRNAs are
clearly involved in angiogenesis [23] and apoptosis [22].
Alterations and mutations in miRNAs have been associated with several hu-
man diseases such as cancer, immune disorders, and neurological and cardio-
vascular diseases. Downregulation of miRNAs might unblock the suppression
of oncogenic genes. On the other hand, overexpressed miRNAs might inhibit
tumor suppressor genes; in both situations, miRNAs are strongly involved in
tumors [24]. Altered miRNAs have been observed in autoimmune diseases such
as arthritis, Systemic Lupus Erythematosus, and multiple sclerosis [25].
Recently, microRNAs have been detected in serum and plasma, and circulat-
ing microRNA profiles have been associated with some different tumor types,
diseases such as stroke and heart disease, and altered physiological states such
as pregnancy [26]. Therefore, the use of miRNAs as diagnostic biomarkers
represents a new clinical application of miRNAs.
Finally, in the future, miRNAs could become used as drugs to treat gene ex-
pression disorders. This promise doesn’t look so far; therapeutic application
of miRNA are beginning to become reality [27] [28]. For example, miRNA
activity could be used to combat viral infections [29]. This perspective leads
the research to the study of miRNA-virus interactions. This topic will be
addressed in Chapter 4.

1.1.5 Genome sequence databases

The prediction of miRNA binding sites is based on matching complementary
sequences located on miRNA and mRNA strands. For this reason, miRNA
target prediction algorithms generally require nucleotide sequences as input.



1.1. MICRORNA MOLECULAR INTERACTIONS 23

Public genome databases are available online, and the complete genome of
several species is easily downloadable. Below we report a brief description of
three sequencing databases that we have used for miRNA binding research
on Human and Drosophila genomes (Chapters 2 and 3) and on SARS-CoV-2
virus (Chapter 4).

BioMart Ensembl genome database

Ensembl is a genome browser for vertebrate genomes that supports research in
comparative genomics, evolution, sequence variation, and transcriptional reg-
ulation [30]. Ensembl tools compute multiple alignments, predict regulatory
functions, and evaluate the effect of rare genetic variants.
BioMart tool reports the whole genome annotation of more than 100 species.
We have downloaded the entire transcriptome of two species; i.e., Human
(GRCh38.p13) and Drosophila melanogaster (BDGP6.28). MicroRNA bind-
ing sites have been identified by searching complementary matches on those
sequences. BioMart datasets are also downloadable from R console using the
Bioconductor package biomaRt [31].

NCBI database

The NCBI web platform includes a series of databases relevant to biotechnol-
ogy and biomedicine [32]. The Nucleotide database collects sequences from
several sources, including GenBank, RefSeq, TPA, and PDB. Genome, gene,
and transcript sequence data provide essential information for biomedical re-
search and discovery.
A total of 15881 worldwide viral complete genomes was downloaded —updated
to September 7th, 2020— from the Severe acute respiratory syndrome coron-
avirus 2 data hub of NCBI Virus database, by filtering for taxid = “2697049”
and Nucleotide Completeness = “complete”. The RefSeq sequence NC_045512
was used as reference to predict the binding sites of human miRNAs on the
viral RNA.

miRBase: The microRNA database

The miRBase database is a database of published miRNA sequences and anno-
tations. It represents the primary online repository for miRNA sequence data
[33]. miRBase reports all known miRNA mature sequences and their locations.
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We have downloaded all miRNA sequences of Human and D. Melanogaster.
Those sequences have been used for miRNA binding prediction in Chapters 2,
3, and 4.

1.1.6 In silico predictions of microRNA binding sites

One of the most common experimental strategies used to investigate miRNA
targets consists of the immunoprecipitation of RISC proteins [35][36]. The high
costs of experiments oriented the miRNA target identification towards a com-
putational approach; it consists of the reproduction of biological experiments
using computational simulations. In silico predictions of molecular binding
generally guide the decision on which in vitro experiments could be important
to carry out.
MicroRNA binding prediction algorithms are generally based on Watson-Crick
base-pair matching [37][38][39]. Perfect complementarity between miRNA-
mRNA pairs is quite rare, but also a six base-pair match could be sufficient
to suppress gene expression. Few other methods use the miRNA expression
profile as additional information to predict miRNA targets: GenMir++[40],
PicTar [41], Talasso [42], and ComiR [43][44].
Most of those algorithms consider only the binding sites located on 3’UTR
region of mRNAs. In Chapter 3, we propose an upgrade of ComiR algorithm
by considering the binding sites located on the coding region.
This section focuses on three tools for predicting miRNA binding sites: Tar-
getScan, PITA, and miRanda. Those tools run a deep research on RNA se-
quences looking for nucleotide complementarity. The binding scores calculated
by these tools represent the basic information used by ComiR algorithm for
target prediction. For this reason, we run those algorithms on the entire D.
Melanogaster and Human transcriptomes as show in Chapters 2 and 3.

TargetScan

MicroRNAs recognize their mRNA targets by base-pairing interactions that
involve nucleotides 2-8 of miRNA (seed region).
TargetScan predicts miRNA targets by finding perfect Watson-Crick (WC)
seed complementarity [45], whereas a perfect matching is called canonical.
TargetScan algorithm distinguishes four different types of canonical binding
sites (Fig.1.9); 6mer indicates the weakest matching (only six nucleotides),
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Figure 1.5: Canonical site types classified by TargetScan algorithm [47].

while 8mer indicates the strongest matching. In our analysis, we have consid-
ered matches that involve at least seven nucleotides; therefore, 6mer sites have
been excluded.
The difference between binding site types depends not only on the number of
binding sites in the WC matching but also on the presence of the base A at
the first position downstream of the seed match. This nucleotide could pair
with the first nucleotide of a miRNA whose first nucleotide is U. However, a
conserved A was also observed next to seed matches for miRNAs that do not
begin with an U base. This “A anchor ” would increase the specificity of tar-
get prediction; therefore, the conservation of A characterize stronger matching
[45]. Non-canonical sites are excluded during the binding research. Indeed
the authors have demonstrated that non-canonical sites do not mediate re-
pression despite binding the miRNA, which indicates that the vast majority
of functional sites are canonical [46].

miRanda

miRanda algorithm detects potential miRNA binding sites in genomic se-
quences [48]. The main difference with Targetscan is that miRanda also re-
searches non-canonical matches (Fig.1.6); therefore, sequence complementarity

Figure 1.6: Example of non-canonical sequence matching obtained through mi-
Randa output.



26 CHAPTER 1. BIOINFORMATICS TECHNIQUES

is not the only criteria during the target research.
miRanda algorithm is divided into two phases:

1. Sequence matching to assess whether two sequences are complementary
and computation of a matching score.

2. Each significant match is associated with an energy of physical interac-
tion.

PITA

During miRNA binding, there is an energy cost of base-pairing interaction to
make the target accessible for the binding. PITA algorithm [49] calculates
miRNA binding scores taking into account the site accessibility of the targets.
PITA interaction scores are computed as the difference between the free energy
gained from the formation of the microRNA-target duplex and the energetic
cost of unpairing the target to make it accessible to the microRNA. The lower
is the score the higher is the probability of interaction.

1.1.7 Molecular Interaction Networks

Over the last decade, molecular biology methodologies have been strongly influ-
enced by network theory [50]. System biology perspective focuses on physical
interactions between biological elements, whereas the whole set of interactions
between cell components is called Interactome [51].
The construction of the Interactome is an ambitious challenge in molecular bi-
ology. In this context, network models are perfectly suitable to represent and
analyze molecular interactions. Molecular networks describe interactions and
pathways which characterize cell processes. Fig.1.7 shows interactions between
heterogeneous elements involved in cell processes, each of those physical and
functional interactions can be represented using a network.
A wide variety of molecular networks have been defined; e.g., metabolic net-
works [54] represent relation between chemical reactions and their substrates
using a bipartite representation; gene regulatory networks [55] describe the
mechanism of gene expression regulation using graphical models; protein-protein
interaction networks [56] represent protein binding. All those networks typi-
cally have a lot of properties in common with macro-scale systems. For exam-
ple, they have a scale-free degree distribution and a preferential attachment
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Figure 1.7: Schematic overview on molecular interactions in the cell [50].

behavior typical of scale-freeness.
MicroRNAs and their targets compose a bipartite network. But most of the
miRNA connectivity is still unknown because the high cost of experiments
limits the knowledge of specific binding. In silico predictions of miRNA in-
teractions permit to highlight molecular interactions that are still unknown.
In the following sections, we introduce the methods to be integrated with in
Silico predictions for constructing miRNA bipartite networks.

1.2 Gene expression analysis

Most modern genetic studies are related to gene expression analysis; indeed,
gene expression profiles represent the primary information to investigate cell
activity and functions. In this thesis, the analysis of gene expression is used for
many different purposes. For example, miRNA expression is used to improve
the performance of miRNA target prediction algorithms (Chapters 2 and 3).
Moreover, empirical validation of miRNA interactions requires a significant
analysis of differentially expressed profiles (as described in section 1.3.2). In
general, gene expression analysis is an important part of all the analyzes pre-
sented in the thesis.
The expression level of a gene corresponds to the amount of RNA transcript
of that gene. This section reports a brief description of throughput techniques
for quantifying gene expression levels.
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1.2.1 Throughput biological experiments

There are three main approaches for recording gene expression: hybridiza-
tion DNA microarrays, next-generation sequencing, and real-time quantitative
PCR.

DNA microarray

DNA microarray is a technique used for to identify and quantify mRNA tran-
script presents in the cell [59]. In this thesis, microarray data are the most
used data (Chapters 2, 3, and 5).
DNA microarray is physically composed by is a collection of microscopic DNA
spots attached to a solid surface. Each DNA spot contains little probes of a
specific DNA sequence. Those probes links with complementary DNA (cDNA)
previously synthesized from RNA molecules.
The transcript from which the cDNA comes is typically collected from two
different samples. For example, the baseline sample from a healthy individual
and the experimental sample from a diseased individual (e.g., cancer sample).
The two mRNA samples are then converted into cDNA using a reaction cat-
alyzed by the enzyme reverse transcriptase2, and each sample is marked with a
fluorescent probe having a specific color. For example, the experimental cDNA
sample may be marked with a red fluorescent dye, whereas the reference cDNA
may be marked with a green fluorescent dye (Fig.1.8). The two samples are
then mixed and allowed to bind the microarray slide. Microarray is considered
a hybridization procedure because cDNA molecules from two different samples
bind to the DNA probes.
Microarray data are obtained by quantifying fluorescent pixel intensities. The
pre-processing of raw data can be divided in three main steps:

1. Background correction purifies data from background noise. A com-
mon method is the normexp; it models the observed pixel intensities as

2 Reverse transcription (RT) is a process in which complementary DNA (cDNA) is cre-
ated from an RNA template using an enzyme named reverse transcriptase. It occurs as
part of specific mechanisms; for example, retroviruses use RT to replicate their genomes
(e.g., HIV). RT represents an exception to the central dogma of molecular biology. The
use of reverse transcriptase to measure gene expression was a revolution in molecular
biology; indeed, it permitted the development of high throughput experiments.
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the sum of two random variables; one normally distributed (background
noise) and the other exponentially distributed (signal) [60].
Once background component has been quantified, gene expression can
be calculated as follows:

Density of Red = Rfg −Rbg

Density of Green = Gfg −Gbg

FC −Expression = log2 (
Density of Red

Density of Green
) (1.1)

where, fg = foreground, and bg = background.

2. Normalization consists in data scaling and transforming. It is used to
make expression profiles from different conditions comparable (see Sec-
tion 5.2).

3. Summarization. In microarray, we may have several values for the same
spot or gene. Therefore, the information has to be synthesized in a single
measure for each gene.

Next generation sequencing

Next-generation sequencing (NGS) [61] is a group of techniques based on a
massive approach for identifying genome sequences and quantifying their ex-
pression levels. These techniques are also used for genome comparisons, iden-
tification of gene variants, and the research of new miRNAs.
NGS profiling is more accurate than hybridization-based technologies, and
it will probably replace microarray technique in the future. Moreover, NGS
expression levels are highly correlated with real-time PCR experiments [62].
Tab.1.1 reports a schematic comparison of high throughput techniques. As
reported in the table, NGS is used not only for quantifying transcript amounts
but also to determinate the primary structure of genome sequences.
Several platforms have been developed to run NGS (e.g., Illumina Genome
Analyzer, SOLID, Roche), and they are widely used in biological research.
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Real-time PCR Microarray NGS

Throughput Medium High Ultra high
Principle PCR amplification Hybridization Sequencing
Time <6h 2 days 1-2 weeks
Sample input 10 ng - 500 ng 100 ng - 1 µg 500 ng - 10 µg
Applications Counting Counting Reading and

Counting

Table 1.1: Comparison of throughput techniques [63]. Throughput applica-
tions are divided into two main categories: “reading” and “counting”. Reading
consists of the sequencing itself; it is used to study an unknown genome or to
research genomic variants. Counting consists of the profiling of gene expres-
sion; it is the quantification of the amounts of transcripts in the cell.

Figure 1.8: Steps in microarray data collection [64].
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RT-PCR

Reverse transcript polymerase chain reaction (RT-PCR) is a technique for gene
expression measurements [58]. It is generally used as a gold standard for the
validation of other profiling approaches. PCR is also used for disease diagnosis;
for example, during the COVID-19 pandemic, PCR has been the most used
diagnostic test.
RNA sample is first reverse-transcribed to complementary DNA (cDNA) using
the reverse transcriptase enzyme. The cDNA sample is amplified in billions of
copies using the polymerase chain reaction (PCR), and the amount of cDNA
is quantified. The quantification of amplified DNA molecules is carried out
by marking cDNA using a fluorescent dye. The fluorescence signal increases
proportionally to the amount of replicated DNA, and the DNA is quantified
in “real time”.

1.2.2 Experimental validation of miRNA targets

In silico algorithms predict a large number of miRNA interactions, but many
of those interactions have to be discarded because they don’t take place in-
side the cell. Therefore, a filtering criterion is important to select functional
miRNA interactions, and empirical validation of computational results is often
required.
The experimental approach permits more reliable identification of miRNA tar-
gets. Unfortunately, the high cost of experiments doesn’t allow large scale
inference. For this reason, the computational approach is used to investigate
a large number of interactions and could orient biological experiments.
Empirically validated interactions are often used to build the training set of
machine learning algorithms for miRNA target prediction. This is the case of
ComiR algorithm [43][4] (Chapter 3).
MicroRNA target validation often requires the analysis of transcript changes
over experiments (e.g., IP samples vs input samples). Indeed, differential ex-
pressed genes over experiments represent the most reliable validated miRNA
targets. Section 1.3.2 deeply describe statistical methods for differential ex-
pression analysis. Below we briefly introduce the main biological experiments
used for empirical validation of miRNA targets.
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MicroRNA transfection

MicroRNA transfection consists of the introduction of exogenous miRNAs
into eukaryotic cells. Exogenous miRNAs cause decreases in the abundance
of mRNA transcript; therefore, mRNA targets can be identified by studying
changes in transcript abundance [66]; therefore, differentially expressed genes
are the probable miRNA targets.

Depletion of RISC proteins

MicroRNA activity depends on the formation of a ribonucleoprotein complex
named the RNA-induced silencing complex (RISC). The depletion of a RISC
protein causes the knockout of RISC activity and the consequent inhibition
of miRNA activity [145]. It causes a variation in the abundance of mRNA
targets; therefore, most over-expressed genes correspond to miRNA targets,
and the analysis of differentially expressed genes can be used to identify them.

Immunoprecipitation of RISC proteins

One limitation of the previous approaches is that targets are inferred by con-
sidering only the changes in mRNA abundance. However, a miRNA could
indirectly influence gene expression without direct binding. Moreover, analy-
sis of transcript changes doesn’t return information on which targets have an
important role in carrying out the actual biological processes [36].
Immunoprecipitation (IP) of RISC proteins is a direct experimental method
to identify miRNA targets. This technique uses an antibody that specifically
binds to a particular RISC protein, and then the whole protein complex is
isolated by precipitating the bounded proteins out of solution.
The immunoprecipitated is analyzed using high throughput methods for ex-
pression profiling, such as gene array (RIP-Chip) or sequencing (RIP-Seq),
which allow the systematic identification of RISC-bound miRNAs and their
target mRNA sequences. Finally, genes enriched and underrepresented in IP
samples can be identified through a differentially expressed analysis.
IP experiments, like the previous experimental approaches, can’t recognize
miRNA binding sites. IP analysis identifies groups of molecules (miRNAs and
mRNAs in our case) that bind each other. For this reason, a computational
approach is generally used to search miRNA-mRNA couples that can poten-
tially bind.
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IP approach has been widely applied to the AGO protein family [67][68][69]
[70]. Moreover, also the immunoprecipitation of GW182 RISC protein has
been recently realized [71][72][73]. Chapter 2 reports a RIP-ChIP analysis of
the role of AGO2 and GW182 in recruiting and processing miRNA targets. Us-
ing a differential expression analysis on IP experiments, we identified groups
of miRNA target genes that represent the gold standard predictions for evalu-
ating algorithm prediction capacities. Moreover, in Chapter 3, IP experiments
are considered to build the training set of ComiR algorithm. The next section
introduces the statistical methods to carry out differential expression analysis
for identifying validated miRNA targets.

1.3 Large scale inference at time of genetic

big data

The present section describes the statistical methodologies used for the data
analyzes presented in the thesis. Specifically, we will outline the main steps for
developing miRNA target prediction algorithms by connecting all the concepts
introduced until now. Before that, few other notions have to be introduced.
In genetics, classical statistical methods cannot be used because of the high-
dimensionality of high throughput data. Indeed, the number of dimensions is
generally higher than the number of observations. This multivariate structure
of the data causes computational problems; this situation is referred to as the
curse of dimensionality [75]. For this reason, specific approaches have been
developed for the analysis of genetic big data. In this section, we will describe
the statistical methods used in the next chapters.

1.3.1 Pre-processing of gene expression data

The first step in statistical analysis is the pre-processing of raw data. It is
an important part of the analysis because data transformations influence final
results.
In this thesis, microarray data are frequently used. Microarray expression
profiles generally have a log-normal distribution. Moreover, miRNA gene ex-
pression generally follows a power law distribution [76], therefore miRNA ex-
pression profiles don’t have a proper scale, and miRNA variance could diverge.
Log2-transformation is the most popular way to reduce expression variability
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Figure 1.9: Example of genetic dataset structure. Each column corresponds to
a sample from a profiling experiment, while each rows reports the expression of
a single gene over a group of tissues. Normalization is performed by column
and DEA is performed by row.

and to make the profile distribution symmetric.
In transcriptomics studies, different tissues are often compared to each other.
It requires that the total amount of transcript is the same over different tis-
sues, but this situation is generally not observed in raw data; therefore, data
normalization always precedes this analysis. A simple solution is to divide
expression values by the sum of the expressions. Another solution is the quan-
tile normalization [77], it makes profile distributions identical in statistical
properties.

1.3.2 Differential expression analysis

Differential expression analysis (DEA) is one of the most used approaches to
compare different experimental conditions and highlight differences in gene
functions over tissues [6]. In the present thesis, differentially expressed (DE)
genes are analyzed in all chapters; In Chapters 2 and 3, DE genes from IP ex-
periments compose the validated targets used for training and testing miRNA
target prediction algorithms. Instead, Chapter 5 proposes a novel statistical
test for DEA. Moreover, in Chapter 4, healthy and COVID-19 tissues are com-
pared, and DE genes are identified as possible protagonists of the COVID-19
inflammatory state.
DEA consists in the analysis of expression profiles over two groups of samples
to identify over-expressed (enriched) and under-expressed (under-represented)
genes, where each sample group corresponds to a different experimental con-
dition. Gene expression behavior over different conditions is related to specific
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biological processes and functions. Therefore, DEA is widely used together
with gene classification and enrichment analysis of Gene Ontology (GO) cate-
gories (to pursue this goal, GO-analysis on DE genes is a common procedure;
it is described in section 1.3.6). For example, genes frequently over-expressed
in a specific tissue are probably involved in cell activities that characterize that
tissue. DEA is also carried out to investigate genetic diseases; a gene that is
over-expressed in cancer tissues could be directly involved in cancer.
Let be xi and yi the average expression values of the ith gene in two groups of
tissues that we want to compare. The two most popular approaches for DEA
are the fold-change analysis and the use of a large family of t-tests. Those two
approaches are generally applied together.

1. Fold-change (FC) indicates the expression variation of a gene over two
different conditions [78]. It can be calculated as a ratio generally ex-
pressed in log-scale:

log(FCi) = log2
xi
yi

(1.2)

The genes whose log(FC) is greater (or lower) than a threshold (e.g.,
+2) are identified as differentially expressed, but threshold selection is
arbitrary.

2. A large family of t-tests is the most widely used procedure for DEA
[203] [204]. This procedure is strictly related to large scale inference,
and p-values are corrected using multiple comparison procedures.

The t-test is based on parametric assumptions rarely satisfied. However,
large samples allow an assumption relaxation, but the high cost of experi-
ments makes it difficult to find. For this reason, in small skewed samples,
t-test p-values are often not reliable [205]. Moreover, the small variance of low
expressed genes makes the denominator of t-test statistics unnaturally smaller.
It increases the total I type error and the number of significant genes. Alterna-
tive definitions of the t-test have been proposed to reduce the impact of small
samples and low expression variability, e.g., Significance Analysis of Microar-
ray (SAM) [207] and moderated t-test [206].
In SAM, a small constant s0 is added in the denominator of the t-statistic to
correct small variance values:

ti =
xi − yi
si + s0

(1.3)
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Instead, the moderated-t-test is based on an empirical Bayes approach for
estimating sample variances towards a pooled estimate, resulting more stable
inference when the number of arrays is small [206].
On the other hand, large sample t-tests produce too many significant genes;
it depends on average expression differences truly different from zero but not
large enough to be biologically meaningful. A common strategy to reduce the
number of selected differentially expressed genes is to set an arbitrary threshold
on the fold change (e.g., 1, 1.5, or 2) [208].
In Chapter 5, we proposed a novel statistical test for DEA. The results suggest
its application together with the t-test approach to better understand the
biological questions related to DEA.

1.3.3 Machine learning approach

Machine learning is a class of algorithms that carry out statistical predictions
by recognizing empirical patterns in the data [86]. Those algorithms are con-
nected to artificial intelligence because they improve their prediction capacity
with empirical experience.
The machine learning approach was specifically developed for the analysis of
big data. For this reason, it has been widely used in genetics. In Chapter 3,
a support vector machine (SVM) model is used as a structural part of ComiR
algorithm [4][43]; the scores of three miRNA target prediction algorithms (i.e.,
PITA, miRanda, and TargetScan) are combined in an SVM model to predict
miRNA target genes. SVM is a supervised method; the model is trained on
a set of elements already classified into two groups. Those classified elements
are used as an example to identify empirical patterns that will permit the
classification of new elements. In our case, the training set is composed of
target and non-target genes of a group of miRNAs, where those genes have
been empirically validated through biological experiments (i.e., DE genes from
IP experiments).
The idea behind an SVM is to maximize the margin between two groups and
minimize the total classification errors by placing a hyperplane in high dimen-
sional space, where the number of dimensions corresponds to the number of
variables given in input for the classification [85]. Therefore, the SVM classifies
new elements on the base of the hyperplane previously adapted. The shape
of the hyperplane depends on a kernel function, Fig.1.10 shows a classification
based on a linear kernel, whereas many non-linear kernels have been proposed.
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Figure 1.10: Example of linear SVM classification using a two dimensional
information.

At this point, we have introduced the whole theory necessary to outline a
schematic concept map for developing an algorithm for miRNA target predic-
tion. Indeed, ComiR algorithm is based on the following steps:

1. Realize IP experiments (as described in Section 1.2.2)

2. Identify differentially expressed genes that compose the training set
(as described in Section 1.3.2)

3. Build a machine learning model using binding scores previously calcu-
lated (score calculation has been described in Section 1.1.6)

Following this thread, the development of SVM algorithms will be presented
in Chapters 2 and 3. In particular, we propose ComiR algorithm as a reliable
tool for miRNA target prediction.
The last part of the present chapter completes the description of the most
widespread statistical methods in genomics. Most of them are used for data
analysis in the following chapters.

1.3.4 Analysis of complex systems

Many real systems are composed of a vast number of elements that interact
among them. For example, human society is a complex system in which indi-
viduals experience many types of social interactions. Similarly, a single cell of
an organism is a biological system based on the interaction of biomolecules.
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Connectivity has a direct effect on the structure and the nature of the sys-
tem. For this reason, the study of complex systems focuses on how elements
interact among them. The analysis of element interactions is closely related
to large-scale inference and computational issues; the number of interactions
is generally much bigger than the number of elements. For this reason, the
study of complex systems requires a flexible approach that allows to manage
and analyze a huge amount of data and gives a simple representation of the
system.
The network approach is universally used to study complex systems. A net-
work, also called graph in topology, is a mathematical object that describes
the whole connectivity of a system. It is composed of nodes and links (also
called vertices and edges), whereas nodes correspond to the elements of the
system and links represent their interactions.
Albert-László Barabási wrote that networks introduce a new way of thinking
about the real-world. Indeed, networks are used in all research fields, including
molecular biology. For example, metabolic networks describe chemical reaction
among biomolecules [54], neuronal networks describe brain cell connectivity,
regulatory networks study gene regulatory relations [55], and protein-protein
networks show molecule binding [56].
The considerable success of network methodology can not be justified only
by a new perspective in the study of complex systems. The end of the XX
century has been characterized by a revolution in data collection, sharing, and
storage; the high throughput technologies make big data available to everyone.
The new data dimension orientated the scientific research towards innovative
methodologies which carry out large scale inference. This framework produced
the conditions for the development and popularity of the network approach in
data analysis.

Gene network models

Many different mathematical models related to networks have been developed
to describe properties and evolution of complex systems over time [87] (e.g.,
random graph, preferential attachment graph, small-world network). On the
other hand, a wide range of probabilistic models has been defined to investigate
gene network dependence relations. Those models are considered probabilistic
because nodes are random variables that can take different values or states,
while links connect statistically related variables.
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Statistically Validated Networks (SVNs) [53][97] investigate network connectiv-
ity through large scale hypothesis testing. This approach has a fundamental
advantage; interactions that occur by chance are excluded from the network.
Correlation-based networks are a typical example of SVNs. They connect el-
ements whose behavior is correlated. A famous correlated-based network is
the gene co-expression network [52][53]; in this network, nodes correspond to
genes, and links connect genes that have a significant co-expression over a
group of conditions.
The construction of SVNs based on correlation requires a statistical test on
a correlation coefficient for each couple of nodes. Let consider the nodes vi
and vj, and the correlation coefficient p̂ij estimated on their records. We are
interested in the following hypothesis testing:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H0ij ∶ ρij = 0

H1ij ∶ ρij ≠ 0
(1.4)

A non-parametric approach based on the Spearman Correlation coefficient
is often used to avoid normal assumptions during hypothesis testing (Quatto
et al. [93]). All the links in the network come from a significant result of a
statistical test. For this reason, we speak about networks that are statistically
validated. The presence of spurious correlations is the main limitation of gene
co-expression networks. Some authors [94] [95] propose a partial correlation-
based approach to reduce the spurious correlation in the network.
Gaussian Graphical Models (GGMs)[88] represent an alternative approach con-
ceptually close to SVNs; those models consider the conditional dependence be-
tween nodes. Therefore, spurious connections are removed from the network.
The main limitation of GGMs is that they require the assumption of multivari-
ate normal distribution, rarely satisfied in gene expression data. In general,
graphical models (e.g., gaussian models [88], bayesian models [89], Boolean
networks [90][91]) allow to study the relations among genes. For example,
Boolean networks focus on network dynamics underlying how nodes regulate
each other in terms of activation and suppression. In our recent work, we used
Boolean gene networks to evaluate the effects of in silico mutations in Autism
Spectrum Disorders [92]. In our current research, we use a new type of SVN
[97] to study miRNA-mRNA bipartite networks. This topic is introduced in
the future research at the end of the thesis.
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1.3.5 Cluster analysis

A common genetic issue is the study of gene expression similarity over different
experimental conditions. Clustering methods are used for identifying gene
groups with a similar gene expression pattern within them [100].
The clustering problem doesn’t have a univocal solution, and many clustering
algorithms have been proposed. K-means method is the most famous although
it depends on an arbitrary choice of the number of clusters. It identifies clusters
minimizing the within-cluster sum of squares (i.e., intra-cluster variance).
Another widely used algorithm is the complete-linkage [102]; in each step, the
algorithm includes an element in its nearest cluster, where the distance from
a cluster is equaled to the distance from the farthest cluster’s element.
In network theory, a cluster is a group of elements strongly connected among
them and sparser connected with other elements of the system. Complex
systems naturally organize in clusters; clustering is a common task in network
theory. Two common clustering methods are:

• Modularity Statistic [103] searches the optimum partition that maximizes
the number of links inside clusters and minimizes the number of links
between different clusters.

• Infomap algorithm [104] operates cluster detection considering the flow
induced by the links of a network; clusters consist of nodes among which
the flow persists for a long time once entered.

Once gene clusters have been identified, the aspects that characterize those
clusters have to be explored. Gene enrichment analysis is a common strategy
for cluster characterization, as described in the next section.

1.3.6 Gene Ontology Enrichment Analysis

Gene Enrichment Analysis is widely used to identify biological processes,
molecular functions, pathways, and cellular components associated with a
group of genes. This methodology can be applied to gene groups from any
type of analysis, such as network clustering and differential expression analy-
sis. For example, in Chapter 5, we study differentially expressed genes through
a Gene Ontology enrichment analysis [216].
The Gene Ontology (GO) [106] is a bioinformatics project that classifies genes
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in terms. Each term represents a gene product property; therefore, genes that
belong to a specific term are all involved in a common biological process. Gene
Ontology is not the only gene classification proposed in the literature; indeed,
in the last decade a large number of gene annotations have been used to per-
form gene enrichment analysis, e.g., Reactome pathway analysis [107], KEGG
Pathway enrichment [108]. GO-Analysis, as many other gene enrichment meth-
ods, searches the terms with a significant number of genes in common with the
gene group of interest; the significant terms characterize the gene group under
exam. Gene Ontology is constantly evolving; indeed, the gene group under
exam could enrich the significant terms from GO-analysis.
Significant terms are identified using a hypergeometric test (i.e., Fisher exact
test). Consider NG genes that belong to group G, and NQ genes that ex-
perience the attribute Q, where Q represent a GO-term in our case, or any
other gene annotated group. Under the null hypothesis that the attribute Q
is uniformly distributed across a large pool of N genes, the probability that
NG,Q = nG,Q genes in group G have the attribute Q is:

Pr(NG,Q = nG,Q∣N,NG,NQ) =
(
NG
nG,Q

)(
N−NG

NQ−nG,Q)

(
N
NQ

)
(1.5)

So we can associate a p-value with the observed number of nG,Q genes that
belong to group G and have the attribute Q:

Pr(NG,Q ≥ nG,Q) = 1 −
nG,Q−1
∑
X=0

Pr(X ∣N,NG,NQ) (1.6)

A significant result of the test means that Q is over-expressed in group G;
therefore, Q characterizes this cluster. Whereas the attribute Q is not nec-
essarily the most common feature in the group; the significance means that
the relative frequency of Q is significantly higher in group G than the relative
frequency observed in the whole pool of genes. Tumminello et al. [109] uses
the idea behind gene enrichment analysis to characterize clusters of any type
of network. Using this approach, GO-terms conceptually correspond to any
attribute of interest.
Recently, a new method of gene network enrichment analysis has been intro-
duced in the literature; it integrates the information on interactions between
genes provided by gene networks into enrichment analyses. This approach
tests enrichment between sets of genes in a network [110] [111] [112].
GO-analysis and other enrichment methods allows the simultaneous investiga-
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tion of several terms; therefore, it requires a multiple comparison correction,
as shown in the next section.

1.3.7 Multiple Comparison Procedures

Most of the methods presented until now are closely related to large scale
inference; indeed, a large family of statistical tests is a fundamental part of
many bioinformatics methods. For example:

• Differential expression analysis calculates a t-test on each gene expression
profile Ð→ there are almost 25.000 coding genes.

• GO-ontology is generally applied on all terms containing at least three
genes in common with the gene group of interest Ð→ the total number
of terms is almost 45.000.

• For building statistically validated networks (SVNs), the statistical test
used for link validation has to be performed for each couple of nodes;
therefore, considering N nodes, the total number of tests is

m = (
N

2
) =

N(N − 1)

2
(1.7)

In this context, the first type error γ corresponds to the probability of
wrongly draw a link in the network. On the other hand, the second
type error β corresponds to the probability of miss a link that should be
drowned.

The high number of statistical hypotheses is connected with a multiple
testing problem. There are plenty of methods that allow controlling the whole
error of the entire procedure [113]. In this section, the most popular multiple
comparison procedures (MCPs) are introduced.
Bonferroni method is the most conservative correction for multiple compar-
isons. It controls the probability of rejecting at least one null hypothesis true;
this probability is called Family Wise Error Rate (FWER).
Consider a group of null hypothesis H01,H02, ...,H0m, and a given level α, such
as:

FWER ≤ α (1.8)

The constrain 1.8 is guaranteed fixing the first type error γ of every single test
equals to:

γ =
α

m
(1.9)
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hypothesis not-rejected rejected total

true U F m0

false Z S m1

W R m

Table 1.2: Possible result of a multiple testing procedure.

Therefore, the hypothesis H0i is rejected if its p-value pi is smaller than γ.
The Boole inequality demonstrates the validity of the constrain 1.8 for any
number m0 of true hypothesis:

FWER = Pr {⋃
I0

(pi ≤
α

m
)} ≤∑

I0

Pr {pi ≤
α

m
} =m0

α

m
≤ α (1.10)

where, I0 is the set of m0 true hypothesis.
Moreover, at the price of an increase of conservativeness, the constrain is also
guaranteed in case of dependency of hypotheses. In general, Bonferroni pro-
cedure is very conservative and could produce too few rejections.
Benjamini and Hochberg introduced a more powerful approach to multiple
testing; it changes the error definition introducing the False Discovery Rate
(FDR)[114] as a measurement of the whole error of the procedure.
Consider the results of a multiple testing procedure as shown in Tab. 1.2, the
FDR is defined as the expected proportion of wrong rejections

FDR = E [
F

R
] (1.11)

1.11 is not defined for R = 0. Moreover, is not possible control the FDR if
m = m0. For these reasons, Benjamini and Hochberg proposed an alternative
definition of the FDR:

FDR = E [
F

R
∣R > 0]Pr{R > 0} (1.12)

Given a family of hypothesis H01,H02, ...,H0m, the control of the FDR at
the level q is obtained through the following steps:

1. Order the observed p-values in the vector {p(1), p(2), .., p(m)}.

2. Find the index imax such as

imax =max{i ∶ p(i) ≤
i

m
q}
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3. the ith p-value p(i) is considered significant if

i ≤ imax

Therefore, this procedure identifies the p-values p(1), p(2), .., p(imax) as sig-
nificant guaranteeing the constraint FDR ≤ q.
The presence of hypothesis dependencies requires an alternative calculation of
the imax index [115]. But it makes the procedure more conservative:

imax =max{i ∶ p(i) ≤
i

m

q

hi
} (1.13)

with, hi =
i

∑
j=1

1

j

Bradley Efron proposes an empirical Bayes approach to multiple compar-
isons [116]; it increases the statistical power of the testing procedure through
a Bayes estimation of the FDR. This approach to multiple comparisons is used
in the significant analysis of microarray implemented by the R package samr.
Moreover, Quatto et al. [93] propose a new method for SVN construction
based on the Efron approach that can be used for very sparse networks. In
practice, we recommend the comparison of different correction approaches; the
Bonferroni network identifies the strongest connections Instead FDR-network
gives an overall view of the whole connectivity of the system.



Chapter 2

Analysis of miRNA Interactions:
RIP-Chip analysis supports different roles for

AGO2 and GW182 proteins in recruiting and

processing microRNA targets

The analysis presented in this chapter has been published on BMC Bioin-
formatics by the name RIP-Chip analysis supports different roles for AGO2
and GW182 proteins in recruiting and processing microRNA targets [3].
We analyzed the activities of two RISC proteins, AGO2 and GW182. The
results highlight important information that explain miRNA binding behav-
ior. In particular, mRNA coding region information significantly improve the
performance of miRNA target prediction algorithms. Those results outline
the theoretical framework for improving ComiR algorithm (as presented in
Chapter 3).

Abstract

We performed three RIP-Chip experiments using either anti-AGO2 or anti-
GW182 antibodies and compiled a data set made up of the miRNA and mRNA
expression profiles of three samples for each experiment. Specifically, we an-
alyzed the input sample, the immunoprecipitated fraction and the unbound
sample resulting from the RIP experiment. We used the expression profile
of the input sample to compute several variables, using formulae capable of
integrating the information on miRNA binding sites, both in the 3’UTR and
coding regions, with miRNA and mRNA expression level profiles. We com-
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pared immunoprecipitated vs unbound samples to determine the enriched or
underrepresented genes in the immunoprecipitated fractions, independently for
AGO2 and GW182 related samples.
For each of the two proteins, we trained and tested several support vector ma-
chine algorithms capable of distinguishing the enriched from the underrepre-
sented genes that were experimentally detected. The most efficient algorithm
for distinguishing the enriched genes in AGO2 immunoprecipitated samples
was trained by using variables involving the number of binding sites in both
the 3’UTR and coding region, integrated with the miRNA expression profile,
as expected for miRNA targets. On the other hand, we found that the best
variable for distinguishing the enriched genes in the GW182 immunoprecipi-
tated samples was the length of the coding region.
Due to the major role of GW182 in GW/P-bodies, our data suggest that
the AGO2-GW182 RISC recruits genes based on miRNA binding sites in the
3’UTR and coding region, but only the longer mRNAs probably remain se-
questered in GW/P-bodies, functioning as a repository for translationally si-
lenced RNAs.

2.1 Role of RISC in microRNA binding

Argonaute (AGO) proteins and the GW182 protein family (also known as
TNRC6 proteins) are involved in the cellular process which leads to gene si-
lencing mediated by miRNAs, small endogenous non-coding RNAs that act
as post-transcriptional regulators by base pairing to target mRNAs [117][118].
While miRNAs guide AGOs to target mRNAs, a direct interaction between
AGO and GW182 proteins is required for the assembly of ribonucleoprotein
complexes, named RISCs, and the recruitment of additional factors involved
in gene silencing, which is ultimately achieved through the degradation of tar-
get mRNAs or translational repression [119][120]. Several studies of higher
eukaryotes have indicated that, among the AGO proteins, AGO2 is catalyt-
ically active and involved in the mRNA cleavage process, whereas AGO1, 3
and 4 are catalytically inactive and mainly involved in translational repres-
sion [120][121]. In the cell cytoplasm, AGOs, together with GW182/TNRC6A
and its mammalian paralogs, TNRC6B and TNRC6C, have a role in executing
miRNA-mediated repression, either by silencing or decay, but the proteins also
contribute to other functions in the nucleus, such as transcription and splicing
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control [122][123]. On the other hand, GW182 is a marker of GW/P-bodies,
dynamic cytoplasmic structures containing non-translating mRNAs, that have
been associated with the cellular response to stress [124] and were first iden-
tified because human autoimmune sera recognized them [125][67]. Work over
the past few years has significantly increased our understanding of the biology
of GW/P-bodies in higher and lower eukaryotes. It has been shown that these
bodies contain proteins involved in diverse post-transcriptional processes, such
as mRNA degradation, nonsense-mediated mRNA decay, translational repres-
sion, RNA-mediated gene silencing, and may also function as a cytoplasmic
domain for RNA storage.
Furthermore, RNA-binding protein immunoprecipitation, coupled with high
throughput methods for expression profiling, such as gene array (RIP-Chip)
or sequencing (RIP-Seq), has allowed the systematic identification of RISC-
bound miRNAs and their target mRNA sequences in mammalian cells and the
dissection of miRNA-mediated post-transcriptional regulatory networks. This
approach has been widely applied to the AGO protein family, through the im-
munoprecipitation of either exogenously introduced tagged-proteins or endoge-
nous proteins and the subsequent analysis of the associated RNAs [67][68][69][70].
So far, few reports have described a similar approach for GW182 and its par-
alogs using specific antibodies [71][72], and recently, Meister and co-workers
reported a novel method, based on affinity purification, for the simultaneous
isolation of all AGO-containing complexes [73].
The RIP-based high throughput method for expression profiling has been
widely used to predict miRNA-target interactions in order to develop algo-
rithms useful for identifying potential miRNA targets.
In order to get additional insight into the diverse cellular functions of RISCs,
we performed RIP-Chip experiments using antibodies specific for AGO2 and
GW182/TNRC6A. Data collection methods are described in the appendix at
the end of this chapter.
Data from miRNA and mRNA expression profiles were combined, using exist-
ing target prediction results, to compute several variables that served to train
and test various support vector machine (SVM) algorithms, searching for the
more efficient variables for distinguishing enriched genes in the immunoprecip-
itated samples.
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2.2 In silico prediction of microRNA-mRNA

interactions

All the 3’UTR and coding sequences used to predict miRNA binding sites were
selected from Ensembl.org. If the database contained more than one sequence
for the same Ensembl ID, the longest sequence was selected. We only consid-
ered sequences at least 50 bases long. From Ensembl.org we selected 18,552
3’UTR and 19,420 coding sequences, of which 16,363 mRNAs were included
in both sets and in the microarray platform used. MicroRNA binding sites
were predicted using TargetScan [45], PITA [49] and miRanda [48] scripts. We
computed two miRNA-mRNA interaction matrices (BS), one for 3’UTR and
one for the coding regions, which contained the number of binding sites pre-
dicted for each miRNA seed on the selected sequences. For both BS matrices,
we computed the respective density matrices (dBS) by dividing the number of
predicted binding sites by the length of the considered sequence.
The expression profile of endogenous miRNAs has been shown to be determi-
nant in predicting RISC machinery functional targets, and it is used by ComiR
[43] to predict targets of a set of miRNAs. In addition to such collaborative
effects, competition effects have a crucial role in miRNA regulatory function,
as shown by the evidence of competing exogenous [127] and endogenous [128]
effects. In summary, both miRNA and mRNA expression profiles have a cru-
cial role in determining miRNA binding activity. For this reason we have used
miRNA expression profiles to transform the primary scores of PITA, miRanda
and TargetScan.

2.3 RIP-Chip Analysis

Microarray data pre-processing consisted of the following pipeline. The Fea-
ture Extraction Software already provided background subtracted, dye nor-
malized and spatially detrended processed signal intensities. Intensities were
normalized using the quantile normalization technique. First of all, an average
linkage cluster analysis was performed in order to check instrumental replicate
consistency, and then the average expression profile of instrumental replicates
was computed. The obtained expression profiles were used to perform a post-
hoc power analysis specific for microarray studies [131], and we obtained an
observed power of 0.7, which implied that 70% of truly enriched genes were
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expected to be discovered.
The pre-processed expression profiles were compared through hierarchical clus-
ter analysis (average linkage), where distance was computed as dist = 1 –
correlation. Genes enriched and underrepresented in immunoprecipitated (IP)
samples were identified using the Significance Analysis of Microarrays (SAM)
algorithm [65], implemented by the samr library in BioconductoR. The samr
library associates a q-value with each gene, i.e., the lowest False Discovery
Rate at which that gene is called significant. It is like the well-known p-value,
but adapted to multiple-testing situations. A q-value of 5% was set as the
threshold for significance in detecting enriched and underrepresented genes.
Enriched genes detected by the SAM algorithm were compared with the en-
riched genes detected by REA [132], an algorithm developed specifically for
RIP-Chip enrichment analysis.

2.3.1 AGO2 and GW182 proteins complexes handle

different mRNA content

To gain new insight into the regulatory networks of gene expression involving
functionally diverse RISCs in the cell cytoplasm, we used RIP-Chip to identify
mRNAs and miRNAs selectively bound to these complexes in the MCF-7 cell
line, which is widely used and representative of luminal breast cancer. We se-
lected AGO2 and GW182 antibodies against core RISC proteins since AGO2
is the most abundantly expressed AGO protein in many cell types, including
MCF-7 cells [134], and GW182/ TNRC6A has been shown to be the major
binding partner for AGO2 [135]. We performed three independent RIP exper-
iment, collecting the input (IN), immunoprecipitated (IP) and flow throught
(FT) samples.

The efficiency of the AGO2 and GW182 antibodies in IPs was confirmed by
the enrichment of both proteins in the IP fractions and their depletion in the
FT fractions, while the lack of precipitation of either AGO2 or GW182 pro-
tein by control IgG confirmed the specificity of antibodies (Fig. 2.1a). We
also examined, in AGO2-IP and GW182-IP, the enrichment of seven miRNAs
highly expressed in the MCF7 cell line [70]. As shown in Fig.2.2a, all the ana-
lyzed miRNAs were significantly enriched by AGO2 and GW182-IP compared
to controls (p-value< 0.05, AGO2 or GW182-IP vs IgG-IP). As expected for
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Figure 2.1: Western Blot analysis of proteins immunoprecipitated and co-
immunoprecipitated with anti-AGO2 or anti-GW182 antibody (IP). IgGs in a)
are the negative controls. IN and FT made up 1% of the cytoplasmic lysate
used for each IP sample. GW182 was specifically co-immunoprecipitated with
AGO2 (b, left panel), and AGO2 was specifically co-immunoprecipitated with
GW182 (b, right panel)

proteins present in the same complex, Western Blot analysis confirmed the
reciprocal co-immunoprecipitation of AGO2 and GW182 (Fig.2.1b). Whole
genome and miRNA expression profiles, as determined by microarray anal-
ysis, gave rise to a novel dataset that is available through the NCBI GEO
database (accession IDGSE109667). As shown in Fig.2.2b, the cluster anal-
ysis performed on whole genome expression profiles revealed that the mRNA
expression profiles of the AGO2-IP samples (blue cluster) were homogeneous
and different from the GW182-IP mRNA expression profiles (red cluster). The
miRNA expression profile clustering showed only one homogenous cluster, the
AGO2-IP sample cluster (Fig.2.2b, blue cluster). The comparison of AGO2-IP
vs IN expression profiles revealed the underrepresentation, in the IP sample,
of several miRNAs highly expressed in IN samples, a fact that implies a lower
correlation between IP and IN expression profiles (see Additional file 1). On
the other hand, GW182-IP and IN miRNA expression profiles were more sim-
ilar to each other, and such behavior explains the absence of a GW-IP cluster
in miRNA expression profile clustering.
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Figure 2.2: a) Enrichment analysis of seven highly expressed miRNAs in anti-
AGO2 and anti-GW182 IP compared to IgG-IP controls. b) Average Linkage
Cluster analysis of mRNA and miRNA expression profiles of IP, IN and FT
samples from three independent experiments; distance is computed as 1- Cor-
relation (Pearson). AGO2-IP and GW182-IP mRNA expression profiles are
highlighted in blue and green, respectively. In mRNA expression clustering, we
considered all the 16,323 genes with a detected expression level in the samples
considered. In miRNA expression clustering, we considered 508 miRNAs with
a detected expression level in at least one sample.

We also characterized the two proteins’ behavior by detecting the enriched
genes in AGO2-IP and GW182-IP. We observed that the most efficient com-
parison in retrieving miRNA targets was the one between IP vs FT, with
respect to IP vs IN samples. Indeed, GSEA analysis showed more miRNA
predicted targets in IP vs FT enriched genes than in the IP vs IN comparison.
We first noticed that the intersection between the two sets of enriched genes
in AGO2 and GW182-IP showed a poor, yet significant, overlap.
Our list of enriched genes in the AGO2 IP vs FT comparison showed a sta-
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tistically significant overlap with the published list of 616 enriched genes for
AGO2-IP in MCF-7 cells [70]. Unfortunately, no high throughput analysis re-
sults are yet publicly available for any anti-GW182 antibody, which makes it
impossible to perform a similar comparison for enriched genes in GW182-IP.
The two sets of enriched/underrepresented genes, named UP/LOW_AGO2
and UP/LOW_GW182, were used, in the analysis described below, to select
the features capable of distinguishing the mRNA associated with the AGO2
and GW182 proteins, respectively.

Variable name Formula BS

F1 Σiexpr(miRNAi)xBSij x expr(mRNAj) number in 3’UTR
F2 Σiexpr(miRNAi)xBSij number in 3’UTR
F3 ΣiBSij x expr(mRNAj) number in 3’UTR
F4 ΣiBSij number in 3’UTR
F1d Σiexpr(miRNAi)xdBSij x expr(mRNAj) density in 3’UTR
F2d Σiexpr(miRNAi)xdBSij density in 3’UTR
F3d ΣidBSij x expr(mRNAj) density in 3’UTR
F4d ΣidBSij density in 3’UTR
F5 Σiexpr(miRNAi)xBSij x expr(mRNAj) number in CDS
F6 Σiexpr(miRNAi)xBSij number in CDS
F7 ΣiBSij x expr(mRNAj) number in CDS
F8 ΣiBSij number in CDS
F5d Σiexpr(miRNAi)xdBSij x expr(mRNAj) density in CDS
F6d Σiexpr(miRNAi)xdBSij density in CDS
F7d ΣidBSij x expr(mRNAj) density in CDS
F8d ΣidBSij density in CDS
F9 expr(mRNAj) Not applicable
L1 length of 3’UTR Not applicable
L2 length of coding region Not applicable

Table 2.1: Definition of variables used to model miRNA activity. The column
BS provides details about the miRNA predicted binding sites used to compute
BSij (the binding sites matrix). For each variable, the Formula defines the
values associated to each mRNAj. CDS=coding region sequence
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2.3.2 Expression-based variables used for characterizing

enriched genes in IP samples

To have better insight into the roles of the GW182 and AGO2 proteins in
miRNA regulatory activity, and with the aim of selecting the most useful vari-
ables for distinguishing between enriched and underrepresented genes in IP
samples, we tested formulas including mRNA and miRNA expression levels in
IN samples and miRNA predicted binding sites on 3’UTR and coding regions
of mRNAs. Specifically, we considered 19 variables, all computed by using fea-
tures characterizing the mRNA sequences and IN sample gene expression. Ta-
ble 2.1 describes all the considered variables. The defined variables display high
correlations among each other, as shown in the correlation matrix reported in
Fig.2.3, where variables are specifically computed for the AGO2_IN1 sample.
Analogous results were obtained when using the expression profile information
of other IN samples. Three main clusters of highly correlated variables were
clearly visible, one that contains all the variables included in the formula for
the mRNA expression profile, and the other two that relate to the presence of
miRNA binding sites in the coding region and 3’UTR.

2.3.3 Enriched and underrepresented genes in anti-AGO2

RIP are efficiently distinguished by miRNA bind-

ing sites in mRNA coding regions weighted by

miRNA expression

We first tested the performance of each of the 19 variables to distinguish the
enriched genes (UP) in AGO2-IP vs FT from the underrepresented (LOW)
genes. We computed the variables by using the expression profiles from each
individual anti-AGO2 RIP experiment and performed a ROC analysis and a
Wilcoxon test, using the UP/LOW genes detected comparing AGO2-IP vs FT
as a reference set. Figure 2.4a and b show the obtained AUC values and the
Wilcoxon-test p-values, both used as an estimation of performance in distin-
guishing UP genes from LOW genes.
We have also verified that Targetscan predictions have the best performance
in distinguishing the enriched genes. Thus, we decided to use it in any further
analyses to compute BS matrices. It was evident that the features belonging
to the cluster related to the coding region length were the most efficient.
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Indeed, F6 and F8 variables were the best variables for distinguishing between
enriched and underrepresented genes in anti-AGO2 RIP samples. F8 counts
the number of binding sites in the coding region of the mRNA, while the num-
ber of binding sites is weighted by the miRNA expression values in F6. Both
F6 and F8 variables are highly correlated with the L2 variable, which could
have been anticipated, since the longer the coding region is, the higher the
number of binding sites detected in the region by any binding site prediction
algorithm. Fig.3.4 clearly shows that F6, F8, and L2 variables assume lower
values for LOW_AGO2 genes with respect to all genes.
On the other hand, the variable with the next highest performance, not belong-
ing to the L2 cluster, was the F4d variable. Fig.3.4 shows that F4d assumes
higher values for UP_AGO2 with respect to all genes. The behavior of F4d
promised to be synergistic with F6 in distinguishing UP and LOW genes, and,
therefore, we further discuss it in a separate section.

Figure 2.3: Correlation matrix of variables listed in Table 2.1. Heatmap
representation of the correlation block matrix of the variables computed with
AGO2_IN1 miRNA and mRNA expression profiles. The reported numbers are
the correlation values, expressed in the range [−100:100].
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Next, we verified that the high performance of variables F6 and F8 was
specifically due to the effects of the miRNA expression profile in the formula.
Specifically, we considered 1000 simulated miRNA expression profiles, as ob-
tained by assigning the original expression profile to 50 random miRNAs, cho-
sen from among all the miRNAs expressed in the sample, and 1000 simulated
miRNA expression profiles, as obtained by shuffling the original 50 miRNAs
found to be highly expressed (top 50 expressed). The first block of simulations
was less conservative, and its aim was to test whether the identity of the top
50 expressed miRNAs was determinant for reaching the original performance;
it was the only block of simulations meaningful for testing the performance of

Figure 2.4: Prediction capacity of variables listed in Table 2.1. a) ROC-AUC
values obtained by classifying enriched/underrepresented genes associated with
the variables computed with each IN expression profile. b) Wilcoxon test p-
values (log10) obtained by comparing the variable values associated with the
enriched/underrepresented gene sets. In both a) and b), the variables com-
puted with the three AGO2 IN profiles were used to distinguish enriched and
underrepresented genes in AGO2-IP vs FT. The variables computed with the
three GW182 IN profiles were used to distinguish enriched and underrepre-
sented genes in GW182-IP vs FT.



56 CHAPTER 2. ANALYSIS OF MIRNA INTERACTIONS

the F8 variable. The second block of simulations was more conservative, and
its aim was to assess whether the specific expression profile associated with the
top 50 miRNAs was determinant. In both cases, the performance of the simu-
lated F6 and F8 variables was significantly lower than the F6 and F8 variables
obtained by including the original miRNA expression profile (see Fig.2.5a). We
also tested simulations that were more conservative by holding the expression
profile of the highly expressed miRNAs fixed while shuffling the expression of
the remaining ones. Fig.2.5a shows the results of these simulations obtained
by fixing up to five top expressed miRNAs. As the number of the top ex-
pressed miRNAs increased, the F6 variable performance became closer to that
obtained with the original miRNA expression profile; in addition, the higher
the number of miRNAs fixed, the closer it got to the original performance
level. As a result, we concluded that the miRNA expression profile is crucial
for distinguishing AGO2-associated miRNA targets, especially the expression
profile of the first top expressed miRNAs, and that the most relevant miRNA
binding sites are the ones found in the coding region.

2.3.4 Enriched and underrepresented genes in anti -

GW182 RIP are efficiently distinguished by cod-

ing region length

The performance of each of the 19 variables was tested to distinguish between
the enriched genes in GW182-IP vs FT and the underrepresented ones. Fig.2.4
a and b show that the features belonging to the cluster related to the coding
region length are the most efficient at distinguishing between enriched genes
in anti-GW182 RIP samples. In this case, the best feature for distinguishing
the enriched genes in GW182-IP samples was the coding region length of the
mRNA, i.e., the L2 variable, with a surprisingly very high performance (av-
erage AUC > 0.9). The average AUC associated with the F6 variable was
also very high (average AUC = 0.87); however, the miRNA expression profile
was not crucial for reaching such high performance since a shuffled expres-
sion profile was not significantly deficient in distinguishing the enriched genes
(Fig.2.5b). In Fig. 2.6, we compare the ECDF of the coding region length of
the UP and LOW genes in the anti-GW182 RIP experiments. The separation
between UP and LOW genes in anti-GW182 RIP samples is evident in the
coding region length values, though less in the 3’UTR length values.
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Figure 2.5: Graphic representation of the effect of miRNA expression profile
shuffling. Each boxplot represents the AUC values obtained with 1000 simu-
lated miRNA expression profiles. The percentage on the right of each boxplot
refers to the number of times an AUC value was greater than the AUC ob-
tained with the original miRNA expression profile (red vertical line). a) Per-
formance of simulated F6 variables in distinguishing AGO2 enriched/under-
represented genes. b) Performance of simulated F6 variables in distinguishing
GW182 enriched/underrepresented genes. c) Performance of simulated F4d
variables in distinguishing AGO2 enriched/underrepresented genes. d) Perfor-
mance of simulated SVM models (F6 & F4d variables) in distinguishing AGO2
enriched/underrepresented genes. e) Performance of simulated F8 variables in
distinguishing AGO2 enriched/underrepresented genes. f) Performance of sim-
ulated F8 variables in distinguishing GW182 enriched/underrepresented genes.
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Figure 2.6: Graphic representation of selected features values associated to
enriched and underrepresented genes. Empirical cumulative distribution func-
tion (ECDF) of F6, F4d, F8, L1 and L2 variables computed for enriched (UP)
and underrepresented (LOW) genes in AGO2 IP vs FT and GW182 IP vs
FT analyses. The reported p-values were obtained by performing a Wilcoxon-
test comparing the values assumed by the selected set of genes with the values
assumed by all the genes (16,363, green lines).
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Wilcoxon tests were performed to compare the 3’UTR and coding region
length of GW182_UP and DOWN genes with all gene lengths, and gave highly
significant p-values. Anti-GW182 RIP gene expression profiles, which could
be used to support our hypothesis that the mRNA coding region length is a
relevant feature for GW182 activity, are not available, and none of the enriched
group of genes reported in the literature regards breast cancer cells. Never-
theless, we considered the IP-enrichment results of 7820 genes published by
Landthaler and collaborators [71], where the authors generated HEK293 cell
lines stably expressing epitopetagged human AGO and GW proteins and used
such cells to detect enriched mRNA in miRNA-containing ribonucleoprotein
particles through a microarray analysis. They found a high overlap among
the enriched targets of the AGO and GW182 family proteins by analyzing the
top immunoprecipitated transcripts associated with the four AGO proteins vs
the ones associated with the three GW182 proteins. Differently from [71], we
considered the non-overlapping enriched genes, and we found that the mRNAs
enriched only in GW182-IP had significantly longer 3’UTR and coding regions.

2.3.5 SVM models improve performance in distinguish-

ing enriched genes

We tested whether a combination of two variables could significantly improve
the classification of the performance of enriched/underrepresented genes. An
SVM algorithm model1 was trained with each pair of features, and the cross-
validation AUC results for each pair are reported in Fig.2.7. The best per-
formance in predicting AGO2-bound mRNAs was associated with the F6-F4d
variable pair, with an AUC significantly higher than the one obtained with F6
only (AUC = 0.78; DeLong’s test p-value < 0.05). The F4d variable takes into
account the density of the binding sites in the 3’UTR, as predicted for the top
50 expressed miRNAs. The F4d variable performance by itself (AUC = 0.68)
is the highest among the features not highly correlated with the F6 variable.

1 SVM models were trained with linear kernel using the e1071 R library. The R library
caret was used to test the SVM trained models with the Leave One Out Cross Validation
(train-Control method = “LOOCV”) testing procedure method “svmLinear2”). The
next Chapter presents a deeper analysis of the prediction capacity of the SVM model;
in addition to the LOOCV procedure, we have evaluated the model prediction capacity
on two external test sets free from possible over-fitting problems.
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We checked whether the identity of the top 50 expressed miRNAs was cru-
cial for reaching such a performance by randomly changing the identity of the
50 miRNAs in the F4d formula, and holding the expression of an increasing
number of top miRNAs fixed. The results are plotted in Fig.2.5c, they show
that, when using randomly chosen miRNAs, the performance is significantly
lower than the one obtained with the true top 50 expressed miRNAs. Differ-
ently from what was obtained for the F6 variable, to reach the performance
obtained with the original miRNA expression profile, the expression of almost

Figure 2.7: Support Vector Machine models performance summary. AUC val-
ues of SVM models trained with any pair of variables defined in Table 1, used
to classify enriched/underrepresented genes in AGO2-IP vs FT comparison.
Variables were computed by using the AGO2_IN1 expression profiles. Values
are in the range [0:100]. Values in the diagonal refer to single variable perfor-
mance. The ROC plot at bottom left represents the results obtained with the
best-performing SVM model (F6 and F4d, black line) and with the two single
variables, F6 (red line) and F4d (green line).
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all the miRNAs had to be held, meaning that the identity of the top 50 miR-
NAs is substantially important to the F4d variable’s performance.
Analogous simulations were done for the predictions obtained with the SVM
model trained with the F6 and F4d variables (Fig.2.5d).
The results show that several miRNAs had to be fixed in order to reach a per-
formance similar to that obtained with the original miRNA expression profile.
Finally, we tested how slightly different expression profiles, such as the ones
obtained by experiment replica, may affect enriched/underrepresented gene
classification. Specifically, we used an SVM model trained with features com-
puted with miRNA expression profiles from one IN sample to classify genes
with higher vs lower IP/FT ratio, computed in each of the three experiments.
Our results show that higher performance was always obtained when predic-
tions of IP/FT ratio values in one experiment were obtained with the miRNA
expression profile belonging to the IN sample expression profile of the same
experiment.
The pair of variables that best predicted the GW182-bound mRNAs was the
L1 and L2 pair, i.e., the length of the 3’UTR and the coding region, respec-
tively, but the improvement in the AUC value was not statistically significant
(DeLong’s test p-value > 0.05).

2.4 Discussion

We analyzed the activity of two endogenous interacting proteins, AGO2 and
GW182, in MCF-7 cell cytoplasm. Both are involved in RISCs, and we ana-
lyzed the RNA co-immunoprecipitated with the selected proteins, which was
expected to be enriched in genes involved in endogenous miRNA regulatory
activity. Data from RIP-Chip experiments served to model miRNA activity
by assigning variables based on miRNA expression profiles to each mRNA tar-
get, searching for the ones that would better distinguish the enriched genes
in RIP samples. We expected that the detected variables could reveal which
information was relevant for modeling miRNA activity and the RISC proteins’
roles.
Our results show that mRNAs co-immunoprecipitated with the two proteins
have different characteristics. Such a finding might appear in contrast with a
previous analysis performed in HEK293 cell lines, in which tagged-AGO2 or
tagged-GW182/TNRC6A proteins we re stably overexpressed and the AGO
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protein family and the GW182 protein family were found to be associated with
highly similar sets of transcripts [71]. The low consistency with this previous
study might indicate a different composition of RISCs in MCF-7 cells than
HEK293 cells. Moreover, analysis under physiological conditions vs overex-
pressed AGO or GW182 might also explain the differences, and the fact that
the authors analyzed the top immunoprecipitated transcripts for the whole
AGO family (AGO1–4) vs the GW182 family (TNRC6A-C) might have miti-
gated RNA enrichment differences with respect to what we obtained through
the comparison of two specific proteins, i.e., AGO2 and TNRC6A. Indeed, it
has been reported that AGO1 and AGO2 proteins interact with a distinct set
of miRNAs [129] and, as a consequence, with different mRNA targets, whereas
the GW182/TNRC6A protein interacts with the whole AGO protein family
[118]. This evidence also justifies the high similarity we found between the
miRNA expression profiles of GW182-IP and FT, in contrast with more spe-
cific miRNA expression profiles associated with the AGO2-IP and FT samples
(Fig.2.2b). Furthermore, although a high degree of redundancy among the
members of each protein family has been reported, it cannot be excluded that
the use of different GW182 antibodies and/or slightly different experimental
conditions, e.g., buffer stringency, might result in a different enrichment of
RNAs in the immunoprecipitated samples. To this end, a systematic analysis
of the data obtained using the same antibody in the same cell background, or
the use of methods based on biochemical approaches, like the one described
by Hauptmann and coworkers [73], might definitively clear up this point.
We found that the mRNAs co-immunoprecipitated with the AGO2 protein
can be distinguished from the underrepresented mRNAs by considering the
number of miRNA binding sites in the coding region, weighted by miRNA
expression level. In order to improve the classification performance, we also
trained an SVM with two features at a time, and we found that the additional
feature to be considered was the density of the binding sites predicted in the
3’UTR of mRNA. We then performed simulations by shuffling the miRNA ex-
pression profiles in order to detect which miRNAs are relevant to composing
the features used to distinguish enriched and underrepresented genes. When
the performance obtained by randomly shuffling a set of miRNAs is signifi-
cantly lower than the performance obtained with the original miRNA expres-
sion profile, we can assess that the set of miRNAs replaced is relevant in the
classification. Results show that the only relevant miRNAs, when considering
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binding sites in the mRNA coding regions, are the top two to three of those
expressed. On the contrary, almost all of the top 50 expressed miRNAs are
relevant when considering the binding sites in the 3’UTR of mRNA, with a
prominent exception being the top expressed one, i.e., hsa-miR-21-5p. The
expression level detected for hsamiR- 21-5p is very high, by itself covering
60% of the total miRNA expression profile, and we suppose that its distinctive
behavior is related to saturation effects in miRNA activity, which we plan to
investigate in further studies.
In addition to simulated miRNA expression profiles, we tested how switch-
ing miRNA expression profiles across our experimental replicates affects the
performance of the classification algorithm. We found that even slight dif-
ferences in the expression profiles of the single replicate IN samples gave rise
to differences in enriched vs underrepresented gene classification, leading to
the conclusion that the combination of mRNA and miRNA expression profiles
from the same experiment gives the best performance.
On the other hand, we clearly observed that the mRNA co-immunoprecipitated
with the GW182 protein was highly enriched with genes with longer coding
regions. In this case, enriched/underrepresented gene classification does not
depend on the miRNA expression profile, but only on 3’UTR and coding re-
gion lengths. We confirmed this result by analyzing the data from Landthaler
and coworkers [71]. Our interpretation is that GW182 complexes preferentially
sequester the longer mRNAs in the process of populating GW/P-bodies.
While functionally diverse RISCs lacking GW182 have been described [136],
the interaction between mRNAs and GW182 is reported to be mediated by
the miRNA and AGO proteins and, so far, no direct interaction has been
demonstrated between GW182 and mRNA. Recently, Elkayam and coauthors
[137] showed that, differently from AGO proteins, which have a single GW182-
binding site, GW182 can recruit up to three copies of AGO proteins via its
three distinct GW motifs. We believe that such a feature supports our re-
sults, since the longer the mRNA is, the higher the number of miRNA binding
sites and the probability that RNA -loaded AGO proteins would find cooper-
ative binding sites within the right distance to interact with the same GW182
protein. In this case, the model of single binding sites weighted by miRNA
expression profile is probably oversimplified, and further analysis is required
to include collaboration effects. To our knowledge, the involvement of mRNA
length in GW182 recruitment is a novel observation that may contribute to
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shedding light on the different activities of the AGO2 and GW182 proteins in
various RISCs and/or in diverse cellular districts such as GW/P-bodies.

2.5 Conclusions

In this work, we aimed to unravel RISC activity by analyzing a novel RIP-Chip
data set obtained by the immunoprecipitation of two RISC proteins, AGO2
and GW 182. We analyzed the overexpressed genes in the anti-AGO2 and
anti-GW182 RIP samples vs the respective FT samples, and we revealed dif-
ferent features characterizing the enriched genes in the two data sets. AGO2-
associated mRNAs are characterized by a high number of binding sites in the
coding region for top expressed miRNAs and by a high density of binding
sites in the 3’UTR region. On the other hand, GW182-asso ciated mRNAs
are characterized by long coding regions. These different characteristics may
underline the different roles played by the selected proteins in the RISC ma-
chinery activity. Our data confirm that the anti-AGO2 RIP gives an accurate
picture of which RNA is involved in miRNA regulatory activity. Regarding
the anti-GW182 RIP, data show no significant involvement of miRNA expres-
sion profiles in GW182-associated mRNA selection, at least within a simpli-
fied model of single binding sites weighted by miRNA expression profile. Our
results support the hypothesis that, after being recruited by the miRNA ma-
chinery, only the mRNAs with longer coding regions are destined to be stored
in GW/P bodies, while shorter mRNAs are most likely processed in different
ways that lead to degradation rather than storage.



Chapter 3

MicroRNA Target Prediction:
An improvement of ComiR algorithm by

exploiting coding region sequences of mRNAs

This chapter focuses on the prediction of miRNA targets. In particular,
ComiR algorithm [44] is presented as a reliable tool for miRNA target pre-
diction, and an improvement of ComiR algorithm is proposed by considering
miRNA binding sites located on messenger RNA coding regions.
The importance of the coding region during miRNA binding activity has been
demonstrated in our previous work [3] (described in Chapter 2). Starting from
those results, we include coding region information in ComiR algorithm.
We find that ComiR algorithm trained with coding region information is more
efficient in predicting the microRNA targets with respect to the algorithm
trained with 3’UTR information. On the other hand, we show that 3’UTR
based predictions can be seen as complementary to the coding region based
predictions, which suggests that both predictions, from 3’UTR and coding re-
gions, should be considered in a comprehensive analysis. The following results
have been published on BMC Bioinformatics as “An improvement of ComiR
algorithm for microRNA target prediction by exploiting coding region sequences
of mRNAs” [4].

3.1 Background

MicroRNA genes (miRNAs) are small non-coding RNAs that post - transcrip-
tionally regulate the expression level of messenger RNAs (mRNAs). MicroR-
NAs are critical in many important biological processes, and are important
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markers for many diseases. miRNA regulation activity depends on the recog-
nition of binding sites located on messenger RNA molecules (mRNAs), in this
context mRNAs represent the targets of miRNA binding.
The ability of predicting miRNA targets is crucial to understand the processes
they are involved in. MicroRNA regulation activity depends on the recognition
of binding sites located on mRNA molecules. MicroRNA-mRNA interaction
is mediated by a family of ribonucleoprotein complexes called RNA-induced
silencing complexes (RISCs)[34]. The immunoprecipitation of RISC proteins
is an experimental strategy used to investigate on miRNA targets [35][36].
The high costs of experiments oriented the miRNA target identification to-
wards a computational approach; miRNA target prediction algorithms are
generally based on Watson-Crick base-pair matching [37] [38] [39]. Perfect
complementarity between miRNA-mRNA pairs is quite rare, but also a six
base-pair match could be sufficient to suppress gene expression.
Few other methods use the miRNA expression profile as additional informa-
tion, namely, GenMir++[40], PicTar [41], Talasso [42].
ComiR (Combinatorial miRNA targeting) [43][44] is a user friendly web tool
realized to predict the targets of a set of microRNAs, starting from their ex-
pression profile. ComiR algorithm incorporates miRNA expression in a ther-
modynamic binding model, and it associates each gene with the score of being
a target of a set of miRNAs.
ComiR was trained with the information regarding binding sites in the 3’UTR
region. The miRNA targets identification has been mainly based on the search
of mRNA binding sites contained in the 3’UTR region [138]. It is also known
that miRNAs bind the coding region [139], in a previous work [3] we have
showed that the coding region plays a role in distinguishing RISC machinery
targets. Therefore, the information contained in the coding region can’t be
ignored for the miRNA target prediction.
Fig. 3.1 reports the number of outcomes of four queries to PUBCHEM and
ISI Web of Science repositories, namely, the number of papers associated with
the joint queries 1) “miRNA target prediction” “3’UTR”; 2) “miRNA target
prediction” “coding region”; 3) “miRNA binding” “3’UTR”; and 4) “miRNA
binding” “coding region”. It’s worth noting that, despite continuous evidences
of the presence of binding sites in the mRNA coding region, the incidence of the
word “3’UTR” is steadily one order of magnitude higher than the one of “cod-
ing region”. Indeed, we hypothesize that words “miRNA” and “3’UTR” have
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Figure 3.1: Quantification of scientific production regarding miRNA topics,
updated to Jan 2020. Left panels concern queries to the PUBMED repository,
while right panels concern queries to the ISI Web of Science repository. Black
lines indicate the temporal evolution of the number of papers found through the
main query, which is indicated in the title of each panel. Red and blue lines
indicate the temporal evolution of the number of papers found by combining the
main query with the words “3’UTR” and “coding region”, respectively.

been linked together since the discovery of microRNAs [141] [142], whereas the
association between “miRNA” and “coding region” is less explored, the focus
of the actual version of ComiR on binding sites in the 3’UTR only is a typical
example.
In this study, we propose to upgrade the ComiR algorithm, by introducing in-
formation about the binding sites contained in the coding region of the genes.
We show that the information contained in the coding region significantly im-
proves the accuracy of ComiR predictions.
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3.2 ComiR algorithm

ComiR is a user friendly web tool described in [44]. The user has to provide a
list of miRNAs and their expression levels. The output is a ranked vector of
scores; therefore, each gene is associated with a reliability of being a target of
the set of miRNAs given in input.
The original version of ComiR contains a Support Vector Machine (SVM)
based algorithm that incorporates the miRNA target prediction results of
four individual tools (i.e., PITA [49], miRanda [48] and TargetScan [45] and
miRSVR [143]) in 3’UTR. Due to a break in maintenance of mirSVR scores,
in this work, we will only consider the PITA, miRanda and TargetScan pre-
dictions.
In this work we include the coding region binding sites in ComiR algorithm,
therefore we downloaded the 3’UTR and coding region sequences of genes in D.
melanogaster species from Ensembl/bioMart (release BDGP6.22). The whole
set of 469 mature miRNA sequences was downloaded from miRBase (release
22). For each miRNA, we applied PITA, miRanda and TargetScan algorithms,
in order to detect the binding sites in both the 3’UTR and the coding region of
each gene. These algorithms associate a score for each couple miRNA-mRNA,
these scores have been integrated with the opportune miRNA expression pro-
files before running the SVM.

3.2.1 Incorporation of miRNA expression levels

The primary scores of PITA and miRanda are transformed using a thermody-
namic binding model based on Fermi-Dirac equation, this allows to take into
account the miRNA expression in the score calculation.
This model has been introduced by Coronnello et al. [43], it takes into account
binding affinity and miRNA expression. Suppose that miRNA i (miRi) has
nik binding sites BSijk (j = 1, ..., nik on mRNA k. The reversible reaction of
binding between miRNAi and BSijk is:

miRi +BSijk ⇌ miRi ∶ BSijk

The equilibrium binding constant of this reaction is:

Ki =
[miRi ∶ BSijk]

[miRi][BSijk]
(3.1)
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Considering the Fermi-Dirac equation, the probability of binding is:

Pr(miRi ∶ BSijk) =
[miRi ∶BSijk]

[miRi ∶BSijk]+[BSijk]
(3.2)

= 1
1+ 1

Ki[miRi]

= 1

1+e(Eijk−µ)/RT

where Eijk = −RT ln(Ki) is the standard free energy of binding and µi =

RT log([miRNAi]).
The concentration [miRNAi] can be imputed using miRNAi expression, and
the energy Eijk corresponds to the score given by miRanda or PITA.
The total score of binding between miRNAi and mRNAk considers all the nik
binding sites on mRNAk:

Sik =
nij

∑
j

Pr(miRi ∶ BSijk) (3.3)

We are interested in the score of a single gene respect a set of miRNAs, there-
fore the Fermi-Dirac (FD) score of mRNAk respect a group of N miRNAs
is:

FD score: Sk = ∑
N
i ∑

nij
j Pr(miRi ∶ BSijk)

(3.4)

= ∑
N
i ∑

nij
j {1 + e(Eijk−µi)/RT}

−1

In the case of TargetScan, a simple weighted sum has been calculated:

WS score: Sk =
N

∑
i

[miRi]Tik (3.5)

where Tik is the number of binding sites predicted by TargetScan for the
miRNAi:mRNAk pair.
This work is focused on Drosophila melanogaster (Dme) miRNA target pre-
diction. We have considered 28 miRNAs that have at least 50 reads in the S2
cells [144]. The expression of those miRNAs have been used to compute Fermi-
Dirac and Weighed-Sum scores, so the SVM has been run on these scores.



70 CHAPTER 3. MICRORNA TARGET PREDICTION

3.2.2 SVM Training Dataset

The training set and the testing set were obtained by comparing the results
from two different experiments that regard the RISC protein Ago1: depletion
of Ago1 [145] and Ago1 immunoprecipitation (IP) [144]. The comparison of
these two experiments give four sets of genes:

• set I - 152 genes enriched in AGO1 IP and upregulated after AGO1
depletion

• set II - 1039 genes enriched in AGO1 IP and not upregulated after AGO1
depletion

• set III - 300 genes not enriched in AGO1 IP and upregulated in AGO1
depletion

• set IV - 5509 genes not enriched in AGO1 IP and not upregulated in
AGO1 depletion.

We only considered Dme genes with annotated both the 3’UTR and coding
region. Consequently, our final dataset was composed by 139 genes in set I,
929 genes in set II, 253 genes in set III and 4738 genes in set IV.
Similarly to the original version of ComiR, the SVM has been trained with set
I (139 genes) as positive set and the 139 most highly expressed genes from set
IV as negative set (named top-set-IV). While set III has been used for testing.

Immunoprecipitation of Ago1

IP enriched Not enriched

Ago1 depletion
Up-regulated Positive Set III

Not up-regulated Set II Negative

Table 3.1: Experiments that identifies positive and negative validated genes of
training and testing set.
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3.3 Statistical Analysis

To evaluate which part of the gene sequence produce the best prediction accu-
racy, we have implemented a SVM on three combinations of different subsets
of relevant variables: 1) PITA, miRanda and TargetScan scores on 3’UTR re-
gion; 2) PITA, miRanda and TargetScan scores on coding region; 3) all of the
variables considered in points 1 and 2.
The performance of each SVM combination has been evaluated by implement-
ing leave-one-out Cross-Validation (LOOCV) procedure (one by one, each gene
is left out from the training set at each step of the procedure) Fig.3.2A com-
pares the ROC curves obtained from a LOOCV analysis. The SVM trained
on the coding region features has a higher predictions capacity than the SVM
on 3’UTR region features (coding vs 3’UTR, De long test [146] p-value =
0.0005). On the other hand, the joint use of 3’UTR and coding region informa-
tion doesn’t significantly improve the performance (coding vs coding+3’UTR;
p-value = 0.31).

A B

Figure 3.2: Overview of SVM prediction outcome. The SVM is trained with
set I as positive set and top-set-IV as negative set. A) shown ROC curves
are the result of a LOOCV analysis. PITA, miRanda and Targetscan scores
related to 3’UTR (green line), coding region (black line) and both (red line) are
user to train the SVM. B) ECDF of the rank of ComiR scores obtained for the
genes of set I (black), set II (green), set III (blue), set IV (red) and top-set-IV
(pink).
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A B

C D

Figure 3.3: Overview SVM performance when using set I as training positive
set and set III as positive testing set and vice versa. A) ROC analysis results
obtained by using set I and top-set-IV as training set and one example of ran-
set-III and top2-set-IV as test set; B) ROC analysis results obtained by using
one example of ran-set-III and top2-set-IV as training set and set I and top-set-
IV as test set; C) AUC values distribution of 100 ROC analysis as described in
3.3A associated with different ran-set-III sampling. D) AUC values distribution
of 100 ROC analysis as described in 3.3B associated with different ran-set-III
sampling.
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In Fig.3.2B we compare the empirical cumulative distribution functions
(ECDF) of the rank of ComiR scores obtained for the genes in the four sets of
the dataset with the coding+3’UTR model.
Similar results are obtained for the predictions obtained with the 3’UTR only
model and the coding region only model. We observe that both set I and
set III show significantly higher ComiR scores than the whole dataset scores
(Wilcoxon test p-value = 10e-12 and 10e-18 respectively). On the contrary,
set II doesn’t show significantly higher ComiR scores than the whole dataset.
To further explore the behaviour of the sets I and III, and the performance
of the SVM, we performed ROC analyses by alternatively using the two sets
as training and testing set. Specifically, to obtain comparable AUC values,
we randomly selected 139 genes from set III (ran-set-III) and the 139 most
highly expressed genes (named top2-set-IV) after the first 139 included in the
top-set-IV set.
Fig.3.3A shows the ROC analysis results obtained by using set I and top-set-
IV as training set and one of the ran-set-III and top2-set-IV as test set. The
described training and testing set were then switched and the ROC analysis
results are shown in Fig.3.3B. We performed 100 of such tests, each time
by randomly selecting a different ran-set-III set, and the distribution of the
obtained AUC values is reported in Fig.3.3C-D. In this case, we keep obtaining

A B

Figure 3.4: Overview of gene sequences lengths. A) ECDF of 3’UTR sequence
lengths, B) ECDF of coding region sequence lengths in the analyzed sets of
genes.
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acceptable AUC values, in the range [0.6-0.8].

The lower AUC values, as compared to Fig3.2A, are due to the fact that the
training and testing sets are selected from two different pools of genes and it
is evident that a better efficiency is obtained when set I, instead than set III,
is used as positive training set.
Fig.3.4 shows the ECDF of the sequence lengths of the analyzed sets. Genes
of set III have significantly higher 3’UTR and coding region lengths. Due to
the additive calculation of the scores used to feed the SVM, it is expected that
the length of the sequence plays a role in distinguishing the targets.
To detect whether the SVM predictions are significantly dependent by the
used miRNA expression profile, we performed a set of 100 LOOCV tests, each
one performed by using a simulated miRNA expression profile to compute the
training dataset. Specifically, each simulated miRNA expression profile was
obtained by associating the original 28 expression values with a set of 28 ran-
domly selected miRNAs (among the 469 Dme miRNAs).
Fig.3.5A shows the ROC analysis results obtained with the simulated profiles
(red lines) in comparison with the original profile (black line). It is evident
that the performance in predicting the targets is significantly higher when the

A B

Figure 3.5: Overview of SVM performance with simulated miRNA expression
profiles. The black line is associated to LOOCV test result obtained with the
original miRNA expression profile, the red lined with the simulated profiles. In
A) we used set I as positive training set, in B) we used set III.
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scores used to train the SVM are computed with the original miRNA expres-
sion profile. This effect is less evident when the set III is used as positive set
(Fig.3.5B), probably due to the fact that set III is strongly characterized by
long RNA sequences and this feature is predominant in the training.
Training the SVM with both the 3’UTR and coding region information doesn’t
produce an improvement in the prediction efficiency. Fig.3.6 shows the scatter
plot of the 3’UTR-based predictions rank vs the coding region-based predic-
tions rank of the positive and negative sets. It seems that the two SVM
models trained with 3’UTR or coding region information separately, prioritize
differently the genes. Moreover the importance of 3’UTR has been proved in
literature, therefore we decide to include 3’UTR information in ComiR algo-
rithm.

3.4 Discussion

The presence of miRNA binding sites in the coding region of the genes has
been already described in the scientific literature [147], although it is less ex-
plored than the association of miRNAs with the 3’UTR. As mentioned already,
the current version of ComiR only considers the binding sites predicted within
the 3’UTR untranslated region. To fill such a gap of information, we decided
to use the binding sites predicted in the coding region. Coding regions are
significantly longer than the 3’UTR, and the computational effort needed to
predict their binding sites is probably one of the reasons why target-prediction
tools are not extensively applied to them. The main objective of the paper is
therefore to test whether adding the binding sites on the coding regions im-
proves the miRNA target prediction.
If we compare the old version of ComiR results [43] and the results obtained
here by using the 3’UTR region only model, we noticed a significant drop in
the performance of the upgraded version with respect to the first version of
ComiR. We attributed this drop to the missing use of the mirSVR predictions
and to the whole upgrade to the current release of the 3’UTR sequences used
to run the used miRNA target prediction tools, which changed significantly the
efficiency in predictions of each single tool. Nevertheless, it is desirable to en-
sure the maintenance of the algorithm by upgrading the predictions database
with the most recent sequences releases. Our results show that, focusing on
the results obtained with the current sequences releases, the ComiR algorithm
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Figure 3.6: Scatter plot of SVM scores obtained with coding region based model
vs 3’UTR based model. The SVM is trained with set I as positive set and top-
set-IV as negative set. Black points refers to the positive set, red points to the
negative set.

is significantly improved by considering the binding sites predicted in the cod-
ing region, outperforming the efficiency obtained by the algorithm when using
only the 3’UTR binding sites. We observe that combining the information
of both 3’UTR and coding region binding sites in the SVM model doesn’t
improve the performance of the prediction algorithm. This result is not due
to a redundancy in 3’UTR and coding region information. In fact, using the
information carried by the binding sites presence in 3’UTR and coding region
separately leads to the prediction of different sets of genes, both showing a
significant enrichment of the positive training set. Our conclusion is that both
the trained SVMs should be utilized to obtain a complete vision of the target
prediction, and further analysis will be conducted to unravel the peculiarities
of the two different predicted sets. Our results suggest that ComiR scores
prioritize the targets that are functionally degraded (set I and set III), while
genes that are co-immunoprecipitated with the RISC protein AGO1 are not
significantly predicted (set II). In addition, training the SVM with set II as
positive set, generates a SVM model that doesn’t predict efficiently the set
I training set (data not shown). On the other hand, set III genes show sig-
nificantly longer 3’UTR and coding region lengths, and this peculiarity could
be the main reason for its good performance as positive set. We confirm to
consider the set I as the most trustable positive set, because these genes are
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confirmed by two independent experimental approaches, whereas set II and
III contain genes that have been detected by only one experimental approach
each. The asymmetry in the response and the characteristics of these two sets
of genes lead to the observation that both the experimental approaches, i.e.,
the RISC machinery proteins inhibition and immunoprecipitation, should be
applied to detect a valid miRNA target set.

3.5 Conclusion

Our results indicate that binding sites predicted in the genes coding region are
valuable information in order to efficiently predict the functional targets of a
set of miRNAs by their integration in the ComiR algorithm framework. We
currently aim at finding the best way to combine the two scores obtained by
training the SVM with the 3’UTR and the coding region separately. Further
analysis will be conducted to analyze data from other species, by using positive
and negative set of miRNA targets obtained through the comparison of results
from both RISC proteins inhibition and immunoprecipitation.





Chapter 4

SARS-Cov-2 Sequence Analysis:

miR-1207-5p can contribute to dysregulation of

inflammatory response in COVID-19 via

targeting SARS-CoV-2 RNA

COVID-19 represents the first worldwide pandemic in a globalized world
characterized by a considerable impact on healthcare systems and mortality
[200]. The short time since the outbreak began is the reason why many as-
pects of the molecular interactions of SARS-CoV-2 in the human host are still
unknown, especially its mechanisms on a transcriptional level. The role of host
endogenous miRNAs in the propagation of viruses is a discussed theme, which
leads to the uncovering of many complex virus-specific mechanisms, not yet
fully understood.
The analysis described in this chapter is an enrichment of the paper “miR-1207-
5p can contribute to dysregulation of inflammatory response in COVID-19 via
targeting SARS-CoV-2 RNA” published in frontiers in Cellular and Infection
Microbiology [5]. We have carried out an extensive analysis of human miRNA
binding sites on the viral genome highlighting the role of human miRNAs in
SARS-CoV-2 infection. It is known that exogenous RNA can compete for
miRNA targets of endogenous mRNAs leading to their overexpression [201] .
MicroRNA binding sites have been identified by comparing predictions of five
algorithms. In particular, the novel ComiR version (presented in the previous
chapter) produces more specific miRNA predictions than other algorithms.
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Our results suggest that the SARS-CoV-2 virus can act as an exogenous com-
peting RNA, facilitating the over-expression of its endogenous targets. Tran-
scriptomic analysis of human alveolar and bronchial epithelial cells confirmed
that the CSF1 gene, a known target of miR-1207-5p, is over-expressed fol-
lowing SARS-CoV-2 infection. CSF1 enhances macrophage recruitment and
activation, and its overexpression may contribute to the acute inflammatory
response observed in severe COVID-19. In summary, our results indicate that
dysregulation of miR-1207-5p-target genes during SARS-CoV-2 infection may
contribute to uncontrolled inflammation in most severe COVID-19 cases.
An introductory section on SARS-CoV-2 mechanisms and pathogenesis pre-
cedes the analysis.

4.1 Mechanism of SARS-CoV-2 infection

The SARS-CoV-2 virus is composed of a single-positive RNA strand contained
in a glycoprotein membrane. Its “life” cycle consists of the following five steps:
attachment, penetration, biosynthesis, maturation, and release (Fig.4.1).
At first the virus binds to host receptors (attachment), it enters host cells
through endocytosis or membrane fusion (penetration).
Ones inside the host cell, the RNA(+) strand is used to make the enzyme
RNA polymerase and is replicated to RNA(-), whereas the replication process
is activated by TMPRSS2 protease.
The RNA(-) is used to make subgenetic mRNAs by transcribing and to make
more RNA(+) by replication. Subgenetic mRNA is used to make viral pro-
teins (biosynthesis). Then, new viral particles are moved to the endoplasmic
reticulum-Golgi intermediate compartment to be assembled to compose a new
virus (maturation). Finally, the new viruses are released through esocytosis.
Four structural proteins form coronaviruses; Spike (S), membrane (M), en-
velop (E), and nucleocapsid (N) [148]. Spike is a glycoprotein located on the
capsid surface; this protein characterizes the virus’s external appearance. Sev-
eral analyses showed that the spike proteins bind the angiotensin converting
enzyme-2 (ACE2), so ACE2 is identified as a functional receptor for SARS-
CoV [149]. Therefore, the spike protein has a crucial role in recognizing and
binding the host [167]. Spike is composed of two functional subunits; the S1
subunit is responsible for binding to the host cell receptor, and the S2 subunit
is for the fusion of the viral and cellular membranes [150].
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Figure 4.1: SARS-CoV-2 invasion cellular mechanisms. 1. SARS-CoV-2 en-
try. 2. Membrane fusion and viral RNA release. 3. Translation.
4. Replication and protein synthesis. 5. SARS-CoV-2 packaging in golgi.
6. SARS-CoV-2 release [151]

SARS-CoV-2 infection can be divided into three phases: phase I, an asymp-
tomatic incubation period; phase II, non-severe symptomatic period; phase
III, a severe respiratory symptomatic stage with high viral infectivity [152].
The damaged cells induce an inflammation state in lung tissues. Pro-inflammatory
macrophages and granulocytes primarily mediate it. Lung inflammation is the
main cause of respiratory disorders at the severe stage [153].

4.2 Coronavirus sequencing over host species

Coronavirus have been classified in four classes; α, β, γ, and δ [154]. They
infect a wide variety of host species, whereas α and β coronaviruses infect only
mammals. Moreover, β class includes the three main coronavirus acute respi-
ratory diseases that affect humans; Severe acute respiratory syndrome (SARS-
CoV), Middle East respiratory syndrome (MERS-CoV), and COVID19 disease
(SARS-CoV-2).
The origin of those coronaviruses has been brought back to a spillover zoonotic
phenomena. Spillover event occurs when a pathogen found in a reservoir pop-
ulation infects a novel host population belonging to another species. We have
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performed an alignment search to compare the SARS-CoV-2 strand (NC_045512)
with 2500 coronavirus genomes from different host species. BLAST algorithm
[155] has been used to find regions of similarity between genetic sequences.
Tab.4.1 shows the alignment scores obtained by BLAST. Bit-score is a numer-
ical value that expresses the size of the search space that we would have to
find a score as good as or better than the observed one under the hypothe-
sis of random matching; higher score values correspond to a high similarity.
We have found the highest similarity with Bat coronavirus RaTG13 and with
pangolin coronavirus PCoV_GX. The similarity of the SARS-CoV-2 with bat
and pangolin coronaviruses is higher than the similarity with the SARS-Cov
virus. For us, it is further evidence of zoonosis.
The scientific literature supports our results; Zhou et al. [156] have shown
that SARS-CoV-2 sequences are 96% identical at the whole-genome level to a
bat coronavirus RaTG13, while SARS-CoV-2 shares 79.6% sequence identity to
SARS-CoV. Moreover, Malayan pangolins have been identified as intermediate
hosts that may have facilitated transfer to humans [157]. Although pangolin
is fully protected by Chinese law, it is frequently illegally sold in oriental wet
markets. Pangolin meat is eaten, and its scales have a high value and are used
to cure various ills in oriental medicine. For this reason, some 4.000 or 5.000
pangolins are illegally imported from Java every year [158].

Genome code Bit-score Virus name

MN996532 48724 Bat coronavirus RaTG13
MT040335 28301 Pangolin coronavirus isolate PCoV_GX-P5L
MT040333 28293 Pangolin coronavirus isolate PCoV_GX-P4L
MT072864 28262 Pangolin coronavirus isolate PCoV_GX-P2V
MT040334 28256 Pangolin coronavirus isolate PCoV_GX-P1E
MT040336 28247 Pangolin coronavirus isolate PCoV_GX-P5E
MG772933 26943 Bat SARS-like coronavirus isolate bat-SL-CoVZC45
MG772934 22223 Bat SARS-like coronavirus isolate bat-SL-CoVZXC21
AY394996 15213 SARS coronavirus ZS-B
AY394997 15213 SARS coronavirus ZS-A

Table 4.1: Top-10 BLAST bit-score obtained from the comparison between
SARS-CoV-2 strand (NC_045512) and other coronavirus genomes from dif-
ferent species.
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Figure 4.2: Rhinolophus pusil-
lus is the most likely reservoir
species of SARS-CoV-2.

Figure 4.3: Malayan pangolin could be
the intermediate host of SARS-CoV-2.

4.3 Analysis of interactions between

SARS-CoV-2 stains and host miRNAs

The short time since the COVID-19 outbreak is why many aspects of the
molecular interactions of SARS-CoV-2 in the human host are still unknown,
especially its mechanisms at the transcriptional level. The present study aims
to unravel the role of human miRNAs in SARS-CoV-2 infection. miRNAs
are short non-coding RNA molecules with a post-transcriptional regulatory
function [159]. They bind complementary sequences in mRNA molecules to
inhibit the translation of their mRNA targets into proteins [160]. Host en-
dogenous miRNA activity in viral propagation has been previously studied,
and many complex virus-specific mechanisms have been identified. However,
the precise role of miRNAs in viral infections is not yet fully understood [161].
This section shows the results of an extensive predictive analysis to identify
human lung-specific miRNAs that may bind the SARS-CoV-2 RNA. Then,
we considered the already experimentally validated miRNA interactions with
endogenous genes to identify the host’s miRNA regulatory sub-network af-
fected by SARS-CoV-2 infection, looking at the virus as a competing RNA
[162]. We finally evaluated the impact of such interactions on the expression
profile of genes targeted by the identified miRNAs in human airway epithelial
cells infected with SARS- CoV-2. Specifically, we identified miR-1207-5p as a



84 CHAPTER 4. SARS-COV-2 SEQUENCE ANALYSIS

possible regulator of the S protein in SARS-CoV-2 RNA. As so, we suggest
that the viral RNA competes with the CSF1 mRNA, a known target of miR-
1207-5p [163], leading to CSF1 overexpression. To support our hypothesis, we
have evaluated several published transcriptional datasets. The finding that the
CSF1 gene is over-expressed in lung epithelial cells infected with SARS-CoV-2
supported our hypothesis. CSF1 controls the production, differentiation, and
function of macrophages, and its overexpression may contribute to the acute
inflammatory response observed in severe COVID-19. The results are preceded
by three sections that introduces the methodologies used for the analysis.

4.3.1 Transcriptomics datasets and expression

Analysis

Normal lung tissue expression profiles have been downloaded from TissueAtlas
[164]. Raw miRNA expression data from 18 lung control tissues were normal-
ized with quantile normalization and the average expression level for each
miRNA was computed. We used the average expression profile computed from
all the 18 control tissues to identify the top 100 expressed miRNAs in normal
lung tissue. Tab. 4.2 summarizes the list of selected miRNAs and their average
expression level in lung control tissues.
A wide collection of already available transcriptomics datasets with gene ex-
pression profiles after SARS-CoV-2 infection has been assembled from litera-
ture. When available, we considered the differential expression analysis results
obtained by the authors. Otherwise, we preprocessed and analyzed the gene
expression profiles to identify differentially expressed genes. When raw count
RNAseq data was available, we used the DESeq2 [165] R pipeline to compare
infected vs. not infected samples, and the Benjamini-Hochberg procedure [166]
to compute adjusted p-values. The univariate threshold of statistical signifi-
cance was set at 5%.

4.3.2 Analysis of SARS-CoV-2 sequence stability

The RefSeq sequence NC_045512 (recorded in Wuhan, January 2020) was used
as reference to predict the binding sites of human miRNAs on the viral RNA. A
total of 15881 worldwide viral complete genomes was downloaded —updated to
September 7th, 2020— from the Severe acute respiratory syndrome coronavirus
2 data hub of NCBI Virus database, by filtering for taxid = “2697049” and



4.3. INTERACTIONS WITH HOST MIRNAS 85

Nucleotide Completeness = “complete”. Stability of particular viral genome
regions was assessed by searching the exact match of the region in all the viral
available genomes. To assess the statistical significance of the stability of each
binding site, we associated a p-value with the number (mbs) of viral sequences
that showed a mutation in the region of the binding site. Such a p-value was
calculated as the frequency with which a number of mutations larger or equal
to mbs was observed in all of the other regions with the same length of the
binding site in the involved mRNA.

4.3.3 Prediction of miRNA binding sites

on SARS-CoV-2 strands

Mature miRNA sequences were downloaded from miRbase, version 22. We
used four miRNA target prediction tools to assess whether an RNA sequence
is predicted to be a target of a miRNA: miRanda [48], PITA [49], Targetscan
[46], and ComiR [43][44]. miRanda script was used with -score 0 and -energy 0
settings. PITA and Targetscan scripts were used with default settings. ComiR
was used to compute the ComiR score associated with the targets of each single
miRNAs. For each miRNA we identified as highly predicted targets the genes
that passed all the following conditions:

- miRanda binding energy, lower than -20;

- PITA ∆∆E, lower than -15

- TargetScan Binding Site, 8mer or 7mer

- ComiR score, greater than 0.85

We used the localization of the binding sites predicted by PITA, miRanda and
Targetscan to further restrict the set of targets by considering only the binding
sites predicted by all the three algorithms. The resulting targets are named as
highly predicted targets.
Experimentally validated miRNA targets were downloaded from miRTarBase,
where only the validation methods with strong evidence (i.e., Reporter assays,
RT-qPCR, and Western- blot based experiments) have been considered.
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miRNA ID AEL miRNA ID AEL miRNA ID AEL miRNA ID AEL

miR-7975 50459 miR-30b-5p 1306 miR-30a-5p 724 miR-181a-5p 426
miR-7977 26791 miR-22-3p 1271 miR-34a-5p 717 miR-30d-5p 425
miR-8069 17366 miR-24-3p 1243 miR-23b-3p 705 miR-100-5p 419
miR-4516 11347 miR-6125 1227 miR-6085 705 miR-1260a 402
miR-451a 11344 miR-223-3p 1222 miR-199a-3p 667 miR-4466 399
miR-21-5p 11211 miR-26a-5p 1210 miR-7704 660 miR-3162-5p 399
miR-6089 10752 miR-4286 1164 miR-19b-3p 651 miR-6068 383
miR-3960 6238 miR-6800-5p 1097 miR-103a-3p 640 miR-4270 381
miR-6090 5613 miR-6088 1070 miR-5739 614 miR-342-3p 377
let-7b-5p 5106 let-7g-5p 1069 miR-7641 593 miR-4739 374
let-7a-5p 4879 miR-4687-3p 991 miR-20a-5p 593 miR-150-5p 363
miR-5100 4178 miR-1202 981 miR-130a-3p 589 miR-200c-3p 353
miR-6869-5p 3325 let-7i-5p 962 miR-26b-5p 588 miR-107 337
miR-16-5p 2943 let-7c-5p 910 let-7d-5p 572 miR-99a-5p 300
miR-4459 2598 miR-29b-3p 895 miR-27b-3p 552 miR-3656 299
miR-126-3p 2573 miR-1915-3p 853 miR-4530 548 miR-30c-5p 297
let-7f-5p 2376 miR-4763-3p 842 miR-3665 505 miR-106b-5p 285
miR-6749-5p 1955 miR-125b-5p 832 miR-5787 499 miR-4741 275
miR-4281 1918 miR-2861 824 miR-7107-5p 492 miR-642a-3p 268
miR-29a-3p 1898 miR-1225-5p 802 miR-4284 492 miR-1260b 252
miR-6087 1701 miR-15b-5p 772 miR-142-3p 487 miR-1246 250
miR-29c-3p 1609 miR-638 770 miR-145-5p 483 miR-200b-3p 247
miR-6821-5p 1406 miR-1207-5p 766 miR-1273g-3p 473 miR-497-5p 240
miR-27a-3p 1378 miR-195-5p 758 let-7e-5p 468 miR-6826-5p 237
miR-23a-3p 1318 miR-141-3p 733 miR-15a-5p 458 miR-6165 231

Table 4.2: Summary of the most expressed miRNAs in normal lung tissues.
In red, the miRNAs predicted by four algorithms (i.e., PITA, miRanda, Tar-
getScan, and new ComiR); the original ComiR version predicts both red and
blue miRNAs. In red bold and underlined, the 5 selected miRNAs.
AEL = Average Expression Level.
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4.3.4 Role of endogenous miRNAs in COVID-19

disease

The methodologies presented in the previous sections are used to investigate on
SARS-CoV-2 genome in terms of mutations and interaction with endogenous
miRNAs. The present section reports the main results obtained from data
analysis.

Five human lung-specific miRNAs are predicted to target SARS-
CoV-2 viral genome

Aiming to unravel the role of endogenous miRNA expressed in the human lung
with respect to SARS-CoV-2 virus, we focused our analysis on the 100 most ex-
pressed miRNAs in normal lung [164], identified as described in section 4.3.1.
We identified potential targets of these 100 miRNAs on SARS-CoV-2 RNA
sequence (NCBI reference viral sequence NC_045512), using four miRNA tar-
get prediction tools [49][48][46][43]. Only 15 miRNAs were predicted to target
the viral RNA by all the four algorithms (Fig. 4.4). Among the predicted
miRNA:viral RNA interacting pairs, six specific binding sites (specific target
locations) were identified by all four algorithms (Fig. 4.6 and 4.7).
The six sites were targeted by 5 miRNAs: miR-6089, miR- 6821-5p, miR-103a-
3p, miR-4763-3p, and miR-1207-5p (we consider those miRNAs as strong pre-
dictions because the four algorithms have consistently predicted their binding
sites, whereas different algorithms could predict distinct binding sites on the
same miRNA). miR-4763-3p and miR-1207-5p miRNAs belong to the same
miRNA family, sharing the same seed sequence (ggcaggg). In our analysis, we
predict that they have a common binding site in the viral sequence, located
in the region coding for the Spike (S) glycoprotein. Spike is a structural pro-
tein that allows Sars- Cov-2 to enter host cells by interacting with membrane
receptors [167]. Human miRNAs miR-6089, miR- 6821-5p, and miR-4763-3p
have their binding sites in the ORF1ab gene, specifically hitting the regions
coding for Nsp10, formerly known as growth-factor-like protein (GFL), Nsp12,
an RNA-dependent RNA polymerase, and Nsp13_ZBD gene, a helicase (Fig.
4.7). The three mentioned non- structural proteins are crucial in coronavirus
replication, being part of a complex of 16 non-structural proteins entailed
for viral RNA replication and transcription [167] [168]. miR-103a-3p binding
site is located in the Nucleocapsid (N) protein coding region. N proteins are
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Figure 4.4: miRNA-target
prediction results of 100 top
expressed miRNA in normal
lung on COVID19 (NCBI Ref-
erence sequence NC_045512.2).
Each group in the Venn di-
agram represents the set of
miRNAs predicting as target the
COVID19 sequence by applying
one of the considered algorithms
(PITA, Targetscan, miRanda
and ComiR).

Figure 4.5: miRNA-target
prediction results of 100 top
expressed miRNA in normal lung
on COVID19. miRNA ComiR
predictions from the original
ComiR have been replaced with
the predictions from the new
version.

structural proteins, that play key roles during the packaging of the viral RNA
genome [167]. Whether the enhancement of the host’s miRNAs regulatory
machinery could inhibit the replication process or the production of the struc-
tural viral proteins, and as a consequence the virus diffusion through the host,
is a hypothesis that needs to be experimentally validated and requires further
investigation.

The new version of ComiR produces more specific predictions

ComiR algorithm is based on a support vector machine (SVM) trained on
messenger RNA information from Drosophila Melanogaster experiments. The
previous studies showed that ComiR algorithm can predict miRNA targets not
only on Drosophila but also on other species such as Human and C. Elegans
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ComiR
SVM predicted predictions by all strong predictions by

training miRNAs the 4 algorithms all the 4 algorithms

original 3’UTR 75 15 5
novel coding 6 6 4
novel 3’UTR 44 8 3
novel 3’UTR/coding 46 10 5

Table 4.3: Comparison of miRNA groups predicted to target SARS-CoV-2
genome using different ComiR algorithms. The new ComiR version predicts
fewer miRNAs then the original version. But the new ComiR predictions are
more specific than the original ComiR predictions.

[43][44]. The ComiR predictions reported in the previous section have been
obtained using the original version of ComiR [43][44]. We have recently de-
veloped a new ComiR version [4] as described in Chapter 3. The new ComiR
algorithm uses the information contained in the coding region to improve its
prediction capacity. Whereas the original ComiR only considers 3’UTR infor-
mation for the SVM training (see Chapter 3).
In the present analysis, we have compared ComiR predictions from both ver-
sions. The new ComiR predictions have been obtained using both 3’UTR
and coding region information for training; Tab.4.3 shows the comparison of
miRNA predicted groups using different ComiR algorithms.

The new ComiR version predicts fewer miRNAs than the original version, but
those novel predictions are more specific than the original ComiR predictions;
indeed, the new algorithm has identified all the strong miRNA predictions
(i.e., miRNAs whose binding sites have been consistently predicted by PITA,
miRanda and TargetScan). In particular, the original ComiR predicted 75
miRNAs; five of them were identified as strong binders (i.e., miR-6089, miR-
6821-5p, miR-103a-3p, miR-4763-3p, and miR-1207-5p). The new ComiR ver-
sion trained using coding region information predicted only 6 miRNAs. Four
of them are identified as strong binders (i.e., miR-6089, miR-6821-5p, miR-
4763-3p, and miR-1207-5p). Whereas the new ComiR version trained using
3’UTR information predicted 44 miRNAs. Three of them are identified as
strong binders (i.e., miR-6089, miR- 6821-5p, and miR-103a-3p).
Unifying the results from both ComiR training sets (based on 3’UTR and cod-
ing region), we predict all the strongest miRNA binding sites. Fig.4.5 shows
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the intersection of miRNAs predicted by miRanda, Targetscan, PITA, and the
new ComiR version.

Stability of predicted miRNA binding sites on SARS-CoV-2 RNA

The worldwide spread of COVID-19 infection exposes the viral genome to a
high risk of mutation. For this reason, we checked the binding sites’ sequence
stability across the 15881 SARS-CoV-2 genomes annotated from all over the
world in the NCBI virus database.
An example of mutation identification is shown in Tab. 4.4, it reports mu-
tations in miRNA binding sites located on spike (the binding sites of other
miRNAs are not shown).
To analyze such a stability, for each one of the six selected binding sites, we
counted the number of viral sequences that presented a mutation. Results are
reported in the third column of Fig. 4.6. We found that the binding regions
are highly stable, which implies the consequent stability of binding site pre-
dictions across the currently circulating viruses. In addition, we compared the
occurrences of mutations in each binding site (mbs) with the occurrences in any
other region of the same length in the involved viral coding RNA, as described
in the section 4.3.2.
The obtained p-values (see Fig. 4.6) indicate that the stability of all the six
binding sites does not show a significant deviation from the one of the whole
mRNA in which they are located, respectively. Where the p-values have been
calculated as the frequency with which a number of mutations larger or equal
to mbs was observed in all of the other regions with the same length of the
binding site in the involved mRNA.

Host mRNAs competing with SARS-CoV-2 RNA are overexpressed
in Lung Epithelial Cells

The viral sequence, once expressed, can interact with the host’s miRNA regula-
tory machine by sequestering the selected miRNAs. Therefore, viral RNA may
act as a miRNA sponge, with the same mechanism of competing endogenous
RNA [162]. Among the five selected miRNAs, two have been previously studied
in detail. miR-103a-3p activity has been widely studied in different tissues, i.e.,
gastric and colorectal cancer or liver [169][170][171] [172][173][174][175][176][177]
[178], and a number of its targets has been validated. miR-1207-5p expression
is high in the cytoplasmic fraction of human normal lung tissue while being
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SARS-CoV-2 code miRNA binding site in spike

NC_045512 gaacttcacaactgctcctgcca
MT958259 gaacttcacaactactcctgcca
MT451181 gaacttcacaactgcttctgcca
MT706284 gaacttcacaactgttcctgcca
MT706442 gaacttcacaactgttcctgcca
MT263443 gaacttcacaactgttcctgcca
MT873480 gaacttcacaacttctcctgcca
MT811251 gaacttcacaacttctcctgcca
MT627751 gaacttcacaacttctcctgcca
MT628092 gaacttcacaacttctcctgcca
MT334539 gaacttcacaacttctcctgcca
MT334540 gaacttcacaacttctcctgcca
MT800995 gaacttcacaattgctcctgcca
MT345855 gaatttcacaactgctcctgcca
MT873372 taacttcacaactgctcctgcca
MT831540 taacttcacaactgctcctgcca
MT745640 taacttcacaactgctcctgcca
MT745652 taacttcacaactgctcctgcca
MT795896 gaacttcacaactgctccngcca
MT252730 gaacttcacaacnnnnnnnnn

Table 4.4: Mutations in miRNA binding sites located on spike (miRNA-4763-
3p and miRNA-1207-5p are involved in the binding). Red letters indicate the
presence of mutation with respect to NC_045512. Almost all mutations are
of type g Ð→ t or c Ð→ t. The last two rows contain sequences with unknown
bases; we have replicated the analysis by excluding RNA regions with unknown
bases, we found that p-values of Tab. 4.6 don’t have significant variations.

reduced in cancer [163]. miR-1207-5p has been first characterized as neg-
ative regulator of epithelial-to-mesenchymal transition (EMT) as it inhibits
the expression of a number of genes involved in this process, including Snail,
Smad2, Smad3 and Vimentin [163][179]. In addition to its role in EMT, miR-
1207-5p plays an important role in shaping the inflammatory milieu. In this
respect, CSF1 (colony-stimulating factor 1, also known as macrophage colony-
stimulating factor, M- CSF) has been reported as one of its direct targets [163].
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Figure 4.6: Six miRNA:viral-RNA targets predicted by all methods (“high confi-
dence targets”). Column-1: miRNA name, start/stop bases in the NC_045512
sequence; column-2: base alignment; column-3: number of SARS-CoV-2 se-
quences not containing an exact match for the binding site region; column-4:
p-value

In order to test whether infection of lung epithelial cells with SARS-CoV-2 cell
infection affects the gene expression levels of the endogenous miRNA target
genes, we used a recent dataset of gene expression profiles of human lung-
derived cells infected with SARS-CoV-2 [180]. Authors examined the behavior
of wild type adenocarcinomic human alveolar basal epithelial (A549) and air-
way epithelial (Calu3) cell lines. A549 cells show a low expression of ACE2
receptor, hence a limited coronavirus infection rate. Thus, the authors also an-
alyzed A549 cells transfected with a vector expressing ACE2 (A549+ACE2).
We used this dataset to analyze the transcriptional profiling of the experimen-
tally validated targets of miR-1207-5p and miR- 103a-3p.
Figure 4.8.a presents the effect of viral infection on miR-1207- 5p and miR-
103a-3p endogenous target gene expression. Log-fold change (log2(FC)) values
are calculated by comparing SARS- CoV-2 infected vs. mock treated cell lines
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(as described in section 4.3.1).
We expect that endogenous direct targets will increase their expression level
following SARS-CoV-2 infection since viral RNA will compete with the en-
dogenous RNA. Some of the analyzed targets behave as expected, especially
the ones that are in the range of 1,000–2,000 reads per million (rpm), including
CREB1, CSF1, PTEN, and DICER1. Consistent with the known A549 limited
infection rate, the expression of these genes is enhanced in ACE2-expressing
A549 cells, and even more in Calu-3 cells that are highly permissive to SARS-
CoV-2 replication. These findings support our hypothesis that the viral RNA
may act as a competing RNA for a selection of host miRNAs leading to the
increase of the expression level of their endogenous targets.
Highly expressed targets, for instance ADAM10, are not up- regulated as ex-
pected. This is probably due to the fact that these genes might be modulated
by other highly expressed miRNAs not sequestered by the virus. Alternatively,
the sponge effect that we are hypothesizing is not effective when the mRNA
is highly expressed.
Figure 4.8.b presents the complexity of the miRNA-target network known up
to now. Here we map all the experimentally validated interactions among the
list of direct targets of miR-1207- 5p and miR-103a-3p, and 45 of the 100 most
highly expressed miRNAs in healthy lungs, that show at least one interaction.
For instance, we observe that ADAM10, one of the targets of miR- 103a-3p, is
also regulated by miR-451a, the most highly expressed miRNA in lung. The
presence of this regulator might be the reason why the expression of ADAM10
is not affected by the presence of the virus.

Figure 4.7: Location of the five high confidence targets on the SARS-CoV-2
genome.
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Figure 4.8: Overview of validated targets of hsa-miR-1207-5p and hsa-miR-
103a-3p (GEO dataset GSE147507). A) Heatmap of the log2FC in gene ex-
pression between SARS-CoV-2 infection vs. mock treatment in cells with dif-
ferent multiplicities of infection (MOI). Cells: A549 (low ACE2 expression),
A549+ACE2 (ACE2-expressing A549 cells, low MOI = 0.2), A549+ACE2
(ACE2-expressing A549 cells, MOI = 2–5), Calu3 cells (MOI = 2–5) (GEO
dataset GSE147507). Only the log2FC that are associated with adjusted p-value
<0.05 are displayed. Target genes are ordered according to their average ex-
pression level in A549 cells. B) Map of annotated interactions among the tar-
gets of hsa-miR-1207-5p (pink) and hsa-miR-103a-3p (green) and other highly
expressed in normal lung tissue miRNAs. miRNAs are ordered according to
their expression level. Genes are in the same order as in panel A) and their
expression levels are shown on the right of the grid.

Binding of miR-1207-5p to SARS-CoV-2 RNA may lead to over-
expression of EMT-related genes and CSF1

miR-1207-5p has been first characterized as negative regulator of EMT by con-
trolling the expression of several genes including SMAD2, SMAD3, SMAD7,
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Figure 4.9: Overview of genes involved in EMT process and reported to be
regulated by miR-1207-5p. The heatmap shows the log2FC in gene expression
between SARS-CoV-2 infection vs. mock treatment in the same cells as in Fig.
4.8. Targets are ordered according to their average expression level in A549
cells.

CLASP1, ZEB1, and SNAIL1 [163][179]. EMT processes favor fibrotic events.
Of interest, current data suggest that pulmonary fibrosis after COVID-19 re-
covery could be substantial [181][182][183]. Therefore, we tested the hypothesis
that SARS-CoV-2 infection in bronchial epithelial cells may have an impact
on the expression of these genes by reducing the availability of miR-1207-5p.
Fig. 4.9 shows the results of the differential expression analysis for the genes
involved in EMT that have been reported to be regulated by miR-1207-5p.
The increase in their expression levels appears evident when cells are infected
with SARS-CoV-2 virus, therefore supporting our hypothesis.
We further expanded our analysis by evaluating the impact of SARS-CoV-2
infection on the expression of CSF1. As reported in Fig. 4.8, CSF1 is one
of the host gene targets most upregulated following viral infection. CSF1 is a
predicted target of 3 out of 5 of the miRNAs targeting the virus sequence: miR-
4763-3p, miR- 1207-5p and miR-6089. It is also an experimentally validated
target of miR-1207-5p [163]. The only other known miRNA CSF1 regulator,
among the 100 highly expressed miRNA in the lung, is miR-130a-3p, which is
expressed at lower level than miR-1207-5p. CSF1 regulates the survival, pro-
liferation, differentiation, and chemotaxis of tissue macrophages and dendritic
cells (DC) that play a key role in innate immune responses. In the human
lung, CSF1 can be released by airway epithelial cells in the airspace and its
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local concentration contributes to control the recruitment and activation of
DC and macrophages [184][185][186].
To further validate our hypothesis that the CSF1 mRNA is over-expressed af-
ter SARS-CoV-2 infection, we analyzed several recently published datasets. To
this purpose, different types of experimental designs and platforms were taken
into consideration. When available, we referred to the differential expression
analysis performed by the authors. Specifically, we considered transcriptomics
data analysis of infected vs. healthy samples from human lung biopsies as re-
ported in [187], bronchoalveolar lavage fluid (BALF) in [188], peripheral blood
mononuclear cells (PBMC) and BALF in [189], and whole blood in [190]. We
also analyzed the single cell RNAseq data from whole blood reported in [191],
infected NHBE cells in [193], and infected Calu3 cells in [192]. Data sets
obtained by analyzing human samples were not useful to confirm our hypoth-
esis. This can be due to several reasons. More specifically, the high-variability
among patients, the cell heterogeneity of reported biological samples (such as
bronchioalveolar lavage fluids and lung biopsies) with different efficiency of
viral transfection and the low sample size make it really difficult to unravel
fine regulatory mechanisms of virus-host interaction. On the contrary, when
dataset derived from bronchial epithelial cells (both primary cells and cell lines)
were analyzed, significant upregulation of CSF1 was observed therefore con-
firming our hypothesis. For example, [192] performed gene expression profiles
of SARS-CoV-2 infected Calu3 cell line. Overexpression of CSF1 in Sars-CoV-
2 infected versus mock treated cells confirmed our hypothesis. Furthermore,
in [193] the authors performed single-cell RNA sequencing of human bronchial
epithelial cells grown in air-liquid interface and infected with SARS-CoV-2.
When looking at ciliated cells, the expression of CSF1 significantly increased
in infected compared to mock cells. Of note, the expression of CSF1 was
significantly higher in ciliated infected cells compared to bystander cells that
remained uninfected in samples challenged with SARS-CoV-2. These findings
suggest that viral replication inside the cells is required in order for CSF-1 to
be over-expressed therefore supporting that a direct interaction between viral
RNA and host miRNAs is required to alter the expression of CSF1 during
infection.



4.4. DISCUSSION 97

4.4 Discussion

In 10–20% of the cases, SARS-CoV-2 infections may progress to interstitial
pneumonia and acute respiratory distress syndrome (ARDS) especially in pa-
tients with older age and comorbidities. Clinical features of severe COVID-19
as well as their systemic cytokine profile suggest the occurrence of macrophage
activation syndrome (MAS) [194][182]. High rates of viral replication have been
listed among the factors that may drive severe lung pathology during infection
by contributing to enhanced host cell cytolysis and production of inflamma-
tory cytokines and chemokines by infected epithelial cells [182][195][196]. We
propose that the high concentration of viral RNA in the cell may seques-
trate miR-1207-5p therefore contributing to CSF1 release leading to enhanced
macrophage recruitment and activation. In fact, increased release of CSF1 may
represent a predisposing factor for MAS and cytokine storm secondary to viral
infection [197][198]. Consistently, it has been recently reported that T-cell de-
rived CSF-1, acting via intercellular crosstalk, may be associated with cytokine
storm in COVID-19 [195]. In our proposed model, infected bronchial epithelial
cells may be a source of CSF-1 contributing to local and systemic inflamma-
tory profiles. In addition, reduced availability of miR-1207-5p may also pro-
mote EMT events therefore favoring fibrosis [181][182][183]. Although further
experimental validation will be required to confirm direct interaction between
miR-1207-5p and the SARS-CoV-2 genome, our proposed model has been con-
firmed using several published datasets. Results herein reported strongly sug-
gest that upregulation of CSF1 due to interaction of miR-1207-5p with viral
genome may occur when lung epithelial cells are infected with a high viral load.
A limitation of the current study is the lack of data regarding protein levels
and release. To address this issue, we carefully looked for published proteomics
data in COVID19 literature, but, so far, no information about CSF1 protein
levels has been published and therefore further studies will be carried out to
address this point.
Nevertheless, transcriptional and post-transcriptional control of mRNA lev-
els represent a key regulatory step for most inflammatory mediators during
infection. In this respect, the discovery of novel potential mechanisms that
contribute to modulate the mRNA levels of a specific inflammatory mediator
in the context of SARS-Cov-2 infection may represent a step forward toward
a better understanding of virus-host interaction molecular mechanisms.
A wide analysis of the SARS-CoV-2 transcriptome [199] revealed the presence
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of several non-canonical sub- genomic RNAs. They consist in discontinuous
transcriptions of the viral sequence, where the 5’ leader region is fused to a
non- conventional part of the genome. As a result, the obtained RNA contains
only a portion of the viral mRNAs. It is tempting to speculate that they may
play a role as competing RNA. Specifically, miR-1207-5p related binding site is
located in the far downstream region of the viral gene Spike. As a consequence,
almost all of the sub-genomic RNA sequences with the fusion occurring in the
region of the Spike gene contain the miR-1207- 5p binding site. Although,
these sub-genomic RNA sequences do not have the coding potential to yield
the S protein, they could still act as miRNA sponges.
To conclude, our results suggest that the miR-1207-5p family may interact
with SARS-CoV-2 viral genome leading to deregulation of CSF-1, which may
enhance inflammatory responses in COVID-19 patients, and promoting EMT,
which can contribute to pulmonary fibrosis, a possible sequela of COVID-19.
Further experimental validation will be conducted to confirm molecular mech-
anisms of host-virus interaction and to investigate their involvement in disease
progression.

4.5 Conclusion

We have identified a small group of five miRNAs whose binding sites in SARS-
CoV-2 genome have been predicted by four different algorithms. We have also
verified the stability of SARS-CoV-2 strands at the binding site of interest.
Our results support the idea that predicted miRNAs interact with SARS-CoV-
2 strands. We propose the involvement of miR-1207-5p family and CSF1 in
the progression of COVID-19 infection, and as possible targets for COVID-19
treatment. Further experimental validation is still due to confirm the binding
of miR-1207-5p into the viral genome, and the role of SARS-CoV-2 in the
regulation of CSF1 expression.



Chapter 5

A novel statistical test for
differential expression analysis

As we have shown in the previous chapters, differentially expressed genes (DE
genes) from IP experiments have been considered for training (and also test-
ing) miRNA target prediction algorithms such as ComiR [4]. An improvement
of the procedure to identify DE genes that compose ComiR training set can
improve the algorithm prediction capacity. For this reason, differential expres-
sion analysis has a central role in this thesis; the present chapter introduces a
novel procedure for DE gene identification.
Differential expression analysis (DEA) is widely used in transcriptomic studies.
Some t-test variants have been proposed in the literature to identify enriched
and under-represented transcripts; however, the deviation from the normal as-
sumption in small samples makes t-test p-values not reliable.
We propose a novel exact statistical test, obtained from the hypergeometric
distribution, able to identify genes missed by the t-test. The analysis of real
gene expression datasets supports the efficiency of our method and suggests
its application together with the t-test approach to better understand the bi-
ological questions related to differentially expressed genes.

5.1 Background

Differential expression analysis (DEA) is a large-scale inference procedure used
to identify genes whose expression differ under different biological conditions.
A large family of t-tests is the most widely used procedure for DEA [203]
[204]. But this methodology depends on parametric assumptions rarely sat-
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isfied. However, large samples allow an assumption relaxation, but the high
cost of experiments makes it difficult to find. For this reason, in small skewed
samples, t-test p-values are often not reliable [205].
Moreover, the small variance of low expressed genes makes the denominator
of t-test statistics unnaturally smaller. It increases the total I type error and
the number of significant genes. Alternative definitions of the t-test have been
proposed to reduce the impact of small samples and low expression variabil-
ity, e.g., moderated t-test [206] and Significance Analysis of Microarray (SAM)
[207]. On the other hand, large sample t-tests produce too many significant
genes; it depends on average expression differences truly different from zero
but not large enough to be biologically meaningful.
A common strategy to reduce the number of selected differentially expressed
genes is to set a threshold on the fold change (e.g. 1, 1.5, or 2) [208]. But this
solution depends on an arbitrary parameter.
In this chapter, we proposed a novel statistical test for DEA obtained from
multivariate hypergeometric distributions. The novel test is indicated as Hy-
test. At the price of a slight loss of information, Hy-test presents several
advantages;

- free from parametric assumptions

- allows implicit discretization of the expression profiles.

- provides more reliable p-values than the t-test p-values

The analysis presented here shows that the Hy-test is able to identify genes
missed by the t-test. The results suggest that Hy-test and t-test can be used
together to better understand the biological questions that are investigated by
a DEA approach.

5.2 Preprocessing procedure for microarray data

As a preliminary step for p-value calculation, gene expression profiles have
been normalized and discretized in three levels: {−1,1,0}, meaning “down-
regulated”, “upregulated”, and “no-changed” respectively. Our discretization
approach maximize the disagreement between the discretized levels of the two
different experimental conditions. After that, exact p-values are calculated
on the discretized expression profiles. The following sections give a detailed
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description of our procedure for DEA. Before introducing the methodology, we
linger on the data preprocessing:
As test bed, we consider gene expression profiles of breast cells in a pattern
of paired tissues; 17.632 genes have been recorded in 75 tumor tissues and 75
normal tissues (than the analysis have been replicated by considering 67 kid-
ney renal clear cell carcinoma - KIRC - paired with 67 normal tissues). Data
has been downloaded from the TCGA website. The expression profiles of du-
plicated genes have been replaced with their mean expression. Moreover, The
expression of each gene has been normalized using a quantile normalization
[209] and then log-transformed.
However, some genes aren’t expressed in almost all the tissues of interest. For
this reason, we propose a method of molecule selection; for each tissue, we
select the highest expressed genes that explain at least 50% of the whole ex-
pression. Considering the vector (x(1), x(2), ..., x(N)) of ordered gene expression
values in one tissue. We selected the first-l genes such that:

l = argmink {k ∣
∑
k
i=1 x(i)
∑
N
i=1 xi

≥ 0.5}

where, x(i) is the ith expression value in the ordered vector, and N is the total
number of genes.
Using this criterion for each tissue, we included genes that have been selected
in at least one tissue; i.e., 14.569 genes in the breast tissue analysis, and 14.482
in the kidney tissue analysis. Considering those selected genes, two different
expression analyzes have been carried out separately; one on breast tissues and
another on kidney tissues.

5.3 Recording the expression profiles

The discretization of gene expression data (GED) is widely used in genomics
analysis. Despite a certain loss of information, GED discretization is often
used as a preprocessing step to reduce the noise of raw data and to obtain a
more straightforward interpretation of the data [213].
Several algorithms require data discretization during the preprocessing (e.g.
biclustering method [210]). Moreover, many network models require discrete
data as input (e.g., Bayesian Networks and logical networks [212] [211]).
Despite the importance of discretization in transcriptomics, the criteria under
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discretization methods are always arbitrary (e.g., the FC-discretization de-
pends on a threshold arbitrary fixed, generally equal to 1, 1.5 or 2; the equal
width discretization depends on a tuning parameter; the ranking discretization
depends on the X th percentile that identifies the top-X% genes).
Here, we introduce a novel approach to gene expression discretization based
on reasonable criteria free from arbitrary parameters. Let’s consider a gene
expression profile recorded on two experimental conditions, e.g. normal and
cancer tissues, for a total of n pairs of tissues. We estimate a threshold cou-
ple able to discretize gene expression as “downregulated”, “upregulated”, and
“no-changed”. The optimum thresholds are obtained by maximizing the dis-
agreement between the discretized levels of the two different experimental con-
ditions.
Applying the thresholds {k1, k2} on the whole expression of a single gene, we
obtain two discretized vectors, one for healthy tissues, say v⃗H , and one for
diseased tissues, say v⃗D, with entries that take values {−1,0,1} that means
“downregulated”, “no-changed”, and “upregulated” respectively. The thresh-
olds {k1, k2} are estimated by maximizing the quantity

H(v⃗H , v⃗D) = n+,− + n−,+

where n+,− (n−,+) is the number of tissue couples that present upregulated
normal (cancer) tissues paired with downregulated cancer (normal) tissues.
Optimization research has been carried out by using a genetic algorithm [215].
We have estimated a threshold for each gene of the dataset. This method can
be easily adapted to extract a single cutoff couple for all genes.

5.4 Analytical derivation of an exact test

for DEA

Let’s consider a gene expression profile recorded on two experimental condi-
tions, e.g. normal and cancer tissues, for a total of n pairs of tissues. We aim
to calculate a p-value to evaluate if gene expression is significantly different
over cancer and normal tissues. Consider two threshold couples, one for nor-
mal tissues and another for cancer tissues, able to discretize gene expression
as “downregulated”, “upregulated”, and “no-changed” (later, we will extend the
p-value calculation to the more realistic situation of a single threshold couple).
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In this way, two vectors with n components are obtained, one for healthy tis-
sues, say v⃗H , and one for diseased tissues, say v⃗D, with entries that take values
{−1,1,0}. To investigate the differential expression we are interested in the
quantity

H(v⃗H , v⃗D) = n+,− + n−,+, (5.1)

where n+,− (n−,+) is the number of tissue couples that present upregulated
normal (cancer) tissues paired with downregulated cancer (normal) tissues.
To associate a p-value with H(v⃗H , v⃗D) it’s necessary, as a preliminary step, to
evaluate the probability that nmatch = n+,−+n−,+ occurs by chance. Constraints
on the total number of positive, negative, and null signs are set on both vectors
in the null hypothesis. Specifically, the null model is based on external parame-
ters K⃗H = (K+

H ,K
−
H ,K

0
H) and K⃗D = (K+

D,K
−
D,K

0
D), whereKi

H (Ki
D) is the total

number of tissues with sign i in vector v⃗H (vector v⃗D), with, i ∈ {−1.1,0}. Such
parameters are not independent. Indeed, K+

H +K
−
H +K

0
H =K+

D +K
−
D +K

0
D = n,

where n is the total number of tissue couples in the dataset. We are interested
in calculating the probability that matrix

C =

⎛
⎜
⎜
⎜
⎝

n+,+ n+,− n+,0
n−,+ n−,− n−,0
n0,+ n0,− n0,0

⎞
⎟
⎟
⎟
⎠

(5.2)

occurs by chance, subject to the aforementioned constraints. An entry ni,j
of C represents the number of tissues that display sign i in vector v⃗H and
sign j in v⃗D. Notation C is used here because sometimes matrices such as the
one above are indicated as “confusion" matrices. Entries of matrix C are not
independent due to the constraints on the number of positive, negative, and
null signs described above. Specifically, they are linearly dependent according
to the following six equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+,+ + n+,− + n+,0 =K+
H

n−,+ + n−,− + n−,0 =K−
H

n0,+ + n0,− + n0,0 =K
0
H

n+,+ + n−,+ + n0,+ =K+
D

n+,− + n−,− + n0,− =K−
D

n+,0 + n−,0 + n0,0 =K
0
D

(5.3)

This linear system has rank equal to 5, because of the linear relationship
between parameters: K+

H +K
−
H +K

0
H = K+

D +K
−
D +K

0
D = n. Therefore, it can



104 CHAPTER 5. A NOVEL TEST FOR DEA

be solved as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+,0 =K+
H − n+,− − n+,+

n−,0 =K−
H − n−,− − n−,+

n0,+ =K+
D − n−,+ − n+,+

n0,− =K−
D − n−,− − n+,−

n0,0 =K
0
H +K

0
D − n + n−,− + n−,+ + n+,− + n+,+.

(5.4)

This result indicates that matrix C is determined if so are n−,−, n−,+, n+,−, n+,+.
Therefore the probability

P (C) = P (n−,−, n−,+, n+,−, n+,+ ∣ K⃗H , K⃗D) = (5.5)

= P (n−,−, n−,+ ∣ n+,−, n+,+, K⃗H , K⃗D)P (n+,−, n+,+ ∣ K⃗H , K⃗D),

where, according to a simple combinatorial analysis of the problem,

P (n+,−, n+,+∣K⃗H , K⃗D) =
(
K+D
n+,+

)(
K−D
n+,−

)(
K0
D

n+,0
)

(
n
K+H

)
(5.6)

and

P (n−,−, n−,+ ∣ n+,−, n+,+, K⃗H , K⃗D) =
(
K+D−n+,+
n−,+

)(
K−D−n+,−
n−,−

)(
K0
D−n+,0
n−,0

)

(
n−K+H
K−H

)
. (5.7)

The distribution of C allows to calculate the probability

P [H(v⃗H , v⃗D) = x] = P (n+,− + n−,+ = x) = P (x) (5.8)

as

P (x) = ∑
{n+,+,n−,−,n−,+}

P (n−,−, n−,+ ∣ x − n−,+, n+,+, K⃗H , K⃗D)P (x − n−,+, n+,+ ∣ K⃗H , K⃗D)

= ∑
{n+,+,n−,−,n−,+}

(
K+D
n+,+

)(
K−D

x−n−,+)(
K0
D

n+,0
)

(
n
K+H

)

(
K+D−n+,+
n−,+

)(
K−D−x+n−,+

n−,−
)(
K0
D−n+,0
n−,0

)

(
n−K+H
K−H

)
.

According to this distribution, the p-value associated with an observation
x̂ = n̂−,+ + n̂+,− is:

P (x ≥ x̂) = ∑
{n+,+,n−,−,n−,+,x≥x̂}

(
K+D
n+,+

)(
K−D

x−n−,+)(
K0
D

n+,0
)

(
n
K+H

)

(
K+D−n+,+
n−,+

)(
K−D−x+n−,+

n−,−
)(
K0
D−n+,0
n−,0

)

(
n−K+H
K−H

)

(5.9)
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If thresholds for upregulation and downregulation are set to be the same
for both normal and cancer tissues, we have to modify the previous formula.
Let’s consider the following quantities:

K+ =K+
D +K

+
H

K− =K−
D +K

−
H

K0 =K0
D +K

0
H

2n =K+ +K− +K0

where, 2n is the total number of tissues, which are paired in n couples.
In this case, the null hypothesis is attained by assuming that n tissues are
randomly selected to be pathological, and paired with the others, which are
supposed to be the healthy ones. Therefore:

P (x ≥ x̂) =∑
Q

(
K+

K+D
)(

K−

K−D
)(

K0

K0
D
)

(
2n
n
)

(
K+D
n+,+

)(
K−D

x−n−,+)(
K0
D

n+,0
)

(
n
K+H

)

(
K+D−n+,+
n−,+

)(
K−D−x+n−,+

n−,−
)(
K0
D−n+,0
n−,0

)

(
n−K+H
K−H

)

(5.10)
where Q =K+

D,K
−
D, n+,+, n−,−, n−,+, such that x ≥ x̂. Therefore, in contrast with

equation 5.9, the quantities K+
D and K−

D are not fixed, and ∑Q explores all
possible values under the constrain K+

D +K
−
D +K

0
D = n.

In this manuscript, the Hy-test refers to equation 5.10. We use this test on
a large set of genes, therefore a multiple comparison correction is required.
Significant p-values are associated with differentially expressed genes.
To investigate p-value distribution, we have calculated Hy-test p-values on a
randomized dataset obtained shuffling the expression profile of each gene in the
breast cancer dataset. We found that p-values are not uniformly distributed,
but none of those p-values is significant considering a Benjamini-Hochberg
correction at 20% level. On the other hand, also the t-test p-values are not
uniformly distributed because the gene expression distribution is not normal.

5.5 Quantitative analysis of GO-terms

The comparison between the Hy-test and the classical t-test has been done
studying significant terms from a Gene Ontology (GO) enrichment analysis
[216]; GO-Enrichment analysis has been carried out on two sets of significant
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genes; one from the Hy-test and another from the t-test. From those two sets
we have obtained two separated lists of significant GO-terms. GO-analysis has
been done using topGO package from Bioconductor and focusing on biologi-
cal process terms. Fisher exact p-values have been associated with GO-terms.
Their significance have been evaluated considering the Bonferroni correction
at level 0.05.
To identify GO-terms (e.g., cell cycle) conceptually associated with a specific
cell line (breast cancer in this analysis), we have defined a novel procedure
that searches PubMed articles related to the biological concepts under exams;
i.e., breast cancer and cell cycle in this example. A significant number of
articles related to both those concepts indicates a conceptual association be-
tween them. The PubMed research has been carried out using the R package
RISmed. Articles published between January 2000 and October 2020 have
been considered.
The probability of observing nC,T PubMed articles with both keywords “breast
cancer ” and “cell cycle” is

Pr(NC,T = nC,T ∣N,NC ,NT ) =
(
NC
nC,T

)(
N−NC
NT−nC,T)

(
N
NT

)
(5.11)

where N is the number of articles with the keyword breast, NC is the number
of articles with both the keywords breast and cancer, NT is the number of
articles with both “breast cancer ” and “cell cycle” as keywords.
Using an hypergeometric test we have associated to each term a p-value of
conceptual association;

Pr(NC,T ≥ nC,T ) = 1 −
nC,T−1
∑
X=0

Pr(X ∣N,NC ,NT ) (5.12)

Statistical significance has been evaluated by considering a Bonferroni correc-
tion at level 0.05.

5.6 Data analysis results

Data has been downloaded from the TCGA website. We have selected 14.569
genes recorded on 75 normal tissues and 75 in breast cancer tissues, as de-
scribed in section 5.2. Log-fold change (log(FC)) has been calculated over
cancer and normal tissues, and genes with ∣log(FC)∣ ≥ 1 have been selected.
To identify differentially expressed genes, we used both the t-test and Hy-test.
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We obtained 1.307 significant genes from Hy-test and 3.269 from the t-test
(Fig.5.1). A GO-enrichment analysis has been carried out on those two lists
of significant differentially expressed genes (biological process terms have been
considered). 104 significant terms have been obtained from Hy-test significant
genes and 213 from t-test significant genes. The associations of significant
terms with breast cancer have been evaluated by researching PubMed papers
as described in section 5.5. Terms that are significantly associated with breast
cancer are reported in Tab.5.2 and Tab.5.3. Eight of those terms have been
found by both procedures.
Finally, to validate our proposal, we carried on the whole analysis on 67 kidney
renal carcinoma tissues paired with healthy tissues. The results are shown in
the bottom part of Tab.5.1 and in Tab.5.4.

DEA Enrichment analysis PubMed research
Sign. genes Enriched terms Sign. associated terms

Hy-test 1.307 104 16
breast t-test 3.269 213 43

Intersection 1.113 38 8

Hy-test 2.702 163 13
kidney t-test 3.988 366 29

Intersection 2.165 149 12

Table 5.1: Numbers of significant DE genes and terms found in each step of
the analysis on breast and kidney tissues

Figure 5.1: Significant DE genes
from the analysis on breast

Figure 5.2: Significant DE genes
from the analysis on kidney
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Sign. GO-term Analysis term size BR term size p-value

angiogenesis both 5765 5213 0
cell proliferation both 21217 19745 0
tissue development both 5586 4508 4.52e-09
cell migration both 9799 9355 0
growth both 49004 41783 0
cell motility both 2235 2083 0
cell division both 819 749 0
localization of cell both 2319 2030 0
cell cycle checkpoint Hy-test 503 470 0
mitotic cell cycle Hy-test 453 403 2.58e-10
DNA replication Hy-test 853 783 0
cell cycle Hy-test 10893 10190 0
cell cycle process Hy-test 482 446 0
cell cycle phase transition Hy-test 296 278 1.55e-14
negative regulation of cell cycle Hy-test 447 430 0
regulation of cell cycle Hy-test 2479 2308 0

Table 5.2: GO-terms significantly associated with “breast cancer” among sig-
nificant GO-terms found using our procedure. GO-terms at the top of the table
have been found also by the t-test procedure (found by both procedures). “term
size” is the number of genes that compose a GO-term. “BR term size” is the
number of GO-term genes associated with “breast cancer”.
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Sign. GO-term Analysis term size BR term size p-value

anion transport t-test 156 150 7.49e-11
chemotaxis t-test 344 304 1.87e-07
cell communication t-test 538 475 1.12e-10
cell adhesion t-test 4248 3779 0
signal transduction t-test 1881 1683 0
positive regulation of cell proliferation t-test 654 619 0
response to hormone t-test 3230 3049 0
regulation of signal transduction t-test 416 376 5.58e-12
regulation of signaling receptor activity t-test 636 596 0
regulation of hormone levels t-test 446 393 7.61e-09
drug transport t-test 986 927 0
negative regulation of angiogenesis t-test 117 110 1.31e-06
biological adhesion t-test 456 394 1.20e-06
regulation of signaling t-test 4129 3850 0
signaling t-test 19565 18204 0
cell differentiation t-test 4969 4138 0
regulation of cell migration t-test 1970 1889 0
positive regulation of cell migration t-test 216 212 0
regulation of transporter activity t-test 109 105 4.18e-08
regulation of localization t-test 600 529 1.76e-11
regulation of cell proliferation t-test 3985 3753 0
regulation of membrane potential t-test 365 343 0
response to drug t-test 4022 3804 0
protein kinase B signaling t-test 501 466 0
regulation of cell differentiation t-test 983 867 0
negative regulation of cell differentiation t-test 159 150 7.17e-09
regulation of angiogenesis t-test 795 728 0
cell development t-test 14620 13316 0
regulation of inflammatory response t-test 169 155 9.42e-07
regulation of biological process t-test 115 108 1.93e-06
leukocyte migration t-test 54 54 1.10e-06
regulation of transport t-test 343 300 2.06e-06
biological regulation t-test 1454 1349 0
regulation of molecular function t-test 595 556 0
regulation of cell motility t-test 477 450 0

Table 5.3: GO-terms significantly associated with “breast cancer” among sig-
nificant GO-terms found only by the t-test procedure.
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Sign. GO-term Analysis term size KIRC term size p-value

programmed cell death Hy-test 423 127 0
angiogenesis t-test 1515 470 0
kidney development t-test 33777 2984 0
behavior t-test 2286 290 0
negative regulation of cell proliferation t-test 72 18 1.93e-06
tissue development t-test 5028 493 2.17e-13
cell differentiation t-test 3350 413 0
regulation of cell migration t-test 316 94 0
B cell proliferation t-test 577 77 7.66e-08
regulation of cell differentiation t-test 586 88 2.55e-11
regulation of angiogenesis t-test 230 69 0
cell development t-test 9412 1641 0
gland development t-test 475 77 1.04e-11
cell motility t-test 423 95 0
epithelial cell proliferation t-test 1374 180 1.88e-15
localization of cell t-test 2031 211 2.07e-08
T cell migration t-test 164 32 1.48e-07
regulation of cell motility t-test 85 24 2.98e-09
cell activation both 7629 768 0
cell killing both 222 74 0
immune system development both 646 87 7.58e-09
cell adhesion both 2107 239 6.59e-13
cell proliferation both 6239 1226 0
cell migration both 1848 501 0
biological adhesion both 183 40 1.33e-10
regulation of signaling both 2541 241 2.87e-06
signaling both 12173 1129 0
T cell proliferation both 762 101 1.21e-09
regulation of cell proliferation both 974 205 0
biological regulation both 906 148 0

Table 5.4: GO-terms significantly associated with “kidney cancer” among sig-
nificant GO-terms found using our procedure and the t-test procedure.
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5.7 Discussion

With the advent of next generation sequencing (NGS) technologies, transcrip-
tomic studies have gained a central role in almost all fields of biology and
medicine. However, this approach still possesses several issues and biases,
mainly derived from the diversity of biological samples, library preparation,
sequencing platforms and bioinformatic analyses [217, 218, 219, 220, 221, 222,
223, 224, 225, 226], whose detailed description is beyond the aim of this paper.
DEA plays a central role in comparative transcriptomic studies, that indeed
represent the vast majority of gene expression analyses (with the notable ex-
ception of de novo assembly [235, 236, 237, 238], and few others [239, 240, 241]).
The definition and thus the retrieval of genes that are differentially expressed in
different conditions is the core action that define a transcriptomic comparative
study. Working with data that are generated by a plethora of procedures in a
very noisy and variable system such as a biological one is, pave the necessity
to adopt different approaches to analyze the phenomena under investigation.
Indeed, Hy-test can be adopted together with the canonical t-test to retrieve
information that would be otherwise missed, as confirmed by the analyses on
real data on breast and kidney cancers we present here.
Accordingly with literature data, the t-test, in comparison with our Hy-test,
increases the number of significant genes retrieved from DEA [208] broadening
the differential gene ontology enrichment. Hy-test is more selective both on
retrieving DE genes and terms of GO, but Hy-test is not only able to narrow
the window of selected genes, focusing the analysis, it is also able to retrieve
specific terms of GO that would be otherwise missing from the subsequent
analyses. This is particular evident in the breast cancer dataset where the
vast majority of DE genes retrieved by Hy-test (85%) are also collected by
t-test, but the enrichment analysis shows only a moderate overlapping (36%),
Tab.5.1 strongly suggesting that Hy-test is indeed able to collect the same core
DE genes, but it is also able to retrieve a different set of genes that points to
functions of biological relevance that would be otherwise missed, as discussed
in detail below. This is also true for the kidney dataset but with less evident
differences. In that, about 80% of DE genes and 91% of enriched terms overlap
between the two tests. However, even in kidney dataset, the Hy-test was able
to pinpoint the “programmed cell death” GO term that would be otherwise
missed, and indeed “programmed cell death” plays a central role in kidney
cancer, as described in detail below.
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5.7.1 Breast cancer

In the case of the real breast cancer profiles analyzed, both t-test and Hy-test
reveal that DE genes are enriched in functions involved in tissue development,
as expected [242, 243, 244, 245, 246, 247, 248, 249, 250, 242], and while only
the t-test approach focuses in signal transduction [251, 252, 253], the Hy-test
only highlights a central role of the regulation of cell cycle in breast cancer, as
strongly supported by literature [254, 255, 256, 257, 258].
In details, the mammary gland is a tissue characterized by a high proliferation
rate, and the developmental programs are prompt to be subverted to promote
cancer progression. In the gland, many cells are extremely polarized, and when
the maintenance of this organization is disrupted by extrinsic or intrinsic fac-
tors, this disruption may act as a promoter of hyperplasia and transformation
[243]. Several studies suggest also that the disruption of the typical apical-basal
polarity may even contribute to the metastatic event [248]. The deregulation
of extracellular matrix proteins and signaling is sufficient to promote breast
cancer development and progression [247]. Signal transduction has a central
role in breast cancer; indeed, breast cancer molecular classification usually fol-
lows the presence or absence of specific hormone and growth factor receptors
[259, 260] with direct implications in diagnosis, prognosis and therapy. Sig-
nal transduction pathways are of course cardinal in the maintenance of cancer
clones and in the progression of the disease, such as the PI3K/Akt/mTOR
pathway [261] and their inhibition has been evaluated for long as a potential
therapeutic approach [262, 263, 264].
Both tissue development and signal transduction have a central role in breast
cancer, but the t-test lacked to retrieve the cell intrinsic cell cycle deregulation
GO terms that has been pinpointed by the Hy-test only. Indeed, cell cycle
deregulation is crucial in breast cancer development and e.g. cell cycle control
machinery is a target of novel therapeutic strategies such as CDK4/6 inhibitors
[254, 255, 256, 257].

5.7.2 Kidney renal clear cell carcinoma

In the case of kidney cancers, the differences between the two approaches
are even more straightforward. Both approaches retrieve an enrichment in
cell signaling in particular in the contest of the immunological microenviron-
ment [265, 266, 267, 268] (and the t-test only add a level in the involvement
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of functions related to kidney development [269]), but Hy-test only focus on
“programmed cell death” which is central in kindey cancer and even in thera-
peutic approaches to the diseases [266].
In details, it is known that the reshape of the metabolism is one of the key
steps that kidney tumor cells must undergo during cancer progression and this
event strongly relies on the cross-talk between the cancer cells and the tumor
microenvironment [265]. In particular, the inflammatory microenvironment is
involved in the development of pre-neoplastic alterations and the development
of kidney cancer [270]. In the growing tumor, it has been reported a role of tu-
mor associated macrophages (TAM) and tumor infiltrating neutrophils [271].
TAMs have a role in tumor progression, but are also an attractive therapeu-
tic target in kidney cancer [272]. For patients with renal clear cell carcinoma
has been even proposed a model based on few immune-related genes that can
predicted the prognosis based on tumor immune microenvironments [273].
Interestingly, FDA recently approved therapies targeting the immunological
checkpoint protein “programmed death 1 (PD-1)” for metastatic kidney can-
cer [266, 274]. Indeed, immunotherapies are expected to become the first line
treatment option in kidney cancer in the near future [275, 276].
Kidney cancer cells must possess a way to work around programmed cell death,
one of the main anticancer mechanism, that lead a precancerous cell to sense
cellular and /or genomic damage and prompt it to commit suicide before the
precancerous injuries can became a functional cancer commitment. Adopting
an oversimplification, the vast majority of programmed cell death programs
are orchestrated by p53 network [277, 278, 279].
The von Hippel-Lindau protein (pVHL) is mutated in the vast majority of
clear cell renal carcinoma, the most common kidney cancer, and it has been
implicated in the control of tumor suppression via the hypoxia inducible factor
(HIF) pathway [280, 281]. the VHL-HIF axis is central in regulating apopto-
sis (the main form of programmed cell death) via several pathways, such as
those mediated by BNIP3 [281]. The lack of pVHL activity protects renal can-
cer cells against mitochondria activated apoptosis [282]. pVHL even directly
transactivate p53 [283] and is directly involved in the control of mitotic fidelity
and in avoiding aneuploidy [284]; it has even reported that p53 and pVHL act
synergistically in the regulation of cell proliferation and apoptosis in cell renal
cell carcinoma [285].
Considering that the programmed cell death subversion plays a central role in
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kidney cancer development, it is intriguing to ascertain that only the Hy-test
lead to retrieve this GO term from the enrichment analysis, strongly suggest-
ing that a dual approach that use both Hy-test and t-test can better describe
the true meaning of a DEA on real data.

5.8 Conclusions

A novel exact statistical test for DEA has been defined and applied on real
gene expression data. The study of differentially expressed genes through
GO-Analysis is a standard procedure in molecular biology. Therefore, the
enriched GO-terms have been identified. Moreover, we have presented a novel
methodology for a more in-depth GO-analysis interpretation by calculating an
association measurement between biological concepts (i.e., GO-terms, “breast
cancer ”, and “kidney cancer”).
Overall the results here presented strongly suggest that the application of
Hy-test together with t-test can be useful to better understand the biological
questions investigated by a DEA approach.



Future Researches

This section focuses on current and future researches strictly related to the
analyzes presented in the present thesis.
The upcoming analyzes depend on empirical experiments that will be carried
out soon (e.g., IP experiments on Human and other species). Meanwhile,
we have already developed a theoretical framework for future analyzes. The
following sections report a brief description of novel statistical models and
algorithms.

Upgrade of ComiR web tool

In Chapter 3, we tested whether including coding region binding sites in ComiR
algorithm improves its performance for predicting microRNA targets. The
analysis focused on the D. melanogaster genome; databases with the cur-
rently available releases of mRNA and microRNA sequences have been used
for ComiR upgrade. As a result, we find that ComiR algorithm trained with
the information related to the coding regions is more efficient in predicting the
microRNA targets, with respect to the algorithm trained with 3’UTR infor-
mation.
On the other hand, we show that 3’UTR based predictions can be seen as
complementary to the coding region based predictions, which suggests that
both predictions, from 3’UTR and coding regions, should be considered in a
comprehensive analysis. Furthermore, we observed that the lists of targets
obtained by analyzing data from one experimental approach only, that is, in-
hibition or immunoprecipitation of AGO1, are not reliable enough to test the
performance of our microRNA target prediction algorithm. Further analysis
will be conducted to investigate the effectiveness of the tool with data from
other species, provided that validated datasets, as obtained from the compar-
ison of RISC proteins inhibition and immunoprecipitation experiments.
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Moreover, in Chapter 4, we have compared miRNA binding sites predicted by
four algorithms (indeed, the comparison of predicted targets is not enough be-
cause different algorithms could predict distinct miRNA binding sites located
on the same mRNA strand). The analysis of SARS-CoV-2 genome shows that
the strongest predictions refer to binding sites consistently predicted by differ-
ent algorithms. For this reason, we believe that the identification of consistent
predicted binding sites could improve ComiR prediction capacity. Therefore,
this information will be included in the ComiR machine learning model, and
its prediction capacity will be tested.
ComiR training set is currently composed of differentially expressed genes from
empirical experiments (as described in Chapter 3). In Chapter 5, we presented
a novel method for differential expression analysis; therefore, the classical ap-
proach for building ComiR training set will be compared with an approach
that integrates the novel statistical test presented in Chapter 5. ComiR predic-
tions will be compared to evaluate the best training and features over different
species. Finally, the best ComiR model will be used for upgrading the ComiR
web tool.

Analysis of miRNA-mRNA bipartite Networks

A bipartite system is a particular type of complex system composed of two
sets of elements, where the elements that belong to different sets are quali-
tatively different from each other. Bipartite systems can be represented by
constructing a bipartite network whose elements of one set only interact with
the other set elements. In the present analysis, nodes correspond to miRNAs
and mRNAs, and links represent their interactions.
We aim to use target prediction algorithms for building a large miRNA-mRNA
bipartite Network. A common strategy for analyzing this kind of networks is
the construction of a projected network [96]; it connects nodes with at least
one neighbor in common. A cluster analysis on the projected network permits
identifying gene groups targeted by the same miRNAs (clustering on gene pro-
jected set) and miRNA groups with similar binding behavior (clustering on
miRNA projected set). Finally, a GO-analysis can characterize miRNA and
gene groups providing a better understanding of miRNA regulatory process.
Projected networks contain several links that come from a random co-occurrence
of neighbors in the original bipartite network. Tumminello et al. [97][98] in-



ANALYSIS OF BIPARTITE NETWORKS 117

troduced a statistical approach to purify the projected network from links that
occur by chance. A family of statistical tests is performed, and a p-value is
associated with each link of the projected network. The significant links can
not be explained in terms of random connectivity, and they compose the sta-
tistically validated projected network (projected SVN).
Let focus on the methodology to construct a projected SVN. Consider a Bipar-
tite System S composed by set A and set B, we want to build the projected
SVN on set A (this procedure is symmetric on set B). Assume that the elements
i and j of set A have Nij = nij neighbors in common. Under the hypothesis
of random connectivity, the probability that i and j have nij neighbors in
common is

Pr(Nij = nij ∣NB,Ni,Nj) =
(
Ni
nij

)(
NB−Ni
Nj−nij)

(
NB
Nj

)
(5.13)

where NB is the number of nodes in the set B, Ni and Nj are the degrees of i
and j respectively.
Frequently, node degrees are very heterogeneous and follow a scale-free dis-
tribution; e.g., the genome of a unicellular organism contains the information
about a small group of protein, whereas a complex organism has a genome that
includes a vast number of proteins. In heterogeneity presence, the calculation
of probability 5.13 is wrongly influenced by the degree of set B nodes. For this
reason, Tumminello proposed to stratify the bipartite system according to the
degree of set B. Each subsystem Sk consists of all the Nk

B set B elements with
a given degree k and the set A elements linked with them. So, the probability
that i and j have Nk

ij = n
k
ij neighbors in common in set Bk is

Pr(Nk
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k
ij ∣N
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k
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(
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)
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where, Nk
B is the number of nodes in the set Bk, Nk

i and Nk
j are the degrees

of i and j in the subsystem Sk respectively.
So we can associate a p-value to the number of neighbors in common Nk

ij = n
k
ij

for each node couple i-j:
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Pr(Nk
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Significant p-values identify the validated links of the projected network related
to the subsystem Sk. The projected SVN of the whole system S is obtained
linking node couples with at least one validated link over all the subsystems.
The unified projected SVN is weighted by associating each link with the num-
ber of subsystems in which the link of interest has been validated.
Of course, this procedure is affected by a problem of multiple comparisons.
Therefore, the p-values have to be corrected using an appropriate threshold.
The number of multiple comparisons could be much higher than NA(NA−1)/2;
indeed, in each subsystem, we have to perform a statistical test for each couple
of nodes of set A that have at least one neighbor in common. So if the degree
of elements if set B is between kBmax and kBmin, the total number of tests is
m ≤ (kBmax − k

B
min)NA(NA − 1)/2.

An alternative approach to solving the heterogeneity problem considers a bi-
ased urn model based on Wallenius distribution [99]. The main difference in
respect to the hypergeometric model is that urn balls have a different proba-
bility of being picked. Wallenius distribution allows to calculate exact p-values
without the expedient of the system stratification, but this approach is costly
from a computational point of view.

MicroRNA-mRNA rewiring network

MicroRNA binding behavior is extremely complex; indeed, many elements in-
fluence molecule binding. Binding score calculation provides an idea of miRNA
binding propensity, but those scores don’t consider how molecules influence
each other. We propose a novel network model for simulating miRNA bind-
ing, taking into account the whole connectivity of the system.
MicroRNA binding depends not only on the accessibility of mRNA binding
sites but also on the total amount of miRNAs and mRNA in the cell. Indeed,
the amount of a single miRNA can influence the binding of the other miRNAs
by acting as a competitor [201] (the transcript amount is quantified through
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miRNA and mRNA expression levels).
Therefore, in our model, molecule amounts represent the initial system con-
dition. Starting with this information, each simulation explores the binding
behavior by considering miRNA binding sites located on mRNAs. Each bound
that occurs during a simulation reduces the total molecule amount. The sim-
ulation ends when the miRNA (or mRNA) amount is all involved in the sim-
ulated bonds.
Our simulation algorithm is based on a network approach conceptually closed
to degree-preserving rewiring [202]; miRNA-mRNA binding can be represented
through a bipartite network in which miRNAs and mRNAs correspond to
nodes, and links represent their interactions. In the network, node degrees
are equal to miRNA and mRNA expression levels. In this way, node degrees
reflect the molecule amounts.
The algorithm is based on the following steps:

1. B miRNAs and B mRNAs are extracted from the transcript amount

2. The two groups extracted in step 1. are randomly matched to form
the candidate links that could be included in the network. Each link is
associated with its binding score.

3. The links selected in step 2. are randomly extracted with repetition (the
selection probability is proportional to the binding score). The links that
have been extracted in this step are added to the network.

4. Node degrees are updated by subtracting miRNA and mRNA amounts
involved in the links selected in step 3.

5. The algorithm stops if miRNA (or mRNA) amounts are all allocated in
the weighted links. Otherwise, go to step 1.

We have already implemented the rewiring network algorithm on the R soft-
ware environment. Preliminary results show a good computational efficiency
on large networks. Moreover, the rewiring network model allows to evaluate
the effects of in silico mutations on miRNA binding.





Conclusions

The present thesis offers a view of miRNA binding prediction methodologies.
Among them, we propose ComiR algorithm as a reliable tool for miRNA target
prediction, and an improvement of its prediction capacity is deeply discussed.
The ComiR upgrade has been strongly supported by the results presented in
Chapter 2. In this work, we analyzed the overexpressed genes in the anti-
AGO2 and anti-GW182 RIP samples vs the respective FT samples, and we
revealed different features characterizing the enriched genes in the two data
sets. In particular, both AGO2/GW182-associated mRNAs are characterized
by miRNA binding sites located on the coding regions. Indeed, we found
that coding region information significantly improves the prediction capacity
of mRNA targets. AGO2-associated mRNAs are characterized by a high num-
ber of binding sites in the coding region for top expressed miRNAs and by a
high density of binding sites in the 3’UTR region. On the other hand, GW182-
associated mRNAs are characterized by long coding regions. Therefore, those
proteins play different roles in the RISC machinery activity.
Starting from those results, we have upgraded the ComiR algorithm by consid-
ering coding region information as described in Chapter 3. Our results indicate
that binding sites predicted in coding regions are valuable information to effi-
ciently predict the functional targets of a set of miRNAs by their integration
in the ComiR algorithm framework.
In Chapter 4, the novel ComiR version has been successfully used to pre-
dict human miRNAs that potentially bind the SARS-CoV-2 genome. Our
results support the idea that five predicted miRNAs interact with SARS-CoV-
2 strands. Moreover, a sequencing analysis shows that SARS-CoV-2 strands
are strongly stable in the regions where miRNA binding sites are located.
We propose the involvement of miR-1207-5p family and CSF1 gene in the
progression of COVID-19 disease, and as possible targets for COVID-19 treat-
ment. Further experimental validation is still due to confirm the binding of
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miR-1207-5p into the viral genome and the role of SARS-CoV-2 in the regu-
lation of CSF1 expression.
Comparing different miRNA target prediction algorithms on SARS-CoV-2
highlights the high capacity of the novel ComiR algorithm to find specific
miRNA binding sites. Although those results strongly support the novel
ComiR version as a reliable tool, we currently aim at finding the best way
to combine the two scores obtained by training the SVM with the 3’UTR
and the coding region separately. Further analysis will be conducted to an-
alyze data from other species by using positive and negative sets of miRNA
targets obtained by comparing results from both RISC proteins inhibition and
immunoprecipitation. Therefore, upcoming experiments will provide novel fea-
tures for developing ComiR machine learning models.
Another aspect of ComiR algorithm that will be investigated in our future
research is the training set construction; the novel statistical test presented in
Chapter 5, named Hy-test, could be used to identify DE genes that compose
the ComiR training set. Hy-test can be adopted together with the canonical
t-test to retrieve information that would be otherwise missed, as confirmed
by the analyses on real data on breast and kidney cancer tissues presented in
Chapter 5. Hy-test is more selective on retrieving DE genes, but Hy-test is
not only able to narrow the whole window of DE genes. The results suggest
that the application of Hy-test together with t-test can be useful for clearer
identification of DE genes.
An overall view of the results presented in this thesis strongly supports an im-
provement of ComiR web tool. In particular, coding region information has a
high miRNA target prediction capacity and significantly improves the perfor-
mance of ComiR algorithm. Moreover, binding sites coherently predicted by
different algorithms appear highly specific and could produce an additional im-
provement of ComiR prediction capacity. Finally, we currently aim to extend
those results to other species by performing new experiments.
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GO-Analysis: Gene Ontology enrichment analysis
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RIP: RNA-binding protein immunoprecipitation
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RNAi: RNA interference
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RT: Reverse transcription

SARS-Cov-2: Severe acute respiratory syndrome 2

SVM: Support vector machine

SVN: Statistically validated network

WS: Weighed-sum

cDNA: Complementary DNA

mRNA: Messenger RNA

miRNA: microRNA



Glossary

AGO (Argonaute) Protein fam-
ily that is an essential com-
ponent of the RISC. Arg-
onaute family includes AGO1
and AGO2 proteins.

AUC (Area under the ROC
curve) Index used to compare
ROC curves.

Antibody - about IP experi-
ments - molecule that specifi-
cally binds to a particular pro-
tein to be immunoprecipitated.

Binding site (BS) Region on a
molecule that specifically binds
to another molecule.

CSF1 Gene that encodes a cy-
tokine differentiation, and func-
tion of macrophages.

Coding region (CDS) Portion
of a gene’s DNA or RNA that
codes for protein synthesis.

Cross validation (CV) Tech-
niques for assessing how the
results of a machine learning

model depends on the empirical
data used for training.

DeLong’s test Statistical test
used for comparing AUC values.

Differential expression anal-
ysis (DEA) Analysis of expres-
sion profiles over two groups
of samples to identify over-
expressed (enriched) and under-
expressed (underrepresented)
genes.

Enrichment 1. In differen-
tial expression analysis; a signif-
icant increased presence or ex-
pression of a given RNA. En-
riched is often used as a syn-
onym for over-expressed. 2. In
GO-analysis: Identification of a
group of genes that enriches a
previous GO classification.

Flow-through (FT) RNA ex-
tracted from the residual frac-
tion of cells lysate, after IP ex-
periment.

GW182 (TNRC6) Protein that
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is part of the RISC.

Gene ontology (GO) Bioin-
formatics project that classify
genes in terms that represent
gene products.

High throughput Techniques
that include genome sequenc-
ing, transcriptomics, and other
genome-related microarray mea-
surements such as chip-on-chip.
The term high throughput indi-
cates the velocity of data pro-
cessing and the high quality of
this data.

Immunoprecipitation (IP)
Technique of precipitating a pro-
tein antigen out of solution us-
ing an antibody that specifically
binds to that particular protein.
This process can be used to iso-
late a particular protein and its
binding molecules (e.g., AGO1
and binding mRNAs) from a
sample.

In Silico Biological experiment
performed on computer or via
computer simulation.

Input sample (IN) RNA ex-
tracted from whole cells lysate.

Macrophages A large cell, part
of the body’s immune system,
that can ingest pathogenic mi-
croorganisms such as bacteria
and virus.

Messenger RNA (mRNA)
Molecule responsible for carry-
ing the genetic code transcribed
from DNA to specialized sites
within the cell (known as ribo-
somes), where the information is
translated into protein composi-
tion.

MicroRNA (miRNA) A small
RNA molecule that is encoded
by a cell and can ‘silence’ the
expression of a particular target
gene within the cell. miRNAs
bind to target messenger RNA
(mRNA) molecules and suppress
translation of the mRNA into
protein.

Microarrays Technique used to
quantify gene expression by de-
termining the total output of
messenger RNAs.

Nucleotide Primary compo-
nent of genetic material. DNA
and RNA are made up of long
chains of nucleotides. Specif-
ically, a nucleotide is an or-
ganic compound consisting of
a nitrogen-containing purine or
pyrimidine base linked to a sugar
(ribose or deoxyribose) and a
phosphate group.

P-bodies (Processing bodies)
Protein granules primarily com-
posed of translationally re-
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pressed mRNAs and proteins
related to mRNA decay. Their
formation takes place during the
post-transcriptional regulation
related to miRNAs.

RIP-chip (RNA immunopre-
cipitation chip) Technique which
combines RNA immunoprecipi-
tation with a microarray expres-
sion measurement.

RISC (RNA-induced silencing
complex) Protein complex that
recognize complementary mes-
senger RNAs by incorporating a
miRNA strand. It has a central
role in miRNA regulation activ-
ity.

RNA (ribonucleic acid) Com-
plex organic compound in living
cells that is concerned with pro-
tein synthesis. In some viruses,
RNA is also the hereditary ma-
terial. Most RNA is synthe-
sized in the nucleus and then dis-
tributed to various parts of the
cytoplasm. An RNA molecule
consists of a long chain of nu-
cleotides.

ROC curveGraphical plot that
illustrates the diagnostic abil-
ity of a classifier. Classification
ability is evaluated by varying
a threshold on the classification
score.

Spillover Event that occurs
when a pathogen (e.g., virus)
comes into contact with a novel
host population.

Strand A single long chain of
nucleotides.

Support vector machine
(SVM) Supervised learning
model used for classification (in
this thesis, SVM is used to clas-
sify miRNA targets and non-
targets).

Three prime untranslated
region (3′-UTR) Section of
messenger RNA (mRNA) that
immediately follows the transla-
tion termination codon. In this
region is located most of the
miRNA binding sites.

Training set Empirical infor-
mation used for training a ma-
chine learning model.

Transcription The process in
living cells in which the genetic
information of DNA is trans-
ferred to a molecule of messenger
RNA (mRNA) as the first step
in protein synthesis.

Transcriptome The full com-
plement of RNA transcripts of
the genes of a cell or organism.
It includes messenger RNAs and
non-coding RNA (e.g., miR-
NAs).
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Underrepresented In differ-
ential expression analysis; syn-
onym for under-expressed.

Wilcoxon test Statistical test
used for comparing Empirical
cumulative function distribu-
tions (ECFD).
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ceived the methodology. Walter Arancio2 elaborated on biological as-
pects. Claudia Coronnello provided the gene expression data and super-
vised the analysis.

The whole thesis represent the synthesis of Giorgio Bertolazzi’s Ph.D. train-
ing and research supervised by Michele Tumminello, Claudia Coronnello and
Panayiotis V. Benos.

7 Institute for Biomedical Research and Innovation, National Research Council, Palermo,
Italy
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