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Mechanism of decoherence-free coupling between giant atoms
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Giant atoms are a new paradigm of quantum optics going beyond the usual local coupling. Building on this,
a new type of decoherence-free (DF) many-body Hamiltonians was shown in a broadband waveguide. Here
these are incorporated in a general framework (not relying on master equations) and contrasted to dispersive DF
Hamiltonians with normal atoms: the two schemes are shown to correspond to qualitatively different ways to
match the same general condition for suppressing decoherence. Next, we map the giant atoms dynamics into a
cascaded collision model (CM), providing an intuitive interpretation of the connection between nontrivial DF
Hamiltonians and coupling points topology. The braided configuration is shown to implement a scheme where a
shuttling system subject to periodic phase kicks mediates a DF coupling between the atoms. From the viewpoint
of CMs theory, this shows a collision model where ancillas effectively implement a dissipationless, maximally
entangling two-qubit gate on the system.
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I. INTRODUCTION

Engineering decoherence-free (DF) Hamiltonians is a ma-
jor task in the field of quantum technologies and many-body
physics, with special regard to quantum optics implementa-
tions [1–7]. In particular, DF mediated Hamiltonians describe
coherent interactions, typically between (pseudo) atoms or
qubits which crosstalk via a quantum bus (usually some
photonic environment) that yet does not introduce decoher-
ence [8]. In terms of the Lindblad master equation [9], this
implies realizing a net second-order Hamiltonian that couple
the atoms to one another, getting rid at once of the (usually
present) dissipator term. Thereby one is left with an effective
unitary dynamics of the atoms, where the environmental de-
grees of freedom are eliminated.

One of the typical strategies to achieve DF Hamiltonians
is adiabatic elimination in the dispersive regime. In cavity
QED, it is typically obtained by coupling a set of atoms far
off-resonantly to cavity modes [10–12]. This gives rise to a
separation of timescales such that incoherent second-order
interactions average to zero, while coherent ones result in an
effective Hamiltonian. An analogous working principle under-
pins DF Hamiltonians in structured photonic lattices [5,6,13],
which are seeded by tuning the atomic frequency within a
photonic band gap entailing an off-resonant interaction with
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all the lattice modes (this results in short-range, potentially
tunable, interatomic couplings).

Recently, a new class of DF Hamiltonians was pre-
dicted [14] and experimentally observed [15], which employs
giant atoms [16] in broadband waveguides. Giant atoms are
a new playground of quantum optics [17–23], where the
usual pointlike model of an emitter (normal atom) breaks
down. In contrast, as sketched in Fig. 1, a giant atom (typ-
ically an artificial two-level system) couples to the field at
a discrete set of distinct coupling points (an alternative im-
plementation is an atom in front of a mirror [24–26]). By
appropriate engineering, the distance between coupling points
can be made several wavelengths long. This introduces tun-
able phase shifts, yielding interference effects unattainable
with normal atoms. Notably, these can be harnessed in par-
ticular to suppress dissipative interactions, giving rise to DF
Hamiltonians [14,19]. As a distinctive feature of giant atoms,
such Hamiltonians can happen to be trivial (i.e., identically
zero or with null coupling terms) depending on the coupling
points topology. For two giant atoms, for instance, only one
out of the three possible topologies leads to nontrivial DF
Hamiltonians [14,15].

So far occurrence of giant atoms DF Hamiltonians was
mostly investigated through the explicit master equation of the
atoms [14] derived via the SLH formalism [27], in turn related
to the input-output theory for waveguide-QED setups [28].
This master equation is a rather involved object featuring
both local and nonlocal dissipative terms, based on which the
essential mechanism behind emergence of DF Hamiltonians
is not straightforwardly interpreted. In the case of the afore-
mentioned DF dispersive Hamiltonians, however, a derivation
solely based on average Hamiltonian theory [29–33] (thus
not relying on master equations) is possible [12]. One thus
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FIG. 1. Two giant atoms, each coupled to a waveguide at two
coupling points. The dynamics is mapped into cascaded subcolli-
sions, each involving one field time bin and one coupling point.

naturally asks whether a similar picture can be defined for
giant atoms and used to study conditions for occurrence of
DF Hamiltonians.

With the above motivations, in this work we consider a
general framework for deriving DF Hamiltonians in the spirit
of average Hamiltonian theory. The main condition (“DF con-
dition”) is to arrange for an interaction Hamiltonian averaging
to zero over a coarse-grained timescale (in the interaction
picture). Dispersive schemes and giant atoms in a broadband
waveguide are compared and shown to be different ways
to match the DF condition. This occurs through destructive
interference of a continuum of phase factors defining the
interaction Hamiltonian in the former case and only a dis-
crete, possibly small, number in the latter. We next focus
on giant atoms schemes, reviewing their general description
through a collision-model picture and connecting it to the DF-
Hamiltonians framework. It is then shown that each collective
collision with all the atoms can be decomposed as a cascade
of ordered subcollisions (see Fig. 1), each involving a single
coupling point. Topologies yielding a zero effective Hamilto-
nian (such as serial and nested configurations) correspond to
subcollisions combined with their time-reversed analogs so as
to produce a zero net evolution. Instead, nonzero DF Hamil-
tonians are seeded for topologies (such as the braided) that
feature combinations of subcollisions and their time-reversed
versions not leading to an overall identity evolution.

Moreover, we show that the cascaded-collision picture
allows us to map giant atoms dynamics into a mediator (em-
bodied by a field time bin) shuttling between the atoms and
subject to periodic phase kicks. The equivalent quantum cir-
cuit, a sequence of parametric iSWAP and local phase gates,
is presented.

This paper starts in Sec. II by developing a general frame-
work for occurrence of DF Hamiltonians based on the Magnus
expansion of the joint propagator in each time interval. We
next review in Sec. III how the necessary requirements for
having a DF Hamiltonian are fulfilled in the case of stan-
dard dispersive Hamiltonians: this provides an illustration
of the theory of Sec. II in a familiar setup with which
DF Hamiltonians via giant atoms (our main focus) will be
profitably compared. In Sec. IV giants atoms coupled to a
broadband waveguide are introduced, showing how they pro-
vide a different way to match the DF condition compared
to dispersive schemes. In Sec. V we review how the joint
dynamics of giant atoms and field can be described through an
average-Hamiltonian approach, decomposing into a sequence

of elementary unitaries in each of which the atoms jointly col-
lide with a field time bin. Section VI shows how each collision
in turn can be decomposed into cascaded subcollisions, one
for each coupling point. This highlights the physical origin
of the effective Hamiltonian so as to link it to the coupling
points topology, a task carried out in Sec. VII. In Sec. VIII we
show that the giant-atoms setup can be seen as an implemen-
tation of a scheme where a shuttling qubit, subject to periodic
phase gates, mediates an indirect DF coupling between the
atoms, and the equivalent quantum circuit is given. The theory
developed in Secs. VI and VII is extended to a bidirectional
(generally chiral) waveguide in Sec. IX, and to more than two
coupling points in Sec. X. Finally, we draw our conclusions in
Sec. XI.

II. GENERAL SCHEME FOR DECOHERENCE-FREE
HAMILTONIANS

Consider an unspecified quantum system S coupled to a
quantum environment E . The Hamiltonian reads

H = HS + HE + V, (1)

with HS (HE ) the free Hamiltonian of S (E ) and V their
interaction Hamiltonian. In the interaction picture with respect
to H0 = HS + HE , the joint state σt evolves as

σ̇t = −i [Vt , σt ], (2)

with Vt = eiH0t V e−iH0t . Thus at time t ,

σt = Ut σ0 U†
t , (3)

with the propagator Ut given by Ut = T exp[−i
∫ t

t0
dsV (s)],

where T is the usual time ordering operator.
Consider now a mesh of the time axis defined by tn = n�t

with n = 0, 1, . . . and �t the time step, in terms of which the
propagator can be decomposed as

Ut =
[t/�t]∏
n=1

Un, with Un = T e−i
∫ tn

tn−1
dsV (s)

. (4)

Now, if �t is short enough compared to the characteristic
time of interaction, applying the Magnus expansion [34] each
unitary Un can be approximated to second order as

Un � 1 − i (V n + Hn) �t − 1
2V

2
n�t2, (5)

with 1 the identity operator and

V n = 1

�t

∫ tn

tn−1

dsVs, (6)

Hn = − i

2�t

∫ tn

tn−1

ds
∫ s

tn−1

ds′ [Vs,Vs′ ]. (7)

The averaged interaction V n and Hamiltonian Hn, respec-
tively, of first and second order in the coupling strength, are
the two central quantities to consider for implementing DF
Hamiltonians. In sketchy terms, one seeks to fulfill V n = 0
(henceforth referred to as the “DF condition”) in a way that Hn

yields (upon partial trace) a dissipationless effective Hamilto-
nian of S, Heff . This is formalized in detail in the following.
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Let σn be the joint S-E state at time tn and ρn = TrE {σn}
the reduced state of the system at the same time. We will con-
sider a coarse-grained timescale defined by �t short enough
that (5) holds. In the corresponding continuous-time limit,
tn → t, σn → σt , �σn/�t → σ̇ , where we set �σn = σn −
σn−1 (analogously for ρn).

We also define

〈Hn〉ρ0 = TrS{Hn ρ0 ⊗ 1E }, (8)

Heff = TrE {Hn 1S ⊗ ρE }, (9)

with TrS(E ){} the partial trace over S (E ). These are effective
Hamiltonians on E and S, respectively. When S is multipar-
tite, in particular, Heff will generally feature mutual couplings
between subsystems of S.

The following property holds.
Property. Let the system and environment be initially in the

uncorrelated state ρ0 ⊗ ρE with ρ0 (ρE ) the initial state of the
system (environment). If

V n = 0 (10)

in each time interval [tn−1, tn], and

[Hn, 1S ⊗ ρE ] = 0, (11)

then in the continuous-time limit

ρ̇ = −i [Heff , ρ]. (12)

This embodies a rather general working principle for re-
alizing DF effective Hamiltonians: conditions (10) and (11)
entail a unitary reduced dynamics of S generated by the ef-
fective Hamiltonian Heff . Among (10) and (11), the former
(DF condition) is the most relevant: it means that the interac-
tion Hamiltonian Vt averages to zero over the coarse-grained
timescale �t .

The above property is easily shown (see Appendix A),
from which in particular it turns out that σn = ρn ⊗ ρE ,
namely E remains in its initial state, uncorrelated with S.

A typical case where (11) occurs is when Hn acts trivially
on E , then (11) is matched for any ρE and Hn ≡ Heff (this
happens with giant atoms as we will see). Another instance is
when S is a two-level system and E is a harmonic oscillator
with Hn ∼σz b†b (dispersive regime of the Jaynes-Cummings
model [35]; see next section). Then (11) holds when ρE is any
mixture of Fock states.

Note that the above framework, alongside related ap-
proaches [31,32,36], bypasses any direct use of master
equations or the Born-Markov approximation, being instead
mostly based on propagators and Hamiltonians.

III. DISPERSIVE HAMILTONIANS

A longstanding way for matching condition (10) in quan-
tum optics is coupling atoms to a single- or multimode
photonic environment dispersively, i.e., off-resonantly. A stan-
dard model to illustrate this is a set of identical two-level
atoms of frequency ω0 and ground (excited) state |g〉 (|e〉)
weakly coupled to a bosonic field. The atoms play the role
of system S and the field of environment E . Their free Hamil-

tonians read

HS = ω0

∑
j

σ
†
j σ j, HE =

∑
k

ωk b†
kbk, (13)

while the interaction Hamiltonian in the rotating-wave ap-
proximation is given by

V =
∑

j,k

g jk σ jb
†
k + H.c., (14)

with coupling strength gjk generally complex, σ j = |g〉 j〈e|
and bk bosonic ladder operators of the field (here k labels
the field normal modes and in general could comprise both
discrete and continuous indexes).

In the interaction picture, V turns into

Vt =
∑

j

∑
k

g jk σ jb
†
k ei�kt + H.c., (15)

with �k = ωk − ω0 the detuning between mode k and the
atomic transition frequency ω0.

Consider now the off-resonance regime such that the detun-
ings are all much larger than the typical order of magnitude of
the interaction, which is generally expressed as mink|�k| 

max jk|g jk|. Then one can choose a coarse-grained timescale
�t such that

max
k

|�k|−1 � �t � min
jk

|g jk|−1. (16)

Accordingly, ∫ tn

tn−1

dt e±i�kt � 0 for any k, (17)

hence (15) averages to zero in each time interval [tn−1, tn] of
length �t so as to fulfill the DF condition (10). The Hamilto-
nian term (7) is given by

Hn = −
∑
j, j′

∑
k

g j,kg∗
j′,k

2�k
σ

†
j′σ j + H.c.

+
∑

j

′∑
k,k′

g j,k g∗
j,k′

�k
σ jzb

†
kbk′ ,

with the primed sum running over all k, k′ such that ωk = ωk′ .
For a single atom and only one field mode, this reduces to
the interaction Hamiltonian ∼σzb†b arising in the dispersive
regime of the Jaynes-Cummings model [37].

Choosing ρE = |0〉〈0|, with |0〉 the field vacuum state,
condition (11) is fulfilled, hence we get the DF effective
Hamiltonian [cf. Eq. (9)]

Heff = −
∑
j, j′

∑
k

g j,kg∗
j′,k

2�k
σ

†
j′σ j + H.c. (18)

featuring atom-atom couplings.

IV. GIANT ATOMS IN A BROADBAND WAVEGUIDE

A standard way to realize the scheme in the previous sec-
tion is to couple the atoms to a photonic lattice and tune ω0 far
from any band (see Fig. 2). The atoms then interact with the
photonic environment far off-resonantly, which results in the
separation of timescales (16).

043184-3



CAROLLO, CILLUFFO, AND CICCARELLO PHYSICAL REVIEW RESEARCH 2, 043184 (2020)

FIG. 2. Frequency regimes for realizing DF Hamiltonians. The
photonic environment typically features frequency bands separated
by band gaps. The dashed line marks the atomic frequency ω0, which
couples resonantly with a bandwidth of modes (in red) of the order
of the atom-field coupling rate. Dispersive schemes (left panel) work
off-resonance by tuning atoms far off-resonance from lattice bands.
Instead, DF Hamiltonians with giant atoms (on the right) operate well
within a photonic band, which can thus be approximated as infinite.

Instead, decoherence-free Hamiltonians via giant atoms
work in the regime in which the atomic frequency ω0 is well
within a photonic band which can thus be approximated as
infinite (see Fig. 2). This is possible due to nonlocal coupling
(the hallmark of giant atoms) as will become clear later. Thus
consider a set of giant two-level atoms weakly coupled to a
one-dimensional waveguide [38–40] with ω0 inside a band of
the waveguide field. The free atomic Hamiltonians of S and
E are still given by Eq. (13), where (compared to the general
case in the previous section) k is now intended as the wave
vector. The jth atom is coupled to the waveguide at N j distinct
coupling points [see Fig. 3(a)], the coordinate of each being
x j� with � = 1, . . . ,N j (such that x j1 < x j2 < · · · ). Accord-
ingly, the interaction Hamiltonian in the interaction picture
now reads

Vt =
∑

j,�

∑
k

g j�k σ jb
†
kei�kt + H.c., (19)

with g j�k the coupling strength to mode k of the �th coupling
point of atom j. Unlike the previous section, resonant modes
k � ±k0 (with ωk0 = ω0) will now dominate, thus (17) does
not hold.

The coupling strengths more explicitly read gj�k =
gk e−ikx j� , where taking advantage of weak coupling we can
approximate gk � gk0 (which thus become k independent).
Accordingly, we can write

g j�k = gk0 e−ik0x j�e−i(k−k0 )x j� , (20)

where (for the sake of argument) we are assuming for now a
unidirectional field. Plugging into Vt , we get

Vt = gk0

∑
j,�

e−iϕ j�σ j

∑
k

e−i(�kt−kx j� )b†
k + H.c., (21)

FIG. 3. Giant atoms coupled to a waveguide. (a) Instance with
two atoms (1 and 2) having N1 = 2 and N2 = 3 coupling points,
each of coordinate x j� with x j1 < x j2 < · · · . (b) For each coupling
point ν = 1, . . . ,N (ν growing from left to right) we define an
atomic operator Sν [cf. Eq. (27)] as the σ j of the corresponding
atom times the coupling-point phase factor e−iϕ j� . For example,
S1 = σ1e−iϕ11 , S4 = σ2e−iϕ22 with ϕ j� = k0x j�. Note that Sν generally
does not commute with S†

ν′ 
=ν
. Atomic operators S′

ν are defined anal-
ogously, except that the phase changes sign, ϕ j� → −ϕ j�.

where we defined the coupling point phases

ϕ j� = k0 x j� (22)

and performed the variable change k → k − k0 (wave vec-
tor measured from k0). Consistently with the weak-coupling
regime, we can linearize the photonic dispersion law around
the atomic frequency as ωk � ω0 + vk with v the photon
velocity. Using v, the coupling points coordinates can be
expressed in the time domain as τ j� = x j�/v. Thereby, (21)
becomes

Vt = gk0

∑
j,�

e−iϕ j�σ j

∑
k

e−iωk (t−τ j� ) b†
k + H.c. (23)

Averaging (23) over a time interval [tn−1, tn] yields

V n = gk0

∑
j

(∑
�

e−iϕ j�

)
σ j

∫ tn

tn−1

ds
∑

k

e−iωk (s−τ j� ) b†
k + H.c.

(24)
(we have also split the sum over j and �). Note that τ j′�′ − τ j�

is the time delay taken by light to travel from the �th coupling
point of atom j to the �′th coupling point of j′. If all these
time delays are negligible compared to �t , then (24) can be
approximated as

V n � gk0

∑
j

(∑
�

e−iϕ j�

)
σ j

∫ tn

tn−1

ds
∑

k

e−iωk s b†
k + H.c.

(25)
Now the key point is that each atomic operator σ j comes
with a prefactor

∑
� eiϕ j� , which—due to nonlocal coupling—

can vanish for all atoms at the same time. This occurs
when the coupling point phases are adjusted so as to match
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the condition

N j∑
�=1

e−iϕ j� = 0 for any j, (26)

which is the DF condition (10) for giant atoms. Note that this
cannot be satisfied by normal atoms: each atom must have at
least two coupling points (N j � 2).

It is interesting to compare (26) with (17). Each can be seen
as a destructive interference condition, involving a continuum
of phase factors in the dispersive scheme but only a discrete,
possibly small, number in the scheme with giant atoms.

V. GIANT ATOMS DYNAMICS: AVERAGE-HAMILTONIAN
DESCRIPTION

The previous section showed how the DF condition V n = 0
is realized with giant atoms in comparison with off-resonance
schemes. When it comes to giant atoms, depending on the
topology of coupling points, the DF condition can result in a
vanishing (thus trivial) Heff [41]. Clarifying the requisites for
obtaining a nontrivial effective Hamiltonian, and especially
the related physical interpretation, is a major goal of this
work. Prior to this, however, we reformulate the microscopic
model with giant atoms in terms of time mode operators of the
field (generalizing at once to a bidirectional, generally chiral,
waveguide), this being the theoretical basis for the mapping
of the dynamics into a cascaded collision model that will be
discussed in the next sections.

A. DF condition

To begin with, as shown in Fig. 3(b), it is convenient to in-
troduce a single index ν = 1, . . . ,N labeling all the coupling
points from left to right, where N = ∏

j N j is the total num-
ber of coupling points. For each coupling point so indexed, we
define atomic operators depending on the corresponding pair
( j, �) as

Sν = σ j e−iϕ j� , S′
ν = σ j eiϕ j� . (27)

For instance, in the case of Fig. 3, S3 = σ1e−iϕ12 and S′
3 =

σ1eiϕ12 with ϕ12 = k0x12 [see Eq. (22)]. Note that Sν generally
does not commute with S†

ν ′ 
=ν (e.g., in Fig. 3, [S2, S†
5] 
= 0).

Next, we come back to (23) and extend it to a bidirec-
tional waveguide using the newly introduced operators as (see
Ref. [42] for more details)

Vt = gk0

∑
ν

Sν

∑
k

e−iωk (t−τν ) b†
k

+ g−k0

∑
ν

S′
ν

∑
k

eiωk (t+τν ) b′†
k + H.c., (28)

with ladder operators bk (b′
k) now corresponding to right-

going (left-going) modes [in the first (second) sum k is
measured from k0 (−k0)].

In the limit in which the field becomes a continuum of
modes, Vt can be expressed in the form [42]

Vt = √
γ

∑
ν

Sν b†
t−τν

+
√

γ ′
∑

ν

S′
ν b′†

t+τν
+ H.c., (29)

with γ = g2
k0
/v and γ ′ = g2

−k0
/v (which we allow to be

generally different). Here bt are right-going time modes ful-
filling [bt , b†

t ′ ] = δ(t − t ′), [bt , bt ′ ] = [b†
t , b†

t ′ ] = 0. Likewise,
b′

t define left-going modes with analogous commutation rules.
Before proceeding further, recalling Eq. (27), it is convenient
to define the collective atomic operators

S =
∑

ν

Sν =
∑

j

(∑
�

e−iϕ j�

)
σ j, (30)

S′ =
∑

ν

S′
ν =

∑
j

(∑
�

eiϕ j�

)
σ j . (31)

The regime of negligible time delays is defined by τN −
τ1 � γ −1, γ ′−1, allowing us to coarse grain the dynamics
over a characteristic timescale �t such that

τN − τ1 � �t � γ −1, γ ′−1
. (32)

In this regime it can be shown [42] that (6) and (7) reduce to

V n = 1√
�t

(
√

γ S b†
n +

√
γ ′ S′ b′†

n + H.c.), (33)

Hn = i

2

∑
ν>ν ′

(γ S†
ν ′Sν + γ ′S′†

νS′
ν ′ − H.c.), (34)

where

bn = 1√
�t

∫ tn

tn−1

dt bt , b′
n = 1√

�t

∫ tn

tn−1

dt b′
t . (35)

Equations (35) define a discrete set of ladder operators of the
environment fulfilling bosonic commutation rules [bn, b†

n′ ] =
δn,n′ , [bn, bn′ ] = [b†

n, b†
n′ ] = 0 (and likewise for b′

n), as is
easily checked using the commutation rules of time-mode
operators bt and b′

t .
Based on (33), the DF condition [cf. Eq. (10)] for a bidirec-

tional waveguide in terms of collective atomic operators (30)
and (31) simply reads

S = S′ = 0. (36)

This is equivalent to (26) [S = 0 ⇔ S′ = 0 since if Eq. (26) is
matched so is the analogous equation for ϕ j� → −ϕ j�].

B. Effective Hamiltonian

When V n = 0, atoms will evolve unitarily with effective
Hamiltonian [recall Eq. (9)] Hn = Heff ⊗ 1 (Hn acts trivially
on the field). Henceforth, we will omit the identity operator.

The effective Hamiltonian Heff = Hn can be written more
explicitly as [cf. Eqs. (27) and (34)]

Heff = i

2

∑
ν>ν ′

(γ ei(ϕ j′�′ −ϕ j� )σ
†
j′σ j + γ ′ ei(ϕ j′�′ −ϕ j� )σ

†
j σ j′ − H.c.),

(37)

where ( j, �) are understood as the pair of indexes correspond-
ing to ν [and likewise ( j′, �′) with respect to ν ′]. This in turn
can be expressed in the compact form

Heff =
∑

j j′
Jj j′ σ

†
j σ j′ + H.c., (38)
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FIG. 4. Coupling point topologies of two giant atoms each with
two coupling points (in a unidirectional waveguide) and correspond-
ing sequences of cascaded subcollisions. (a) and (b) Serial topology
and corresponding sequence of Sν [cf. Eq. (27)]: S1 = σ1, S2 =
−σ1, S3 = σ2, S4 = −σ2. (c) and (d) Nested topology. (e) and (f)
Braided topology. The phase k0xν of each coupling point is shown in
(a), (c), and (e). Each subcollision is described by the unitary e−iVnν�t

with Vnν given by Eq. (44). In (f) we absorbed a phase factor e−iπ/2

in the definition of σ2.

with

Jj j′ =
∑

ν j′�′ >ν j�

[
γ + γ ′

2
sin(ϕ j′�′ − ϕ j�)

+ i
γ − γ ′

2
cos (ϕ j′�′ − ϕ j�)

]
, (39)

and where ν j� is the (previously introduced) discrete map
returning the coupling point index for each pair ( j, �). Note
that for isotropic coupling (γ = γ ′), each Jj j′ (for given j and
j′) reduces to a sum of sin functions, where the argument of
each sine is the phase shift associated with a pair of coupling
points (one of atom j one of j′). Alternatively, Jj j′ can be
expressed by separating the right- and left-going contributions
as

Jj j′ = γ Kj j′ + γ ′K∗
j j′ , (40)

with

Kj j′ = 1

2

∑
ν j′�′ >ν j�

ei(ϕ j�−ϕ j′�′ + π
2 ). (41)

The issue is now raised as to whether or not Heff 
= 0
when decoherence is inhibited [condition (26)]. It turns out
that there generally exist patterns of coupling points such that
Heff = 0 and patterns for which Heff 
= 0, where the former
yield a trivial dynamics (the system just does not evolve) and
are thus unwanted. The best instance for illustrating this is
a pair of giant atoms 1 and 2, such that N1 = N2 = 2, with
equally spaced coupling points

k0xν = (ν − 1)ϕ with ν = 1, 2, 3, 4, (42)

the field being unidirectional (γ ′ = 0). Three different types
of patterns are then possible: serial, nested, and braided [see

nn+1n+2n+3 n−1 n−2 n−3

nn−1n−2n−3 n+3n+1 n+2

γ

γ

Un

FIG. 5. Collisional picture of the joint dynamics of giant atoms
and field. The field is decomposed into noninteracting time bins, each
generally corresponding to the pair of harmonic oscillators (bn, b′

n).
At step n (time interval [tn−1, tn]) the nth time bin collides with all
the atoms according to coupling Hamiltonian V n [cf. Eq. (33)]. The
atoms at the same time are subject to an internal coherent dynamics
described by Hamiltonian Hn ≡ Heff [cf. Eq. (34)]. Both Hn and V n

are encompassed in the pairwise collision unitary Un [cf. Eqs. (4)
and (5)]. In the unidirectional case γ ′ = 0, only right-going time bins
bn are to be considered.

Figs. 4(a), 4(c) and 4(e)]. For the serial and nested topology,
we choose ϕ = π , while in the braided case we take ϕ = π/2.
Each of these settings ensures that there is (2n+1)π -phase
shift between the two coupling points of each giant atom, thus
matching the DF condition [recall Eq. (26)]. Using (38), in the
serial and nested topologies we get Heff = 0, while the braided
yields [14]

Heff = γ (σ1σ
†
2 + σ

†
1 σ2) (43)

(we absorbed a phase factor e−iπ/2 in the definition of σ2).
Analogous conclusions hold for isotropic coupling (γ ′ = γ =

/2), in which case (43) is generalized by replacing γ with 
.

Before concluding this section, we recall that, as discussed
in Ref. [42], based on Eqs. (4), (5), (33), and (34) one can
effectively see the joint dynamics as a collision model [43–47]
(see Fig. 5). According to this (we first consider the unidirec-
tional case γ ′ = 0), the field is decomposed into a discrete
stream of right-going time bins, each being a bosonic mode
with ladder operator bn defined by Eq. (35). During the time
interval [tn−1, tn], the nth time bin undergoes a collision with
all the atoms at once, which is described by unitary Un [cf.
Eq. (5)]. The atoms at the same time are effectively subject
to a mutual coherent interaction described by Hn ≡ Heff (en-
compassed in the collision unitary Un). The extension to the
bidirectional case is natural: there is now an additional stream
of left-going time bins (each with ladder operator b′

n). One
can equivalently think of two-mode time bins (bn, b′

n) such
that in each collision the atoms collide with both time-bin
subsystems bn and b′

n (see Fig. 5).

VI. MAPPING THE GIANT ATOMS DYNAMICS INTO
A CASCADED COLLISION MODEL

While, as pointed out in the previous section, the collision
Un formally describes a simultaneous collision with all the
atoms, we show next that it can be effectively decomposed
as a cascade of subcollisions each involving only one cou-
pling point. Cascaded collision models (for normal atoms)
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were introduced in Refs. [48,49] (see also Ref. [50]). Here
a unidirectional waveguide is considered, the extension to the
bidirectional case being postponed to Sec. IX.

For each coupling point ν, let us define the interaction
Hamiltonian

Vnν =
√

γ

�t
(Sν b†

n + H.c.) (44)

coupling the nth time bin to atom j with phase ϕ j� [cf.
Eq. (27)], where ( j, �) is the pair corresponding to coupling
point ν (in the remainder we introduce a convenient termi-
nology and say that the time bin “interacts with the coupling
point”). Using Eqs. (30), (31), (33), and (44), it is easily
immediately checked that the average interaction Hamiltonian
is just the sum of the Vnν’s

V n =
∑

ν

Vnν . (45)

More importantly, as shown in the remainder, it turns out that,
when the DF condition (26) is matched, the unitary collision
Un can be decomposed as

Un = e−iVnN �t · · · e−iVn1�t . (46)

Thereby, one can think of each collision (see Fig. 6) as the re-
sult of N cascaded subcollisions in each of which the time bin
“collides” with one of the coupling points according to unitary
e−iVnν�t with Vnν given by (44). Of course this in particular
entails that the same time bin collides with a given atom as
many times as the number of respective coupling points N j .
Yet the subcollisions with the same atom occur with different
coupling Hamiltonians and are generally nonconsecutive (i.e.,
between two subcollisions with the same atom j there may be
subcollisions with atoms j′ 
= j), which is key to the occur-
rence of a nontrivial DF Hamiltonian as we will see shortly.

To prove (46), we expand to second order each subcolli-
sion unitary on the right-hand side as e−iVnν�t � 1 − iVnν�t −
1
2V 2

nν�t2. This yields (to leading order)

N∏
ν=1

e−iVnν�t � 1 − i (V n + H̃n) �t − 1

2
V

2
n �t2, (47)

with the order in the product understood as in (46) and

H̃n = i
�t

2

∑
ν>ν ′

[Vnν ′ ,Vnν], (48)

where we used (45). Using (26), it is easily shown that H̃n =
Hn ≡ Heff (see Appendix B). Upon comparison with (5), we
thus conclude that (46) holds true.

The decomposition in terms of cascaded subcollisions in
particular highlights the physical origin of effective Hamil-
tonian (34): if, instead of being sequential, the subcollisions
occurred simultaneously (corresponding to perfectly co-
located coupling points) then the overall collision unitary
would be e−i(

∑
νVnν )�t ≡ e−iV n�t , the corresponding second-

order expansion being just (47) without term H̃n ≡ Heff . Thus
the effective Hamiltonian arises precisely because the time bin
collides with the coupling points in a cascaded fashion. This
is in fact the same mechanism underpinning emergence of
effective Hamiltonians in chiral quantum optics with normal

FIG. 6. Under the DF condition (26), each collision in Fig. 5 (we
address here the case γ ′ = 0) can be effectively decomposed into
N cascaded subcollisions according to Eq. (46). Each subcollision
is between the same time bin n and a different coupling point cor-
responding to coupling Hamiltonian (44) (time grows from top to
bottom).

atoms [51], the difference yet being that decoherence cannot
be suppressed in the latter case (because V n cannot vanish
with normal atoms).

VII. MECHANISM BEHIND EMERGENCE OF
NONTRIVIAL Heff

Occurrence of nontrivial (i.e., nonzero) DF Hamiltonians
is simply interpreted in the cascaded-collision-model picture.

As in Sec. V A, throughout this and the next section we
consider a unidirectional waveguide and giant atoms with two
coupling points each, which captures most of the essential
physics.

A. Single giant atom

Let us consider first a single giant atom and set x1 = τ1 =
0, ϕ = k0x2. The DF condition V n = 0 then simply reads
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ϕ = (2n + 1)π with n an integer number. Hence, S1 = −S2 =
σ1 and [cf. Eq. (44)]

Vn1 =
√

γ

�t
(σ1 b†

n + H.c.), Vn2 =
√

γ

�t
(−σ1 b†

n + H.c.).

(49)
Thus Vn1 = −Vn2 and [see Eq. (46)]

Un = e−iVn2�t e−iVn1�t = 1, (50)

meaning that the collision has no effect overall. This, in par-
ticular, necessarily entails Heff = 0 [recall Eq. (5)]. In other
words, the two subcollisions are the time reversed of one
another (so that the net effect is null). To sum up, in order to
ensure the DF condition V n = 0 for a single giant atom, one
must adjust the phase shift so that Vn2 = −Vn1. This yet brings
about that one subcollision is just the other one time reversed,
trivially yielding Un = 0 hence Heff = 0.

B. Two atoms

When it comes to a pair of giant atoms, instead, conditions
V n = 0 and Un 
= 0 can be matched simultaneously. To see
this, we reconsider uniformly spaced atoms as in Eq. (42) and
always set ϕ so as to ensure a (2n+1)π -phase shift between
the pair of coupling points of each atom, hence V n = 0 (simi-
larly to the single-atom instance just discussed).

For convenience we define the coupling Hamiltonians

V j =
√

γ

�t
(σ j b†

n + H.c.), (51)

with j = 1, 2 (the dependence on n is left implicit). No phase
factor appears in this definition.

Consider first the serial scheme in Fig. 4(a), in which case
we set ϕ = π . Then [see Fig. 4(b)]

Vn1 = V1, Vn2 = −V1, Vn3 = V2, Vn4 = −V2. (52)

This results in the collision unitary [cf. (46)]

Un = eiV2�t e−iV2�t eiV1�t e−iV1�t = 1, (53)

which is a trivial dynamics such that Heff = 0. This case is in
fact an extension of the single giant atom considered above.

For the nested case in Fig. 4(c), we set ϕ = π . Then [see
Fig. 4(d)]

Vn1 = V1, Vn2 = −V2, Vn3 = V2, Vn4 = −V1. (54)

Thus the second pair of subcollisions is the first pair time-
reversed

Un = eiV1�t e−iV2�t eiV2�t e−iV1�t = 1, (55)

ensuing again a trivial dynamics and Heff = 0. Equivalently,
the pair of central subcollisions, both involving atom 2, are the
time reversed of one another. Thus atom 2 simply disappears
from Un, which reduces to Un = eiV1�t e−iV1�t = 1.

For the braided arrangement of Fig. 4(e), we set ϕ = π/2.
Then [see Fig. 4(f)]

Vn1 = V1, Vn2 = V2, Vn3 = −V1, Vn4 = −V2 (56)

[with V2 now defined by (51) for j = 2 under the replacement
σ2 → −iσ2]. The collision unitary is given by

Un = eiV2�t eiV1�t e−iV2�t e−iV1�t = e−iγ (σ1σ
†
2 +σ

†
1 σ2 )�t 
= 1.

(57)
Therefore, V n = 0 is fulfilled but now Heff 
= 0.

The above shows that, while being irrelevant for realizing
the DF condition V n = 0, the coupling points topology is
crucial in order to have a nonvanishing effective Hamiltonian.
In terms of propagators [cf. Eqs. (4) and (5)], this is ultimately
due to the fact that the second-order term Hn is affected by the
time-ordering operator, while V n and (of course) V n

2 are fully
insensitive to it.

C. Many atoms

The above arguments are naturally extended to more than
two giant atoms. Again, the DF condition (26) is matched
when for each atom the phase shift between its coupling points
is a multiple integer of π , that is ϕ j,2 − ϕ j,1 = (2n j + 1)π for
some integer nj and for any j. Based on the above discussion,
we can state that if there exists an atom j such that no coupling
point of other atoms lies between its coupling points, i.e.,
x j′,�′ 
∈ [x j,1, x j,2] for all j′ 
= j and �′ = 1, 2, then Heff simply
does not contain σ j and σ

†
j (i.e., atom j is fully decoupled

from the field and other atoms). This is because the pair of
subcollision unitaries corresponding to coupling points x j,1

and x j,2 are the time reversed of one another, hence atom j is
fully decoupled from the field and all other atoms. A braided
configuration is thus generally defined [14] as one such that
no atom exhibits the above phenomenon.

VIII. EQUIVALENT SCHEME USING A MEDIATOR

Performing quantum information processing tasks [52] on
two remote systems, say 1 and 2, is a longstanding problem.
The challenge is due to the impossibility of acting jointly
on the systems (owing to their distance). A standard strategy
to get around this is employing a mobile mediator: a third
quantum system M which can shuttle between 1 and 2 so as
to mediate an indirect coupling, which, e.g., can be exploited
for generating entanglement.

A. Two-qubit gate

The dynamics realizing the DF Hamiltonian for two giant
atoms in a braided configuration [see Fig. 4(e)] in fact imple-
ments a two-qubit gate via a shuttling mediator. To see this,
for simplicity and in view of the equivalent quantum circuit to
be discussed later, we consider the field initially in the vacuum
state, in which case each time bin behaves as an effective qubit
M [53]. Then V j [cf. Eq. (51)] reads

V j =
√

γ

�t
(σ j σM+ + σ

†
j σM−), (58)

with σM− = σ
†
M+ the usual spin-1/2 ladder operators of M.

Note that, for convenience, we gauged away a phase factor
e−iπ/2 [due to ϕ = π/2, cf. Eq. (42)] by absorbing it in the
definition of σ2.

Unitary (57) (braided configuration) can be interpreted as
follows (see Fig. 7). M is first put close to 1 and the M-1
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FIG. 7. The four subcollisions in the braided configuration can
be seen as a mediator (embodied by the field time bin) shuttling
between atoms 1 and 2. This represents a collision model where
in each collision the ancilla M (time bin) interacts twice with each
subsystem j = 1, 2 the first time with coupling Hamiltonian V j [cf.
Eq. (58)] and the second time with −V j . The net result is a coherent
1 ⊗ 2 interaction with M eventually returning to its initial state. By
applying phase kicks on M, one can make both subcollisions with j
occur with the same coupling V j (see Fig. 8).

two-qubit gate e−iV1�t applied on them [Fig. 7(a)], then M is
moved close to 2 and the M-2 gate e−iV2�t applied [Fig. 7(b)],
next the M goes back to 1 and gate eiV1�t is applied [Fig. 7(c)].
Finally, M lies close to 2 again and gate eiV2�t is applied
[Fig. 7(d)].

Consider now the more realistic case that only one two-
qubit gate per atom can be implemented, say e−iV1�t and
e−iV2�t : we ask whether the other two can be obtained from
these by adding extra single-qubit (local) gates. Noting that
the local unitary transformation defined by UM = σMz trans-
forms the M’s ladder operators as σM± → −σM±, we have

σMz V j σMz = −V j ⇒ eiV j�t = σMz e−iV j�t σMz, (59)

with j = 1, 2. Plugging the last decomposition of eiV j�t

in (57) thus yields

Un = σMz e−iV2�t e−iV1�t σMz e−iV2�t e−iV1�t , (60)

where we used σ 2
Mz = 1. Recalling that in the braided config-

uration Un = e−iHeff �t with Heff given by (43), we conclude

e−iγ (σ1σ
†
2 +H.c.)�t = σMz e−iV2�t e−iV1�t σMz e−iV2�t e−iV1�t .

(61)
The collision unitary in the braided configuration—hence the
entire dynamics in fact—can thus be seen as alternate sub-
collisions (of the same type) of M with 1 and 2 where a
local π -phase gate is applied on M at the end of each cycle.
This effectively implements a DF interaction between 1 and 2
only. Note that replacing σMz = diag(1, eiπ ) (written in matrix
form) with another phase gate UM = diag(1, eiϕ ) with ϕ 
=
(2n + 1)π generally gives rise to an overall unitary Un which
does not act trivially on M, thus introducing decoherence.

The above is somewhat reminiscent of dynamical decou-
pling schemes [54], where suitable local pulses are repeatedly
applied in order to effectively decouple the system from the
environment thus suppressing decoherence. Note however

FIG. 8. Equivalent quantum circuit of the unitary collision in the
braided scheme [cf. Eqs. (57) and (61)]. A (maximally entangling)
i-SWAP two-qubit gate on 1 and 2 can be effectively obtained by
iterating this quantum circuit.

that in our case the environment (embodied by M, that is
the field in fact) has an active role since it allows 1 and 2 to
effectively crosstalk.

B. Quantum circuit

To express (61) in the language of quantum circuits [52],
we recall the definition of an XY gate, also known as piSWAP
or parametric i-SWAP,

XY(δ) =

⎡
⎢⎣

1 0 0 0
0 cos πδ −i sin πδ 0
0 −i sin πδ cos πδ 0
0 0 0 1

⎤
⎥⎦, (62)

which coincides with each M- j unitary e−iV j�t for δ =
1
π

√
γ�t . Thereby we get the equivalent quantum circuit of

the collision unitary (57) displayed in Fig. 8 (where Z = σz).
Thus, remarkably, the waveguide setup with giant atoms

can be seen as implementing iterated applications of the el-
ementary quantum circuit in Fig. 8. A canonical (maximally
entangling) i-SWAP two-qubit gate Un = e−i(σ1σ

†
2 +H.c.) is ob-

tained after N = [(γ�t )−1] iterations [recall Eq. (32)].

IX. BIDIRECTIONAL CHIRAL WAVEGUIDE

The considerations in Sec. VII naturally extend to a
bidirectional waveguide. In Sec. VII A we saw that, in the
unidirectional case, if an atom j is such that x j′,�′ 
∈ [x j,1, x j,2]
for any j′ 
= j and �′ = 1, 2 (configuration not braided), then
σ j and σ

†
j do not appear in Heff under the DF condition. The

same holds for a bidirectional waveguide since, according to
Eqs. (38) and (40), if Jj j′ vanishes in the unidirectional case
γ ′ = 0, then so does in the bidirectional one (when γ ′ 
= 0).

For completeness it is however worth showing that one can
reach the same conclusion even through a purely collisional
argument. To this aim, we note that, even for a bidirectional
waveguide, under the DF condition (26) the collision unitary
[cf. Eqs. (5), (33), and (34)] can be decomposed into cascaded
subcollisions [cf. Eq. (46)] as

Un = e−i(VnN +V ′
n1 )�t · · · e−i(Vn1+V ′

nN )�t , (63)

with [cf. Eq. (44)]

V ′
nν =

√
γ ′

�t
(S′

ν b′†
n + H.c.) (64)

043184-9



CAROLLO, CILLUFFO, AND CICCARELLO PHYSICAL REVIEW RESEARCH 2, 043184 (2020)

FIG. 9. Collision unitary Un’s decomposition into cascaded sub-
collisions for a bidirectional waveguide [cf. Eq. (63)]. In the νth
subcollision, the right- and left-going time bins respectively interact
with coupling points ν and N − ν (time grows from top to bottom).

[recall Eqs. (27) and (35)]. This is because [cf. Eq. (5)] V n =∑
ν (Vnν+V ′

nν ) and, as shown in Appendix B, H̃n = Hn ≡
Heff . Here H̃n [cf. Eq. (48)] is now generally defined as

H̃n = i
�t

2

∑
ν>ν ′

[Vn,ν ′+V ′
n,N+1−ν ′ ,Vn,ν+V ′

n,N+1−ν]. (65)

Note that, as sketched in Fig. 9, in the first subcollision, the
right-going time bin interacts with coupling point ν = 1 and
the left-going time bin with coupling point ν = N . Then,
in the second subcollision, the right- (left-)going time bin
interacts with coupling point ν = 2 (ν = N−2) and so on.

In Appendix C we use (63) to show that a giant atom does
not appear in Heff whenever it is untangled from other atoms,

i.e., when no coupling points of other atoms lie in between its
two coupling points.

X. MORE THAN TWO COUPLING POINTS

The discussion in Sec. VII in many respects relied on the
property that a single giant atom with a π -phase shift between
its two coupling points (i.e., the DF condition) fully decouples
from the field, i.e., Un = 1 [cf. Eq. (50)]. For more than two
coupling points, the DF condition for a single giant atom does
not necessarily entail Un = 1. The simplest example to see
this is a single giant atom with three coupling points (N ≡
N1 = 3). The DF condition (26) occurs for (we drop subscript
j since there is only one atom; also we set ϕ1 = 0)

ϕ2 = 2π

3
+ 2nπ, ϕ3 = 4π

3
+ 2mπ, (66)

with n, m integers. Plugging these into the effective Hamilto-
nian (38) for γ ′ = 0 we get

Heff =γ

2

[
2 sin

(2π

3

)
+ sin

(4π

3

)]
σz 
= 0 (67)

(the sum of the three sines is �0.87).
More generally, for an atom j such that x j′ 
= j,�′ 
∈

[x j,1, x j,N j ] and fulfilling the DF condition
∑

� Vn,ν j,� = 0, in
general

e
−iVn,ν j,N j

�t · · · e−iVn,ν j,1 �t 
= 1, (68)

where N j > 2 (if N j = 2, the identity holds). However, (68)
is anyway of the form e−iδ jσz�t (with δ j a frequency shift),
hence all terms of Heff coupling j to any other atom will
vanish, i.e., in (38) Jj j′ 
= 0 only for j′ = j. Thus, if the only
focus is coupling the atoms, then the braided topology remains
the only one yielding a nontrivial Heff . This remains true for
a chiral waveguide (γ ′ 
= 0) since (40) shows that if Jj j′ = 0
for γ ′ = 0, then it vanishes also for γ ′ 
= 0.

XI. CONCLUSIONS

In this work we investigated the physical mechanism un-
derpinning implementation of DF Hamiltonians with giant
atoms. We first introduced a general framework for obtaining
DF Hamiltonians through second-order interactions mediated
by an environment. The key “DF condition” is having an
interaction Hamiltonian averaging to zero over a suitable
coarse-grained timescale. The framework was first illustrated
with standard dispersive Hamiltonians, in which case large
detunings ensure a vanishing average interaction. We then
considered giant atoms in a broadband waveguide and showed
that, thanks to the nonlocal nature of the coupling, the DF
condition can still be fulfilled, but in a qualitatively different
way.

The above framework was then connected to a collisional
picture of the joint dynamics of giant atoms and field in terms
of elementary pairwise collisions between the atoms and field
time bins. We showed that each collision can be decomposed
as cascaded subcollisions, providing an intuitive understand-
ing of the origin of the effective Hamiltonian. This was used
to interpret the relationship between topology of the coupling
points and occurrence of trivial/nontrivial DF Hamiltonians.
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In addition, we showed that the giant atoms dynamics can
be mapped into a system shuttling between the atoms and
subject to periodic phase kicks so as to effectively mediate
a DF interatomic interaction, a mechanism in some respects
reminiscent of dynamical decoupling schemes.

While here we did not consider lossy photonic envi-
ronments [19,36,55], the considered framework could be
naturally extended to accommodate these. Likewise, a gen-
eralization to giant atoms in gapped structured reservoirs [56]
appears viable.

On a methodological ground, we note that, although
the collisional picture [42] and input-output/SLH formal-
ism [27,28] are equivalent descriptions (since the underlying
microscopic model and approximations are identical), the as-
pects of giant-atoms dynamics which this work focused on are
best tackled through the former approach. This is essentially
due to the decomposition into two-body unitaries, the hall-
mark of the collisional description. In this respect, the present
work in particular showcases a type of problem where this
approach is particularly advantageous.

From the specific viewpoint of collision models and
their quantum information processing applications (see,
e.g., [57–59]), Secs. VI and VIII in fact introduce a class
of cascaded collision models implementing maximally entan-
gling multiqubit gates free from decoherence. Notably, these
correspond to second-order effective Hamiltonians, at vari-
ance with schemes in Refs. [57,58] which are of first order
(see also Ref. [45]).
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APPENDIX A: PROOF OF PROPERTY

The propagator in each time interval (5) for V n = 0 reduces
to Un = 1 − iHn�t . Accordingly,

σn = σn−1 − i [Hn, σn−1]�t . (A1)

At the first step, σn−1 = ρ0 ⊗ ρE , thus using condition (11)

σ1 = ρ0 ⊗ ρE − i [Hn, ρ0 ⊗ ρE ] �t

= ρ0 ⊗ ρE − i [Hn, ρ0 ⊗ 1] (1 ⊗ ρE ) �t

= (ρ0 −i [Heff , ρ0]) ⊗ ρE�t . (A2)

This implies σ1 = ρ1 ⊗ ρE with

�ρ1

�t
= −i[Heff , ρ0] (A3)

[recall Eq. (9)]. By induction, we get that at each step σn =
ρn ⊗ ρE with ρn fulfilling

�ρn

�t
= −i[Heff , ρn−1]. (A4)

Taking the continuous-time limit, ρn−1 → ρt , �ρn/�t → ρ̇

so that (A4) reduces to Eq. (12).

APPENDIX B: H̃n = Hn

Let us begin with the unidirectional case. Each commutator
in (48) is explicitly worked out as

[Vnν ′ ,Vnν] = γ

�t
([Sν ′ , S†

ν ]−H.c.)b†
nbn+ γ

�t
(S†

ν ′Sν−H.c.). (B1)

Upon comparison with (34) for γ ′ = 0, the proof thus reduces
to showing that the sum over ν>ν ′ of terms ∝ b†

nbn vanish.
Each commutator [Sν ′ , S†

ν ] is nonzero only when coupling
points ν and ν ′ belong to the same atom. Thus, in light of (27),∑

ν>ν ′
[Sν, S†

ν ′ ] − H.c. =
∑

j

∑
�>�′

ei(ϕ j�−ϕ j�′ )[σ j, σ
†
j ] − H.c.

=
∑

j

(∑
�>�′

ei(ϕ j�−ϕ j�′ )−c.c.

)
σ jz (B2)

(recall that x j1 < x j2 < · · · ). When (26) holds, the coefficient
of σ jzvanishes for each j,∑

�>�′
ei(ϕ j�−ϕ j�′ ) − c.c. =

∑
���′

ei(ϕ j�−ϕ j�′ ) − c.c.

=
N j∑
�=�′

eiϕ j�

N j∑
�′=1

e−iϕ j�′ − c.c. = 0. (B3)

Thus ∑
ν>ν ′

[Vnν ′ ,Vnν] = γ

�t

∑
ν>ν ′

(S†
ν ′Sν − H.c.), (B4)

completing the proof.
In the bidirectional case, each commutator in (65) reads

[Vn,ν ′ + V ′
n,N+1−ν ′ ,Vn,ν + V ′

n,N+1−ν]

= [Vn,ν ′ ,Vn,ν] + [V ′
n,N+1−ν ′ ,V ′

n,N+1−ν]

+ [Vn,ν ′ ,V ′
n,N+1−ν] + [V ′

n,N+1−ν ′ ,Vn,ν]. (B5)

The last line features terms ∝ [b†
n, b′

n] and ∝ [b′†
n, bn], which

vanish because left- and right-going time-bin operators com-
mute. Additionally, there are terms ∝ b†

nb′
n (or ∝ b′†

n bn)
featuring quantities like (B2) where however one of the two
phases is primed: these vanish as well since (B3) holds even
if ϕ j�′ → ϕ′

j�′ . We are thus only left with terms analogous
to (B1) given by

[Vn,ν ′ ,Vn,ν] + [V ′
n,N+1−ν ′ ,V ′

n,N+1−ν]

= γ

�t
(S†

ν ′Sν +S′†
N+1−ν ′S′

N+1−ν − H.c.). (B6)

Summing this over ν > ν ′ yields γ

�t(S
†
ν ′Sν +S′†

νS′
ν ′ − H.c.)

(where we used that N+1−ν ′>N+1−ν for ν > ν ′), com-
pleting the proof.

APPENDIX C: EXTENSION OF SEC. VII A TO A
BIDIRECTIONAL WAVEGUIDE

In order to extend the considerations in Sec. VII A to a bidi-
rectional waveguide, we essentially need to show that, for an
atom j such that x j′,�′ 
∈ [x j,1, x j,2] for any j′ 
= j and �′ = 1, 2
(recall Sec. VII A), σ j and σ

†
j do not appear in Heff under the

DF condition. We first recall that V n = 0 ⇔ V ′
n = 0 (since
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S = 0 ⇔ S′ = 0). In this configuration the overall coupling
point index runs over ν = 1, 2, . . . , k j, k j + 1, . . . ,N with
k j ↔ ( j, 1) and k j + 1 ↔ ( j, 2) labeling the left and right
coupling points of atom j. Accordingly, in unitary (63), the
subcollision unitaries involving the jth atom are (to make
notation lighter we drop subscript n)

Ũj = e
−i(Vk j +1+V ′

N−k j
)�t

e
−i(Vk j +V ′

N+1−k j
)�t

(C1)

and

W̃j = e
−i(VN+1−k j +V ′

k j
)�t

e
−i(VN−k j +V ′

k j +1 )�t
. (C2)

Upon inspection, the pair of V ’s in each exponent commute
because one involves a coupling point of atom j and a right-
going time bin, while the other one features a coupling point
of an atom j′ 
= j and a left-going time bin. Thereby, (C1) can
be decomposed as

Ũj = e−iVk j +1�t e
−iV ′

N−k j
�t

e−iVk j �t e
−iV ′

N+1−k j
�t

= e−iVk j +1�t e−iVk j �t e
−iV ′

N−k j
�t

e
−iV ′

N+1−k j
�t

. (C3)

Under the DF condition, Vkj+1 = −Vkj so that the first two ex-
ponentials in the last line reduce to the identity. An analogous
conclusion holds for (C2). We thus conclude that Un, hence
Heff , does not contain atom j, completing the proof.
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