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Abstract. In this paper we study a linear elliptic equation having
mixed boundary conditions, defined in a connected open set O of R™.
We prove a comparison result with a suitable “symmetrized” Dirichlet
problem which cannot be uniformly elliptic depending on the regularity
of 0. Regularity results for non-uniformly elliptic equations are also
given.

1. INTRODUCTION

Let € be a connected bounded open set of R™ whose boundary 0% is
made of two manifolds I'g and I'y, having 'y positive (n — 1)— dimensional
Hausdorff measure. We consider the mixed problem

_(aij(m)umi)zj =f in Q

u=0 on I'g (1.1)
2—2 = on I'y,
where a;;(2), 1,5 = 1,...,n, are bounded, measurable functions on ) satis-

fying the ellipticity condition

aij(z)&:&5 > €2 for a. e. x € Q, V¢ € R (1.2)
and f € LP(Q), p> 25 ifn>2,p>lifn=2

It is well known that a way to obtain sharp estimates for solutions of
elliptic problems is the comparison with solutions of suitable symmetrized
problems using Schwartz symmetrization (see [18], [19], (3], [1]). In this
order of ideas we are able to compare the solution of problem (1.1) with the
solution of a Dirichlet problem with spherically symmetric data, defined in
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a ball having the same measure as . This problem cannot be uniformly
elliptic depending on the shape of Q.
To be more precise let us define (see also [14]) the function

At) =inf Po(E),  t>0, (1.3)

where Pq(F) is the perimeter of E relative to £ and the set F varies in the
class of measurable subsets of Q such that [E| = ¢t and E N Ty does not
contain any set of positive (n — 1)—dimensional Hausdorff measure. Let us
suppose that

184

1
sup ——< < 09, 1—-=-<a<
n

1
S - (1.4)

D[ W

We observe that in (1.4), a < 1 — % cannot hold for any set 2, since this
condition is denied by the classical isoperimetric inequality. On the other
hand (1.4) implies a relative isoperimetric inequality of the kind

|E|* < QPa(E), VECQ, E measurable. (1.5)

FTa=1- %, (1.4) means that a relative isoperimetric inequality holds (see
e. g. [11}, {17], [8] ). Depending on the shape of I'y, condition (1.4) can fail
fora=1-— %; this happens, for instance, when I’y has some cuspidal points
(see §2 for an example).

‘We consider the problem

{—M%m%%m=MﬁW#mﬂ# (1.6)

w=0 on ONF,

where f# is the spherically symmetric rearrangement of f (see §2 for the
definition), Q% is the ball centered at the origin, having the same area as

Q, and v (t) = t72¥2/)2 (). If (1.4) holds true, we prove the following
estimates

u#(z) < w(z) a.e. z € QF,

(1.7)
/ |Duf? dz < nzwfl/”/ v |Dw)? de,
Q Q#F
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where w € H} (v,Q%) ! is the solution of problem (1.6). We explicitly
observe that problem (1.6) is uniformly elliptic when in (1.4) a=1—21. In
this case estimates (1.7) give the same upper bound as in [17} where problem
(1.1) is compared with a problem defined in a sector with mixed boundary
conditions. When a > 1 — % the weak assumption on the regularity of 62
implies that problem (1.6) is not uniformly elliptic and the estimates of the
solution are given in terms of the function A(¢). In §2, we give an example of
a domain Q whose boundary is characterized by the behavior of the function
A(t) as a power of ¢ with exponent greater than 1—1. Comparison (1.7) allow
us to obtain estimates for u(z) in terms of the solution of problem (1.6). Let
us observe that under the assumption (1.4), 1 belongs to a Marcinkiewitz
space M%. Then §3 is devoted to prove regularity results for a class of
degenerate problems, when 2 € M? (see [14] for Neumann problem). These
estimates allow us to obtain existence and regularity results for problem
(1.1) under the assumption (1.4). When £ is in Lorentz or Lebesgue spaces
a priori estimates for problem (1.6) are given in [4], [20], [7].

Let us remark that, when Iy = 99, (1.4) holds with o = 1 — L, since
in (1.3) Pq(E) = Ppe () and then (1.4) gives the classical isoperimetric
inequality. In this case the comparison result (1.7) is exactly the one obtained
by Talenti in [18] for the Dirichlet problem.

When H™ ! (I"g) — 0, that is problem (1.1) approaches a Neumann prob-
lem, (1.4) does not hold since we can take sets E C Q having measure near
to || and relative perimeter arbitrarily small. In this case results in this
order of ideas have been obtained in [15], where the Neumann problem is

compared with two Dirichlet problems defined in two balls having measure
v’}
5

2. COMPARISON RESULTS

We begin this section by recalling some definitions that will be useful in
the following. Let 2 be an open, bounded set of R™ and let us consider a
measurable function u : @ — R. The distribution function of u is defined
by

w) = e € Q: [u@| > 8, >0,

et v > 0,07t € LE (), for some ¢t > 1; H} (v, Q) is the completion of C§° (€) with

respect to the norm
1/2
2
g = ([ viDuas) .
Q




628 B. BRANDOLINI, M.R. POSTERARO, AND R. VOLPICELLI

while the decreasing rearrangement of u is defined as the distribution func-
tion of y, ie.,

u*(s) =sup {t > 0: u(t) > s}, s€[0,]9].

By using the previous notations we also introduce the decreasing spherically
symmetric rearrangement of u as follows

u#(:c) = u* (wp|z|"), z € Qf,

where Q# denotes the ball centered at the origin, having the same measure
as {2, and wy, is the measure of the unitary ball in R™.

The theory of rearrangements is well-known and exhaustive treatments of
it can be found, for example, in [18], [5], [13].

‘We are interested in proving a comparison result between the solution of
problem (1.1) and the solution of the symmetrized problem (1.6) defined in
Q#. Our main result is the following;:

Theorem 2.1. Let 2 be a connected bounded open set of R™ such that its
boundary 88 consists of two manifolds, T'g and I'1, with H™™* (I'g) > 0 and
let us suppose that (1.4) holds true. Let u and w be solutions of problems

(1.1) and (1.6) with v (wy |z|™) = wy 2 |2|272/™ A2 (wn, |2|™), respectively,
and let f be so regular in order to guarantee the existence of w. Then

(2) u#(z) <w(z)  ae z€QF,

(31) / [Dul? dz < an%/"/ v |Dw|? da.
Q a#

Proof. For h > 0 and t > 0 we define

hsignu if ju|>t+h
on(z) =4 (u|—1t)signu ft<|u|<t+h
0 otherwise.

We use @y, as test function in (1.1), then we get

1 1
— iUz, Uz ;AT =/ fsignudz+— / F(lu|—t)signu dz.
h Jecpul<tn u|>t+h b Jiciui<t+n
Using (1.2), letting h goes to 0, we have
d
——/ |Dul de < / ] da. (2.1)
dt |u|>t

|u|>t

TR
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We now proceed to evaluate the left hand side of (2.1) by the following
inequalities:

L s (L[ e
4 Jup>t - T
d
an 4
— ot |Du|dz = Po ({z € Q: |[u] > t}) > A(u(?)), (2.2)
ul>

where u(t) denotes the distribution function of u(z). We gather
2
il(t))gwfd_/ IDU,!deS/
(= (1) at Jiup>e ]
the last inequality in (2.3) is the Hardy-Littlewood theorem. We rewrite
(2.3) in the form

ult)
\f] dz < / frrdr (2.3)
>t 0

1< (u(t)) (—®)) / "D by
—_ 0 b

and, by integrating between 0 and t, we obtain

¢ w(7) Q T
-2 ’ * - —27_ e *T‘ .
v< [ty (we) [ rea= [t [ e

o
By definition of decreasing rearrangement, we then get

u*(s) < /:Ql X2 (r)dr /OT F(rydr = w*(s), s€][0,|Q], (2.4)

where w is the solution of problem (1.6), i.e., (3).
In order to prove (44), using Hélder inequality, (2.2) and (2.3), we obtain

2 il 1 _d 2 i B
/Q!Du‘ de/O {(—/J,’('[;)) < dt -/iu|>tlDU| d )} (—du(t)
ol d » A\
</ {Mu(t)) ("&‘t/[u|>t'D“‘ d”“")} (~du(e))

< /Olﬂl {)\—(15—)- /OS f*(’r')dr}2 ds = n2w2/™ ./Q# v |Dw|? dz,

where v = v (wy, |2]™) . O
Remark 1. From (i) we can deduce the following estimates

ess sup |u| < ess sup |w|; (2.5)
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/ jul? dz S/ |lw|® dz, ¢>0.
Q o#

Remark 2. ffa=1-— %, a relative isoperimetric inequality holds true

|E|1_% < QPu(E), VECS, E measurable,
where Q@ = Q (T'1, F). Then we can write explicitly A(%) in (2.4) if we are
able to evaluate the constant Q. In [17] Pacella and Tricarico proved that,
if HP1(Ty) > 0, then
Q= (s,
where £, is the Lebesgue measure of the unitary sector? in R”, with ampli-
tude £ € (0, 5]. In this case we can write (2.4) as follows

|€2] 5 [T
L / R / f(r)dr, s e 0,190
8 0

n2 ,6,21/ n
and our comparison results reduce to those ones contained in [17], between
a solution u of (1.1) and the solution of a symmetrized mixed problem in a
sector with amplitude S.

u*(s) <

In what follows we give an example of a domain  where hypotheses (1.4)

is satisfied for & > 1 — 2 computing A(¢) and evaluating sup;s,q ;%) We

consider the set @ C R? delimited by the z-axis, the parabola y = z2 and
the circle centered on the z-axis and orthogonal to the parabola in the point
(3,%) (see figure), that is the “cone”

1\2 1
Q:{(m,y)eRz:o<m<—4‘/§+\/§, 0<y<a? 0<(w—z) +y2<§}.

Let To = {(z,y) € 8Q : (z — 31)2 + 3% = {} and Ty = 6Q — Tp. We will

prove that
t® :

whAm =%

First of all we prove the existence of a set E C Q having measure ¢ and

minimum perimeter between all the measurable subsets of 2 such that 6EN

I'p does not contain any subset of positive 1-dimensional Hausdorff measure.

The existence of such a set is proved in [11} if the boundary of £ is locally

2
if a=r<.
if a=g

The sector A(B, R) in R, 8 € [0,7[ and R > 0 is defined as the set
AB,R)y={xeR*:0< |z| < R, (z,£) > cos B - |z|}

where £ is the vector (1,0, ...,0) and (-,-) denotes the scalar product in R™.
We call unitary sector with amplitude 8 the set A(G,1).
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Lipschitz. Since 9 has only one point where it is not Lipschitz, i.e., (0,0),
and (0,0) does not belong to 9F N £, we can adapt the proof contained in
[11] to our case and by means of a simple extension argument (see [10]) we
can prove that such a set exists. It is easy to realize that F N Q must be
concave towards F and JF N ) must be a curve having one terminal point
on gy = 0 and the other one on y = z2. The regular case is studied in [8].

Then we can suppose that 8F N §2 is the curve of polar equation p =
p(9),9 € [0,7:]. If we impose that |E| =t and 0E NN has minimum length,
we find that p(9¥) satisfies the following Fuler equation

p___d _p
\/p2 + p12 dd /p2 + pIZ
the boundary condition

+2up =0, (p = Lagrange multiplier) (2.6)

A0)=0 (2.7
and the trasversality condition
sin2 y;

it L 2.8
cosy; (1 + sin® ) (28)

pv) =
Since solutions of equation (2.6) are a family of circles, the unique solution
of (2.6) that satisfies (2.7) and (2.8) is the circular arc orthogonal to 9Q for
¥ =0 and ¢ =~y (see figure).

Let 2g = zo(t) be the first cartesian coordinate of the point (p (), %) ;
it is easy to find that 8E N is the circular arc centered in (%2,0) and zo is
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the unique solution of
23 2 g
|E} = 3 arctan (2zg) (1 + 43) + 5= t.
The length of 9F N Q is % arctan(2w)+/1 + 42 and the quotient
2 312/3
2/3 [-zs—" arctan (2zq) (1 + 4z3) + i—g]

A®) 29 arctan(2zo)/1 + 423

is a strictly increasing function of zo and then of t. Then sup %\2(/—; is achieved

1 (Bri2)*s
Y3 Ver

when t = |Q| and it is

3. REGULARITY RESULTS FOR SOLUTIONS OF DEGENERATE ELLIPTIC
EQUATIONS

In this section we consider the problem

—(aij{®)2e,),, = f inQ
" 3.1
{ z=0 ’ on 99, (3-1)
where () is an open, bounded subset of R", a;(x) are such that
aij(2)&& > v() >,  a ez €, VEER® (3.2)

and v € L' () is a non-negative function.
We investigate the regularity of solutions of (3.1) when % belongs to the

Marcinkiewitz space M* and f is in a Lorentz space. Let us first recall the
definition of these spaces.
If we put

76 =3 [ rear

we say that a function f € L(p,q), 1 < p < 00, 1 < g < o0, if the quantity

(7 (o) )" s54<e

sup f(s)s1/7 g=co
s>0

1 £1lpq =

is finite. We remark that L(p,p) = LP (Q) and for 1 < ¢ < p < r < co the
following inclusions hold

L™ (Q) c L{p,1) C L(p,q) C L? () C L(p,r) C L{p,00) C LI (Q).
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Now let z be a measurable function on , 1 <t < oo and % + t—l, =1. Let
2l = min {C > 0 / |2(@)ldz < CIK|Y¥ for all messurable K € Q);
K

M is the set of measurable functions z on {2 satisfying ||z||;;+ < oo. It is easy
to verify that M is a Banach space under the norm ||-|| ;: and M* = L(t, c0).
Before entering into details, let us recall some other preliminary results.
We first introduce a relation between nonnegative functions in L (Q). We
say that f is dominated by g, and we write f < g if
s s |92 Q]
/ fHr)dr < / g (r)dr Vs e |[0,|]) and g*(r)dr.
0 0 0

(3.3)
We explicitly observe that the definition given in (3.3) makes sense also if f
and g are defined in different sets with the only restriction that these sets
should have the same measure. Various properties and characterizations of
such a relation are given, for example, in [9] and [2]. We only recall the
following:

lf*(r)dv" :/0

Theorem 3.1. The following statements are equivalent:
i) f=g;

i) [ _femes< [ " g sy (s, [ t@aa= [ stwyie

for all non negative 60L°° (Q);
1l 1
i) [Creneas [Coeras [ e [ @

for all non negative n € L (Q2) .

Obviously the above theorem implies that

A< Nl (3.4)

in any Lorentz space.

Now, let z be a measurable function in 2. We consider for any s € [0, |Q|]
a subset F(s) C Q such that

1) |E(s)| = s;

2) S1 < 89 —» E(Sl) C E(SQ);

N E()={zeQ:|z(z) >t} ifs=up().
For any f € L' (Q), f > 0, there exists a function F such that

/E » fdo = /O " Rt
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In general, F' is not a rearrangement of f, but F' < f (see [4], [3]). Roughly
speaking, we say that F is built from f on the level sets of z.

The main tool to obtain our regularity result for solutions of problem (3.1)
is the following theorem due to Alvino and Trombetti [4].

Theorem 3.2. Let v > 0, v € L} (Q), L € L*(Q) for some t > 1 and
felLr(Q), %3 =3— 5 +2i Ifzec Hi (v,Q) is a solution of (3.1), then

19 —2+2/n 'r
Z#(z) < L L dT/ F*(s)ds z € QF; (3.5)
n vir 0

2/n
zwn/ wnla|™

moreover, the following estimate holds

) 9] —1+1/n
]QV[DZ[ dxf/o y(r) l/n / f*(s ds T, (3.6)

where % is built from % on the level sets of Z.

y (3.6), if we assume that (3.2) holds with
v € L'Q), v(x)>0fora ez (3.7)

1
5 € M? for somet>1

and we suppose that

1 1 1 1
L i *
feL(p2) with 5 —|— % (3.8)

we obtain an estimate of the norm ||z|| Hi(v,0) In terms of the norm of f and
1

7_/ .
More precisely we have the following:

Theorem 3.3. If z € H} (v,9) is solution of (3.1) under the assumptions
(3.2),(3.7),(3.8), then

1 ] 2

Dz|?d —X 422
/QV] ol de < T n2w/® [Q(P_ 1) * ”]
Remark. We explicitly observe that under the assumption (1.4) the func-
tion ;5 = Wi |2 =2 () 2™ € M (%) and hence by 441) of

Theorem 2.1 and (3.9) we obtain the following estimate for the solution v of
problem (1.1) with f € L(p, 2)

fiputae < [y 2~ 2] 2], e

1

14

A2, - (3.9)

Mt
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The a priori estimate implies the solvability of problem (1.1) under assump-
tion (1.4).
Proof. By (3.6) we have

el , g Toq —2+2/n
2 — d .
[osans [ (3 [ )20 ([ sy

Integrating by parts we get

HZH%(}(U,Q) < ﬁ{ 22/ (/0 V(s / (s ds (3.10)
e e [ o
+ (2— —Z) /Olﬂld (/T Eczs) -3+2/n(/r f*(a)da)2
~2/0191 dr(/r (S)ds> _2+2/n / £ s)ds ()}

=0 — I+ 13— 1.

By recalling the definition of norm in M* and (3.4) we get

(/T—(S—)ds _2+2/n /f*(s)ds (3.11)

1
2z —1—1/t+2/n * < p H_\ 2 .
< Hzx Mt /0 f (S)ds ~ 20—y ‘M‘ [1£1lp.2
thus, 0 < Iy < co. By the same arguments we get
1 2
< —F . 3.12
hS ey b UL (3.12)

On the other hand .
6 e Dl [ P T 1

2
n2wn/ ™

RO (E e

n

and, reasoning in the same way, 0 < Iy < oo. Thus, by (3.12) and (3.13),
disregarding non-positive terms in the right-hand side of (3.10), we get

1 D 2111 2
et < oz 3y 2 o) ol 1B

Yl e
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that is, (3.9). O

Using the pointwise estimate (3.9) it is possible to prove regularity results
for solutions of problem (8.1) in Lorentz spaces. We know that, if f € L(p, 2),
with 1 =J+i- %, then the solution z € H§ (Q) belongs by Sobolev
embeddmgs, to the Lorentz space L(8, 2), with 1 = —2- - l + 5 '7t The theorem
that follows shows in Lorentz spaces how the summablhty of z improves by
11nprov1ng the smnmablhty of f until we have z € L®° (2) when f € L(g,1)

Wlth = 3 — =. Such results extend, in the linear case, the results contained

in [7] Where the case ; € L(t,h), 1 < h < t, is considered. The following
theorem holds.

Theorem 3.4. Let z € HE (v,Q) be a solution of (3. 1) under the assump-
tions (3.2), (3.7) and let f € L(q, k), 'wzth < 3+1— 2. Then the following
results hold:

)ife=2—3% k=1, thenze L® (Q). Besides

1
||2”00Sm MtHqu,l,

i1) if% % - — , k> 1, then z € Lg, where Ly, denotes the Orlicz space

generated by the functwn By (s) = exp(|s|® ) — 1. Besides
[e*wmsa, (314)
Q

where o is a constant depending on n, k, q, ||%]], |If]| and C is a constant
dependmg onn,k, g, H1H [If]] and | ;

i) zf >2_1k>1, then z € L(8,k) with%=%+%—7—2l. Besides

B> |t *
lzllgr < <ﬁ - 1) H;HM” 1 1lgye -
Proof. i) From (3.5) we get

fellog < /'mr_mm i [ e

n2w 2/71

since the function % is dominated by & = and the function

o(r) = 7242 /0 " (s)ds
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is decreasing, from Theorem 3.1 we deduce

el < o7z | (o) ([ 1) ar

s el [ TOE =

ii) From (3.5), integrating by parts we get
Z"(s) £ ol 12/n (/l | 2(17)-(17") |Q|_2+2/" (/;m f*('r)dr) (3.15)
- (/Os erdr)s'yrz/”(/s f*(T)dr
+ (2— %) /:m (/ %da _3+2/" / 7 (o)da
[ g

=L -+ 13— 14

Let us consider the first and second integrals in the right-hand side of (3.15),
i.e., Iy, Is. By assumptions we have

ot < [ o ([ ) 50

On the other hand —oc < Iy < 0. Moreover, by Holder inequality we get

< (2-2) HiHM / RSl "( /0 f*(@)do)dr
< (o2, (s 2y [y

- (o ) - 22 1

and, reasoning in the same way, we prove that —oo < Iy < 0. Thus, disre-
garding non-positive terms in (3.15) we gather

2(s) < C’1+C’2(log M)l i

A P B ]
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and then there exists « > 0 such that

12 Y
/ el O g5 < Joo.
0

iii) Reasoning as in the previous case, disregarding non-positive terms in
(3.15), we can write

z*(s) < ﬁ(/ﬂlm Z(Lr)d'r) IQ]—2+2/7L (/oml f*(fr)d’f’)

n

+ ﬁ@ - %) / ! ( /0 ’ ﬁda)r—?’ﬂ/j( /0 ’ f*(o)dcr) dr

< 01”£th I fllg s+ Co i”Mt /SIQI T—2—1/t+2/n(/or f*(a)da)d'r.

Thus,

N

(s) = %/S 2"(r)dr

0
<G| W+ o2 [Tas [ azsszin [7 ey
Vit ok s Jo r 0 P

SoliléllMtl]f||q:k+Oz‘r% 19 p2/n-1/t _

e fo maxGary O

By definition of norm in Lorentz space I(3, k), using Theorem 319 in [12]
(the estimate is obvious if & = 1), we have
« )\ 1%
) < =
(1) = c1]7]

FIE,

M

+02H%H;t /Uoo(/olﬂl #ﬂmrwmrl/ﬂ—l/t—l/kf(r)dr)kds
<Gl ke ol G [
= Gzl 1+ &8 (525 31 (1)
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