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Abstract
Noise-assisted transport phenomena highlight the nontrivial interplay between environmental
effects and quantum coherence in achieving maximal efficiency. Due to the complexity of
biochemical systems and their environments, effective open quantum system models capable of
providing physical insights on the presence and role of quantum effects are highly needed. In this
paper, we introduce a new approach that combines an effective quantum microscopic description
with a classical stochastic one. Our stochastic collision model (SCM) describes both Markovian
and non-Markovian dynamics without relying on the weak coupling assumption. We investigate
the consequences of spatial and temporal heterogeneity of noise on transport efficiency in a fully
connected graph and in the Fenna–Matthews–Olson (FMO) complex. Our approach shows how
to meaningfully formulate questions, and provide answers, on important open issues such as the
properties of optimal noise and the emergence of the network structure as a result of an
evolutionary process.

1. Introduction

What is the realm of validity of quantum physics? Conceived as the most fundamental physical theory,
describing the behavior of the constituents of our Universe, quantum physics has, since its very birth,
pushed forward very intriguing fundamental questions of both philosophical and scientific nature. Despite
its markedly different predictions with respect to the classical description of reality, speculations on its
possible role in key biological processes date back to its founding fathers [1]. More recently, with the
formidable advances in experimental and numerical approaches, fields like quantum biology and quantum
complex science have highlighted the existence and persistence of quantum coherence even in complex
macroscopic systems. Nonetheless, whether quantumness plays a functional role in biological complexes
remains to date a most fascinating open question.

Initial investigations on the quantum measurement problem suggested that the emergence of a classical
description of reality from the underlying quantum one could be explained in the framework of
environment-induced decoherence [2, 3]. Within this approach, the larger the quantum system, the faster
the loss of quantumness due to the interaction with the environment. More recently, however, it has become
evident that environmental noise need not be an enemy to the preservation of quantumness [4]. On the
contrary, it may sustain the persistence of quantum coherence and, as a consequence, improve the efficiency
of quantum transport in complex systems [5–10]. In this sense, the initial skepticism on the presence of
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quantum phenomena in macroscopic ‘hot and dirty’ systems, due to their very short coherence time, has
been overcome [11]. Nonetheless, complex quantum systems such as, e.g., the extensively studied
photosynthetic complexes, are undoubtedly strongly interacting with complex environments, the
characteristics of which are very hard to model microscopically.

The enormous challenge of a fully quantum microscopic description of the environment of biological
complexes stems both from experimental difficulties in extracting its detailed features and from the
exponential increase in the resources needed to simulate quantum many-body systems of large size.
Moreover, standard approaches of open quantum systems theory rely on approximations, such as
weak-coupling and Markovian [12], which are generally not satisfied in quantum biology or not justified
for complex many-body quantum systems, where even the division between the open system and its
environment may be somewhat arbitrary. Because of these considerations, effective models combining
quantum and classical aspects of noise [9] while retaining strong physical insight and flexibility in the noise
parameters are crucial for advancing our understanding on the role of quantumness in biological or
chemical processes.

In this paper, we introduce a new open quantum system approach that suitably combines quantum
collision models and classical stochastic processes: the stochastic collision model (SCM). Importantly, the
model arises from a very intuitive physical description of decoherence as originating from stochastic
collisions with a quantum environment composed of quantum ancillae. The freedom in the choice of the
local stochastic processes allows us to model spatial and temporal heterogeneity in the noise. The dynamics
of the system, after averaging over the stochastic realizations, describes both Markovian and non-Markovian
behaviors, depending on the noise parameters, and does not make any assumption on the coupling strength
between system and environment. Therefore, it does not rely on the weak coupling assumption.

To demonstrate the usefulness, flexibility, and descriptive power of the SCM, we use it in the study of
noisy transport in quantum networks, considering two paradigmatic examples: the fully connected graph
and the Fenna–Matthews–Olson (FMO) complex [13, 14]. In the first case, we bring to light the interplay
between spatial/temporal noise heterogeneity and the presence of system-environment entanglement in the
efficiency of transport. In the second case, we also focus on the features of noise optimality. We discover
that optimality constraints unveil the existence of two classes of nodes. Specifically, transport efficiency is
optimized when certain nodes are subjected to strong noise, while the others to very low levels. Remarkably,
these two communities are consistent, to a high degree, with the recent discovery of two classes of
site-dependent fluctuations in the FMO complex [15].

2. The model

The SCM is inspired by collision models, in which the system undergoes a series of unitary interactions
with environmental ancillary qubits, resulting in an open system dynamics [16–20]. In the SCM, the
ancillae collide with the individual parties conforming the system according to a stochastic process, that is,
collisions occur at non-deterministic times. While this may a priori seem to be a minor difference with
respect to deterministic-time collisions, it has important physical implications; in a previous publication
[21], we introduced a similar model for a single-qubit system, and we showed that the randomness in the
collision times can result in the decoherence of the system qubit even in the absence of system-environment
entanglement. While the model can naturally accommodate scenarios typically considered in the literature
of collision models, such as allowing the ancillae to be initially correlated or to collide multiple times with
the system, we will consider only the situation in which they are all initially in a product state and collide
with the system only once. Therefore, we will mainly focus on the study of the effect of the collision
dynamics on the system’s behavior.

The SCM is a general noise model for systems composed of N qubits driven by some Hamiltonian H, in
which the effect of collisions at random times is added to the free evolution of the system. More precisely, if
two consecutive collisions take place at times t1 and t2, the system evolves from t1 to t2 according to
ρ(t2) = Uρ(t1)U † with U = e−i(t2−t1)H . The collision between an ancilla—initially in the ground state
|0〉—and a system qubit m is modeled through the unitary dynamics generated by the local interaction
Hamiltonian H(I)

anc,m = (η/2)σx
anc ⊗ σz

m during a short period of time τ , after which the ancilla drifts away
and never interacts with the system again. We assume the interaction time τ to be much shorter than any
relevant time scale in the free system dynamics, so that collisions can be regarded as instantaneous processes

resulting in the application of unitary transformations Um = e−i(θ/2)σx
anc⊗σz

m , with θ = τη being the
interaction strength. This parameter regulates the entanglement between the system and the ancilla. For
instance, for θ = (2k + 1)π, k ∈ Z, the interaction is non-entangling, while it can be maximally entangling
for θ = (2k + 1)π/2, k ∈ Z. In any case, the fact that the ancilla does not collide again with the system
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Figure 1. Pictorial representation of the stochastic collision model. The sketch illustrates environmental ancillae colliding with
the eight sites of the FMO complex. Each ancilla collides only once with one node of the FMO complex, while the time between
two consecutive collisions follows the Weibull renewal process. On the right side we show how changing the value of
k ≡ ki —which for simplicity we assume here to be independent on the node i—we can describe the cases of heterogeneous
(k < 1), Poisson (k = 1), and regular (k � 1) collision time interval distribution.

deems its degrees of freedom irrelevant after the collision event, so it can be safely ‘traced out’. The effect of
the composition of Um and the consequent partial trace results in a single quantum channel

Φm [ρ(t)] = Kmρ(t)K†
m + K†

mρ(t)Km, with Km = e−i(θ/2)σz
m/

√
2. While the system-ancilla interaction

outlined here has been designed to account for dephasing, other interactions can result in dissipation
through the same mechanism as well.

The collision time dynamics can in principle be any stochastic process of our choice. In this paper, we
particularize to the case in which the collisions on all the system qubits occur independently following a
Weibull renewal process (WRP) [22]. For every qubit i, the probability density for the interval between two
consecutive collisions on i, τ i is then given by a Weibull distribution,

p(τi) =
ki

λi

(
τi

λi

)ki−1

e−(τi/λi)
ki , (1)

in which ki and λi are the shape and scale parameters, respectively. The main motivation for this choice is
that it allows us to control the intensity and the heterogeneity in the collision statistics locally, that is, on
each qubit independently. In particular, for a fixed value of ki, the mean intercollision time
〈τ i〉 = λiΓ(1 + 1/ki) (where Γ stands for the gamma function) is proportional to λi, so we can control the
spatial heterogeneity of the noise across the system simply by choosing different scale parameters for each
qubit. At the same time, we can interpret the shape parameter as enabling the control of the temporal
heterogeneity of the noise, since Var(τi) = λ2

i

[
Γ(1 + 2/ki) − Γ(1 + 1/ki)2

]
. For ki < 1, the collision

dynamics is heterogeneous, characterized by bursts of collisions separated by long intervals of inactivity. As
ki increases above 1, collisions become increasingly regular, as shown in figure 1. For ki = 1, they follow a
Poisson point process with rate 1/λi. Therefore, in that case, the dynamics of the system, when averaged
over stochastic realizations, is described by a master equation in Gorini–Kossakowski–Sudarshan–Lindblad
form [23, 24], and the system therefore undergoes Markovian dynamics [25]. For a general waiting time
distribution, such process evolves according to a master equation with a memory kernel, which is generally
not trivial to solve [25–27]. In all cases, however, the dynamics can be efficiently simulated by sampling the
individual time intervals between collisions from equation (1). In addition, the model could accommodate
more general classical non-Markovian processes that can be simulated using recent computational
techniques [28].

In this paper, we apply the SCM to the study of transport phenomena in the framework of continuous
time quantum walks (CTQW). In CTQW, one typically considers N qubits interacting through a
Hamiltonian that preserves the number of excitations, such as

H =
N∑

i=1

ωiσ
+
i σ−

i +
∑
i
=j

gij(σ
+
i σ−

j + σ+
j σ−

i ), (2)

where ωi ∈ R and σ±
i are the site energies and ladder operators of qubit i, respectively, and gij ∈ R are the

hopping strengths between nodes i and j. The fact that the hopping strengths can be set independently for
every pair of qubits brings about an interpretation of the Hamiltonian in terms of a network, in which
qubits are associated with its nodes and hopping strengths with weighted connections among them. Hence,
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the dynamics of a single excitation through the network—a quantum walker—is reminiscent of classical
random walks on graphs. Furthermore, like in the case of classical random walks, the structural properties
of the underlying network generally have non-trivial effects on the propagation of the quantum walker [29].

Among the many fields in which CTQW find applications, they are widely used in quantum biology to
model the propagation of energy across light-harvesting complexes [6, 7, 30–33]. In these complexes,
excitations must travel from a specific initial node r towards a target node s, where they are finally captured.
This last part of the process can be modeled by adding a sink, an extra node attached to the target node
from which excitations decay irreversibly. Mathematically, this can be achieved without de facto increasing
the dimension of the system by phenomenologically including in the Hamiltonian the non-Hermitian term
−iγσ+

s σ−
s , with γ the sink rate. Using a non-Hermitian Hamiltonian allows us to obtain the time evolution

operator without the need to solve a master equation. Moreover, the two approaches are equivalent, as
shown in appendix B. The non-Hermiticity results in a leak of probability, which models the transfer of
probability to the sink (its population). In other words, the sink’s population at any time t is given by
1 − Tr [ρ(t)], where ρ(t) is the state of the system at that time. The transfer dynamics is slowed down due to
quantum Zeno effect for γ � gij [34], while in the opposite regime γ � gij the dynamics is effectively
unitary. The sink further allows us to define a figure of merit to quantify the effectiveness of the excitation
transport. We define the performance ε as the inverse of the time required for the population of the sink to
reach a certain value (which we set to 0.95). It should be noted that the fact that the evolution is
non-unitary even in the absence of noise does not prevent us from applying the SCM to this system in any
way.

The dynamics of a system subjected to a SCM can be evaluated by averaging over all possible stochastic
realizations. This may not be easy to do analytically, but can always be numerically simulated. To that end,
we initially set t = 0, and sample a value τ i for each node from the waiting time distribution Wi (in this
work, equation (1)), which can in principle be different for each node. We define a list Si, i ∈ [1, N] with N
the number of nodes of the network, containing the time of the next collision on each node i, which we
initialize to Si = τ i, ∀ i. The node that will receive the first collision is simply the node i such that
Si = min(Sj, ∀ j ∈ [1, N]). Given that no other collision occurs between times t and Si, the system evolves to
the latter time according to ρ(Si) = Φi[U(Si − t)ρ(t)U †(Si − t)], where Φi is the channel representing the
collision of an ancilla with the node i, and U(t) is the time evolution operator defined as U(t) = e−iHt with
H the Hamiltonian of the network. At this point, the value of t is updated as t = Si and so is the value of Si

by sampling another value τ i from the waiting time distribution and setting Si = t + τ i. Now that we have
an updated list of the collision times, we can repeat the process to find where and when the next collision is
going to happen and evolve the state accordingly. In our case the process goes on as long as the population
of the sink is smaller than the threshold value. While this scheme integrates a single realization of the
dynamics exactly, it yields the state of the system only at the times of the collisions, which may be
insufficient to resolve phenomena occurring between consecutive collision events. However, since the
system undergoes a free Hamiltonian evolution between collisions, given by the operator U, it is always
possible to determine the state of the system at any intermediate time.

3. Results

3.1. Fully connected graph
We first apply our noise model to study the energy transport in the fully connected network, where each
node is connected with all others with the same hopping strength, gij = g, and the site energies are
homogeneous (which we set to zero without loss of generality). The fully connected network is an
interesting case study, as it is a system where the energy transfer is strongly suppressed in the absence of
noise. In a network with N nodes, only 1/(N − 1) of the population of an initially localized excitation is
able to reach the sink, most of it being trapped in the initial node [35]. This is because a localized state in a
fully connected network is mostly composed of energy eigenstates with no spatial overlap with the sink.
Such states evolve according to a unitary dynamics and are hence effectively decoupled from the sink (see
appendix C).

By adding dephasing noise, which maps states decoupled from the sink into mixtures of decoupled and
coupled states, we can break the energy confinement and let the excitation flow through the network until it
eventually reaches the sink. In figure 2, we show the performance ε as a function of the collision rate
ζ ≡ 1/〈τ i〉 for different spatial and temporal heterogeneity, as well as for different interaction strengths θ.
In particular, figure 2(a) corresponds to spatially homogeneous noise (λi = λ, ∀ i), while figure 2(b) shows
the results for maximally heterogeneous spatial noise, in which collisions only occur on the initial node r (in
this case, ζ = 1/〈τ r〉). Figure 2(c) shows the effect of the interaction strength for fixed spatial and temporal
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Figure 2. Effect of noise heterogeneity and system-environment entanglement on transport performance. In all cases, the curves
show the performance ε as a function of the inverse intercollision time ζ for a fully connected network with N = 20 nodes. In
(a), ancillae collide with all nodes with equal shape and scale parameters. In (b), we show the most spatially heterogeneous case,
where collisions only take place with the initial node r. In both cases, θ = π/2, and the legend indicates the shape parameter
corresponding to each curve. In (c), only node r is affected by collisions, and kr = 10. Each curve corresponds to a different
interaction strength. Notice that g defines the natural units of time, as in equation (3) it is the only term with a physical
dimension, thus we measure time in units of g−1.

heterogeneity. Overall, the curves are characterized by a low performance for small collision rates, which are
not effective in breaking the energy confinement, as well as for high rates, which slow down the excitation
walk. Hence, we observe an optimal collision rate ζ , different in each case. It should be noted that, while the
high-rate slowdown of excitation walk resembles the Zeno effect caused by measurements randomly
distributed in time, studied in references [36–38], a full characterization of the phenomenon would be
interesting but beyond the scope of this work.

The comparison between figures 2(a) and (b) reveals the strong effect of spatial heterogeneity. While
collisions on all the qubits are able to break the confinement, the process is much more efficient if the
collisions are localized on the initial node r only. Moreover, numerical investigation shows that localized
noise on a single node that is not the initial one is instead a sub-optimal strategy. This behavior is a
consequence of the fact that the initial node remains the most populated one throughout the dynamics (see
appendix C), which in turn implies that colliding with it is the most effective strategy to alter the coherences
that give rise to the quantum interference-induced trapping.

In addition to the spatial heterogeneity, the curves also portray the effect of temporal heterogeneity in
the collision statistics. Both with spatially localized and homogeneous collisions, large values of ki give rise
to a higher but narrower performance peak, while low ki yields lower and wider peaks, with good
performances even for very high dephasing rates. Therefore, temporal heterogeneity makes the dynamics
more resilient to the high-rate slowdown effect. Both homogeneity and heterogeneity in the collision times
can thus be regarded as resources, depending of the circumstances.

Another evident and interesting phenomenon is that, in the case of large values of ki, the performance
exhibits sudden drops for some specific collision rates. The periodicity of the corresponding collision rates
suggests that they are related to some characteristic time on the network, and their origin can indeed be
easily understood by looking at the unitary dynamics of the system (i.e., in the absence of noise and sink).
By introducing the single-excitation localized states

{
|i〉 ≡ σ+

i |0〉⊗n}, which form a basis of the
single-excitation subspace (see appendix A), the corresponding subspace Hamiltonian H(1) (that is, with
matrix elements H(1)

ij = 〈i|H |j〉) can be written as H(1) = g
(
N |φ〉 〈φ| − 𝟙

)
= g

[
(N − 1) |φ〉 〈φ| − P⊥

]
,

where |φ〉 =
(∑N

i=1 |i〉
)
/
√

N and P⊥ = 𝟙− |φ〉 〈φ| is the projector on the subspace orthogonal to |φ〉.
Consequently, the time evolution operator reads e−itH(1)

= eigt
(
e−igNt |φ〉 〈φ|+ P⊥

)
, which equals identity

(except for an irrelevant phase factor) at times

t =
2πm

gN
, m ∈ Z. (3)

Therefore, in the limit of perfectly periodic collisions matching such periods, the ancillae always collide with
a localized state—the initial one—with no effect, and the excitation remains trapped. In figure 2(b),
however, the performance does not drop to zero. The reason is that, while large values of kr result in nearly
periodic collisions, they are ultimately random. In other words, even when the collision rate matches a
characteristic time of the network, the actual collision times are noisy. Moreover, the width of the drops
shows that a slightly detuned collision rate can still lead to a significant loss of performance, which suggests
some robustness in this phenomenon. It should be mentioned that, when one of the nodes is attached to a

5



New J. Phys. 23 (2021) 033031 D A Chisholm et al

sink, the state is not fully localized at times t given by equation (3). Yet, at those times, the localization is
highest, making the collisions as little effective as possible.

Finally, we also address the role of the interaction strength θ. In figure 2(c), we show the performance vs
collision rate curves with fixed spatial and temporal heterogeneity (collisions occur only with the initial
node r with kr = 10) for different values of θ. We can appreciate that, as the interaction strength increases,
the curves are shifted towards lower collision rates and, at the same time, the optimality peak narrows.
Interestingly, the highest performance is achieved for non-entangling qubit–ancilla interactions, which do
not cause decoherence in any single realization of the noise dynamics. We can also see the periodic
performance drops in all cases, the positions of which do not depend on θ whatsoever. This is consistent
with our explanation of the phenomenon in terms of the periodicity of the free network dynamics,
according to which we expect to observe it as long as the collisions take place when the population is
localized on r and the interaction with such state has no effect (which is the case for any value of θ).

3.2. FMO complex
We now turn our attention to the FMO complex, a real networked system widely studied in the quantum
biology literature. This complex appears in green sulfur bacteria and assists energy migration from a
chlorosome super-complex to the reaction centre [11, 39]. It can be modeled as an eight-node fully
connected network with non-homogeneous hopping strengths and non-homogeneous site energies. Using
the values tabulated in reference [39], obtained from experimental data, we can write the matrix
representation of its single-excitation subspace Hamiltonian in the computational basis (see appendix A) in
units of cm−1 (a natural choice for energy in spectroscopy)

H(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 −94.8 5.5 −5.9 7.1 −15.1 −12.2 39.5
−94.8 230 29.8 7.6 1.6 13.1 5.7 7.9

5.5 29.8 0 −58.9 −1.2 −9.3 3.4 1.4
−5.9 7.6 −58.9 180 −64.1 −17.4 −62.3 −1.6
7.1 1.6 −1.2 −64.1 405 89.5 −4.6 4.4

−15.1 13.1 −9.3 −17.4 89.5 320 35.1 −9.1
−12.2 5.7 3.4 −62.3 −4.6 35.1 270 11.1
39.5 7.9 1.4 −1.6 4.4 −9.1 11.1 505

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The site energies have been shifted so that the 3rd node, to which the sink is connected, has zero energy. A
network representation of the complex is depicted in figure 3. In many previous works [7, 31, 35, 40, 41]
the FMO is modeled as a seven-node network, as the eighth node has recently been discovered [39, 42, 43].
In any case, the two networks have a highly similar topology and behavior, and all the results presented here
are valid for both of them. It is worth clarifying that the FMO is a large biomolecule with a complex
internal structure that interacts with a warm environment. Its purpose is to transfer excitations as fast as
possible to the reaction center before it is lost to the environment due to dissipation. Modeling the FMO as
an eight-node network, the energy transfer as a CTQW within the network, and the environmental
interaction as pure dephasing—ignoring dissipation—all corresponds to an effective model. While such
models are capable of capturing the core behavior of these systems [44–46], they are not adequate for
accurate numerical computations.

We apply the SCM to the FMO with different spatial and temporal heterogeneity, as we did with the
fully connected network. By comparing the two extremes of spatial homogeneity (collisions on all nodes)
and heterogeneity (collisions only on the initial node r = 1) in figure 4, we see that, in this system,
localizing the collisions on the source node no longer is the most efficient strategy to drive the excitation to
the sink. The FMO is a disordered system that does not experience strong population trapping in the initial
node, so there is a priori no reason to expect localized dephasing to result in a better performance in this
case. On the other hand, temporal heterogeneity has the same effect on the FMO as on the fully connected
network: it leads to lower performance at optimal noise rates while resulting in increased resilience against
the high-rate slowdown effect.

Surprisingly, we also observe drops in the performance of the process for some collision rates in this
system. As in the case of the fully connected network, the rates at which these take place do not depend on
the interaction strength θ (see figure 4(c)), which indicates that the phenomenon is due to the presence of a
characteristic time in the dynamics of the network. In the fully connected network, this could be assessed
analytically given the simplicity of the system. However, finding the characteristic times of the FMO from
the free dynamics would be far from trivial. Given that the SCM is able to reveal this periodicity in the FMO
dynamics, we now consider whether the versatility of the model can be further exploited to identify other
properties of this real system. We have so far studied spatial heterogeneity by simulating the dynamics in
two extreme cases, and the temporal one by jointly modifying the shape parameters of all nodes with
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Figure 3. Network representation of the FMO complex. Nodes in the FMO are represented as circles, whereas the lines
connecting them represent the hopping strengths. Every link’s width is proportional to the logarithm of the corresponding
matrix element, log |H(1)

ij |, while the color indicates the value according to the bar on the right. The colors of the nodes highlight
their optimal noise level from figure 5: high (pale grey) or low (dark yellow).

Figure 4. Effect of noise heterogeneity on transport performance in the FMO complex. Performance ε as a function of the
inverse intercollision time ζ in the case of (a) spatially homogeneous noise and (b) maximally heterogeneous noise (collisions on
the initial node r = 1 only). In both cases, θ = π/2, and the legend indicates the shape parameter corresponding to each curve.
The black dashed line displays the performance of FMO in the noiseless case. In (c), we show the performance for different
interaction strengths with spatially and temporally homogeneous collisions.

non-zero collision rate. We now address the question of what the local scale and shape parameters
maximizing the performance in the FMO are. To find the optimal values of {λi, ki}, we use a genetic
optimization algorithm [47]. Essentially, the optimization is performed by considering a pool of candidate
parameter assignments (the first generation), from which the best-performing ones (fittest) are selected and
combined to obtain the next generation. This process is applied iteratively, yielding high-performing
generations after several steps. A more detailed explanation of the algorithm can be found in appendix D.

The results of the optimization are displayed in figure 5, where we show the distribution of the optimal
mean collision rate ζ i, figure 5(a), and of the shape parameters ki, figure 5(b), for each node. Interestingly,
we notice two clearly distinct behaviors, with nodes being subjected to either very strong noise (very high
collision rate) or virtually no noise at all. Moreover, figure 5(b) reveals that the noise is essentially
deterministic. This result allows us to classify the nodes in the FMO into two classes according to their
optimal SCM noise levels, and suggests a methodology for transport-based community detection [48]. It
should also be stressed that this node classification is by no means evident from the structure of the
network (see figure 3).

To conclude our SCM-based analysis of the FMO complex, we focus on the structure of the
Hamiltonian. Given that it is a biological system, one would expect equation (2) to be the result of an
evolutionary process driving the system towards an optimal performance in noisy environments, such that
modifying the hopping strengths would lead to a lower performance. However, this does not seem to be the
case. In figure 6, we show the distribution of transport performance of networks obtained by randomly
reshuffling (permuting) the hopping strengths—so that all the networks have exactly the same weight
distribution—along with the performance of the FMO. When subjected to homogeneous noise, as many as
40% of these random networks outperform the original Hamiltonian. Similar results (not shown) can be
obtained by simply sampling the hopping strengths independently from a Gaussian distribution with the
same mean and variance. This phenomenon depends on the noise model as well. As shown in the same
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Figure 5. Optimal noise for the FMO complex. Distribution of (a) the mean collision rate ζ i , and (b) the shape parameters ki of
node i in the last generation pool. The boxes show the first and third quartile, the middle bar being the median. The whiskers
show an inter-quartile range of 1.5. Panel (a) shows that there are two classes of nodes (highlighted with two different colors):
one with weak noise (small ζ i) (nodes 1, 3, 6 and 7), and one with strong noise (large ζ i). The optimal shape parameters ki tend
instead to be quite large, meaning that the collisions should be essentially deterministic.

Figure 6. Performance of the FMO upon link reshuffling. The histograms shows the distribution of transport performance ε for
104 networks obtained by randomly reshuffling the links of the FMO. The orange histogram corresponds to spatially
homogeneous and temporal Poissonian noise whereas, for the blue one, nodes were subjected to the optimal noise of figure 5.
The vertical dashed lines indicate the performance of the actual FMO complex under the corresponding noise. In the case of
homogeneous noise, 40% of the reshuffled graphs are more efficient. Instead, for optimal noise, this is less common (9%).

figure, the fraction of networks outperforming the FMO is significantly reduced when subjected to the
optimal noise from figure 5. These rather surprising results do not necessarily contradict the assumption of
the optimality of the FMO for excitation transfer. Although it seems relatively easy to outperform the actual
FMO when allowed to choose the hopping rates freely, the actual physical system is subjected to constraints
with which these randomized networks may be incompatible.

4. Conclusions

We have introduced the SCM, a versatile noise model for general N-qubit systems in which ancillae collide
with the system qubits at random times. We have moreover shown that by letting the collision-time
dynamics on each qubit be driven by a WRP, the model is conferred with the capability to regulate the
spatial and temporal heterogeneity of the noise.

We have provided a thorough analysis of the effects of the noise heterogeneity on excitation transport in
quantum networks both for the fully connected graph and the FMO light-harvesting complex. In the case of
the fully connected network, the SCM reveals that, in the time-homogeneous regime, the transport
performance is very sensitive to the periodicity of the system, a result for which we provide an explanation
in terms of an analytical treatment of the noiseless dynamics. Remarkably, we observe a similar
phenomenon in the FMO network, although with a significant difference: as opposed to the fully connected
network case, this phenomenon is more evident, and the overall performance is higher, when the noise is
homogeneous in space. Nevertheless, the sudden changes in the performance with respect to small
variations in the collision rate suggest the existence of relevant periodic coherence-induced
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excitation-trapping events in the transport dynamics of this real system. While this stands as a conjecture at
this point, this is a relevant aspect that requires further research.

We have also exploited the versatility of our model to explore other non-trivial effects of the FMO
structure on its dynamical properties. By optimizing the transport performance over the noise parameters,
we find that the best environmental conditions for this biological complex is given by high-rate nearly
periodic collisions on some of its qubits, and no noise whatsoever on the rest. This surprising result does
not seem to be expected from the structure of the underlying graph. Finally, we have addressed the question
of whether the FMO structure is dynamically optimal, and we have found the unexpected result that a mere
randomization of the hopping strengths often results in a more efficient system under homogeneous noise.
However, when considering the optimal noise, the fraction of networks outperforming the FMO is
drastically reduced.

Overall, our results showcase the potential of the SCM for several purposes. On the one hand,
considering an interaction with the environment in terms of collisions with the particles conforming it is a
sensible assumption in many relevant situations. Needless to say, in these scenarios, collision events occur
randomly in time. In its more general form, the SCM can accommodate a wide class of stochastic dynamics,
for which efficient simulation techniques exist. On the other hand, the model can be useful for the analysis
of general systems in which it may not seem physically adequate, as one can use parameter-optimization
techniques like the ones employed here to identify unknown dynamical phenomena in complex quantum
systems.
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Appendix A. Single-excitation subspace

The Hamiltonian of the system, equation (2), preserves the number of excitations. This means that, for any
state with k excitations |ψk〉 = σ+

i1
. . . σ+

ik
|0〉⊗N , the vector H |ψk〉 is orthogonal to any state with a number

of excitations different from k. As a result, the Hamiltonian can be written as a direct sum of operators, each
living in a k-excitation subspace, that is, H = ⊕N

k=0H(k). This significantly reduces the computational
complexity of the problem, as we do not need to consider the full 2N-dimensional Hilbert space to study the
dynamics of an initially localized single excitation. Instead, we can restrict our attention to the
N-dimensional single-excitation subspace and its corresponding Hamiltonian H(1). It is convenient to

introduce the basis of single-excitation localized states
{
|i〉 ≡ σ+

i |0〉⊗N
}

, in which the matrix

representation of H(1) has elements H(1)
ij = 〈i|H |j〉 = gij(1 − δij) + ωiδij, which coincides with the adjacency

matrix of the graph. In case the sink is considered, an extra term −iγδijδis must be included. With the
introduction of the sink, the Hamiltonian becomes non-Hermitian and does not preserve the population.
This however does not prevent the use of the single excitation subspace. The loss of probability accounts for
the population of the vacuum state, which is completely impervious to both the free evolution and the
collisions, so it can be safely ignored.

Appendix B. Simulating the effect of the sink

In this appendix, we show that including a non-Hermitian term in the Hamiltonian is equivalent to using
an irreversible decay channel to account for the effect of the sink in the simulations.

Suppose we have a general n-level system undergoing free evolution as well as an irreversible decay from
state |s〉 towards the state |t〉. In the free evolution, state |t〉 is decoupled from the rest of the system, i.e., the
Hamiltonian H is orthogonal to |t〉. The state of the system ρ undergoes the evolution described by the
master equation ρ̇ = −i[H, ρ] + γ(KρK† − 1

2{K†K , ρ}) with K = |t〉 〈s| and {, } the anti-commutator. If
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we project over the subspace orthogonal to |t〉, the resulting density operator ρR evolves according to
ρ̇R = −i[H, ρR] − 1

2γ(|s〉 〈s| ρR + ρR |s〉 〈s|). Defining H̃ = H − i 1
2γ |s〉 〈s|, we see that it is possible to

rewrite the previous equation as ρ̇R = d
dt (e−i˜HtρR ei˜H†t). Hence, we can describe the time evolution of ρR as

the free evolution under the non-Hermitian Hamiltonian H̃.

Appendix C. Noiseless dynamics in the fully connected network

In this section, we briefly outline some results regarding the dynamics of a single excitation in the fully
connected network in the absence of collisions.

Using the expression for the time-evolution operator in the absence of sink and collisions presented in

the main text, e−itH(1)
= eigt

(
e−egNt |φ〉 〈φ|+ P⊥

)
= eigt

[
(e−igNt − 1) |φ〉 〈φ|+ 𝟙

]
, we see that the state of an

excitation initially localized at node r at time t is e−itH(1) |r〉 = eigt
[

(e−igNt − 1) 1√
N
|φ〉+ |r〉

]
. The

population on some node k is thus

∣∣∣〈k| e−itH(1) |r〉
∣∣∣2
= δrk

[
1 +

2

N

(
cos(gNt) − 1

)]
+

2

N2

[
1 − cos(gNt)

]
. (C1)

Since the term multiplying the Kronecker delta is positive for N > 4, we see that, for large networks, the
initial node has the largest population throughout the dynamics.

Let us now turn our attention to the interference-induced coherence trapping, which results in a strong
suppression of the energy transfer to the sink in this graph. The same argument that we present here can be
found in [6]. As before, we consider an excitation initially localized on node r and the sink to be attached to
node s. If we ignore the sink for a moment, we can see that |ϕi〉 = |r〉 − |i〉 , ∀ i /∈ {r, s}, along with |φ〉,
form a complete set of eigenstates of the Hamiltonian. Moreover, it is easy to show that

|r〉 = 1

N − 1

⎛
⎝ ∑

i/∈{r,s}
|ϕi〉+

√
N |φ〉 − |s〉

⎞
⎠ . (C2)

The vector
∑

i/∈{r,s} |ϕi〉 is an eigenstate of the Hamiltonian and has no overlap with the target node state |s〉.
Hence, its population is protected from the sink, while the population on the other two terms is
unprotected and can eventually flow to the sink. Given that

〈
ϕi|ϕj

〉
= 1 + δij, we can write∑

i/∈{r,s} |ϕi〉 =
√

(N − 1)(N − 2) |Ψ〉 with 〈Ψ|Ψ〉 = 1. Introducing this into equation (C2), yields

|r〉 =
√

N − 2

N − 1
|Ψ〉+ |unprotected〉 . (C3)

The unprotected population, that is, the maximum amount of population that can reach the sink, can be
readily computed from the expression above as 〈unprotected|unprotected〉 = 〈r|r〉 − (N − 2)/
(N − 1)〈Ψ|Ψ〉 = 1/(N − 1) (where we have used 〈Ψ|unprotected〉 = 0 since 〈ϕi|φ〉 = 0 and 〈ϕi|s〉 = 0).
This trapping of coherence is due to the peculiar eigenstate structure of the Hamiltonian, which is in turn a
consequence of the high symmetry of the fully connected network.

Appendix D. Genetic algorithm

The purpose of the genetic algorithm is to find the noise parameters that yield the highest performance for
the given network. An initial population is created by sampling random values. The population is composed
by a certain number of members, each consisting of the set of parameters (called chromosomes) that we
wish to optimize. The performance of each member of the population is evaluated, and the best half is
promoted to be the parents of the next generation. The values of the parents are mixed to create an
offspring, and the offspring is further subjected to random mutations. The parents and the offspring are
now the members of the second generation, whose performance is evaluated and the process begins anew.
By including the parents in the future generation we ensure that high performing members are never lost
(the offspring do not always outperform their parents). This way, through each generation, we improve the
overall quality of the genetic pool.

In our case we used a pool of 40 individuals, 20 of which were selected to be the parents at each
iteration. Each individual corresponds to the shape and scale noise parameters for each qubit of the
network, so the total number of chromosomes is 16 when optimizing for the FMO. Each offspring
individual inherits 8 chromosomes from one parent and 8 from the other, and each parent mates twice with
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different partners. The mutation usually consists in adding randomly extracted values to the chromosomes,
though we often found faster convergences by multiplying by random values instead, or using a hybrid
model. The number of generations is not fixed, but rather the algorithm is stopped once the quality of the
population reaches a plateau.
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