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Abstract: Early and Late Cretaceous alkaline and alkaline–
carbonatitic complexes from southern Brazil are located
along the main tectonic lineaments of the South America
Platform. Calcium-, magnesium-, and ferrocarbonatites
are well represented and frequently associated even in
the same complex. Primary carbonates present significant
variations in C–O isotopic compositions, which are
mainly due to isotope exchange with H2O–CO2-rich
hydrothermal fluids, whereas fractional crystallization or
liquid immiscibility probably affects the δ18O and δ13C
values by no more than 2δ‰. Our isotope exchange
model implies that the most significant isotopic variations
took place in a hydrothermal environment, e.g., in the
range 400–80°C, involving fluids with the CO2/H2O ratio
ranging from 0.8 to 1. Sr–Nd–Pb isotope systematics
highlight heterogeneous mixtures between HIMU and EMI
mantle components, similar to the associated alkaline
rocks and the flood tholeiites from southern Brazil. In
spite of the strong variation shown by C–O isotopes,
Sr–Nd–Pb–Os isotopic systematics could be related to an
isotopically enriched source where the chemical hetero-
geneities reflect a depleted mantle “metasomatized” by
small-volume melts and fluids rich in incompatible

elements. These fluids are expected to have promoted
crystallization of K-rich phases in the mantle, which
produced a veined network variously enriched in LILE
and LREE. The newly formed veins (enriched component)
and peridotite matrix (depleted component) underwent a
different isotopic evolution with time as reflected by the
carbonatites. These conclusions may be extended to the
whole Paraná–Etendeka system, where isotopically dis-
tinct parent magmas were generated following two main
enrichment events of the subcontinental lithospheric
mantle at 2.0–1.4 and 1.0–0.5 Ga, respectively, as also
supported by Re–Os systematics. The mantle sources
preserved the isotopic heterogeneities over a long time,
suggesting a nonconvective lithospheric mantle beneath
different cratons or intercratonic regions. Overall, the
data indicate that the alkaline–carbonatitic magmatism
originated from a locally heterogeneous subcontinental
mantle.

Keywords: carbonatites: southern Brazil, C–O isotopes,
Sr–Nd–Pb–Re–Os systematic

1 Introduction

Southern Brazil is part of the Paraná–Etendeka Province
(PAEP) [1] characterized by the emplacement of Early
Cretaceous tholeiitic flood basalts and dyke swarms,
129–133Ma aged [1–6], and alkaline and alkaline–carbo-
natite complexes of Early Cretaceous to Paleogene age
[8–12]. The alkaline and alkaline–carbonatitic complexes
formed mainly along tectonic structures (Figure 1) active
at least since Early Mesozoic, and up to the present day, as
indicated also by the distribution of the earthquakes in
southern Brazil [13].

Almost all the carbonatites from southern Brazil are
restricted to continental areas. The criteria by which a
carbonate-rich rock is considered to be a true carbonatite
are difficult to apply with confidence. Although not
conclusive, the following characteristics are the strongest
clues, especially when they are observed together [14]: (1)
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field evidences, e.g., subcircular or suboval or ring
structures of alkaline complexes with carbonatite body
occupying the inner part; (2) association with melilite- or
nepheline-bearing rocks; (3) calcite with >1wt% SrO; (4)
presence of perovskite, pyrochlore, F-REE-carbonates, and
apatite with high silica content (e.g., >2wt%); (5) enrich-
ment in Sr, Ba, Nb, U, Th, and rareearth elements (with
high LREE vs HREE fractionation) and depletion of other
incompatible elements (e.g. K, Rb, Zr, Hf, and Ti) relative to
mantle and continental crust [15]; (6) 87Sr/86Sr initial ratios
similar to those of the associated silicate alkaline rocks [16];
(7) stable isotopes (O–C) in the “primary carbonatitic box”
[17,18] or following well-distinct isotopic fractionation
trends [19].

Taking into account the above criteria, this article
summarizes field and geological evidences and geo-
chemical characteristics in terms of C–O and Sr–
Nd–Pb–Re–Os isotopic data of alkaline–carbonatitic
complexes and occurrences in and around the Paraná
Basin in southern Brazil, in particular, and in the
Paraná–Angola–Namibia (PAN) system in general [20].
In the context of the long-standing controversy about the
exact mechanism that produced the South Atlantic
igneous province [22], our results give new important
information that allows one to interpret the geodynamic
framework of the whole Mesozoic magmatism of the
southern Brazilian Platform, in alternative to the

mainstream model based on the involvement of a deep
mantle plume in magma genesis processes in the region.
Notably, noble gases isotopic data suggest that the source
(s) are similar to other mantle-derived magmas (e.g.,
HIMU and MORB) and that the carbon of carbonatites is
unlikely to be subduction-related carbon, and supports a
picture of C–O fractionation starting from mantle-derived
sources, in ametasomatized subcontinental lithospheric
mantle (SCLM) based on Sr–Nd–Pb isotope systematic
[20,23–25].

The structure of this article will follow the same
structure as the first part (Speziale et al., this issue) in that
the different carbonatitic occurrences are grouped on the
basis of petrographic associations [26] as magmatic
carbonatites [27,28], hydrothermal carbonatites, and
occurrences with unusual geometric relationship.
(1) Magmatic carbonatites

(A) Occurrences associated with rock types of the
urtite-ijolite-melteigite series,without the presence
of extrusive nephelinites (Brazil, Vale do Ribeira:
Anitápolis, Ipanema, Itapirapuã, Jacupiranga,
Mato Preto, and Juquiá; Goiás: Caiapó and
Morro do Engenho; Paraguay: Cerro Sarambí
and Sapucai).

(B) Occurrences only with olivinites and pyroxe-
nites as ultramafitites (±syenites) as Salitre I
and Serra Negra, and with glimmerites as
Araxá, Catalão I, Catalão II, and Salitre II.

(C) Occurrences with intrusive rocks containing
melilite, as Tapira and Lages.

(2) Hydrothermal carbonatites: those produced at tem-
peratures ≤375°C (e.g., Barra do Itapirapuã, Cerro
Chiriguelo, Cerro Manomó).

(3) Occurrences with unusual geometric relationships: a
small number of occurrences in the form of small
dykes or ocelli in alkaline silicate rocks (e.g., Valle-
mí, Cerro Canãda, Cerro E Santa Elena, Itanhaém; cf.
Speziale et al., this volume).

2 C–O isotopes

A compilation of the C–O isotopic data for calcite and
dolomite-ankerite (δ18O‰ vs V-SMOW and δ13C‰ vs
PDB-1) is given in Table 1. The C–O isotope compositions
of the studied carbonatites appear to be in general
agreement with a magmatic origin from supercrytical
fluids with CO2/H2O ≈ 0.2–0.6 molar ratios and tempera-
tures ranging from ∼800°C to 400°C (i.e., from
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Figure 1: Main tectonic structures in the Paraná–Angola–Namibia
(PAN) system (South American and African plates, Western
Gondwana at about 110 Ma; modified after [20]) and corresponding
to the main alignments of the alkaline and alkaline-carbonatitic
complexes. Inset: Qualitative vector diagram showing the rela-
tionships between absolute plate motions, relative motions, and
the development of the mid-Atlantic ridge (MAR) as depicted in the
figure [21].
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Table 1: Representative C–O isotopic ratios in δ‰ notation for calcite and dolomite/ankerite (sometimes coexisting) in carbonatites from
the Brazilian Platform. Analytical methods and uncertainties on the values reported in this table can be found in [29]. The locations of the
sampling areas [30,31] are reported in detail following the references relative to the single localities: PARAGUAY: Cerro Sarambí, [32,33];
Cerro Cañada, [20,34,35]; Cerro E Santa Elena, [20,34,35]; Sapucai, [34,36]; Cerro Chiriguelo, [29,36]; Valle-mí, [16,37]. BRAZIL:
Anitápolis, [38]; Ipanema, [39]; Itapirapuã, [40]; Jacupiranga, [36,41–44]; Juquiá, [45]; Salitre, [46,47]; SerraNegra, [48]; Araxá, [49];
Catalão I, [50,51]; Catalão II, [52]; Tapira, [31,53]; Mato Preto, [53]; Lages, [36,54]; Barra do Itapirapuã, [36]; Limeira, [36,42]; Itanhaém,
[55]; Caiapó, [56] Morro do Engenho, [56,57]; Santo Antònio da Barra, [58]

PARAGUAY

Sample δ18O
‰ Cc

δ13C‰ Cc δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C
‰
Dol/
Ank

Sample δ18O
‰ Cc

δ13C‰Cc δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Cerro Sarambí Cerro Chiriguelo Cerro Chiriguelo
SA-90 21.68 −5.68 — — 3,407 17.87 −7.01 — — 3,433 18.71 −5.34 — —
SA-91 17.11 −10.37 — — 3,408 18.14 −5.97 — — 3,434 11.22 −6.52 — —
SA-95 14.96 −5.68 — — 3,409 14.14 −6.30 — — 3,435° 11.53 −7.77 — —
GL-SA — — 7.04 −8.61 3,410 23.33 −4.71 — — 3,435b 14.94 −6.25 — —
SA-958 14.89 −6.40 — — 3,411 15.93 −5.48 — — 3,436 12.51 −7.07 — —
Cerro Cañada 3,412 17.76 −4.98 — — 3,440 — — 22.91 −4.10
PS-245 6.90 −8.50 — — 3,413 16.21 −5.80 — — 3,442 11.76 −8.08 — —
PS245B 11.4 −6.3 11.1 −5.5 3,414 17.56 −5.75 — — 3,443 13.07 −6.49 — —
Cerro E Santa Elena 3,416 16.53 −6.40 Valle-mí
PS-524 16.09 −7.76 16.31 −7.34 3,417 16.38 −4.98 — — VM-1 8.53 −7.30 — —
Sapucai 3,418 15.56 −6.74 — — STE-A 17.12 −7.68 — —
PS-72 — — 14.47 −5.63 3,419 19.44 −3.97 — — STE-B 17.96 −7.30 — —
PS-72A — — 14.00 −6.54 3,420 15.45 −6.98 — — STE-D 18.30 −6.96 — —
PS-72B 14.77 −6.54 14.05 −6.83 3,422 13.48 −7.26 — — STE-E 18.03 −7.75 — —
PS-94 16.70 −7.37 — — 3,423 18.04 −6.89 — — VM-1 8.53 −7.30 — —

BRAZIL

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Anitápolis Salitre Lages
SAN-1 7.55 −7.24 8.24 −7.07 C-1 8.8 −6.2 C-1 8.8 SB05 17.87 −0.51 16.45 −0.46
SAN-2° 7.94 −7.34 8.51 −6.93 C-4 9.3 −6.9 C-4 9.3 SB05A — — 15.69 −1.78
SAN2-B 7.89 −7.29 — — Serra Negra SB05B — — 16.59 −0.24
SAN-3 7.53 −7.26 8.17 −7.02 LG-

03-70
8.23 −6.18 — — SB17 — 10.37 −4.29

SAN-4 7.63 −7.27 8.11 −7.00 LG-
14-28

7.23 −6.91 — — SB20 — — 8.99 −5.76

SAN-5 8.08 −7.16 8.39 −6.80 LG-
06-32

7.28 −7.35 — — FV24 — — 23.91 −3.02

SAN-6A — — 10.12 −6.89 LG-
13-126

7.24 −6.54 — — LG-1-4 — — 21.19 −1.66

SAN-8 10.38 −6.82 — — LG-
20-91

— — 8.50 −5.95 Barra do Itapirapuã

SAN-11 7.55 −7.38 8.04 −7.21 LG-
32-63

— — 13.89 −4.84 5-13.0 — — 8.40 −5.70

SAN-12 7.47 −7.15 8.19 −6.78 LG-
38-46

— — 8.86 −5.81 5-79 9.06 −5.82 10.0 −5.19

SAN-13 7.52 −7.37 7.45 −7.25 Araxá 5-98 8.42 −6.92 9.08 −6.35
SAN-14 7.50 −7.15 8.22 −6.78 AR-891 — — 14.0 −6.1 5-256 9.09 −6.43 9.60 −5.94
Ipanema AR-892 — — 12.6 −7.2 6-20 — — 9.13 −5.76
I19-2 7.67 −7.02 — — AR-893 11.5 −6.3 9.5 −5.8 6-30 — — 8.76 −6.22
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Table 1: Continued

BRAZIL

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

IP-1 23.62 5.38 — — ARX-
90-1AS

9.7 −7.2 — — 6-66 — — 9.23 −5.71

Itapirapuã ARX-
90-2B

10.0 −6.9 11.1 −6.0 6-78.8 — — 10.19 −3.69

IT-28 8.12 −6.63 9.13 −6.04 ARX-
90-3B

10.4 −7.1 11.4 −6.3 6-95 — — 8.63 −6.44

IT-29 8.75 −7.08 — — ARX-
90-4B

13.8 −4.8 10.7 −3.5 6-99.7 — — 8.73 −6.52

6,220 13.26 −1.66 — — ARX-
90-5B

10.0 −7.0 — — 6-110 — — 9.81 −6.04

6,221 14.61 0.38 15.95 0.99 AR 12.5 −6.8 — — 5-170.7 — — 9.72 −5.42
6,222 8.26 −6.25 — — AR-891 — — 14.0 −6.1 Weakly Overprinted
6,223 10.04 −4.52 — — Catalão I 1-18.8 — — 9.0 −5.8
6,224 12.36 −1.06 — — C1-1 8.2 −6.0 8.2 −6.9 1-30.5A 12.5 1.80 13.5 1.1
6,225 13.19 −2.41 — — C1CB02 9.9 −6.2 10.9 −6.9 1-32.5 7.67 −6.91 8.64 −6.19
6,227 10.19 −5.84 12.60 −4.98 C1C4 10.75 −5.79 — — 1-33.45 — — 9.4 −5.4
6,228 13.11 −0.56 — — CTTTW 9.6 −7.0 — — 1-37.4 6.00 −7.10 6.7 −6.4
6,229 9.77 −0.57 — — 13E-1° 13.3 −6.5 11.4 −5.0 1-39.3 8.08 −6.48 9.0 −5.78
−62.2 10.68 −3.45 11.88 −2.74 13E-2A 14.6 −6.4 10.2 −5.4 1-57.6 7.00 −6.80 7.9 −6.1
−70.0 18.90 −0.70 — — 13E-3A 19.3 −6.2 20.4 −4.2 2-72.4 — — 8.84 −6.13
−77 11.32 −1.91 13.00 −1.30 C3-2B 12.5 −5.3 9.9 −4.8 3-67.4B 13.1 1.2 13.7 1.5
−84 12.64 −0.41 — — CAT1 8.45 −6.97 8.03 −6.17 3-183.4 8.27 −6.77 9.26 −6.0
−93.1 — — 13.06 −0.63 CAT2 8.03 −6.47 8.51 −5.97 5-160.5 8.8 −6.35 9.36 5.99
−119.3 12.49 −0.81 13.31 −0.45 CAT3 8.23 −6.85 8.15 −6.01 5-230 9.88 −5.38 10.55 −4.90
−130 13.00 −3.96 — — Catalão II 2-72.4 — — 8.84 −6.13
Jacupiranga C2 9.36 −6.03 9.6 −7.0 3-67.4B 13.1 1.2 13.7 1.5
JM-1 8.00 −6.3 — — C2A2 9.21 −5.68 Limeira
JM-2 7.48 −6.07 8.12 −5.03 C2A15 8.49 −5.96 — — 1A (M) 23.69 −5.97 — —
JM-6A 8.12 −5.03 8.41 −4.59 C2A17 8.68 −5.97 — — 1B (M) 23.62 −6.07 — —
JM 12B 9.38 −4.12 9.51 −3.80 C2A19 8.46 −5.97 — — 1C (M) 23.80 −5.61 — —
JM 15 8.62 −5.15 9.20 −4.8 C2A21 8.69 −6.00 — — 1M 23.42 −6.13 — —
JC-11 7.50 −6.40 — — C2B17 9.48 −6.16 — — 2M 22.94 −6.50 — —
JC-18 8.10 −6.39 — — C2B18 8.74 −5.90 — — 3M 23.91 −6.89 — —
JC 26 7.30 −6.20 7.1 −5.8 C2B19 9.13 −6.35 — — Itanhaém
JC 27 — — 7.7 −5.9 C2B22 10.75 −5.79 — — IA-1 15.0 −4.3 — —
JC 44 9.60 −5.8 7.3 −6.1 C1C4 9.36 −6.03 — — IA-2 11.6 −5.5 17.0 −2.6
JC 46 7.70 −6.4 8.1 −5.6 Tapira Caiapó
JC 99 10.05 −6.39 — — T-1 9.9 −6.8 11.1 −5.9 CR-09 12.3 −7.0 — —
JC 100 7.48 −6.07 7.6 −5.71 S22-4B 10.0 −6.7 13.9 −4.9 Morro do Engenho
JC 101 8.12 −5.03 8.41 −4.59 S22-

11-C
9.9 −6.8 11.1 −5.9 ME-C 11.7 −7.8 — —

JC 102 9.38 −4.12 9.51 −3.80 S22-5B 15.4 −5.6 15.6 −5.8 Santo Antônio da Barra
JC 103 8.62 −5.15 9.2 −4.8 S22-8F 9.7 −6.8 — — SAB-12 8.83 −6.10 8.99 −5.77
JP 881 7.4 −5.8 7.2 −5.7 TP90-

1-C
10.0 −5.3 11.9 −3.7

JP 882 7.7 −6.5 7.5 −6.3 TP90-
1-D

9.7 −6.2 10.6 −5.0

HB-005 — — 7.1 −5.8 TAP-1 12.89 −6.61 12.95 −5.92
HB-010 — — 7.7 −5.9 Mato Preto
HB-011 9.38 −4.12 — — 44 10.68 −3.45

11.88 −2.74
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orthomagmatic to pegmatitic environment; cf. [59]).
Primary carbonates of alkaline rock types and associated
carbonatites show significant variations in C–O isotope
compositions [16,19,20,36,42]. The main trends of δ18O and
δ13C fractionation appear to be controlled by the depth of
emplacement of the carbonatites. Weathering and ground-
water fluids are locally important, as well as meteoric
water, which yielded samples strongly enriched in light
carbon due to contamination by a biogenic component
[16,27,60]. Oxygen and carbon isotopic compositions of
individual minerals from selected alkaline–carbonatitic
complexes in the Brazilian Platform are reported in Table 2.

Carbonatite complexes worldwide display large
compositional ranges of oxygen and carbonisotopic
ratios in the carbonate phases [17,29,67–71]. In the
studied carbonatites, the δ18O values cover a wide
interval from about 5 to 25‰ vs V-SMOW notation
[69], but about 50% of the analyses fall into a narrow
field between 6 and 10‰. The variation of δ13C is more
restricted, i.e., 91% of δ13C values fall in the range
between −2‰ and −8‰ vs PDB-1 notation [69]. Ranges
of δ18O and δ13C between 6 and 10‰ and between −4
and −8‰, respectively, are considered to reflect primary
carbonatites [17,18]. Different emplacement levels (i.e.,
deep-seated, up to near surface, or near-surface environ-
ments [72]) and superimposed primary and secondary
processes are all believed to play an important role in the
isotopic variations. These may be related to (1) isotopic
compositional differences in the source, (2) fractionation
processes during the magmatic evolution, (3) loss of
fluids during decompression at the time of emplacement,
(4) crustal contamination, and (5) post-magmatic, and
deuteric-groundwater processes.

Most of the large variations in heavy oxygen of the
carbonatites from the southern Brazilian Platform could be
explained by the interaction with hydrothermal fluids,
whereas the variations in heavy carbon may be associated
with both primary (i.e., isotopic composition of parental
magma) and secondary (i.e., hydrothermal re-equilibra-
tion) processes [17,68,69]. Determining the extent of
primary versus secondary variations of oxygen and carbon
isotopic ratios in carbonatites has important implications
for evaluating the geochemical characteristics of the
source regions, and may be useful for deciphering the
nature of the subcontinental mantle [16,37].

In order to address some of these problems, we
apply to the whole set of investigated carbonatites a
model of isotopic C–O fractionation (see [36] and
references therein). In fact (1), the carbonatitic com-
plexes from the southern Brazilian Platform are among
the most intensively studied in the worldwide literature;
(2) a large number of C–O isotopic and radiogenic data
are available for these occurrences ([26] and references
therein); (3) the current interpretation of the isotopic
data from the individual sites is controversial as to the
role of primary processes versus crustal contamination.

δ18O‰ (V-SMOW) and δ13C‰ (PDB-1) data for the
carbonates in the carbonatites from the southern
Brazilian Platform display both typical values of primary
carbonatites along with higher δ18O and δ13C values for a
number of samples (Figures 2–5). Enrichments in heavy
isotopes are interpreted in terms of heterogeneity in the
mantle source [70], or contamination by host rocks [71],
or magmatic – hydrothermal evolution of the carbonatite
at a shallow level [16,19,29]. δ18O and δ13C for sedimen-
tary carbonates and groundwater calcite are in the range

Table 1: Continued

BRAZIL

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/Ank

Sample δ18O
‰ Cc

δ13C
‰ Cc

δ18O
‰
Dol/
Ank

δ13C‰
Dol/
Ank

Juquiá 46 11.32 −1.91 13.0 −1.3
S16C 16.58 −7.57 15.83 −7.20 49 12.49 −0.81 13.31 −0.45
S25 15.68 −7.60 16.13 −7.27 51 14.61 0.38 15.91 0.95
S26A 16.42 −7.84 16.64 −7.27 56 10.19 −5.84 12.6 −4.98
S26B 15.68 −8.02 16.64 −7.45 59 8.91 −6.09 9.05 −5.75
1A 14.39 −6.31 14.19 −5.78 60 8.76 −6.12 8.94 −5.78
2A 14.50 −5.82 14.19 −5.32 Lages
3A 13.90 −6.39 13.59 −5.78 SB02 — — 15.18 −1.66
4A 13.79 −5.95 13.59 −5.32 SB03 17.35 −1.0 15.82 −1.55
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20 to 30‰ and 20 to 24‰, and −4 to +5‰ and −6 to
−4‰, respectively. It should be noted that marbles from
southern Brazil show δ18O and δ13C ranges from 16 to
23‰ and from −4 to +3‰, respectively [20]. There are
two main trends of isotopic C–O variations in the
carbonatites from southern Brazil: (I) a trend character-
ized by a positive increase of both δ18O and δ13C (e.g.,

Anitápolis, Mato Preto, and Jacupiranga, Figure 2a
and b; Lages, Figure 3b) and (II) a trend of δ18O increase
and δ13C decrease (e.g., Juquiá, Figure 2b).

At the Cerro Chiriguelo carbonatitic complex
(Figure 4a), two main linear trends are apparent: the first
one defined by carbonatitic samples and primary carbonate
of silicate rocks from bore-holes [16], while the second one
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Figure 2: Group-A magmatic carbonatites (cf. also Figure 3a, (b). Evolution of the C–O isotopic compositions (δ‰ notation) in the
carbonatitic complexes (cf. also Table 2): (a) Anitápolis, Ipanema, Itapirapuã, Mato Preto; (b) Juquiá, Jacupiranga, Caiapó, Morro do
Engenho, Santo Antônio da Barra, Cerro Sarambí, Sapucai. Magmatic conditions: 1,200–400°C; hydrothermal environment: I case of fluid
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conditions: biogenic component with temperature 40–80°C; arbitrary starting compositions of groundwater: δ18O = 0, δ13C = 30‰
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carbonatites after [17,18] Cc: calcite, D/A: dolomite ankerite.
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represents carbonatitic specimens sampled near to or at the
topographic surface, or carbonatitic lava flows. The extra-
polations of the two trends intersect at δ18O = 7.5‰ and
δ13C = −8.5‰, similar to the values obtained for primary
carbonate phases of an ijolite from Cerro Cañada in Central
Paraguay, i.e., δ18O = 6.9‰ and δ13C = −8.5‰, respectively.
Additional data for silicates, oxides, and carbonates
associated in ocelli from Cerro E Santa Elena and
Cerro Cañada ijolitic rocks (Figure 5) or silicate-oxide-
carbonate phases in Jacupiranga complex and also

apatite-calcite pairs in Jacupiranga and Juquiá carbona-
tites, respectively [36,61], are all reported in Table 2 along
with calculated temperatures of isotopic equilibria.

Concluding, the observed large C–O isotopic varia-
tions are mainly due to isotope exchange between
carbonates and H2O–CO2 rich fluids, while magmatic
processes, i.e., fractional crystallization or liquid
immiscibility probably affect the δ18O and δ13C values by
no more than 2‰. The isotope exchange model implies
that the main isotopic variations occurred at low
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temperatures, in a hydrothermal environment, e.g., in the
range 400–80°C, involving fluids with a CO2/H2O molar
ratio ranging from 0.8 to 1, as proposed by [36], based on
their thermodynamic model of C–O isotopic evolution.

3 Sr–Nd isotopes

The carbonatites from the southern Brazilian Platform
usually show the same initial isotopic ratios, 87Sr/86Sr
(Sri) and 143Nd/144Nd (Ndi), as the associated alkaline

rocks, even in the late stages of fluid-rock re-equilibra-
tion (i.e., hydrothermal environment), as concluded by
[16,19]. Initial ratios relative to Sr–Nd isotopes and
model ages of carbonatites are reported in Table 3.

In Brazil (Figure 6a), the Early Cretaceous carbona-
tites have Sri between 0.70425 and 0.70595 and Ndi
between 0.51213 and 0.51280 (mean Sri = 0.70527 ±
0.00034 and mean Ndi = 0.51224 ± 0.00011; cf. [1]). Late
Cretaceous complexes yield the following Sri and Ndi
mean values, respectively: Alto Paranaíba Igneous
Province (APIP), Sri = 0.70527 ± 0.00036 and Ndi =
0.51224 ± 0.00006 ([76–78] and references therein);
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Taiúva-Cabo Frio and Serra do Mar, Sri = 0.70447 ±
0.00034 and Ndi = 0.51252 ± 0.00008 [79]; Lages, Sri =
0.70485 ± 0.00053 and Ndi = 0.51218 ± 0.00022 [54,80].
It should be noted that the alkaline–carbonatite mag-
matism shows trends similar to those of the Cretaceous
tholeiites from southern Brazil and from Walvis Ridge
and Rio Grande Rise (fields H-Ti, L-Ti, UCA, LCA, and
RGR; cf. [81,82]).

In eastern Paraguay (Figure 6b), specimens from the
Early Cretaceous K-alkaline rocks (both pre- and post-Early
Cretaceous tholeiitic magmatism) and associated carbona-
tites yield Sri and Ndi within the ranges 0.70612–0.70754
and 0.51154–0.51184, respectively. These are distinct from
the values obtained for the Late Early Cretaceous (Misiones,
MIS, province) to Paleocene Na-alkaline rocks (Asunción
province, ASU), i.e., Sri = 0.70362–70524 and Ndi =
0.51225–0.51277. In Figure 6b, the carbonatites and asso-
ciated K-alkaline rocks show Sri and Ndi values similar to
the low Nd array of [83] and to the Paraguay array of [84].

The Sr–Nd isotopic ratios of alkaline and alkaline–
carbonatite complexes plotted in Figure 6 appear to
follow a well-defined array involving depleted and

enriched mantle components. Both the Early and Late
Cretaceous Brazilian alkaline–carbonatite complexes vary
from close to the HIMU to the enriched quadrant, fitting
the fields of the uncontaminated low-Ti and high-Ti
tholeiites from the Paraná Basin, that is those unaffected
by crustal magma contamination processes [1,16,19,99].

The isotopically Sr-enriched rocks (e.g., eastern
Paraguay alkaline–carbonatite complexes) are not easily
explained by crustal contamination, since this requires
high percentages of crustal components in a mixing
process (up to 90%; [99]). On the contrary, we stress that
the oxygen isotope data suggest a primary, mantle-
derived origin for silicate phases: whole-rock δ18O
data for the potassic rocks yielded +5.45 to +5.91‰
(vs V-SMOW), which are consistent with the values
for its mineral constituents, clinopyroxene (+4.85 to
+5.20‰) and biotite (+3.96 to +5.54‰), and the
expected mantle values (cf. Table 3). On the whole, the
Na-rocks, close to the BE, and the K-rocks, typically high
in radiogenic Sr worldwide, represent the range of
virtually uncontaminated source magmas. The same
combination of different isotopic data can be a key to
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interpret the sources of alkaline and ultra-alkaline
magmatism in complex geodynamic settings, such as
the Italian ultrapotassic volcanic province [102–106].

In summary, the data support the view that the
carbonatites and alkaline rocks from eastern Paraguay,
mainly ranging in composition from a depleted compo-
nent to the BE, may represent the end members of
virtually uncontaminated source magmas from subcon-
tinental mantle segments variously affected by “metaso-
matic s.l.” processes at earlier times [99].

4 Nd-Model ages

Studies relative to the initial 143Nd/144Nd ratios from
Precambrian terrains suggest that the mantle that

produced continental crust has evolved with Sm/Nd
ratios higher than that of CHUR (chondritic uniform
reservoir; cf. [62,107]). For this reason, model ages for
the continental crustare usually calculated with refer-
ence to the depleted mantle reservoir (DM: 143Nd/144Nd =
0.513151, 147Sm/144Nd = 0.2188) rather than CHUR and
they are expressed as TDM model ages.

Although the Nd model ages do not reflect the true
ages of the sources, being a function of the Sm/Nd
fractionation during the melting and magma differentia-
tion [108], they may provide a notional estimate of the
time when a major metasomatic event may have
occurred, as a function of the different geochemical
characteristics of the different sectors of Brazil and
Paraguay.

Applying the TDM (Nd) model ages on the whole
Paraná system (PS) (e.g. [31,109]), we observe that: (1) in

Table 2: Measured isotope compositions in δ‰ notation of silicates, oxides, apatite, and calcite in some alkaline and alkaline-
carbonatitic complexes from the Brazilian Platform

Cerro E Santa Elena (ijolite) δ18O‰ (V-SMOW) δ13C‰ × 10−6 K2 Ref. T (°C)

A B

Clinopyroxenea 4.85 Cpx-Ol 1.24 0 1 852
Olivinea 3.87 Cpx-Mt 4.03 0 2 808
Magnetitea 1.40 Cpx-Amph 0.478 −0.30 2 746
Amphibolea 4.69 Cc-Cpx 2.37 0 3 908
Biotitea 4.62 Cc-Mt 5.91 0 3 798
Calcitea 6.55 −8.90 Average 822 ± 61

Biot-Amph 2.33 +0.60 1 799
Cc-Biot 1.84 0 4 703
Biot-Cpx −0.57 +0.60 1 556
Biot-Mt −0.092 +0.30 2 510
Average 642 ± 133

Cerro Cañada (ijolite)
Clinopyroxeneb 5.20 Cpx-Ol 1.24 0 1 1,202
Olivineb 4.63 Cc-Cpx 2.37 0 3 908
Biotiteb 5.54 Biot-Cpx −0.57 +0.60 1 1,208
Calciteb 6.90 −8.50 Cc-Biot 1.84 0 4 890
Jacupiranga (carbonatite) Average 1,052 ± 180
Clinopyroxenea 4.20 Cpx-Mt 858–890
Magnetitec 1.05 Cc-Mt 5.91 0 3 675–706
Magnetitec 1.23 Cc-Biot 1.84 0 4 436–458
Biotitec 3.96 Biot-Cpx −0.57 0.60 1 551
Calcitec 7.40 −6.58 Cc-Cpx 2.37 0 3 560–558
Calcitec 7.62 −6.68 Range 440–890
Juquiá (carbonatite)
Apatiteb 14.11 ± 1.87 −6.60 ± 0.39 Cc-Ap 1.60 0 5 863
Calciteb 12.35 ± 2.34 −6.87 ± 0.81

Abbreviations: Cpx, clinopyroxene; Ol, olivine; Mt, magnetite; Amph, amphibole; Biot, biotite; Cc, calcite; Ap, apatite. Calculated isotopic
temperatures based on fractionation of oxygen isotopes in mineral pairs according to the general equation 1000lnα = A(106T−2) + B, where
A and B are coefficients of the equation and T is the absolute temperature (cf. [62]). References: (1) [63]; (2) [64,65]; (3) [65]; (4) [66]; (5)
[67]. The uncertainties are about 0.05‰ (1 σ) for both carbon and oxygen (cf. [29]).
aUnpublished data. bRef. [30] and [31]. cRef. [61].
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the South American Platform, H-Ti flood tholeiites and
dykes mainly range between 0.8 and 2.4 Ga; (2) L-Ti
flood tholeiites span between 0.8 and 2.7 Ga; (3) the pre-
tholeiitic potassic rocks mainly vary from 0.8 to 2.5 Ga;
(4) early Cretaceous syn- and post-tholeiitic alkaline and
carbonatitic magmatism range from 0.6 and 0.9 Ga; (5)
Late Cretaceous alkaline rocks and carbonatites vary
between 0.6 and 0.9 Ga [12,31].

If the comparison is made between eastern Paraguay
(at the western margin of the south Brazilian Platform)

and the eastern end of the Brazilian Platform [31,110], we
observe that: (1) TDM of pre-tholeiitic K-alkaline rocks
from eastern Paraguay display two main peaks at 1.1 Ga
(Valle-mí, Apa Block) and at 1.4 Ga (Amambay region),
respectively; (2) the post-tholeiitic K-alkaline complexes
and dykes from central Paraguay (ASU) show a mean
TDM of 1.7 Ga [84]; (3) the associated high-Ti tholeiitic
basalts have TDM ranging from 0.9 to 1.4 Ga. On the other
hand, the low-Ti tholeiites exhibit model ages varying
from 0.7 to 2.8 Ga, with TDM increasing from north to
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with basalts and andesi-basalts with MgO ≥ 4 wt% and Sri ≤ 0.7065, i.e., those believed to be poorly crustally contaminated or
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south and from west to east; (4) the Na-alkaline rocks
display TDM mean values of 0.6 Ga (Na-ASU, Paleocene)
and 1.0 Ga (Misiones, late Early Cretaceous, respectively,
[34,35]). The youngest model ages are those of the Late
Cretaceous alkaline outcrops from the Brazilian Mato
Preto carbonatite (Ponta Grossa Arch: 0.58 ± 0.08 [40]).
On the other hand, the Early Cretaceous carbonatites of
Barra do Itapirapuã and Jacupiranga (Ponta Grossa
Arch) show TDM of 0.7 ± 0.2 Ga.

Thus, the range of model ages in the southern Brazilian
Platform (cf. Figure 9 of [12]) suggests that the corre-
sponding Paleozoic, Cretaceous, and Paleogene magmas
are derived from subcontinental lithospheric mantle mod-
ified by metasomatic processes (probably involving asthe-
nospheric components) since Neoarchean to Neoprotero-
zoic times [1,20,34,35,110].

In summary, the overlapping of isotopic compositions
and/or model ages of different igneous rocks (i.e., high- and
low-Ti tholeiites, K- and Na-alkaline rocks and carbona-
tites) cannot be accidental and suggests sampling of
ancient reservoirs formed at the same time from the same
subcontinental upper mantle (SCUM). Either in case of
heterogeneity induced by recycled crust in the mantle
[111,112], or of variably veined material in the SCUM [113], or

both, it is clear that magma genesis involved ancient
lithospheric mantle reset at well-defined isotopic ranges.

A Proterozoic lithospheric mantle with veins of
amphibole/phlogopite-carbonate-lherzolite and amphi-
bole-lherzolite + CO2 fluid (type III and IV veins of [113])
may well account for the magmatism of the southern
Brazilian Platform (Figure 7). This scenario is compatible
with Pb isotope data indicating a mantle source of ca.
1.8 Ga for the Paraná high-Ti tholeiites (see Pb isotopes
section) and with the age of formation of much of the
crust of southern Brazil (2 Ga; cf. [114]).

5 Pb isotopes

The available Pb isotopic data for the alkaline–carbona-
tite complexes and tholeiites from the PS are reported in
Table 4 and plotted in Figure 8a and b. The figures show
patterns compatible with mixing processes mainly
involving HIMU and EMI end members, and subordi-
nately DMM and EMI, as well as crustal s.l. components
(e.g., EMII). It should be noted that all the rock types lie
to the right of the 132 Ma geochron for the whole

DMM

( Sr/ Sr) 87 86
i

0.704 0.706 0.708

0.512

0.513

K

Na

Types I,II
Types III, IV

carbonatites Tholeiites

,α
, β

Veins

130 Ma

Veins

To matrix

(
N

d/
N

d)
14

3
14

4

i

Figure 7: Calculated subcontinental upper mantle (SCUM) isotopic composition at 1.8 Ga, projected to 130Ma. Parental melts with various
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Paraná–Etendeka system ([115], except for the post-
tholeiitic K-rocks from eastern Paraguay that plot close
to the 132 Ma geochron (Figure 8a).

Carbonatites from southern Brazil and eastern
Paraguay plot close to the EMI/DMM-HIMU mixing lines
for both Pb–Sr and Pb–Nd [31], different from Mid-
Atlantic Ridge (MAR) basalts and Ocean island basalts
(OIB), which define trends between the DMM and HIMU
mantle components.

This observation seems to confirm the advantages in
using carbonatite over silicate rocks, as indicators of
mantle sources, because of their rapid ascent to the
surface conditions, and buffering against crustal assim-
ilation due to their high Sr, Nd, and Pb concentrations in
the liquids.

The available Pb isotopic data indicate that any model
proposed for the evolution of the HIMU and EMI end
members must be consistent with the following con-
straints: (1) HIMU and EMI are not restricted to the oceanic

environment; (2) end members are variously associated in
space as a function of the various protoliths; (3) mantle
regions with HIMU and EMI isotope characteristics can
generate a wide variety of silicate melts, including melts
enriched in CO2 [116]; (4) Na-alkaline rock types are
systematically grouped together in fields well distinct from
the K-alkaline fields in Paraguay; (5) even the Na-alkaline
rock types from the Central Rift of the sub-Andean system
(Late Cretaceous; cf. [117]) fit the Triassic to Neogene
analogues from eastern Paraguay (cf. [35]).

Some authors as [11,79,115] postulated that the Early
Cretaceous alkaline–carbonatitic and tholeiitic magmatism
and the Late Cretaceous alkaline and alkaline–carbonatitic
magmatism from Alto Paranaíba-Serra do Mar (southern
Brazil) would reflect the variable contributions of the
asthenospheric mantle components related to the Tristan
da Cunha and Trindade plumes, respectively. On the
contrary, other authors [1,16,99,110] suggested that
the alkaline and alkaline–carbonatitic magmatism in the

Table 4: Representative Pb isotopic ratios (measured and initial ratios) of carbonatites from the southern Brazilian Platform. Data sources
as in Table 1

Early Cretaceous

Brazil Measured Age Ma Initial

206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

Barra do 18.627 15.605 39.123 115 18.232 15.598 38.922
Itapirapuã 18.763 15.618 39.147 18.495 15.612 39.011

18.426 15.528 38.808 18.159 15.538 38.593
Ipanema 17.617 15.477 37.938 125 17.451 15.467 37.612
Itanhaém 17.489 15.418 37.879 129 17.262 15.406 37.473
Itapirapuã 17.887 15.362 38.141 109 17.750 15.398 37.845

17.262 15.453 38.019 131 17.26 15.45 38.00
17.254 15.457 37.881 17.25 15.46 37.87

Jacupiranga 17.273 15.457 37.970 17.27 15.45 37.90
17.140 15.445 37.800 17.10 15.44 37.70
18.256 15.446 38.170 17.464 15.407 37.769
17.049 15.380 37.610 17.048 15.38 37.606
17.954 15.430 38.791 17.326 15.399 37.755
18.191 15.448 40.320 17.47 15.413 38.049

Juquiá 17.585 15.440 39.405 132 17.42 15.42 38.19
17.787 15.432 38.379 17.453 15.415 38.18

Anitápolis 17.394 15.432 38.479 129 17.37 15.43 38.34
17.491 15.453 39.375 17.41 15.45 38.21
17.415 15.46 38.468 17.38 15.46 38.27

Paraguay
Valle-mí 20.310 15.658 38.9676 138.7 19.968 15.641 38.589
Cerro Chiriguelo 17.333 15.521 37.608 137.9 17.033 15.506 37.465

18.821 15.434 38.288 18.501 15.574 38.152
Cerro Sarambí 18.821 15.434 38.290 139.6 18.490 15.56 38.07
Sapucai 17.859 15.518 37.916 126.4 17.702 15.511 37.852
Cerro Cañada 17.865 15.632 38.222 124.6 17.624 15.620 37.915
Cerro E Santa Elena 17.435 15.435 37.796 127 17.200 15.424 37.373
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examined rock types originated from lithospheric mantle
sources without appreciable contribution of plume-derived
materials.

On the basis of geochemical and geophysical data,
[6,7,118] proposed that the genesis of the tholeiites in the
Paraná-Tristan da Cunha system mainly reflects melting of

heterogeneous subcontinental mantle reservoirs, and that
the geochemical and isotopic signatures of the Walvis Ridge
and Rio Grande Rise basalts may be explained by
contamination through detached continental lithospheric
mantle left behind during the continental break-up
processes.
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`he Early Cretaceous alkaline magmatism from the
southern Brazilian Platform appears to be related to
heterogeneous mantle sources spanning from time-inte-
grated HIMU and enriched mantle components (Figure 8).
According to [119], for example, relatively low 206Pb/204Pb
and high 207Pb/204Pb compositions could be related to
delamination of pyroxenite restites formed by anatexis of
the initial basaltic crust in Archean–Proterozoic times. The
alkaline magmatism from Brazil and Paraguay mimics, in
terms of isotopic compositions, the coeval flood tholeiites.
We stress that, in general, the enriched isotopic signatures
of the Early Cretaceous alkaline magmatism decreases
from West (Paraguay) to East (Brazil and SE continental
margins). We observe a similar decreasing trend as a
function of the age of the magmatism in Paraguay and
Brazil from Early-Late Cretaceous to Paleogene. These
results suggest that the magmatism is related to both
large- and small-scale heterogeneous mantle sources. It
should be noted that, according to [79], the APIP (Alto
Paranaíba Igneous Province) would be the inland surface
expression of the “dogleg” track left by the Trindade
plume. However, in terms of Sr–Nd–Pb isotopes, the
contribution, if any, of the asthenospheric components
related to that plume is difficult to account for.

Overall, the data are consistent with a thermally eroded
metasomatic SCLM and/or delaminated lithospheric

materials stored for long time in the transition zone or
deeper mantle in Archean–Proterozoic times [26]. The
important role of the Tristan plume claimed by [115] is
not apparent. Therefore, we agree with [6,7] that the
hypothesis of asthenospheric plumes for the magmatism
from PS is not compelling, while a deep mantle thermal
anomaly, corresponding to positive geoid anomaly and
low seismic velocity (e.g., [120,121]), may have been its
possible heat source based on reconstructions of the
position of the South American lithospheric plate in the
Cretaceous [7,20,122,123].

6 Some notes on the Re–Os
isotopic system

Although carbonatites are not suitable materials for the
analysis of Re–Os and platinum group elements
([125,126] and references therein), many carbonatitic
complexes from southern Brazil are strictly associated
with mafic-ultramafic high-K rocks with kamafugitic and
kimberlitic affinity, e.g., in the Rio Verde-Iporá (Goiás),
Alto Paranaíba (Minas Gerais), and Lages (Santa
Catarina) areas (Late Cretaceous magmatism). Some

Table 5: Rb, Sr, Sm, Nd, Re, and Os concentrations and isotopic initial ratios of selected samples from the Alto Paranaíba Igneous Province
and one sample from Lages (notional ages 85 and 75 Ma, respectively). Analytical methods and data sources: [20,24,25] and references
therein

Kimberlites Glimmerites

Limeira Tres Ranchos Pantano Salitre Santa Rosa Verdiana Canas

ppm
Rb 114 94 48 38 183 124 21.1 132 333 1,161 144

Sr 2,540 2,215 1,811 2,927 2,029 2,267 1,450 1,070 1,668 1,771 1,632
Sm 30.3 42 23.5 43 24.9 25.6 20.0 42.9 22 22 22.2
Nd 224.6 312 208.4 348 195.1 186 116.5 324.8 160 162 165
Pb 11 15 19.5 13 9.2 12 13 13.2 23.2 16.4 17.4
U 4 28 7.1 8 6.4 18 8.2 11.4 4.3 4.8 4.3
Th 23 41 29.6 42 25.4 40 25 30.9 18.2 20.9 20.9
ppb
Re 0.418 0.315 1.992 0.2173 0.2170 0.3347 0.7192 1.3135 1.101 6.33 2.23
Os 1.612 1.221 1.982 1.2624 0.8080 1.1646 1.9271 1.4295 0.518 0.582 0.609
187Re/188Os 1.334 1.2313 4.845 0.6227 1.2960 1.3344 1.8619 4.4295 10.46 54.14 18.07
Initial ratios
87Sr/86Sr 0.70528 0.70543 0.70493 0.70514 0.70532 0.70540 0.70541 0.70505 0.70564 0.70624 0.70595
143Nd/144Nd 0.51225 0.51222 0.51228 0.151227 0.51225 0.51220 0.51230 0.51223 0.51219 0.51218 0.51218
206Pb/204Pb 17.84 21.48 18.67 18.11 17.84 21.44 17.86 19.35 17.22 17.24 17.24
207Pb/204Pb 15.49 15.66 15.53 15.51 15.47 15.74 15.61 15.58 15.39 15.41 15.40
208Pb/204Pb 38.25 39.73 38.18 38.61 39.21 39.67 38.92 38.40 37.78 37.76 37.81
187Os/188Os 0.113338 0.12679 0.12138 0.11986 0.12618 0.12861 0.11721 0.12456 0.27471 0.30452 0.26677
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authors [24,25,71,90,127] provided some Re, Os, and
platinoids data for rocks from the APIP (cf. Figure 1 of
[128]), with the aim to develop a petrogenetic model
regarding the kamafugitic–kimberlitic magmatism and
associated carbonatites. For this purpose, this section
presents a brief review for the main APIP rock types, i.e.,
kimberlites, kamafugites, phlogopite-rich peridotites,
glimmerites, and associated carbonatites, in order to
compare the Sm–Nd–Pb isotope results with the avail-
able Re–Os data.

Representative trace element compositions and
isotope ratios are listed in Table 5. 87Sr/86Sr vs
143Nd/144Nd initial ratios are plotted in Figure 9. The
APIP rock types straddle the field of the high-Ti tholeiites
of the Northern Paraná Basin (Early Cretaceous) and are
intermediate between the Kimberlites I and the Kimber-
lites II of [129,130].

In general, the high concentrations of the most
incompatible elements (IEs) in all the APIP alkaline rocks
[128] suggest that the effects of crustal contamination on
the Sr–Nd isotopic system were negligible and that the
parental magma compositions are more likely produced by
mantle-enriched sources affected by variable degrees of
metasomatism. The data, plotted in time-integrated
ε-notations, are widespread mainly in the enriched quad-
rant,with εSr and εNd extending in the ranges from −4 to 31
and from −2.5 to −9, respectively. The field relative to the
kamafugitic rock types contains all the other lithologies
(inset a of Figure 9), i.e., kimberlites, glimmerites, mica

peridotites, and carbonatites. The almost constant value of
the Sm/Nd ratio in the APIP rocks (147Sm/144Nd = 0.085 ±
0.009; [31]) suggests that the Nd model age is indicative of
the main metasomatic event affecting the lithosphere
beneath the Alto Paranaíba region [128]. Model ages TDM

(calculated with respect to the depleted mantle; cf. [31]) for
the whole APIP population (65 samples; cf. inset b of Figure
9) average to 1.0 ± 0.1 Ga.

The initial isotopic compositions displayed on
206Pb/204Pb vs 207Pb/204Pb and 206Pb/204Pb vs 208Pb/204Pb
diagrams (Figure 10a) define essentially linear arrays that
are subparallel to both the Early Cretaceous tholeiites from
the Paraná Basin [89,135] and the Northern Hemisphere
Reference Line (NHRL; [124]). A possible explanation for the
Pb isotope behavior is that the data represent a secondary
isochron, giving an apparent age of 2.5 Ga, suggesting an
Archean–Proterozoic mantle source, as already pointed out
by [114] for the tholeiites from the Paraná Basin.
Alternatively, the observed trends are due to the mixing
of different mantle components. Notably, some kimberlites
approach the HIMU mantle component.

Overall, the APIP alkaline rock types and associated
carbonatites plot in the field of the Brazilian Late
Cretaceous alkaline–carbonatite complexes. The latter
contains the fields of all the magmatic rock types from
the Paraná Basin (i.e., Early Cretaceous flood tholeiites
and alkaline–carbonatite complexes (cf. [31] and Figure 8).
In particular, the APIP extends from EMI and DMM to
EMII mantle components, overlapping the field of the
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Tristan da Cunha volcanics (Figure 10). Considering the
diagrams 206Pb/207Pb vs 87Sr/86Sr and 143Nd/144 Nd
(initial ratios) of Figure 10b, it should be noted that
most of the APIP rocks are in the field of the peridotite
xenoliths, except for some kimberlites; the latter show
lower radiogenic Nd with respect to the Late Cretaceous
kimberlites from Gibeon [131].

The Re–Os isotope systematics does not allow a clear
distinction among the different rock types. Kimberlites
have Re and Os between 0.32 and 1.99 ppb, and 0.81 and
1.98 ppb (av. 0.69 ± 0.64 and 1.43 ± 0.40 ppb, respec-
tively). On the other hand, 187Os/188Os initial ratios vary
within a small range, i.e., from 0.11 to 0.13 (av. 0.122 ±
0.005). Kamafugites show Re and Os from 0.06 to
0.38 ppb and from 0.12 to 1.76 ppb (av. 0.156 ± 0.140 and
0.672 ± 0.526 ppb, respectively) and have 187Os/188Os
initial ratios ranging from 0.11 to 0.15 (av. 0.134 ± 0.013).
The glimmerites that present the highest 187Os/188Os (av.
0.295 ± 0.043) and 187Re/188Os (av. 13.98 ± 3.83) ratios
are well distinct from the other groups (Figure 10).

Rhenium depletion (TRD) model ages (based on
Re–Os isotopes) range between 1.39 and 1.64 Ga, thus
setting a minimum Re age of the source region protolith
[25] showing an older event with respect to the APIP Nd
model age (1.0 ± 0.1). Notably, these model ages are in
the same range of the Paraguay alkaline–carbonatite

rocks (1.1–1.7 Ga). The cluster of isotopic data seems to
indicate old lithospheric sources.

Arguments in favor of lithospheric sources for the
APIP magma types are also postulated by [24,127], by
comparing the Re-depletion ages of the kimberlites with
Nd-depleted mantle model ages of all their analyzed rock
types. The Os isotope data for the APIP rock types are
indicative of lithospheric mantle sources for the kimber-
lites (187Os/188Os ratios 0.11 to 0.13) that were variously
Re depleted, probably at Neoarchean to Mesoproterozoic
times. These lithospheric sources experienced LILE
enrichment by fluid/melt metasomatism at ∼1 Ga, prob-
ably during the mobile belt formation along the western
border of the São Francisco craton. Kamafugites have
radiogenic 187Os/188Os ratios (up to 0.15) suggestive of
source veins that appear to have been stabilized in the
lithospheric mantle in the Meso- to Neoproterozoic.

Finally, it should be stressed that Carlson et al. [24]
proposed that the Os isotope compositions, coupled with
Sr–Nd–Pb isotope systematics, most likely represent the
influence of delaminated Brazilian lithospheric mantle
mixed into mantle circulation beneath the South Atlantic
and are not related to the plume(s) activity commonly
attributed to the APIP magmatism (cf. [77]). As matter of
fact, geoid anomaly maps and regional seismic tomo-
graphy studies are supporting a non-plume-related heat
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source for the magmatism from southern Brazil and
eastern Paraguay [7,110]. The hotspot tracks of Walvis
Ridge and Rio Grande Rise, as well as the Victória-
Trindade chain, rather than reflecting continuous mag-
matic activity induced by mantle plumes beneath the
moving lithospheric plates might instead reflect the
accommodation of stresses in the lithosphere during
rifting, similar to the general mechanism proposed by
[140,141].

7 Concluding remarks

The isotopic data show that magmatism from the
southern Brazilian Platform requires heterogeneous
mantle sources, also in terms of radiogenic isotopes,
probably related to metasomatic s.l. processes that
occurred between Neoarchean and Neoproterozoic
times, as also confirmed by Re–Os systematics on
mafic-ultramafic rock types associated with the alkaline–
carbonatitic complexes.

The areal distribution of magmatism suggests that
the time-integrated isotopic enrichment of carbonatites
and associated alkaline rocks decreases from west
(eastern Paraguay) to east (southern Brazil), concomi-
tantly with the decreasing age of the magmatism (Early
to Late Cretaceous). This supports the view that the
alkaline–carbonatitic magmatism originated from large-
to small-scale heterogeneous subcontinental mantle.
Sr–Nd–Pb–Os isotope data yield clear evidences that
HIMU and EMI mantle components were important in
the genesis of the magmatism in the southern Brazilian
Platform. We speculate that a viable mechanism could
involve passive rifting, astenosphere upwelling, and
consequent melting of a metasomized (fluid-bearing)
subcontinental lithospheric mantle.

All the results indicate that asthenospheric compo-
nents derived from mantle plumes (i.e., Tristan da Cunha
and Trindade hot spots; cf. [142]) did not significantly
contribute to the genesis of the alkaline–carbonatitic
magmatism, consistent with the conclusions reached by
[2,7,90,99] for the petrogenesis of the Paraná flood
tholeiites. This confirms that the exact mechanism that
produced the South Atlantic igneous province and its
relationship with the South Atlantic opening are still an
open question (e.g., [22] and reference therein).

Regional thermal anomalies in the mantle, mapped
by geoid and seismic tomography, are supporting a non-
plume-related heat source for the Paraná magmatic
province according to [7,110,118]. The hotspot tracks of

Walvis Ridge and Rio Grande Rise, as well as the
Victória-Trindade chain, might be the manifestation of
accumulation of stresses due to small-scale lithospheric
convection associated with rifting rather than contin-
uous magmatic activity induced by mantle plumes
beneath the moving lithospheric plates.
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