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Abstract

In this paper we prove the admissibility of modular function spaces Eρ con-
sidered and defined by Koz lowski in [17]. As an application we get that any
compact and continuous mapping T : Eρ → Eρ has a fixed point. Moreover,
we prove that the same holds true for any retract of Eρ.
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1. Introduction

The notion of admissibility, introduced by Klee in [14], allows one to
approximate the identity on compact sets by finite-dimensional mappings.
Locally convex spaces are admissible (see [24]), and a large literature is de-
voted to prove that particular classes of non-locally convex function spaces
are admissible, among others we mention [7, 21, 25, 26, 27]. Recently, in
[2] it has been proved the admissibility of spaces of functions determined by
finitely additive set functions. It is important to notice that not all non-
locally convex spaces are admissible, in [3] Cauty provides an example of a
metric linear space in which the admissibility fails. Here we prove the admis-
sibility of modular function spaces in the framework defined by Koz lowski
in [17] (see also [15, 16]). Modular function spaces are a natural general-
ization of both functions and sequence variants of Orlicz, Musielak-Orlicz,

Preprint submitted to Elsevier November 22, 2016



Lorentz, Orlicz-Lorentz, Calderón-Lozanovskii spaces and many others. Our
interest in the admissibility of modular function spaces lies in the possibil-
ity of applying the result to the fixed point theory. The fixed point theory
in modular function spaces was initiated by Khamsi, Koz lowski and Reich
[12], and it is a topic of interest in the theory of nonlinear operators, see e.g.
[1, 4, 5, 8, 9, 10, 11, 18, 20, 22] and references therein. For more information
about the current state of the theory the reader is referred to [13]. One of
the advantages of the theory, as observed for example in [5], is that even
in absence of a metric, many problems in metric fixed point theory can be
formulated in modular spaces. We recall the definition of admissibility.

Definition 1. [14] Let E be a Haudorff topological vector space. A subset Z
of E is said to be admissible if for every compact subset K of Z and for every
neighborhood V of zero in E there exists a continuous mapping H : K → Z
such that dim(span [H(K)])<∞ and f−Hf ∈ V for every f ∈ K. If Z = E
we say that the space E is admissible.

2. Preliminaries

We start by introducing modular function spaces, following [17]. Let X
be a nonempty set and P a nontrivial δ-ring of subsets of X, i.e. a ring closed
under countable intersections. Let Σ be the smallest σ-algebra of subsets of
X such that P is contained in Σ. Let us assume that E ∩ A ∈ P for any
E ∈ P and A ∈ Σ, and

X =
∞⋃
n=1

Xn, (1)

where Xn ⊂ Xn+1 and Xn ∈ P for any n ∈ N. Let (W, ‖ · ‖) be a Banach
space. By a P-simple function on X with values in W we mean a function
of the form

g =
n∑
i=1

wiχEi
,

where ωi ∈ W , Ei ∈ P , Ei ∩Ej = ∅ for i 6= j, and by E we denote the linear
space of all P-simple functions. A function f : X → W is called measurable
if there exists a sequence of P-simple functions {sn} such that sn(x)→ f(x)
for any x ∈ X. By M(X,W ) we denote the set of all measurable functions.

Definition 2. A functional ρ : E ×Σ→ [0,+∞] is called a function modular
if it satisfies the following properties:
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(P1) ρ(0, E) = 0 for every E ∈ Σ;

(P2) ρ(f, E) ≤ ρ(g, E) whenever ‖f(x)‖ ≤ ‖g(x)‖ for all x ∈ E and any
f, g ∈ E (E ∈ Σ);

(P3) ρ(f, ·) : Σ→ [0,+∞] is a σ-subadditive measure for every f ∈ E ;

(P4) ρ(α,A)→ 0 as α decreases to 0 for every A ∈ P , where for α > 0

ρ(α,A) = sup{ρ(rχA, A) : r ∈ W, ‖r‖ ≤ α};

(P5) there is α0 ≥ 0 such that supβ>0 ρ(β,A) = 0 whenever supα>α0
ρ(α,A) = 0;

(P6) ρ(α, ·) is order continuous on P for every α > 0, that is ρ(α,An) → 0
for any sequence {An} ⊂ P decreasing to ∅.

Then for f ∈M(X,W ) we set

ρ(f, E) = sup{ρ(g, E) : g ∈ E , ‖g(x)‖ ≤ ‖f(x)‖ for all x ∈ E}.

Definition 3. A set E ∈ Σ is said to be ρ-null if ρ(α,E) = 0 for every α > 0,
and a property is said to hold ρ-almost everywhere (briefly ρ-a.e.) if the set
where it fails to hold is ρ-null.

Then the functional ρ : M(X,W ) → [0,+∞] defined by ρ(f) = ρ(f,X)
is a semimodular, that is

(i) ρ(λf) = 0 for any λ > 0 iff f = 0 ρ-a.e.;

(ii) ρ(αf) = ρ(f) if |α| = 1 and f ∈M(X,W );

(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α+ β = 1 (α, β ≥ 0) and f, g ∈M(X,W ).

Given the semimodular ρ we consider the modular space

Lρ = {f ∈M(X,W ) : lim
λ→0+

ρ(λf) = 0},

endowed with the F -norm

‖f‖ρ = inf {λ > 0 : ρ (f/λ) ≤ λ} .
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Recall that ‖fn − f‖ρ → 0 is equivalent to ρ(α(fn − f))→ 0 for all α > 0.
We are interested in the closed subspace Eρ of Lρ defined by

Eρ = {f ∈M(X,W ) : ρ(αf, ·) is order continuous for every α > 0}.

For any set S in Eρ we denote by clS the closure of S with respect to ‖ · ‖ρ.
We recall that Eρ = clE (see [17, Theorem 2.4.8]). Also, for f ∈ Eρ, we set

Fnf = fχXn , (2)

where X =
⋃∞
n=1Xn as in (1). We denote by N the set of natural numbers.

3. Preliminary results

Throughout this section we assume that X ∈ P and we consider finite
partitions of X whose elements are disjoint and not ρ-null sets in P . Given a
partition Π = {A1, ...An} of X we denote by SΠ the set of P-simple functions
generated by Π. Given the partitions Πk = {E1, ...El} and Πn = {F1, ..., Fm}
(k, n ∈ N) of X, we write Πk ≤ Πn if each Ei ∈ Πk can be written as

Ei =

mi∑
j=1

Fij (3)

with Fij ∈ Πn, for j = 1, ...,mi.
Aim of this section is that of defining, corresponding to a given sequence of

partitions of X, an equicontinuous sequence of operators which approximates
uniformly the functions of a given compact subset of Eρ (Theorem 1). To this
end, given any two partitions Πk = {E1, ...El} and Πn = {F1, ..., Fm}, when-
ever Πk ≤ Πn, we define Pkn : SΠn → SΠk

by setting, for s =
∑m

j=1 wjχFj
,

Pkns =
l∑

i=1

∑mi

j=1wj

mi

χEi
, (4)

where, for each i = 1, 2, · · · , l, the indices 1, 2, · · · ,mi satisfy (3). Given a
sequence of partitions Q = {Πn} of X such that Π1 ≤ Π2 ≤ ...Πn ≤ ... and
Π1 = {X}, we put

S(Q) =
∞⋃
j=1

SΠj
.
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Then, corresponding to Q, for any k ∈ N, we define Pk : S(Q) → SΠk
by

setting

Pks =

{
s if s ∈

⋃k
j=1 SΠj

Pkns if s ∈
⋃∞
j=k+1 SΠj

,

where for s ∈
⋃∞
j=k+1 SΠj

we choose n > k such that s ∈ SΠn . Observe that
by (4) the above formula does not depend on the choice of the n for which
s ∈ SΠn , therefore the operator Pk is well-defined.

In the following, if not specified otherwise, we consider Q = {Πn} a fixed
sequence of partitions of X such that Π1 ≤ Π2 ≤ ...Πn ≤ ... and Π1 = {X}.

Lemma 1. Let s1, s2 ∈ S(Q) such that sup{‖si(x)‖ : x ∈ X, i = 1, 2} ≤
a < ∞. If for a given set D ∈ P and a given δ > 0

sup{‖s1(x)− s2(x)‖ : x ∈ D} ≤ δ,

then, for any k ∈ N, we have

ρ(Pks1 − Pks2, X) ≤ ρ(δ,D) + ρ(2a,X \D).

Proof. Fix k ∈ N. Choose n ≥ k, such that s1, s2 ∈ SΠn . Assume first n > k.
Let x ∈ D and fix Ei ∈ Πk such that x ∈ Ei. Assume that Ei =

⋃mi

j=1 Fij,

Fij ∈ Πn for j = 1, ...,mi. Put w1
ij = s1(x) and w2

ij = s2(x) for x ∈ Fij. Then

‖(Pks1)(x)− (Pks2)(x)‖ =
∥∥∥ mi∑
j=1

w1
ij − w2

ij

mi

∥∥∥ ≤ mi∑
j=1

‖w1
ij − w2

ij‖
mi

≤ δ.

By (P2), it follows ρ(Pks1 − Pks2, D) ≤ ρ(δ,D). On the other hand, for any
x ∈ X \D, we have

‖(Pks1)(x)− (Pks2)(x)‖ ≤ sup{‖s1(y)‖+ ‖s2(y)‖ : y ∈ X} ≤ 2a,

which implies ρ(Pks1 − Pks2, X \D) ≤ ρ(2a,X \D). Therefore, by (P3), we
obtain

ρ(Pks1 − Pks2, X) ≤ ρ(Pks1 − Pks2, D) + ρ(Pks1 − Pks2, X \D)
≤ ρ(δ,D) + ρ(2a,X \D),

as required. If k = n, then Pksi = si, for i = 1, 2, and the last inequality is
immediate.
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Now for a > 0 we put

Sa(Q) = {s ∈ S(Q) : sup{‖s(x)‖ : x ∈ X} ≤ 2a}.

As Eρ = clE , given a function f ∈ Eρ there exists a sequence {sn} ⊂ E such
that ‖sn(x)‖ ≤ ‖f(x)‖ for any x ∈ X and ‖f − sn‖ρ → 0, and in the sequel
we will use the fact that the sequence {sn} can be chosen in Sa(Q) whenever
sup{‖f(x)‖ : x ∈ X} ≤ a <∞.

Lemma 2. Let f be a function in cl(S(Q)). If sup{‖f(x)‖ : x ∈ X} ≤
a < ∞, then, for any k ∈ N and any sequence {sn} ⊂ Sa(Q) such that
‖f − sn‖ρ → 0, the limit limn Pksn exists, in the norm ‖ · ‖ρ, and does not
depend on {sn}.

Proof. Assume there exist k ∈ N, {sn} ⊂ Sa(Q) with ‖f − sn‖ρ → 0
such that limn Pksn does not exist. Since Eρ is complete, passing to a
subsequence if necessary, we can assume that there is d > 0 such that
‖Pksm − Pksn‖ρ > d > 0 for any n,m ∈ N, and moreover, in vitue of [17,
Corollary 2.4.6 and Proposition 2.3.5], we can also assume that sn(x)→ f(x)
ρ-a.e. Then by a version of the Egoroff Theorem [17, Theorem 2.3.4] there
exists a nondecreasing sequence of sets Dm ∈ P with

⋃∞
m=1 Dm = X such

that {sn} converges uniformly to f on every Dm.
Next let ε = d/3 and, applying (P4) and (P6), find mo ∈ N and δ > 0 such

that ρ(δ,Dmo) < ε and ρ(2a,X \Dmo) < ε. Since {sn} converges uniformly
to f on Dmo , we can choose m1,m2 ∈ N such that sup{‖sm1(x) − sm2(x)‖ :
x ∈ Dmo} ≤ 2εδ. By Lemma 1, we have

ρ
(Pksm1 − Pksm2

2ε
,X
)
≤ ρ(δ,Dmo) + ρ(2a,X \Dmo) < 2ε.

Therefore, by the definition of ‖ · ‖ρ, we find

‖Pksm1 − Pksm2‖ρ ≤ 2ε < d

which is a contradiction. To show that, for any k ∈ N, limn Pksn is indepen-
dent on the choice of {sn}, let {sn} and {vn} be two sequences in Sa(Q) such
that ‖f − sn‖ρ → 0 and ‖f − vn‖ρ → 0. Put z2n = sn and z2n+1 = vn. Apply-
ing the above reasoning to the sequence {zn} we find limn Pksn = limn Pkvn,
which completes our proof.
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Now, corresponding to the given sequence of partitionsQ, for any function
f ∈ cl(S(Q)) such that sup{‖f(x)‖ : x ∈ X} ≤ a < ∞, for any k ∈ N, we
define Pkf , in SΠk

, by setting

Pkf = lim
n
Pksn, (5)

where {sn} ⊂ Sa(Q) is any sequence satisfying ‖f − sn‖ρ → 0 and the limit
is meant in the norm ‖ · ‖ρ. The last definition, due to Lemma 2, is well-
posed. Our next goal is that of proving the equicontinuity of the sequence of
operators {Pk} defined in (5).

Lemma 3. Let {fn} be a sequence in cl(S(Q)) and f ∈ cl(S(Q)).
If sup{‖fn(x)‖ : x ∈ X, n ∈ N} ≤ a <∞, sup{‖f(x)‖ : x ∈ X} ≤ a <∞
and ‖f − fn‖ρ → 0, then

lim
n

(sup{‖Pkfn − Pkf‖ρ : k ∈ N}) = 0. (6)

Proof. Suppose that (6) is not satisfied. Then passing to a subsequence, if
necessary, we can assume that there exists d > 0 such that for any n ∈ N

sup{‖Pkfn − Pkf‖ρ : k ∈ N} > d, (7)

and, applying [17, Proposition 2.3.3 and Proposition 2.3.5], we can also as-
sume that fn → f ρ-a.e.

Let ε = d/4. Then by [17, Theorem 2.3.4] and property (P6) there exists
D ∈ P such that ρ(2a,X \D) < ε and {fn} converges uniformly to f on D.
By (P4), we can choose δ > 0 such that ρ(δ,D) < ε.
Now fix no ∈ N with

sup{‖fno(x)− f(x)‖ : x ∈ D} ≤ εδ.

Choose two sequences {sl} and {vl} in Sa(Q) such that ‖fno − vl‖ρ → 0
and ‖f − sl‖ρ → 0. Again, by [17, Theorem 2.3.4] and (P6), passing to a
subsequence if necessary, we can find D1 ∈ P , D1 ⊂ D (so that ρ(δ,D1) < ε)
and lo ∈ N such that for l ≥ lo we have

sup{‖sl(x)− f(x)‖ : x ∈ D1} ≤ εδ/2,
sup{‖vl(x)− fno(x)‖ : x ∈ D1} ≤ εδ/2,

and ρ(2a,D \D1) < ε. Hence, by the triangle inequality,

sup{‖sl(x)− vl(x)‖ : x ∈ D1} ≤ 2εδ
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for l ≥ lo. Consequently by Lemma 1, for l ≥ lo and any k ∈ N, we obtain

ρ
(
Pksl−Pkvl

2ε
, X
)
≤ ρ(δ,D1) + ρ(2a,X \D1))

≤ ρ(δ,D1) + ρ(2a,X \D) + ρ(2a,D \D1) < 3ε,

and, by the definition of ‖ · ‖ρ, we get

‖Pksl − Pkvl‖ρ ≤ 3ε.

Since ‖fno−vl‖ρ → 0 and ‖f−sl‖ρ → 0, by Lemma 2 and (5), for any k ∈ N,
it follows

‖Pkfno − Pkf‖ρ ≤ 3ε.

Consequently, by the choice of ε, we find sup{‖Pkfno − Pkf‖ρ : k ∈ N} < d,
which contradicts (7).

Theorem 1. Let K be a compact subset of Eρ such that

sup{‖f(x)‖ : x ∈ X, f ∈ K} ≤ a <∞.

Then there exists a sequence Π1 ≤ Π2 ≤ ...Πn ≤ ..., which will be denoted by
Q, of partitions of X such that Π1 = {X} and K ⊂ cl(S(Q)).
Moreover, for any ε > 0 there exists k ∈ N such that

sup{‖f − Pkf‖ρ : f ∈ K}) ≤ ε,

where {Pk} is the sequence of operators corresponding to the sequence of
partitions Q.

Proof. Since K is a compact subset of Eρ, K is separable. Let {fn} be a fixed
countable and dense subset of K. Since K ⊂ Eρ, for any n ∈ N there exists
a sequence Πn

1 ≤ Πn
2 ≤ ...Πn

k ≤ ... of partitions of X, which will be denoted
by Qn, such that Πn

1 = {X} and fn ⊂ cl(S(Qn)). Put R =
⋃
n∈NQn and

SR =
⋃
n∈N S(Qn). Since {fn} is dense in K, we have K ⊂ cl(SR). Moreover,

as R is a countable set of partitions, we can write R = {Γn}∞n=1, where each
Γn is a partition of X and we can assume Γ1 = {X}.
Now we construct by induction a sequence of partitions {Πn}. To this end
define Π1 = {X} and assume that we have defined Πj for j = 1, ..., n−1. Set

Πn = {E ∩ F : E ∈ Γn, F ∈ Πj for some j < n}.
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It is clear that Πj ≤ Πk for j ≤ k and SR ⊂ S(Q), where Q = {Πn}. Since
K ⊂ cl(SR), it follows K ⊂ cl(S(Q)), which shows that Q is the required
sequence of partitions.

Let {Pk} be the sequence of operators determined by the sequence Q.
First we show that for any f ∈ K

lim
k
‖f − Pkf‖ρ → 0. (8)

Fix a sequence of simple functions {sn} in Sa(Q) such that ‖f − sn‖ρ → 0.
Passing to a subsequence, if necessary, we can assume that sn → f ρ-a.e. Fix
ε > 0. Applying [17, Theorem 2.3.4] we can assume that there exists D ⊂ X
such that for any δ > 0 we can find no ∈ N satisfying

sup{‖f(x)− sn(x)‖ : x ∈ D,n ∈ N, n ≥ no} ≤ εδ.

and ‖f − sn‖ρ < ε for n ≥ no. Hence

sup{‖sn(x)− sno(x)‖ : x ∈ D,n ∈ N, n ≥ no} ≤ 2εδ.

By Lemma 1, for any n ≥ no and k ∈ N,

ρ
(Pksno − Pksn

2ε
,X
)
≤ ρ(δ,D) + ρ(2a,X \D).

Now fix D ⊂ X, D ∈ P , such that ρ(2a,X \ D) ≤ ε and δ > 0 satisfying
ρ(δ,D) < ε. Then we have

ρ
(Pksno − Pksn

2ε
,X
)
≤ ρ(δ,D) + ρ(2a,X \D) < 2ε

for n ≥ no and consequently, ‖Pksn−Pksno‖ρ ≤ 2ε for any k ∈ N and n ≥ no.
By (5), as n goes to infinity, ‖Pkf − Pksno‖ρ ≤ 2ε for any k ∈ N. Finally,
since Pnosno = sno , we have

‖f − Pnof‖ρ ≤ ‖f − sno‖ρ + ‖Pnosno − Pnof‖ρ ≤ 3ε,

which proves (8).
Now assume on the contrary that there exists ε > 0 such that, passing to a
subsequence if necessary, for any k ∈ N,

sup{‖f − Pkf‖ρ : f ∈ K}) > ε.
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Then for any k ∈ N there exists fnk
∈ K such that

‖fnk
− Pkfnk

‖ρ > ε.

By the compactness of K, we can assume that ‖fnk
− f‖ρ → 0 for some

f ∈ K. Note that for any k ∈ N

‖fnk
− Pkfnk

‖ρ ≤ ‖fnk
− f‖ρ + ‖f − Pkf‖ρ + ‖Pkf − Pkfnk

‖ρ
≤ ‖fnk

− f‖ρ + ‖f − Pkf‖ρ + sup{‖Plf − Plfnk
‖ρ : l ∈ N}.

Since ‖fnk
− f‖ρ → 0, by Lemma 3, we have

‖fnk
− f‖ρ + sup{‖Plf − Plfnk

‖ρ : l ∈ N} ≤ ε/2

for nk sufficiently large. By the previous part of the proof there is ko ∈ N
such that ‖f − Pkf‖ρ ≤ ε/2 for k ≥ ko. Hence for k ≥ ko

‖fnk
− Pkfnk

‖ρ ≤ ε,

which is a contradiction. The proof of our theorem is completed.

4. Admissibility

In this section we prove the admissibility of the space Eρ. The method of
the proof is similar to that of [2]. We begin with the following proposition by
showing that the space of P-simple functions generated by a given partition
of X is admissible.

Proposition 1. Let Π = {A1, · · · , An} be a partition of X. Then the sub-
space

SΠ =
{
s ∈ Eρ : s =

n∑
i=1

wiχAi
, wi ∈ W

}
of Eρ is admissible.

Proof. Let K be a compact subset of SΠ. For each g ∈ K we can write

g =
n∑
i=1

wi(g)χAi

for suitable elements wi(g) of the Banach space W . Note that by (P2), for any
i = 1, ..., n the linear mapping pi defined in SΠ by pi(g) = wi(g)χAi

satisfies
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‖pi(g)−pi(h)‖ρ ≤ ‖g−h‖ρ for any g, h ∈ SΠ and consequently it is continuous.
Then we prove that for any i = 1, ..., n the mapping g → wi(g) is continuous
with respect to ‖ · ‖ρ. Assume on the contrary that there exists d > 0,
{gn} ⊂ SΠ and g ∈ SΠ such that ‖gn − g‖ρ → 0 and ‖wi(gn) − wi(g)‖ ≥ d.
Again by (P2), we have

ρ(wi(g)χAi
− wi(gn)χAi

, Ai) ≥ ρ(d,Ai).

Since Ai is not a ρ-null set, by (P5) we get ρ(d,Ai) > 0, which contradicts
the continuity of pi.
Consequently, for any fixed i = 1, · · · , n, the set Ci = {wi(g) : g ∈ K} is a
compact subset of W , and C = ∪ni=1Ci as well. Let δ > 0 be fixed. Then
by the admissibility of the Banach space W , there exist a finite dimensional
space Zδ = span[z1, · · · , zm] in W and a continuous mapping Hδ : C → Zδ
such that

‖w −Hδ(w)‖ ≤ δ for all w ∈ C.
Then for each i ∈ {1, · · · , n}, g ∈ K and for suitable real numbers wij(g),
j = 1, · · · ,m, we can write

Hδ(wi(g)) =
m∑
j=1

wij(g)zj.

We denote again by Hδ : K → SΠ the continuous mapping defined by

Hδg =
n∑
i=1

Hδ(wi(g))χAi
=

n∑
i=1

( m∑
j=1

wij(g)zj

)
χAi

,

then
Hδ(K) ⊆ span[χAi

zj, i = 1, · · · , n; j = 1, · · · ,m]

and dim(span[Hδ(K)]) <∞. On the other hand for every g ∈ K we have

‖g −Hδg‖ρ =
∥∥∥∑n

i=1 wi(g)χAi
−
∑n

i=1

(∑m
j=1w

i
j(g)zj

)
χAi

∥∥∥
ρ

≤
∑n

i=1

∥∥∥(wi(g)−
∑m

j=1 w
i
j(g)zj

)
χAi

∥∥∥
ρ
.

By (P2) we have

n∑
i=1

∥∥∥(wi(g)−
m∑
j=1

wij(g)zj

)
χAi

∥∥∥
ρ
≤

n∑
i=1

‖δχAi
‖ρ.
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Since ‖ · ‖ρ is an F-norm, given ε > 0 we can choose δ > 0 such that∑n
i=1 ‖δχAi

‖ρ < ε. Therefore we have proved ‖g−Hδg‖ρ < ε, and hence the
admissibility of SΠ in Eρ.

In order to prove our main result (Theorem 2) we need the following two
lemmas.

Lemma 4. For f, g ∈ Eρ and n ∈ N, we have

‖Fnf − Fng‖ρ ≤ ‖f − g‖ρ,

where Fn is defined by (2). Moreover, for any ε > 0 and any compact subset
K of Eρ there exists no ∈ N such that for each n ≥ no we have

sup{‖f − Fnf‖ρ : f ∈ K} < ε.

Proof. Let f, g ∈ Eρ, then by property (P2) we have

ρ(α(Fnf − Fng), X) ≤ ρ(α(f − g), X),

for every α > 0. Hence, by definition of ‖ · ‖ρ,

‖Fnf − Fng‖ρ ≤ ‖f − g‖ρ.

Set Zn = X \Xn, then {Zn} ⊂ P is a decreasing sequence of sets. Since by
[17, Theorem 2.5.1], for every α > 0 the set function sup{ρ(αf, ·) : f ∈ K} is
order continuous, given ε > 0 there exists no ∈ N such that for each n ≥ no

sup {ρ (f/ε, Zn) : f ∈ K} ≤ ε.

Consequently, by the definition of ‖ · ‖ρ, as required, we find for every f ∈ K

‖f − Fnf‖ρ = ‖fχZn‖ρ ≤ ε.

Now, for a > 0, we denote by Ra the radial projection, of the Banach
space W onto its closed ball Ba(W ) of radius a, defined for w ∈ W by

Ra(w) =

{
w if ‖w‖ ≤ a
a w
‖w‖ if ‖w‖ > a.

Then we define the mapping Ta : Eρ → Eρ by setting for x ∈ X

(Taf)(x) = Ra(f(x)).
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Lemma 5. For any a > 0 and f, g ∈ Eρ, we have

‖Taf − Tag‖ρ ≤ 2‖f − g‖ρ.

Moreover, for any ε > 0 and for any compact subset K of Eρ there exists
a > 0 such that

sup{‖f − Taf‖ρ : f ∈ K} ≤ ε.

Proof. Fix a > 0. Note that by the definition of Ta for any d > 0,

ρ(d(Taf − Tag), X) ≤ ρ(2d(f − g), X).

as Ra is a Lipschitz mapping with constant 2. Hence we obtain

‖Taf − Tag‖ρ ≤ ‖2(f − g)‖ρ ≤ 2‖(f − g)‖ρ.

Now let K be a compact subset of Eρ and f ∈ K. Note that for any x ∈ X,
limn(Tnf)(x) = f(x) and ‖(Tnf)(x)‖ ≤ ‖f(x)‖ for any n ∈ N. By [17,
Theorem 2.4.7], we get

‖f − Tnf‖ρ → 0. (9)

To prove our second assert assume by contradiction that there exists ε > 0
such that for any n ∈ N there exists fkn ∈ K such that

‖fkn − Tnfkn‖ρ > ε.

Without loss of generality, passing to a convergent subsequence if necessary,
we can assume that there exists f ∈ Eρ such that ‖fkn − f‖ρ → 0. Note that
for any a > 0

‖fkn − Tafkn‖ρ ≤ ‖f − Taf‖ρ + ‖Taf − Tafkn‖ρ + ‖f − fkn‖ρ
≤ 3‖fkn − f‖ρ + ‖f − Taf‖ρ.

Hence by (9), ‖fkn − Tafkn‖ρ ≤ ε for a ∈ N sufficiently large which proves
our claim.

Theorem 2. The space Eρ is admissible.

Proof. Fix K a compact set in Eρ, and ε > 0. Since K is compact, by
Lemma 4, we can find n ∈ N such that

sup{‖f − Fnf‖ρ : f ∈ K} ≤ ε/4.

13



Moreover, Fn is continuous. By Lemma 5 applied to the compact set Fn(K),
there exists a > 0 such that

sup{‖Fnf − TaFnf‖ρ : f ∈ K} ≤ ε/4.

Since Ta is a continuous mapping, by Theorem 1 applied to (Ta◦Fn)(K) there
exists a sequence Q of partitions of X, Π1 ≤ Π2 ≤ ...Πn ≤ ... and Π1 = {X},
for which (Ta ◦Fn)(K) ⊂ cl(S(Q)). Moreover we can choose k ∈ N such that

sup{‖TaFnf − PkTaFnf‖ρ : f ∈ K} ≤ ε/4,

were {Pk} is the sequence of operators associated to Q. By Lemma 1, Pk is a
continuous mapping for any k ∈ N. Then V = (Pk ◦Ta ◦Fn)(K) is a compact
subset of SΠk

, hence by Proposition 1 there exists Hε : V → Eρ such that
span[Hε(V )] is finite-dimensional and

sup{‖HεPkTaFnf − PkTaFnf‖ρ : f ∈ K} ≤ ε/4.

Now we consider the continuous mapping H = Hε ◦ Pk ◦ Ta ◦ Fn. We have
dim[span[H(K)] <∞. Moreover, by the above facts, for any f ∈ K we have

‖f −Hf‖ρ ≤ ‖f − Fnf‖ρ + ‖Fnf − TaFnf‖ρ + ‖TaFnf − PkTaFnf‖ρ
+ ‖PkTaFnf −HεPkTaFnf‖ρ ≤ ε,

hence the admissibility of Eρ is proved.

Now we present one important consequence of admissibility and The-
orem 2. The proof works for any admissible Hausdorff topological vector
space and it is well-known (see [19], we also refer to [6]). We give the proof
for sake of completeness.

Theorem 3. Let T : Lρ → Eρ be a compact and continuous mapping. Then
there exists f ∈ Eρ such that Tf = f.

Proof. Without loss of generality we can assume that T : Eρ → Eρ. Since
T is a compact mapping, K = cl[T (Eρ)] is a compact set in Eρ. Hence by
Theorem 2 for any ε > 0 there exists a continuous mapping Hε : K → Eρ
such that dim(span[Hε(K)])<∞ and sup{‖f −Hεf‖ρ : f ∈ K} ≤ ε.
Let Tε = Hε◦T. Then Tε(Eρ) ⊂ Hε(K) and consequently Tε[conv(Hε(K))] ⊂
conv(Hε(K)). Also Tε is a continuous mapping. Since the dimension of
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span[Hε(K)] is finite, by the Carathéodory Theorem, conv(Hε(K)) is a com-
pact set. By the Brouwer Theorem there exists fε ∈ Eρ such that Tεfε = fε.
Hence for any n ∈ N,

‖Tf1/n − f1/n‖ρ = ‖Tf1/n − T1/nf1/n‖ρ = ‖Tf1/n −H1/nTf1/n‖ρ ≤ 1/n,

since Tf1/n ∈ K.
By the compactness of K we can assume that ‖Tf1/n − f‖ρ → 0 for some
f ∈ K. Hence by the above estimate and the triangle inequality, we obtain
‖f1/n − f‖ρ → 0. By the continuity of T, ‖Tf1/n − Tf‖ρ → 0, which gives
that Tf = f.

Now we show that Theorem 3 also holds true for any retract of Eρ. Recall
that a set A ⊂ Eρ is called a retract of Eρ if there exists a continuous mapping
r : Eρ → A such that r|A = idA. The mapping r is called a retraction.

Theorem 4. Let A ⊂ Eρ be a retract of Eρ with a retraction r. Then any
compact and continuous mapping T : A→ A has a fixed point.

Proof. We apply Theorem 3. Observe that T ◦ r : Eρ → Eρ is a compact and
continuous mapping. Applying Theorem 3 to T ◦ r we get that there exists
f ∈ Eρ such that (T ◦ r)f = f. Since T maps A into A, f ∈ A. Consequently,
r(f) = f and Tf = f, as required.

The following remark provides some interesting cases of modular function
spaces in which our results can be applied.

Remark 1. By [17, Chapter 4], Musielak-Orlicz spaces of vector-valued func-
tions determined by a σ-finite measure are modular function spaces. The
same applies to Lorentz-type Lp spaces determined by a σ-finite measure
(see also [17, Chapter 5], where countably modulared function spaces are
considered). It is clear that in general these spaces are not locally convex,
which makes our result original.

Finally, we have Eρ = Lρ if and only if the function modular ρ satisfies
the ∆2-condition:
supn ρ(2fn, Ak) → 0 as k → ∞, whenever {fn} is a sequence in M(X,W ),
Ak ∈ Σ, Ak → ∅ and supn ρ(fn, Ak)→ 0 as k →∞.
Hence if the ∆2-condition is satisfied, we can apply our results to Lρ. Notice
that in the case of classical Musielak-Orlicz spaces the above ∆2-condition
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coincides with the classical Orlicz ∆2-condition (see [17, Proposition 4.1.10]).
For more information about Orlicz spaces and Musielak-Orlicz spaces see [23].
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