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Abstract

The Burrows-Wheeler Transform is a well known transformation
widely used in Data Compression: important competitive compression
software, such as Bzip (cf. [?]) and Szip (cf, [?]) and some indexing
software, like the FM-index (cf. [?]), are deeply based on the Bur-
rows Wheeler Transform. The main advantage of using BWT for data
compression consists in its feature of “clustering” together equal char-
acters. In this paper we show the existence of fixed points of BWT,
i.e., words on which BWT has no effect. We show a characterization
of the permutations associated to BWT of fixed points and we give the
explicit form of fixed points on a binary ordered alphabet {a, b} having
at most four b’s and those having at most four a’s.

1 Introduction

The Burrows-Wheeler Transform (BWT) is a transformation introduced in
[?] on which are based several new generation compressors, and is used
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also in many applications, as in Bioinformatics, Computational Biology and
Information Retrieval. The Burrows-Wheeler Transform consists in a per-
mutation of the letters of the input text according to the lexicographic order
of their contexts. Since similar contexts usually follow equal letters, the per-
muted string tends to group together equal letters. Therefore the output of
BWT is usually better compressible than the original text.

Besides its applications, the Burrows Wheeler transform has many in-
teresting combinatorial properties and for this reason in literature several
studies can be found on BWT from the combinatorial point of view. The
combinatorial nature of BWT is evidenced by the fact that, by chance, the
same year of the publication of the paper by Burrows and Wheeler, in a
very different context Gessel and Reutenauer introduced in [?] a bijection
between the family of multisets of “necklaces” over an alphabet Σ and the
words in Σ∗. In [?] the authors found out that BWT could be seen as a
particular case of the transformation introduced in [?]. In the same paper
they give a characterization of permutations associated to the BWT over a
given alphabet as the permutations having a single cycle and a number of
descents smaller than the size of the alphabet. From an algorithmic view-
point the general case of Gessel and Reutenauer bijection is considered in
[?] with several application in data compression and sequences comparison
(cf. [?]). Some combinatorial researches have been done in order to study
words that are BWT images (cf. [?, ?]). In [?] it is proved that a word
over a two letters alphabet has a BWT with the minimal number of clus-
ters, i.e. a word of the form bkah if and only if it is a power of a conjugate
of a standard sturmian word (cf. [?]). For non-binary alphabets several au-
thors have considered the set S of the words v over a totally ordered alphabet
Σ = {a1, a2, . . . , aσ}, with a1 < a2 < . . . < aσ, for which the string produced
by BWT is anσσ a

nσ−1

σ−1 · · · a
n2
2 a

n1
1 for some non-negative integers n1, n2, . . . , nσ.

In the case of three-letters alphabet a constructive characterization of the el-
ements of S has been given by Simpson and Puglisi in [?]. In [?] the authors
show that the elements of S are “rich” in palindromes, in the sense that
they contain the maximum number of different palindromic factors. Finally,
in [?] it is proved that perfectly clustering words are intrinsically related to
k-discrete interval exchange transformations. In [?], the authors propose an
experimental study in order to analyze the clustering effect on real text.

In this stream of combinatorial study of the BWT, a natural question
is to ask whether there exist words that are fixed points, i.e. the string
transformed by BWT is equal to the input string. The question is then
whether it is possible to give a general condition in order w to be a fixed
point, and second, whether we can define infinite families of fixed points
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having a given form.
In this paper we give a combinatorial condition for fixed points and

define for binary alphabet {a, b} all the classes of fixed point, when the
original word w has at most four occurrences of b or when w has at most
four occurrences of a.

2 The Burrows-Wheeler Transform

In this section we describe the construction of the BWT as defined by Bur-
rows and Wheeler in their original paper of 1994. This definition has been,
in times, modified in order to better fit efficient data structures for its rep-
resentation and storage. Nevertheless the original transformation is the one
that holds the most important combinatorial properties, that catches the
essence and the meaning of this computational tool.

Let Σ = {c1, c2, . . . , cm} be a finite ordered alphabet with c1 < c2 <
. . . < cm, where < denotes the standard lexicographic order. We denote
by Σ∗ the set of words over Σ. Given a finite word w = a1a2 · · · an ∈ Σ∗

with each ai ∈ Σ, the length of w, denoted |w|, is equal to n. Given a
finite string w = a1a2 · · · an with each ai ∈ Σ, a substring of a string w is
a word of the form ai · · · aj with 1 ≤ i ≤ j ≤ n. The concatenation of two
words w and v, written wv, is simply the string consisting of the symbols
of w followed by the symbols of v. We say that two words x, y ∈ Σ∗ are
conjugate, if x = uv and y = vu, where u, v ∈ Σ∗. Conjugacy between words
is an equivalence relation over Σ∗. The conjugacy class [w] of w ∈ Σn is the
set of all words aiai+1 · · · ana1 · · · ai−1, for 1 ≤ i ≤ n. A conjugacy class can
also be represented as a circular word.

The transformation of the original BWT is described as follows: given
a word w = a1a2 · · · an ∈ Σ∗, the output of BWT is the pair (bwt(w), I),
where: bwt(w) is the permutation of symbols in the input string w obtained
by lexicographically sorting the list of the conjugates of w, and considering
the concatenation of the last symbols of the conjugates in the sorted list; I
is the row where the original text appears in the sorted list of conjugates.

The construction of the output of BWT consists of the following steps:

1. Consider all conjugates of the input text.

2. Sort the conjugates in lexicographic order in a matrix M .

3. Denote by L the last column of M .

4. Set bwt(w) = L and I as the position of w in M .
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F L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I → 7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c
10 t h e m a t i c s m a
11 t i c s m a t h e m a

Figure 1: The matrix M of w = mathematics.

Remark that the first column of M , denoted by F , contains the letters
of L, alphabetically sorted.

Example 2.1. The construction of BWT for the input string w = mathematics
is illustrated in Fig. ??. The output is (mmihttsecaa, 7).

The matrix M defines a permutation πw (or simply π when no confusion
arises) of 1, 2, . . . , n: πw(i) = j if and only if the conjugate ai · · · ana1 · · · ai−1
appears at row j of M . In other terms, πw(i) is the rank in the lexicographic
order of the i-th circular shift of the word w. We call πw the bwt-permutation
of w.

Example 2.2. Let w = mathematics. The the bwt-permutation of w is:

πw =

(
1 2 3 4 5 6 7 8 9 10 11
7 1 10 5 4 8 2 11 6 3 9

)
.

One of the fundamental properties of the BWT is its reversibility, that
is, if we are given the pair (bwt(w), I) we are able to recover the original
word w. This feature makes BWT a useful tool in many applications where
it is necessary to partially or entirely recover the original word, such as data
compression or pattern matching. This fact is a direct consequence of the
following properties. The reader can easily verify the properties in Figure
??.

Proposition 2.3. Let w be a string and let (L, I) be the output of BWT.
Let F be the sequence of the sorted letters of L. The following properties
hold:
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1. For all i = 1, . . . , n and i 6= I, the letter L[i] precedes F [i] in the
original word;

2. for each letter z, the i-th occurrence of z in L corresponds to the i-th
occurrence of z in F .

Actually, according to Property ?? of Proposition ??, we can always
define the permutation, τw : {1, . . . , n} → {1, . . . , n} where τw gives the
correspondence between the positions of letters of the first and the last
column of the matrix M . In literature this permutation is also known as
FL-mapping.

We remark that τw can be obtained from πw when the second line of
πw is read as a cycle (cf. [?]). The permutation τw represents also the
order in which we have to rearrange the elements of F to reconstruct the
original word w. Hence, starting from the position I, we can recover the
word w = a1a2 · · · an as follows:

ai = F [τ i−1w (I)] , where τ0w(x) = x, and τ iw(x) = τw(τ i−1w (x)),with 1 ≤ i ≤ n.

This means that permutation τw(w), gives the sequence of the letters we
have to pick in F , starting from I, in order to recover the original word w.

Example 2.4. Consider the BWT matrix of the word w = mathematics as
in Figure ??. One can see that, according to Property ?? of Proposition ??,
the first a in F corresponds to the a in position 10 of L, the a in position 2
of F corresponds to the a in position 11 of L and so on. The permutation
that associates letters in the first and in the last columns of the matrix is
the following

τw =

(
1 2 3 4 5 6 7 8 9 10 11
10 11 9 8 4 3 1 2 7 5 6

)
.

The reader can verify that when the lower line of permutation πw is read
as a cycle, we get the τw permutation. Starting from position I = 7, if
we take the letters in F according to the positions indicated by the cyclic
permutation above, we get the original word w = mathematics.

3 Fixed Points

In this section we introduce the notion of fixed point of the BWT.

Definition 3.1. A word w ∈ Σ∗ is a fixed point (with respect to the BWT)
if bwt(w) = w.
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Example 3.2. Let v = babaabaaaa. The reader can verify that bwt(v) = v,
then v is a fixed point.

We now give a general condition that a word w has to satisfy in order
to be a fixed point. Such a condition is expressed in terms of permutations
associated to a word w.

In the previous section we have associated to a word w its bwt-permutation
πw. Starting from πw we have defined a new permutation τw obtained by
interpreting the second line of πw as a cycle.

We now associate to a word w another permutation. Given any word
w = a1a2 · · · an where ai ∈ Σ, we define the standard permutation σw of w
as follows: for i, j ∈ {1, 2, . . . , n} the condition σw(i) < σw(j) if and only if
either ai < aj or ai = aj and i < j. The permutation σw may be obtained
by numbering from left to right the letters of w, starting from the smallest
letter, then the second smallest, and so on.

Example 3.3. If w = mathematics then

σw =

(
1 2 3 4 5 6 7 8 9 10 11
7 1 10 5 4 8 2 11 6 3 9

)
.

Consider instead bwt(w) = mmihttsecaa then

σbwt(w) =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)
.

From Example ?? and Example ?? one can realize that given a word
w, σbwt(w) = τ−1w . This is formalized in [?, ?]. From the previous con-
siderations and from the definition of fixed point we derive the following
characterization:

Theorem 3.4. Let w ∈ Σ∗. Then w is a fixed point if and only if σw = τ−1w .

Example 3.5. We have already remarked that v = babaabaaaa is a fixed
point. The bwt permutation is

πv =

(
1 2 3 4 5 6 7 8 9 10
10 6 9 3 5 8 1 2 4 7

)
,

and the permutation τv is obtained as follows:

τv =
(

10 6 9 3 5 8 1 2 4 7
)

=

(
1 2 3 4 5 6 7 8 9 10
2 4 5 7 8 9 10 1 3 6

)
.
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Moreover

σv =

(
1 2 3 4 5 6 7 8 9 10
8 1 9 2 3 10 4 5 6 7

)
.

The reader can verify that σv is the inverse of the permutation τv given
above, then v is a fixed point. This property is not true for σw and τw when
w = mathematics, then w is not a fixed point.

4 Fixed points over a binary alphabet

Although Theorem ?? provides a complete characterization, however it is
not easy to derive from it the explicit form of the words that are fixed points
of the BWT. In the following we consider only words over a binary alphabet
{a, b}, with a < b and we give the explicit form of the fixed points belonging
to some special classes of words.

First of all remark that the image of the bwt never begins with the small-
est letter. This is because otherwise the τ permutation would not be a single
cycle, since τ(1) = 1 would be a cycle by itself. For the same reason it never
ends with the greatest letter. This suggests that, when we look for fixed
points over a two letters alphabet, we will never consider words starting
with the letter a and ending with the letter b. Then the general form of a
possible fixed point is w = bh1ak1bh2ak2 · · · bhlakl with h1, kl > 0, hi ≥ 0 if
2 ≤ i ≤ l and kj ≥ 0 if 1 ≤ j ≤ l − 1. We consider the following:

Question: What are the possible exponents h1, k1, h2, k2, . . . , hl, kl such
that w is a fixed point?

We state now several propositions giving an explicit answer to the above
question when we have from one to four b’s or from one to four a’s. Since
technique for the different proofs is the same, we give just in details one of
them, namely the case of fixed points with three b’s, and we give a sketch
of the proof for the fixed points with three a’s.

Proposition 4.1. Let w ∈ {a, b}∗

1. if |w|b = 1, w is a fixed point if and only if w = bak, ∀k ∈ N.

2. If |w|a = 1, w is a fixed point if and only if w = bka, ∀k ∈ N.

3. If |w|b = 2, w is a fixed point if and only if w = bakba2k+1, ∀k ∈ N.
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4. If |w|a = 2, w is a fixed point if and only if w = b2k+1abka, ∀k ∈ N.

We are now going to consider fixed points with three occurrences of
b or with three occurrences of a, i.e. the words of the forms bakbahbal or
bkabhabla. They are characterized by the triplets of their exponents, (k, h, l).
The following proposition characterizes fixed points with three b’s. We give
its proof in details in order to show the technique used also for other cases:

Proposition 4.2. The word w = bakbahbal is a fixed point if and only if it
is defined by the triplets:

1. (k, 2k, 3k + 1) ∀k ∈ N if k ≤ h < l;

2. (k, 4k + 2, 3k + 2) ∀k ∈ N if k < l ≤ h;

3. (3p+ 1, 2p, 6p+ 2) ∀p ∈ N if h < k < l.

Proof. The proof depends on the relative order of the exponents (k, h, l),
therefore there are 3! = 6 different cases to consider:
Case 1. Let k ≤ h < l, then we can consider the following factorization of
w:

b a · · · a︸ ︷︷ ︸
k

b a · · · a︸ ︷︷ ︸
h−k

a · · · a︸ ︷︷ ︸
k

b a · · · a︸ ︷︷ ︸
l−h

a · · · a︸ ︷︷ ︸
h−k

a · · · a︸ ︷︷ ︸
k

.

For computing bwt(w), we notice that the first l−h conjugates are the ones
starting at positions from h+k+ 4 to k+ l+ 3, the first one preceded by a b
and all the other ones preceded by an a. So the first part of bwt(w) is made
by letters bal−h−1. The following conjugate is the one starting at position
k+ 3 that is preceded by a b and then we alternate conjugates of the second
and the third block of a’s, all preceded by a until there are k elements left
in each block. Then the following letters of bwt(w) are ba2h−2k−1. The next
conjugate is the one starting at position h+ 3 that is preceded by a a, then
the one starting at position 2, preceded by a b, then the one in position
h+ l + 3 preceded by a a. Then we get the factor aba. Since all the b’s are
already included, all the remaining letters are a’s, then we have to add a3k.
Finally bwt(w) = bal−h−1ba2h−2k−1aba3k+1.

Since we want w to be a fixed point we have to impose that w = bwt(w)
that is

bal−h−1ba2h−2k−1aba3k+1 = bakbahbal

and this is true if and only if
k = l − h− 1
h = 2h− 2k
l = 3k + 1

⇒


k = k
h = 2k
l = 3k + 1
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Case 2. Let k < l ≤ h. Then the factorization of w is the following:

b a · · · a︸ ︷︷ ︸
k

b a · · · a︸ ︷︷ ︸
h−l

a · · · a︸ ︷︷ ︸
l−k

a · · · a︸ ︷︷ ︸
k

b a · · · a︸ ︷︷ ︸
l−k

a · · · a︸ ︷︷ ︸
k

.

Let us compute the bwt(w). The first h − l conjugates are taken from the
second block of a’s and produce the first part of bwt(w) equal to bah−l−1.
Then we have the conjugate starting at positions k + h − l + 3, h + l + 4,
from which we get the second part of bwt(w) equal to ab. Then we al-
ternate conjugates from the second and the third block, giving the third
part of the bwt(w) equal to a2(l−k−1). The next conjugate starts in po-
sition 2 is preceded by a b. Then we have alternatively conjugates from
the second, the third and the first block, and we get a3k−1 and finally
the three conjugates starting with b are preceded by a a. In all we have
bwt(w) = bah−l−1aba2(l−k−1)ba3k−1a3 = bah−lba2l−2k−2ba3k+2, and we have
a fixed point if and only if:

k = h− l
h = 2l − 2k − 2
l = 3k + 2

⇒


k = k
h = 4k + 2
l = 3k + 2

Case 3. Let h < k < l. Consider the following factorization of w

b a · · · a︸ ︷︷ ︸
k−h

a · · · a︸ ︷︷ ︸
h

b a · · · a︸ ︷︷ ︸
h

b a · · · a︸ ︷︷ ︸
l−k

a · · · a︸ ︷︷ ︸
k−h

a · · · a︸ ︷︷ ︸
h

.

This time the longest block of a’s is the third, so the first l − k conjugates
are from position h+ k+ 4 to position l+ h+ 3, the first one preceded by a
b and the other ones preceded by a’s. Then we get the first part of bwt(w)
equal to bal−k−1. The next conjugates are respectively the ones starting at
positions l+h+4 and the one starting at position 2, then we add to bwt(w)
the string ab. Then we alternate conjugates from the third and the first
block, all preceded by a’s. Then we add to bwt the factor a2k−2h−2. The
next factor is the one starting at position k + 3, preceded by a b and the
remaining letters are all a’s. In all we have bwt(w) = bal−kba2k−2h−2ba3h+2,
that is a fixed point if and only if

k = l − k
h = 2k − 2h− 2
l = 3h+ 2

⇒


k = k

h =
2(k − 1)

3
l = 2k

that has an integer solution if and only if (k, h, l) = (3p+ 1, 2p, 6p+ 2).
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Case 4. Let l ≤ k ≤ h. Consider the following factorization of w:

b a · · · a︸ ︷︷ ︸
k−l

a · · · a︸ ︷︷ ︸
l

b a · · · a︸ ︷︷ ︸
h−k

a · · · a︸ ︷︷ ︸
k−l

a · · · a︸ ︷︷ ︸
l

b a · · · a︸ ︷︷ ︸
l

.

The first h − k conjugates are the ones from position k + 3 to position
h + 2, yielding the first h − k letters of bwt(w) equal to bah−k−1. The
following conjugates start in position 2 and in position h + 3 producing
the factor ba. Then we alternate conjugates from the first and the third
block, getting a2(k−l−1). Then there are conjugates starting respectively in
positions k− l+ 2, k+h+ 4 and k+h− l+ 3, yielding aba. Finally we have
all the remaining a3l. In all we have: bwt(w) = bah−k−1ba2k−2lba3l+1 then
in order w to be a fixed point we have

k = h− k − 1
h = 2k − 2l
l = 3l + 1

⇒


k = k
h = 2k + 1

l = −1

2

The system has no solution in N.
Case 5. Let h ≤ l ≤ k.

b a · · · a︸ ︷︷ ︸
k−l

a · · · a︸ ︷︷ ︸
l−h

a · · · a︸ ︷︷ ︸
h

b a · · · a︸ ︷︷ ︸
h

b a · · · a︸ ︷︷ ︸
l−h

a · · · a︸ ︷︷ ︸
h

.

Then the first k− l conjugates are taken from the first block of a’s, yielding
bak−l−1. Next conjugates are the ones in positions k + h + 4 and k − l + 2
producing the factor ba. Then we have alternatively conjugates from the
third and the first blocks of a’s, giving a2(l−h−1). Then we have conjugates
in positions k + l + 4, k + 3 and k − h + 2 giving the factor aba. Finally
we have all the remaining a3h. Then bwt(w) = bak−l−1ba2l−2hba3h+1 and
bwt(w) = w if and only if

k = k − l − 1
h = 2l − 2h
l = 3h+ 1

⇒


k = k

h = −2

3
l = −1

This system has no solutions in N.
Case 6. Let l ≤ h ≤ k.

b a · · · a︸ ︷︷ ︸
k−h

a · · · a︸ ︷︷ ︸
h−l

a · · · a︸ ︷︷ ︸
l

b a · · · a︸ ︷︷ ︸
h−l

a · · · a︸ ︷︷ ︸
l

b a · · · a︸ ︷︷ ︸
l

.
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The first k − h conjugates are from position 2 to position k − h + 1 giving
the beginning of bwt(w) equal to bak−h−1. Then we have the conjugates
starting at positions k − h + 2 and k + 3 yielding the factor ab. Then we
alternate conjugates in the first and the second block of a’s giving a2(h−l−1).
Then we have conjugates in positions k + h+ 4, k − l+ 2 and k + h− l+ 3
producing baa. Finally we have all the remaining a’s, namely a3l. Then
bwt(w) = bak−hba2h−2l−2ba3l+2, and w is a fixed point if:

k = k − h
h = 2h− 2l − 2
l = 3l + 2

⇒


k = k
h = 0
l = −1

This system has no solution in N.

The following proposition characterize the case of three a’s. We give just
a sketch of the proof.

Proposition 4.3. The word w = bkabhabla is a fixed point if and only if it
is defined by the triplets:

1. (3l + 1, 4l + 2, l) ∀l ∈ N if l < k < h;

2. (3l + 2, 2l + 2, l) ∀l ∈ N if l < h ≤ k;

3. (6p+ 1, 2p, 3p) ∀p ∈ N if h ≤ l < k.

Proof. We give a detailed proof only for the case l < k < h. Then w can be
factorized as follows:

b · · · b︸ ︷︷ ︸
k−l

b · · · b︸ ︷︷ ︸
l

a b · · · b︸ ︷︷ ︸
h−k

b · · · b︸ ︷︷ ︸
k−l

b · · · b︸ ︷︷ ︸
l

a b · · · b︸ ︷︷ ︸
l

a.

Let us compute bwt(w). The first three conjugates are the ones beginning
with a, all preceded by a b, then we get b3. Then we alternate l times
conjugates from the second, third and first blocks of b’s, respectively, from
right to left. The first l − 1 iterations produce b3(l−1). In the l-th iteration
we have, in order, the conjugate starting at position h+ k − l + 2 preceded
by a b, the conjugate starting at position k+h+ 3, preceded by a a and the
one starting at position k − l + 1, preceded by a b, yielding the new factor
bab. Then we keep on alternating k− l−1 times from right to left conjugates
from the second and the first block, all preceded by a b, giving the factor
b2(k−l−1). Then we have the conjugate starting at position h + 2, preceded
by a b and the one in position 1, circularly preceded by a . We get the factor
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ba. Finally there are the remaining conjugates from the second block of b’s,
all preceded by a b, except the last one, starting at position k+ 2, preceded
by a a. All together bwt(w) = b3l+1ab2k−2labh−k−1a and bwt(w) = w if and
only if: 

k = 3l + 1
h = 2k − 2l
l = h− k − 1

⇒


k = 3l + 1
h = 4l + 2
l = l

The proofs of all the other cases are similar.

In order to characterize fixed points with four occurrences of a and four
occurrences of b we consider the words bakbahbalbam and bkabhablabma. In
the following proposition we show that there exist eleven 4-tuple (k, h, l,m)
that give fixed points with four occurrences of b and twelve with four oc-
currences of a. The proof uses techniques analogous to the one of previous
theorem.

Proposition 4.4. w = bakbahbalbam is a fixed point if and only if one of
the following cases holds:

1. (k, 2k, 3k, 4k + 1) ∀k ∈ N if k ≤ h ≤ l < m;

2. (3p, 8p, 15p+ 1, 12p+ 1) ∀p ∈ N if k ≤ h < m ≤ l;

3. (k, 10k + 6, 9k + 6, 4k + 3) ∀k ∈ N if k < m < l ≤ h;

4. (2p, 6p+ 1, 3p, 8p+ 2) ∀p ∈ N if k ≤ l < h < m;

5. (k, 8k + 3, 9k + 4, 4k + 2) ∀k ∈ N if k < m < h < l;

6. (2p+ 1, 10p+ 8, 3p+ 2, 8p+ 7) ∀p ∈ N if k < l < m < h;

7. (7p+ 6, 4p+ 3, 9p+ 7, 16p+ 15) ∀p ∈ N if h < k < l < m;

8. (7p+ 3, 2p, 15p+ 6, 8p+ 3) ∀p ∈ N if h < k ≤ m < l;

9. (4p+ 3, 8p+ 8, 3p+ 2, 12p+ 11) ∀p ∈ N if l < k < h < m;

10. (4p, 16p+ 3, 3p, 12p+ 2) ∀p ∈ N if l ≤ k < m < h;

11. (9p+ 4, 2p, 18p+ 8, 8p+ 3) ∀p ∈ N if h < m < k < l.

Proposition 4.5. w = bkabhablabma is a fixed point if and only if one of
the following cases holds:

1. (8p+ 7, 3p+ 2, 6p+ 6, 2p+ 1) ∀p ∈ N if m < h < l < k;
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2. (4m+ 3, 3m+ 3, 2m+ 2,m) ∀m ∈ N if m ≤ l < h < k;

3. (4m+ 1, 9m+ 4, 8m+ 4,m) ∀m ∈ N if m < k < l ≤ h;

4. (12p+ 10, 15p+ 13, 8p+ 7, 3p+ 2) ∀p ∈ N if m < l < k < h;

5. (4m+ 1, 9m+ 3, 10m+ 4,m) ∀m ∈ N if m < k < h < l;

6. (8p+ 2, 3p, 10p+ 3, 2p) ∀p ∈ N if m < h < k < l;

7. (12p+ 2, 3p, 4p, 6p) ∀p ∈ N if h ≤ l ≤ m < k;

8. (12p+ 2, 3p, 8p+ 1, 4p) ∀p ∈ N if h < m < l < k;

9. (12p+ 11, 3p+ 2, 16p+ 14, 4p+ 3) ∀p ∈ N if h < m < k < l;

10. (16p+ 1, 9p+ 1, 4p, 7p) ∀p ∈ N if l ≤ m < h < k.

11. (8p+ 1, 15p+ 3, 2p, 7p+ 1) ∀p ∈ N if l < m ≤ k < h;

12. (8p+ 6, 18p+ 15, 2p+ 1, 9p+ 7) ∀p ∈ N if l < k < m < h.

As one can see, the number of cases to consider grows substantially as
the number of b’s and the number of a’s grows. The case with five b’s (a’s,
respectively) would need to verify 5! = 120 different possible sorting of the
exponents of the blocks of consecutive a’s (b’s, respectively). We omit the
proofs due to space constraints.

5 Conclusions

In this paper we have discussed fixed points of the BWT. Besides its theo-
retical interest, the existence of an infinite family of fixed points highlights
that there are many cases where the use of BWT is totally useless for data
compression aims.

The method that we used for finding the explicit form of fixed points
with a limited number of a’s or b’s can hardly be applied for fixed points with
a great number of a’s and b’s, since it would need to consider k! different
cases, where k is the minimum between the number of a’s and b’s.

We leave as an open problem to give an explicit characterization for
fixed points in the general case, possibly using the characterization of the
permutations τw that define fixed points.
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