
A New Class of Searchable and Provably Highly1

Compressible String Transformations2

Raffaele Giancarlo3

University of Palermo, Dipartimento di Matematica e Informatica, Italy4

raffaele.giancarlo@unipa.it5

Giovanni Manzini6

University of Eastern Piedmont, Alessandria, and IIT-CNR, Pisa, Italy7

giovanni.manzini@uniupo.it8

Giovanna Rosone9

University of Pisa, Dipartimento di Informatica, Italy10

giovanna.rosone@unipi.it11

Marinella Sciortino12

University of Palermo, Dipartimento di Matematica e Informatica, Italy13

marinella.sciortino@unipa.it14

Abstract15

The Burrows-Wheeler Transform is a string transformation that plays a fundamental role for the16

design of self-indexing compressed data structures. Over the years, researchers have successfully17

extended this transformation outside the domains of strings. However, efforts to find non-trivial18

alternatives of the original, now 25 years old, Burrows-Wheeler string transformation have met19

limited success. In this paper we bring new lymph to this area by introducing a whole new family of20

transformations that have all the “myriad virtues” of the BWT: they can be computed and inverted21

in linear time, they produce provably highly compressible strings, and they support linear time22

pattern search directly on the transformed string. This new family is a special case of a more general23

class of transformations based on context adaptive alphabet orderings, a concept introduced here.24

This more general class includes also the Alternating BWT, another invertible string transforms25

recently introduced in connection with a generalization of Lyndon words.26

2012 ACM Subject Classification Theory of computation → Data compression; Mathematics of27

computing → Combinatorial algorithms28

Keywords and phrases Data Indexing and Compression; Burrows-Wheeler Transformation; Com-29

binatorics on Words30

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.931

Funding GR and SM are partially supported by MIUR-SIR project CMACBioSeq “Combinatorial32

methods for analysis and compression of biological sequences” grant n. RBSI146R5L; RG and GM are33

partially supported by INdAM-GNCS project 2018 “Innovative methods for the solution of medical34

and biological big data” and MIUR-PRIN project “Multicriteria Data Structures and Algorithms:35

from compressed to learned indexes, and beyond” grant n. 2017WR7SHH.36

1 Introduction37

The Burrows Wheeler Transform [2] (BWT) is a string transformation that had a revolutionary38

impact in the design of succinct or compressed data structures. Originally proposed as a tool39

for text compression, shortly after its introduction [9] it has been shown that, in addition to40

making easier to represent a string in space close to its entropy, it also makes easier to search41

for pattern occurrences in the original string. After this discovery, data transformations42

inspired by the BWT have been proposed for compactly representing and search other43

combinatorial objects such as: trees, graphs, finite automata, and even string alignments.44

© Raffaele Giancarlo and Giovanni Manzini and Giovanna Rosone and Marinella Sciortino;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raffaele.giancarlo@unipa.it
mailto:giovanni.manzini@uniupo.it
mailto:giovanna.rosone@unipi.it
mailto:marinella.sciortino@unipa.it
https://doi.org/10.4230/LIPIcs.CPM.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A New Class of Searchable and Highly Compressible String Transformations

See [11] for an attempt to unify some of these results and [25] for an in-depth treatment of45

the field of compact data structures.46

Going back to the original Burrows-Wheeler string transformation, we can summarize its47

salient features as follows: 1) it can be computed and inverted in linear time, 2) it produces48

strings which are provably compressible in terms of the high order entropy of the input, 3) it49

supports pattern search directly on the transformed string in time proportional to the pattern50

length. It is the combination of these three properties that makes the BWT a fundamental51

tool for the design of compressed self-indices. In Section 2 we review these properties and52

also the many attempts to modify the original design. However, we recall that, despite more53

than twenty years of intense scrutiny, the only non trivial known BWT variant that fully54

satisfies properties 1–3 is the Alternating BWT (ABWT). The ABWT has been introduced55

in [13] in the field of combinatorics of words and its basic algorithmic properties have been56

described in [15].57

In this paper we introduce a new whole family of transformations that satisfy properties58

1–3 and can therefore replace the BWT in the construction of compressed self-indices with the59

same time efficiency of the original BWT and the potential of achieving better compression.60

We show that our family, supporting linear time computation, inversion, and search, is a61

special case of a much larger class of transformations that also satisfy properties 1–3 except62

that, in the general case, inversion and pattern search may take quadratic time. Our larger63

class includes as special cases also the BWT and the ABWT and therefore it constitutes a64

natural candidate for the study of additional properties shared by all known BWT variants.65

More in detail, in Section 3 we describe a class of string transformations based on context66

adaptive alphabet orderings. The main feature of the above class of transformations is that,67

in the rotation sorting phase, we use alphabet orderings that depend on the context (i.e., the68

longest common prefix of the rotations being compared). In Section 4 we consider the subclass69

of transformations based on local orderings. In this subclass, the alphabet orderings only70

depend on a constant portion of the context. We prove that local ordering transformations71

can be inverted in linear time, and that pattern search in the transformed string takes time72

proportional to the pattern length. Thus, these transformations have the same properties73

1–3 that were so far prerogative of the BWT and ABWT.74

Having now at our disposal a wide class of string transformations with the same remarkable75

properties of the BWT, it is natural to use them to improve BWT-based data structures76

by selecting the one more suitable for the task. In this paper we initiate this study by77

considering the problem of selecting the BWT variant that minimizes the number of runs78

in the transformed string. The motivation is that data centers often store highly repetitive79

collections, such as genome databases, source code repositories, and versioned text collections.80

For such highly repetitive collections there is theoretical and practical evidence that the81

entropy underestimates the compressibility of the collection and much better compression82

ratios are obtained exploiting runs of equal symbols in the BWT [4, 12, 18, 19, 21, 22, 23]. In83

Section 5 we show that, for constant size alphabet, for the most general class of transformations84

considered in this paper, the BWT variant that minimizes the number of runs can be found85

in linear time using a dynamic programming algorithm.86

2 Notation and background87

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet of size σ with c1 < c2 < · · · < cσ, where88

< denotes the standard lexicographic order. We denote by Σ∗ the set of strings over Σ.89

Given a string x = x1x2 · · ·xn ∈ Σ∗ we denote by |x| its length n. We use ε to denote the90

R. Giancarlo and G. Manzini and G. Rosone and M. Sciortino 9:3

empty string.91

A factor of x is written as x[i, j] = xi · · ·xj with 1 ≤ i ≤ j ≤ n. A factor of type x[1, j]92

is called a prefix, while a factor of type x[i, n] is called a suffix. The i-th symbol in x is93

denoted by x[i]. Two strings x, y ∈ Σ∗ are called conjugate, if x = uv and y = vu, where94

u, v ∈ Σ∗. We also say that x is a cyclic rotation of y. A string x is primitive if all its cyclic95

rotations are distinct. Given a string x and c ∈ Σ, we write rankc(x, i) to denote the number96

of occurrences of c in x[1, i], and selectc(x, j) to denote the position of the j-th c in x.97

Given a primitive string s, we consider the matrix of all its cyclic rotations sorted in98

lexicographic order. Note that the rotations are all distinct by the primitivity of s. The99

last column of the matrix is called the Burrows-Wheeler Transform of the string s and it100

is denoted by BWT (s) (see Figure 1 (left)). The BWT can be computed in O(|s|) time101

using any algorithm for Suffix Array construction [16, 17]. It is shown in [2] that BWT (s) is102

always a permutation of s, and that there exists a linear time procedure to recover s given103

BWT (s) and the position I of s in the rotations matrix (it is I = 2 in Figure 1 (left)).104

The BWT has been introduced as a data compression tool: it was empirically observed that105

BWT (s) usually contains long runs of equal symbols. This notion was later mathematically106

formalized in terms of the empirical entropy of the input string [8, 24]. For k ≥ 0, the k-th107

order empirical entropy of a string x, denoted as Hk(x), is a lower bound to the compression108

ratio of any algorithm that encodes each symbol of x using a codeword that only depends on109

the k symbols preceding it in x. The simplest compressors, such as Huffman coding, in which110

the code of a symbol does not depend on the previous symbols, typically achieve a (modest)111

compression bounded in terms of the zeroth-order entropy H0. This class of compressors are112

referred to as memoryless compressors.113

It is proven in [8, Theorem 5.4] that the informal statement “the output of the BWT114

is highly compressible” can be formally restated saying that BWT (s) can be compressed115

up to Hk(s), for any k > 0, using any tool able to compress up to the zeroth-order entropy.116

In other words, after applying the BWT we can achieve high order compression using a117

simple (and fast) memoryless compressor. This property is often referred to as the “boosting”118

property of the BWT. Another remarkable property of the BWT is that it can be used to119

build compressed indices. It is shown in [10] how to compute the number of occurrences of a120

pattern x in s in O(tR|x|) time, where tR is the cost of executing a rank query over BWT (s).121

This result has spurred a great interest in data structures representing compactly a string x122

and efficiently supporting the queries rank, select, and access (return x[i] given i, which is123

a nontrivial operation when x is represented in compressed form) and there are now many124

alternative solutions with different trade-offs. In this paper we assume a RAM model with125

word size w and an alphabet of size σ = wO(1). Under this assumption we make use of the126

following result (Theorem 7 in [1])127

I Theorem 1. Let s denote a string over an alphabet of size σ = wO(1). We can represent s128

in |s|H0(s) + o(|s|) bits and support constant time rank, select, and access queries. J129

The properties of the BWT of being compressible and searchable combine nicely to give130

us indexing capabilities in compressed space. Indeed, combining a zero order representation131

supporting rank, select, and access queries with the boosting property of the BWT, we obtain a132

full text self-index for s that uses space bounded by |s|Hk(s) + o(|s|) bits; see [10, 20, 25, 26]133

for further details on these results and on the field of compressed data structures and134

algorithms that originated from this area of research.135

CPM 2019

9:4 A New Class of Searchable and Highly Compressible String Transformations

2.1 Known BWT variants136

We observed that the salient features of the Burrows-Wheeler transformation can be sum-137

marized as follows: 1) it can be computed and inverted in linear time, 2) it produces strings138

which are provably compressible in terms of the high order entropy of the input, 3) it supports139

linear time pattern search directly on the transformed string. The combination of these three140

properties makes the BWT a fundamental tool for the design of compressed self-indices.141

Over the years, many variants of the original BWT have been proposed; in the following142

we review them, in roughly chronological order, emphasizing to what extent they share the143

features 1–3 mentioned above.144

The original BWT is defined by sorting in lexicographic order all the cyclic rotations of145

the input string. In [28] Schindler proposes a bounded context transformation that differs146

from the BWT in the fact that the rotations are lexicographically sorted considering only the147

first ` symbols of each rotation. Recent studies [6, 27] have shown that this variant satisfies148

properties 1–3, with the limitation that the compression ratio can reach at maximum the149

`-th order entropy and that it supports searches of patterns of length at most `. Chapin and150

Tate [3] have experimented with computing the BWT using a different alphabet order. This151

simple variant still satisfies properties 1–3, but it clearly does not bring any new theoretical152

insight. More recently, some authors have proposed variants in which the lexicographic order153

is replaced by a different order relation. The interested reader can find relevant work in a154

recent review [7]; it turns out that these variants satisfy property 1 in part but nothing is155

known with respect to properties 2 and 3.156

To the best of our knowledge, the only non trivial BWT variant that fully satisfies157

properties 1–3 is the Alternating BWT (ABWT). This transformation has been derived158

in [13] starting from a result in combinatorics of words [5] characterizing the BWT as the159

inverse of a known bijection between words and multisets of primitive necklaces [14]. The160

ABWT is defined as the BWT except that when sorting rotation instead of the standard161

lexicographic order we use a different lexicographic order, called the alternating lexicographic162

order. In the alternating lexicographic order, the first character of each rotation is sorted163

according to the standard order of Σ (i.e., a < b < c). However, if two rotations start with the164

same character we compare their second characters using the reverse ordering (i.e., c < b < a)165

and so on alternating the standard and reverse orderings in odd and even positions. Figure 1166

(right) shows how the rotations of an input string are sorted using the alternating ordering167

and the resulting ABWT.168

The algorithmic properties of the BWT and ABWT are compared in [15]. It is shown169

that they can be both computed and inverted in linear time and that their main difference is170

in the definition of the LF-map, i.e. the correspondence between the characters in the first171

and last column of the sorted rotations matrix. In the original BWT the i-th occurrence of a172

character c in the first column F corresponds to the i-th occurrence of c in the last column173

L. Instead, in the ABWT the i-th occurrence of c from the top in F corresponds to the i-th174

occurrence of c from the bottom in L. Since this modified LF-map can be still computed175

efficiently using rank operations, the ABWT can replace the BWT for the construction of176

self-indices.177

3 BWTs based on Context Adaptive Alphabet Orderings178

In this section we introduce a class of string transformations that generalize the BWT in a179

very natural way. Given a primitive string s, as in the original BWT definition, we consider180

the matrix containing all its cyclic rotations. In the original BWT the matrix rows are sorted181

R. Giancarlo and G. Manzini and G. Rosone and M. Sciortino 9:5

F L

↓ ↓
a a a b a c a a b

s → a a b a a a b a c

a a b a c a a b a

a b a a a b a c a

a b a c a a b a a

a c a a b a a a b

b a a a b a c a a

b a c a a b a a a

c a a b a a a b a

F L

↓ ↓
a c a a b a a a b

a b a c a a b a a

a b a a a b a c a

a a a b a c a a b

s → a a b a a a b a c

a a b a c a a b a

b a a a b a c a a

b a c a a b a a a

c a a b a a a b a

Figure 1 The original BWT matrix for the string s = aabaaabac (left), and the ABWT matrix
of cyclic rotations sorted using the alternating lexicographic order (right). In both matrices the
horizontal arrow marks the position of the original string s, and the last column L is the output of
the transformation.

F L

↓ ↓
b a a a b a c a a

b a c a a b a a a

a c a a b a a a b

s → a a b a a a b a c

a a b a c a a b a

a a a b a c a a b

a b a a a b a c a

a b a c a a b a a

c a a b a a a b a

Figure 2 The generalized BWT matrix for the string s = aabaaabac computed using the
orderings πε = (b, a, c), πa = (c, a, b), πaa = (c, b, a), and πx = (a, b, c) for every other substring x.
The horizontal arrow marks the position of the original string s; the last column L is the output of
the transformation.

according to the standard lexicographic order. We generalize this concept by sorting the182

rows using an ordering that depends on their common context, i.e., their common prefix.183

Formally, for each string x that prefixes two or more rows, we assume that an ordering πx is184

defined on the symbols of Σ. When comparing two rows which are both prefixed by x, their185

relative rank is determined by the ordering πx. Once the matrix rows have been ordered with186

this procedure, the output of the transformation is the last column of the matrix as in the187

original BWT. Thus, these BWT variants are based on context adaptive alphabet orderings.188

For simplicity in the following we call them context adaptive BWTs.189

An example is shown in Figure 2: the ordering associated to the empty string ε is190

πε = (b, a, c) so, among the rows that have no common prefix, first we have those starting191

with b, then those starting with a, and finally the one starting with c. Since πa = (c, a, b),192

among the rows which have a as their common prefix, first we have the ones starting with c,193

then the ones starting with a, followed by the ones starting with b. The complete ordering of194

the rows is established in a similar way on the basis of the orderings πx.195

We denote by M∗(s) the matrix obtained using this generalized sorting procedure, and by196

L = BWT∗(s) the last column of M∗(s). Clearly L depends on s and the ordering used for197

CPM 2019

9:6 A New Class of Searchable and Highly Compressible String Transformations

a

a

abac

b

ba

aabac

c

c

a

c

b

ba

aabac

a

c

a

ba

aabac c

a a

c

a

c

a

ba

aabac

a

c

a

a

c a ba

ba

aabac
c

abac c

b

c

a

b

a

a

aabac

Figure 3 Standard suffix tree for s = aabaaabac with the symbol c used as a string terminator
(left), and suffix tree with edges reordered using the same orderings of Figure 2 (right). To each leaf
it is associated the symbol preceding in s the suffix spelled by that leaf. Note that reading left to
right the symbols associated to each leaf gives BWT (s) (left) and BWT∗(s) (right).

each common prefix. Since we can arbitrarily choose an alphabet ordering for any substring198

x of s, and there are σ! orderings to choose from, our definition includes a very large number199

of string transformations. This class of transformations has been mentioned in [8, Sect. 5.2]200

under the name of string permutations realized by a Suffix Tree (the definition in [8] is slightly201

more general; for example it includes the bounded context BWT, which is not included in202

our class). Indeed, if the input string s has a unique end-of-string terminator, one can easily203

see that these transformations can be obtained assigning an ordering to the children of each204

node of the suffix tree of s205

Although in [8] the authors could not prove the invertibility of context adaptive trans-206

formations, which we do in Section 3.2, they observed that their relationship with the suffix207

tree has two important consequences: 1) they can be computed in O(n log σ) time with a208

proper suffix tree visit (see Figure 3), and 2) they provably produce highly compressible209

strings, i.e., they have the “boosting” property of transforming a zeroth order compressor210

into a k-th order compressor.211

To see that the generalized BWTs can be computed in O(n log σ) time consider first212

the simpler case in which the string s has a unique end-of-string terminator. To build213

L = BWT∗(s) we first build the suffix tree for s. Then, we visit the suffix tree in depth first214

order except that when we reach a node u (including the root), we sort its outgoing edges215

according to their first characters using the permutation associated to the string ux labeling216

the path from the root to u. During such visit, each time we reach a leaf we write the symbol217

associated to it: the resulting string is exactly L = BWT∗(s). The above argument also218

shows that the number of permutations required to define a generalized BWT on a fixed219

string s is at most |s|, i.e. the number of internal suffix tree nodes. If s doesn’t have a220

unique terminator, the argument is analogous except that we replace the suffix tree with the221

compressed trie containing all the cyclic rotations of s. To see that generalized BWTs have222

the boosting property we observe that the proof for the BWT (Theorem 5.4 in [8]) is based223

on structural properties of the suffix tree, and can be repeated verbatim for the generalized224

BWTs.225

Summing up, context adaptive transformations generalize the BWT in two important226

aspects: efficient (linear time in n) computation and compressibility. In [8] the only known227

instances of reversible suffix tree induced transformations were the original BWT and the228

R. Giancarlo and G. Manzini and G. Rosone and M. Sciortino 9:7

bounded context BWT. In the following, we prove that all context adaptive BWTs defined229

above are invertible. Interestingly, to prove invertibility we first establish another important230

property of these transformations, namely that they can be used to count the number of231

occurrences of a pattern in s, which is another fundamental property of the original BWT.232

We conclude this section observing that both the BWT and ABWT belong to the class233

we have just defined. To get the BWT we trivially define πx to be the standard Σ ordering234

for every x, to get the ABWT we define πx to be the standard Σ ordering for every x with235

|x| even, and the reverse ordering for Σ for every x with |x| odd. Indeed in the full paper we236

will show that the complete class of transformations studied in [15] is a subclass of context237

adaptive transformations.238

3.1 Counting occurrences of patterns in Context Adaptive BWTs239

Let L = BWT∗(s) denote a context adaptive BWT. In the following we assume that L is240

enriched with data structures supporting constant time rank queries as in Theorem 1. In241

this section we show that given L and the set of alphabet permutations used to build M∗(s)242

then, for each string x, we can determine in O(σ|x|2) time the set of M∗(s) rows prefixed243

by x. We preliminary observe that by construction this set of rows, if non-empty, form a244

contiguous range inside M∗(s). This observation justifies the following definitions.245

I Definition 2. Given a string x, we denote by R[x] = [bx, `x] the range of rows of M∗(s)246

prefixed by x. More precisely, if R[x] = [bx, `x], then row i is prefixed by x if and only if it is247

bx ≤ i < bx + `x. If no rows are prefixed x we set R[x] = [0, 0]. Note that `x is the number248

of occurrences of x in the circular string s.249

For technical reasons, given x, we are also interested in the set of rows prefixed by the250

strings xc as c varies in Σ. Clearly, these sets of rows are consecutive in M∗(s) and their251

union coincides with R[x].252

I Definition 3. Given a string x, we denote by R∗[x] the set of σ+1 integers [bx, `1, `2, . . . , `σ]253

such that bx is the lower extreme of R[x] and, for i = 1, . . . , σ, `i is the number of rows of254

M∗(s) prefixed by xci.255

Since R[x] is the union of the ranges R[xc] for c ∈ Σ, we have that if R∗[x] =256

[bx, `1, `2, . . . , `σ], then R[x] = [bx,
∑
i `i]. Note also that the ordering of the ranges R[xc]257

within R[x] is determined by the permutation πx. As observed in Section 2, we can assume258

that L supports constant time rank queries. This implies that in constant time we are also259

able to count the number of occurrences of a symbol c inside a substring L[i, j].260

I Lemma 4. Given R∗[x] and the permutation πx, the set of values R[xci] for all ci ∈ Σ261

can be computed in O(σ) time.262

Proof. If R∗[x] = [bx, `1, `2, . . . , `σ] then R[xci] = [b, `] with263

b = bx +
∑
j

`j , ` = `i (1)264

where the summation in (1) is done over all j ∈ {1, 2, . . . , σ} such that cj is smaller than ci265

according to the permutation πx. J266

I Lemma 5. Let x = x1x2 · · ·xm be any length-m string with m > 1. Then, given267

R∗[x1 · · ·xm−1] and R∗[x2 · · ·xm], the set of values R∗[x1 · · ·xm] can be computed in O(σ)268

time.269

CPM 2019

9:8 A New Class of Searchable and Highly Compressible String Transformations

Proof. By Lemma 4, given R∗[x1 · · ·xm−1] and xm, we can compute R[x1 · · ·xm] = [bx, `x].270

In order to compute R∗[x1 · · ·xm], we additionally need the number of rows prefixed by271

x1x2 · · ·xmc, for any c ∈ Σ. These numbers can be obtained by first computing the ranges272

R[x2 · · ·xmc] using again Lemma 4, and then counting the number of rows prefixed by273

x1x2 · · ·xmc, counting the number of x1 in the portions of L corresponding to each range274

R[x2 · · ·xmc]. The counting takes O(σ) time since we are assuming L supports constant275

time rank as in Theorem 1. J276

I Theorem 6. Suppose we are given BWT∗(s) with constant time rank support, and the set277

of permutations used to compute the matrix M∗(s). Then, given any string x = x1x2 · · ·xp,278

the range of rows R[x] prefixed by x can be computed in O(σp2) time and O(σp) space.279

Proof. We need to compute R[x1x2 · · ·xp]. To this end we consider the following scheme,
inspired by the Newton finite difference formula:

R∗[x1] R∗[x1x2] R∗[x1x2x3] · · · R∗[x1x2 · · ·xp−1] R∗[x1x2 · · ·xp]
R∗[x2] R∗[x2x3] R∗[x2x3x4] · · · R∗[x2 · · ·xp]
R∗[x3] R∗[x3x4] · · ·

...
R∗[xp]

Using Lemma 5 we can compute R∗[xi · · ·xj] given R∗[xi · · ·xj−1] and R∗[xi+1 · · ·xj]. Thus,280

from two consecutive entries in the same column we can compute one entry in the following281

column. To compute R[x1x2 · · ·xp] we can for example perform the computation bottom-up,282

proceeding row by row. In this case we are essentially computing the ranges corresponding283

to xp, xp−1xp, xp−2xp−1xp and so on, in a sort of backward search. However, we can also284

perform the computation top down, diagonal by diagonal, and in this case we are computing285

the ranges corresponding to x1, x1x2, and so on up to x1 · · ·xp. In both cases, the information286

one need to store from one iteration to the next is O(p) R∗[·] values, which take O(σp) words.287

By Lemma 5, the computation of each value takes O(σ) time so the overall complexity is288

O(σp2) time. J289

3.2 Inverting Context Adaptive BWTs290

We now show that the machinery we set up for counting occurrences can be used to retrieve291

s given BWT∗(s), thus to invert any context adaptive BWT.292

I Lemma 7. Given R∗[x] = [bx, `1, `2, . . . , `σ] and a row index i with bx ≤ i < bx +
∑σ
j=1 `j ,293

the (|x|+ 1)-st character of row i can be computed in O(σ) time.294

Proof. Let ρ1, . . . , ρσ denote the alphabet symbol reordered according to the permutation πx,
and let `′1, . . . , `′σ denote the values `1, . . . , `σ reordered according to the same permutation.
Since i ∈ R[x], row i is prefixed by x. Since the rows prefixed by x are sorted in their
(|x|+ 1)-st position according to πx, the (|x|+ 1)-st symbol of row i is the symbol ρj such
that

bx +
∑

1≤h<j
`′h ≤ i < bx +

∑
1≤h≤j

`′h

J295

I Theorem 8. Given BWT∗(s) with constant time rank support, the permutations πx used296

to build the matrix M∗(s), and the row index i containing s in M∗(s), the original string s297

can be recovered in O(σ|s|2) time and O(σ|s|) working space.298

R. Giancarlo and G. Manzini and G. Rosone and M. Sciortino 9:9

Proof. Let s = s1s2 · · · sn. From BWT∗(s), in O(n) time we retrieve the number of occur-299

rences of each character in s and hence the ranges R[c1], R[c2], . . . , R[cσ]. From those and300

the row index i, we retrieve s’s first character s1. Next, counting the number of occurrences301

of s1 in the ranges of BWT∗(s) corresponding to R[c1], R[c2], . . . , R[cσ], we compute R∗[s1].302

Finally, we show by induction that, for m = 1, . . . , n− 1, given R∗[s1s2 · · · sm], we can303

retrieve sm+1 and R∗[s1s2 · · · sm+1] in O(mσ) time. By Lemma 7, from R∗[s1s2 · · · sm] and304

i we retrieve sm+1. Next, assuming we maintained the ranges R∗[sj · · · sm], for j = 1, . . . ,m305

we can compute R∗[sj · · · sm+1] adding one diagonal to the scheme shown in the proof of306

Theorem 6. By Lemma 5, the overall cost is O(σ|s|2) as claimed. J307

4 BWTs based on local orderings308

In our definition of context adaptive transformation, the alphabet ordering πx associated309

to x can depend on the whole string x; in this sense the context has full memory. In this310

section we consider transformations in which the context has a bounded memory, in that it311

only depends on the last k symbols of x, where k is fixed. In the following we refer to these312

string transformations as BWTs based on local orderings.313

We start by analyzing the case k = 1. For such local ordering transformations the matrix314

M∗(s) depends on only σ + 1 alphabet orderings: one for each symbol plus the one used to315

sort the first column of M∗(s). The following lemma establishes an important property of316

local ordering transformations.317

I Lemma 9. If M∗(s) is based on a local ordering, then for any pair of characters x1, x2318

there is an order preserving bijection between the set of rows starting with x1x2 and the set319

of rows starting with x2 and ending with x1.320

Proof. Note that both sets of rows contain a number of elements equal to the number of321

occurrences of x1x2 in the circular string s. In the following, we write s[i · · ·] to denote the322

cyclic rotation of s starting with s[i]. Assume that rotations s[i · · ·] and s[j · · ·] both start323

with x2 and end with x1 and let h denote the first column in which the two rotations differ.324

Rotation s[i · · ·] precedes s[j · · ·] in M∗(s) if and only if s[i + h] is smaller than s[j + h]325

according to the alphabet ordering associated to symbol s[i+ h− 1] = s[j + h− 1]. The two326

rotations s[i − 1 · · ·] and s[j − 1 · · ·] both start with x1x2 and their relative position also327

depends on the relative ranks of s[i + h] and s[j + h] according to the alphabet ordering328

associated to symbol s[i+ h− 1] = s[j + h− 1]. Hence the relative order of s[i− 1 · · ·] and329

s[j − 1 · · ·] is the same as the one of s[i · · ·] and s[j · · ·]. J330

Armed with the above lemma, we now show that for local ordering transformations we331

can establish much stronger results than the one provided in Section 3.1.332

I Lemma 10. Suppose BWT∗(s) supports constant time rank queries. Let x = x1x2 · · ·xm333

be any length-m string with m > 1. Then, given R[x1x2], R[x2] and R[x2 · · ·xm], the value334

R[x1 · · ·xm] can be computed in O(1) time.335

Proof. By Lemma 9 there is an order preserving bijection between the rows in R[x1x2] and336

those in R[x2] ending with x1. In this bijection, the rows in R[x1 · · ·xm] correspond to those337

in R[x2 · · ·xm] ending with x1. Hence, if, among the rows starting with x2 and ending with338

x1, those prefixed by x2 · · ·xm are in positions r, r + 1, . . . , r + h, then, among the rows339

starting with x1x2, those prefixed by x1x2 · · ·xm are in positions r, r + 1, . . . , r + h. J340

CPM 2019

9:10 A New Class of Searchable and Highly Compressible String Transformations

I Theorem 11. Suppose BWT∗(s) is based on a local ordering and supports constant time341

rank queries. After a O(σ2) time preprocessing, given any string x = x1x2 · · ·xp, the range342

of rows prefixed by x can be computed in O(p) time and O(p) space.343

Proof. We reason as in the proof of Theorem 6, except that because of Lemma 10 we can344

work with R[·] instead of R∗[·] and we only need to compute the first two columns and the345

diagonal. In the preprocessing step, we compute R[ci] and R[cicj] for any pair (ci, cj) ∈ Σ2.346

During the search phase, we compute each diagonal entry in constant time. J347

Another immediate consequence of Lemma 9 is that we can efficiently “move back in the348

text” as in the original BWT. Note this operation is the base for BWT inversion and for349

snippet extraction and locate operations on FM-indices [10].350

I Lemma 12. Suppose BWT∗(s) is based on a local ordering and supports constant time351

rank and access queries. Then, after a O(σ2) time preprocessing, given a row index i we can352

compute in O(1) time the index of the row obtained from the i-th row with a circular right353

shift by one position.354

Proof. Compute the first and last symbol of row i and then apply Lemma 9. J355

I Corollary 13. If BWT∗(s) is based on a local ordering and supports constant time rank and356

access queries, BWT∗(s) can be inverted in O(σ2 + |s|) time and O(σ2) working space. J357

In the full paper we will show that bounded context adaptive BWTs can be generalized358

to the case in which the ordering πx depends only on the last k > 1 symbols of x. Search and359

inversion can still be performed in linear time with the only difference that preprocessing360

now takes O(σk+1) time and space.361

5 Run minimization problem362

In this section we consider the following problem: given a string s and a class of BWT363

variants, find the variant that minimizes the number of runs in the transformed string. As364

we mentioned in the introduction this problem is relevant for the compression of highly365

repetitive collections.366

We consider the general class of context adaptive BWTs described in Section 3. In this367

class we can select an alphabet ordering πx independently for every substring x. However, it368

is easy to see that the only orderings that influence the output of the transform are those369

associated to strings corresponding to the internal nodes of the suffix tree of s. Given a370

suffix tree node v we denote by bw(v) the multiset of symbols associated to the leaves in371

the subtree rooted at v. We say that a string zv is a feasible arrangement of bw(v) if we can372

reorder the nodes in the subtree rooted at v so that zv is obtained reading left to right the373

symbols in the reordered subtree. For example, in the suffix tree of Figure 3 (left), if v is the374

internal node with upward path aa it is bw(v) = {a, b, c} and bac, bca, acb, cab are feasible375

arrangements of bw(v), while abc and cba are not feasible arrangements. If τ is the suffix tree376

root, using the above notation our problem becomes that of finding the feasible arrangement377

of bw(τ) with the minimal number of runs. For constant alphabets the following theorem,378

proven in the Appendix, shows that the optimal arrangement can be found in linear time379

using dynamic programming.380

I Theorem 14. Given a string s over a constant size alphabet, the context adaptive transform-381

ation BWT∗ minimizing the number of runs in BWT∗(s) can be found in O(|s|) time. J382

R. Giancarlo and G. Manzini and G. Rosone and M. Sciortino 9:11

Proof. Let Opt denote the minimal number of runs. We show how to compute Opt with383

a dynamic programming algorithm; the computation of the alphabet orderings giving384

Opt is done using standard techniques. For each suffix tree node v and pairs of symbols385

ci, cj let ρ(v, ci, cj) denote the minimal number of runs among all feasible arrangements386

of bw(v) starting with ci and ending with cj . Clearly, if τ is the suffix tree root, then387

Opt = mini,j ρ(τ, ci, cj).388

For each leaf ` it is ρ(`, ci, cj) = 1 if ci = cj = bw(`) and ρ(`, ci, cj) =∞ otherwise. We389

need to show how to compute, for each internal node v, the σ2 values ρ(v, ci, cj) for ci, cj in390

Σ, given the, up to σ3 values, ρ(wk, c`, cm), k = 1, . . . , h, where w1, . . . , wh are the children391

of v. To this end, we show that for each ordering π of w1, . . . , wh we can compute in constant392

time the minimal number of runs among all the feasible arrangements of bw(v) starting393

with ci and ending with cj and with the additional constraint that v’s children are ordered394

according to π.395

To simplify the notation assume w1, . . . , wh have been already reordered according to π.
For k = 1, . . . , h let Mπ[k, c`, cm] denote the minimal number of runs among all strings x
such that x = y1 · · · yk where yt, for t = 1, . . . , k, is a feasible arrangement of bw(wt), and
with the additional constraints that y1 starts with c` and yk ends with cm. We have

Mπ[1, c`, cm] = ρ(w1, c`, cm)

and for k = 2, . . . , h396

Mπ[k, c`, cm] = min
i,j

(Mπ[k − 1, c`, ci] + ρ(wk, cj , cm)− δij) (2)397

where δij = 1 if i = j and 0 otherwise. Essentially, (2) states that to find the minimal398

number of runs for w1, . . . , wk we consider all possible ways to combine an optimal solution399

for w1, . . . , wk−1 followed by a feasible arrangement of bw(wk). The δij term comes from the400

fact that the number of runs in the concatenation of two strings is equal to the sum of the401

runs in each string, minus one if the last symbol of the first string is equal to the first symbol402

of the second string.403

Once we have the values Mπ[h, ci, cj], the desired values ρ(v, ci, cj) are obtained taking404

the minimum over all possible alphabet ordering π. J405

Note that, both the assumptions on the alphabet size and the constant-time rank406

operations could be relaxed without affecting the correctness of the results provided in this407

paper, accordingly the running time increases. For instance, in Theorem 14, the algorithm408

runs in O(|s|σ2) time, for any alphabet.409

Clearly the above theorem does not immediately yield a practical compressor, since the410

cost of specifying the alphabet ordering at each node is likely to outweigh the advantage of411

minimizing the number of runs. However we notice that: 1) the optimal transformation for a412

string will reasonably produce good results on similar strings so we can compute and store413

the ordering once and use it many times, 2) since Theorem 14 holds for the most general414

class, it provides a lower bound for the more interesting and practical BWTs based on local415

orderings and the ABWT.416

References417

1 D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.418

ACM T. Algorithms, 11(4):31:1–31:21, 2015.419

2 M. Burrows and D. J. Wheeler. A block sorting data compression algorithm. Technical report,420

DIGITAL System Research Center, 1994.421

CPM 2019

9:12 A New Class of Searchable and Highly Compressible String Transformations

3 B. Chapin and S. Tate. Higher compression from the Burrows-Wheeler transform by modified422

sorting. In DCC, page 532. IEEE Computer Society, 1998. Full version available from423

https://www.uncg.edu/cmp/faculty/srtate/papers/bwtsort.pdf.424

4 A. Cox, M. Bauer, T. Jakobi, and G. Rosone. Large-scale compression of genomic sequence425

databases with the Burrows-Wheeler transform. Bioinformatics, 28(11):1415–1419, 2012.426

5 M. Crochemore, J. Désarménien, and D. Perrin. A note on the Burrows-Wheeler transformation.427

Theor. Comput. Sci., 332:567–572, 2005.428

6 J. S. Culpepper, M. Petri, and S. J. Puglisi. Revisiting bounded context block-sorting429

transformations. Software Pract. Exper., 42(8):1037–1054, 2012.430

7 J. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, and É. Prieur-Gaston.431

A survey of string orderings and their application to the Burrows-Wheeler transform. Theor.432

Comput. Sci., 2017.433

8 P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compression in434

optimal linear time. J. ACM, 52(4):688–713, 2005.435

9 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In FOCS 2000,436

pages 390–398. IEEE Computer Society, 2000.437

10 P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52:552–581, 2005.438

11 T. Gagie, G. Manzini, and J. Sirén. Wheeler graphs: A framework for BWT-based data439

structures. Theor. Comput. Sci., 698:67–78, 2017.440

12 T. Gagie, G. Navarro, and N. Prezza. Optimal-time text indexing in bwt-runs bounded space.441

In SODA, pages 1459–1477. SIAM, 2018.442

13 I. M. Gessel, A. Restivo, and C. Reutenauer. A bijection between words and multisets of443

necklaces. Eur. J. Combin., 33(7):1537 – 1546, 2012.444

14 I. M. Gessel and C. Reutenauer. Counting permutations with given cycle structure and descent445

set. J. Comb. Theory A, 64(2):189–215, 1993.446

15 R. Giancarlo, G. Manzini, A. Restivo, G. Rosone, and M. Sciortino. Block sorting-based447

transformations on words: Beyond the magic BWT. In DLT, volume 11088 of Lecture Notes448

in Computer Science, pages 1–17. Springer, 2018.449

16 R. Giancarlo, A. Restivo, and M. Sciortino. From first principles to the Burrows and Wheeler450

transform and beyond, via combinatorial optimization. Theor. Comput. Sci., 387:236 – 248,451

2007.452

17 J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J. ACM,453

53(6):918–936, 2006.454

18 D. Kempa and N. Prezza. At the roots of dictionary compression: string attractors. In STOC,455

pages 827–840. ACM, 2018.456

19 S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. Theor. Comput.457

Sci., 483:115–133, 2013.458

20 V. Mäkinen, D. Belazzougui, F. Cunial, and A. Tomescu. Genome-Scale Algorithm Design.459

Cambridge University Press, 2015. ISBN 978-1-107-07853-6.460

21 V. Mäkinen, G. Navarro, J. Sirén, and Niko Välimäki. Storage and retrieval of highly repetitive461

sequence collections. J. Comput. Biol., 17(3):281–308, 2010.462

22 S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. Burrows-Wheeler Transform and463

Run-Length Enconding. In Combinatorics on Words - 11th International Conference, WORDS464

2017. Proceedings, volume 10432 of LNCS, pages 228–239. Springer, 2017.465

23 S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, and L. Versari. Measuring the clustering466

effect of BWT via RLE. Theor. Comput. Sci., 698:79–87, 2017.467

24 G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430, 2001.468

25 G. Navarro. Compact Data Structures – A practical approach. Cambridge University Press,469

2016. ISBN 978-1-107-15238-0.470

26 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv., 39(1), 2007.471

27 M. Petri, G. Navarro, J. S. Culpepper, and S. J. Puglisi. Backwards search in context bound472

text transformations. In CCP, pages 82–91. IEEE Computer Society, 2011.473

https://www.uncg.edu/cmp/faculty/srtate/papers/bwtsort.pdf

R. Giancarlo and G. Manzini and G. Rosone and M. Sciortino 9:13

28 M. Schindler. A fast block-sorting algorithm for lossless data compression. In DCC, page 469.474

IEEE Computer Society, 1997.475

CPM 2019

	Introduction
	Notation and background
	Known BWT variants

	BWTs based on Context Adaptive Alphabet Orderings
	Counting occurrences of patterns in Context Adaptive BWTs
	Inverting Context Adaptive BWTs

	BWTs based on local orderings
	Run minimization problem

