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Using very high resolution (VHR) imagery within a GEOBIA

framework for gully mapping: an application to the

Calhoun Critical Zone Observatory

A. Francipane, G. Cipolla, A. Maltese, G. La Loggia and L. V. Noto
ABSTRACT
Gully erosion is a form of accelerated erosion that may affect soil productivity, restrict land use, and

lead to an increase of risk to infrastructure. An accurate mapping of these landforms can be difficult

because of the presence of dense canopy and/or the wide spatial extent of some gullies. Even where

possible, mapping of gullies through conventional field surveying can be an intensive and expensive

activity. The recent widespread availability of very high resolution (VHR) imagery has led to a

remarkable growth in the availability of terrain information, thus providing a basis for the

development of new methodologies for analyzing Earth’s surfaces. This work aims to develop a

geographic object-based image analysis to detect and map gullies based on VHR imagery. A 1-meter

resolution LIDAR DEM is used to identify gullies. The tool has been calibrated for two relatively large

gullies surveyed in the Calhoun Critical Zone Observatory (CCZO) area in the southeastern United

States. The developed procedure has been applied and tested on a greater area, corresponding to

the Holcombe’s Branch watershed within the CCZO. Results have been compared to previous works

conducted over the same area, demonstrating the consistency of the developed procedure.
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INTRODUCTION
Overland flow erosion can be considered as a threshold pro-

cess occurring only after resistance forces are exceeded

(Huggett ; Francipane et al. ). Entity and evolution

of this phenomenon depends on several factors, such as

the hydrological regime, the geomorphological character-

istics, the climate, and the land use of the basin (Pimentel

et al. ; Nearing et al. ; Wilkinson & McElroy

; Francipane et al. ). All of these factors are related

to each other and determine, to a different degree, the extent

of the erosive process, changes on soil productivity, land-

scape evolution, and its variations in space and time

(Henderson-Sellers ; Kirkby & Cox ).

Erosion typically starts as a series of subparallel rills

parallel to the slope gradient. Slight variations in surface

topography can produce greater depth of flow, resulting in
increased erosive forces and in an accelerated erosion,

which promotes the evolution of rills into more severe

forms of erosion: the gullies (Ritter et al. ). According

to Poesen et al. (), the total soil losses caused by gully

erosion could rise up to 90% in different parts of the

world, restricting land use and increasing risk to infrastruc-

ture. For all of these reasons, gully erosion and their

identification in the territory have always attracted the inter-

est of the scientific community (Valentin et al. ).

The first attempts to study gullies go back to the 1930s,

when Ireland et al. () tried to study and describe the con-

ditions governing the development of gullies in the

Piedmont of South Carolina. In the 1960s, Tuckfield ()

described the processes that led to the formation of gullies

in the New Forest in Hampshire (England) and Seginer
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() presented different methods to quantify gully erosion.

Patton & Schumm () tried to describe the relationship

between critical valley slope and drainage-basin area and

use it as a predictive model to locate those areas of instabil-

ity within alluvial valleys where gullies could form. In 1977,

the Soil Conservation Service (SCS ) used a multi-

variate analysis to predict gully growth, while Stocking

() used multiple regression analysis to predict gully-

head retreat on 66 gullies in Zimbabwe. Kirkby & Bracken

() made an interesting synthetic review of gully mor-

phology and genesis examining the conditions for gully

formation, focusing on gully initiation, head and side-wall

processes, and making a brief dissertation about impli-

cations for gully prevention and remediation.

The advent of digital elevation models (DEMs) led to the

birth and diffusion of quantitative land-surface analysis (i.e.,

geomorphometry) (Grosse et al. ). For many years, the

main problem related to the use of DEMs for land-surface

analysis has been their relatively low spatial resolution.

The issue seems to be overcome with the advent of very

high resolution (VHR) imagery, which started with the

launch of IKONOS in 1999 and which finds nowadays its

maximum expression in LIDAR data, that allow the deri-

vation of very high resolution digital surface models

(DSMs) and bare ground DEMs. These products, which con-

stitute a basic support for activities such as hydrological–

hydraulic modeling and the identification of areas exposed

to flood risk, have provided the opportunity to develop

new methodologies for analyzing Earth surfaces (Tarolli

et al. ) that have found widespread use also in identify-

ing the scars of gullies in the landscape in the last decade

(Jackson et al. ; Ritchie et al. ; James et al. ;

Noto et al. ; Francipane et al. ).

So far, today, there are mainly two different procedures

to deal with high-resolution DEMs: a per-pixel approach

(pixel-based) and a per-object approach (object-based). The

last one is often referred to as object based image analysis

(OBIA or GEOBIA if it takes into account the geographical

aspect as well). While the pixel-based approach uses the

classical rules of map algebra applied to the pixel, the

object-based approach uses the concept of the image

object, which is defined as a group of neighbor pixels with

similar characteristics. The main advantage of such an

approach is that object characteristics (e.g., mean value,
om http://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
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standard deviation, ratio, etc.) and features (e.g., shape and

texture) can be calculated and used to differentiate land

cover classes with similar spectral information. These extra

types of information give OBIA the potential to produce

classifications characterized by accuracies higher than

those produced by traditional pixel-based method.

One of the earlier efforts in detecting gullies by means of

OBIA techniques was made about ten years ago by Eustace

et al. (). The authors developed a semi-automated

method to predict the presence and volume of gullies for

unsampled locations within the Fitzroy catchment in the

Great Barrier Reef lagoon, on the east coast of Australia.

They used data from 20 LIDAR transects acquired in

2007. Shruthi et al. () conducted a study with the aim

of quantifying temporal changes in gully system areas apply-

ing the OBIA to a 1-meter resolution DEM obtained from

the IKONOS mission. The authors were successful in

achieving the gullies by developing a set of improved rules

based on the knowledge of gully landform and process

related to their formation. D’Oleire-Oltmanns et al. ()

put together the GEOBIA analysis and the expert knowl-

edge to set up an ensemble of rules to delineate gullies.

They used as input a multispectral QuickBird 2 satellite

image and calculated the accuracy by comparing the results

of their classification with the reference data obtained by

field surveys. Yang et al. () developed and applied a mul-

tidirectional hill-shading method to extract gullies with an

OBIA approach. The approach allowed the authors to get

boundaries of gullies with high location accuracy and

solve the discontinuity and low location accuracy caused

by the pixel-based methods. Rahmati et al. () submitted

evidence that the GEOBIA technique is less expensive

than any other approach to detect gullies, such as soil ero-

sion measurements, especially over the last few years

because it leads to the highest values of accuracy. In their

paper, gully erosion mapping was performed using a

DEM, a SPOT-5 panchromatic satellite image, and a multi-

resolution segmentation.

Starting from knowledge about morphology and geo-

morphological processes leading to gullies, this paper aims

to develop a set of rules about morphometric aspects and

processes related to the formation of these landforms for

the identification of gullies within a GEOBIA framework.

The framework is applied to the Calhoun Critical Zone
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Observatory where several gullies have been observed and

mapped by other studies (James et al. ; Noto et al.

) and where a very high resolution (i.e., 1 m) LIDAR

DEM is available. The procedure, first calibrated for two gul-

lies detected during a field survey carried out in June 2015,

will be applied to the Holcombe’s Branch watershed and

results compared to those obtained by Noto et al. ().

The framework has been developed within the software

eCognition developer 9.2 (Trimble Geospatial).
STUDY AREA AND DATASET: THE CALHOUN
CRITICAL ZONE OBSERVATORY

The Calhoun Critical Zone Observatory (CCZO) is located in

South Carolina (USA) and is part of the Critical Zone Obser-

vatory (CZO) project, which involves different institutions

with the main goal to study and understand the processes

that shape the surface of Earth and support terrestrial life.

The study site is on gentle slopes (<3%) that are covered

by Appling and Cataula series soils (clayey, kaolinitic, ther-

mic Typic Kanhapludults). These soils have a depth higher

than 8 m to bedrock and are derived from granitoid gneiss,

mica gneiss, and granite (Overstreet & Bell ). The soil

has well-developed horizons with sandy loam in A and E

horizons, clays in Bt horizons and deep saprolite C horizons

(Fimmen et al. ). The upper 35-cm layer is coarse tex-

tured (68% sand, 15% clay), which ensures macroporosity

to the soil (Richter et al. ). The groundwater depth is

generally higher than 5 m, even though during winter and

occasional summer rain events water can perch in the

upper 1.5 m of the soil.

These soils supported crops of cotton, corn, and wheat

during the 1800s through the first half of the 20th century,

during which time, agricultural practices on Piedmont

soils such as these included increased use of fertilizers and

soil conservation practices (Sheridan ).

The CCZO is a particularly interesting site for studying

gully erosion since after more than a century of intensive

crop production, landscapes were abandoned and experi-

enced severe erosion that has led to the loss of almost

20 cm of top soil with the formation of numerous gullies.

Today, the gullies are mainly blanketed by reforestation,

but the scars of these particular landforms are still present.
://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
More details about this area can be found in James et al.

().

Following the same work scheme of Noto et al. (),

we identified a first area (SUBAREA-A) of about 1 km2,

containing two gullies surveyed during a field survey carried

out in June 2015, and a second area (SUBAREA-B) with

an extension of about 4.3 km2, corresponding to the

Holcombe’s Branch watershed within the CCZO (Figure 1).
METHODS

The methodology builds on the use of four different morpho-

metric indices able to detect the presence of specific

landforms, which can be interpreted as part of a gully

(bottom and edges): the Topographic Position Index (TPI),

the terrain slope, the roughness slope, and the length to

width ratio.

With reference to the data, LIDAR DEM was obtained

by the study of Noto et al. (). The SUBAREA-A was

used to develop and calibrate the GEOBIA procedure,

while the SUBAREA-B was used to test the developed pro-

cedure. Figure 1 shows the LIDAR DEM for the

SUBAREA-A (left part of the figure) and the SUBAREA-B

(right part of the figure). Detailed information about the

data and the two sub-areas can be found in Noto et al. ().

The following section is organized as follows. The sec-

tion ‘Morphometric indices’ provides a brief description of

the aforementioned indices. The section ‘Gully detection

within a GEOBIA framework’ summarizes the OBIA pro-

cedure developed to identify gullies within the SUBAREA-

A with particular reference to the two main phases of

OBIA: segmentation and its calibration (‘The multi-

resolution segmentation algorithm’) and classification (‘The

object-based classification’).

Morphometric indices

TPI for gully bottom

The TPI (Guisan et al. ; Jenness ) is defined as the

difference between the elevation of a central pixel, z, and the

mean elevation, �zα, of its surrounding cells within the kernel

of size α. Negative values mean the cell is lower than its



Figure 1 | LIDAR DEM of the SUBAREA-B (Holcombe’s Branch watershed) of the CCZO (on the right) and focus on the SUBAREA-A (on the left) containing the two gullies surveyed and used

for the calibration of the GEOBIA procedure.
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surroundings. If z is significantly lower than �zα, which

implies significant low values of TPI, then the cell is likely

at or near the bottom of a depression (e.g., the bottom of a

valley or a gully). In particular, we used the normalized

TPI (nTPI) by dividing it by the mean value of elevation

within the used kernel:

nTPIα ¼ (z� zα)
zα

(1)

Since the TPI is kernel-dependent, in order to decide the

size of the kernel to use, we used different kernel size α (see

‘Gully detection within a GEOBIA framework’). The nTPIα
was calculated in QGIS 3.4.0 (QGIS Development Team,

http://qgis.org) starting from the existing GRASS r.neighbors

function.
Terrain slope for gully edge

Terrain slope, which is the first spatial derivative of the ter-

rain elevations, is one of the basic terrain parameters widely

used in terrain analysis and landform classification. Slope
om http://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
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has been here adopted as index of gully edge presence

since the gully edges can be assimilated to abrupt changes

of slope in the terrain (Shruthi et al. ; Liu et al. ).

It was obtained in QGIS 3.4.0 from the LIDAR DEM

through using the existing GRASS r.slope.aspect tool.
Terrain roughness for gully edge

Terrain roughness is a morphometric measure expressing

irregularities of the soil surface, caused by factors such as

soil texture, aggregate size, rock fragments, vegetation

cover and land management. Since a DEM-derived rough-

ness characterizes the local variance of surface gradients,

distinguishing between smooth and rugged landforms

might be a useful indicator of gully edge presence (Liu

et al. ). According to Liu et al. (), here the terrain

roughness is defined as the inverse of the cosine of slope

angle and obtained using Equation (2) within the raster

calculator of QGIS 3.4.0:

r ¼ 1
cos (slope)

(2)

http://qgis.org
http://qgis.org
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Since the roughness is directly derived from slope, in

order to verify that the information provided by the terrain

roughness is not redundant in detecting the edges of gullies,

some tests for the SUBAREA-A have been carried out. The

results of the tests, which are not shown here for the sake

of brevity, demonstrated that considering this variable

reduces the number of false positives, i.e., non-gully seg-

ments assigned to the class gully edge.
Length to width ratio for gully edge

Since gullies are usually narrow and long landforms,

elements representing the edges are likely to have one of

the two dimensions higher than the other one (Eustace

et al. ; D’Oleire-Oltmanns et al. ). This information

is contained within the length to width ratio, which gives an

indication of the compactness of an element. In particular,
Figure 2 | Flow chart of proposed gully detection procedure.

://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
values of length to width ratio greater than one means that

the object is longer in one of its two dimensions. The

index has been obtained in eCognition developer 9.2.

Gully detection within a GEOBIA framework

The gully detection procedure here developed can be sum-

marized in the flow charts of Figure 2. The first step is the

derivation of the first three aforementioned indices (nTPI,

terrain slope, and terrain roughness). In particular, for the

nTPI index, Evans & Lindsay () suggest choosing the

kernel size as a function of the typical width of the gullies

to detect. In order to determine the best kernel size to

detect gullies, nTPI was derived at three different kernel

sizes, equal to 10, 20, and 30 m, respectively.

The second step consists of using the nTPI layer within

eCognition developer 9.2 as starting layer to apply the
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segmentation process, which is the main process of OBIA

(Hay & Castilla ), in order to derive homogeneous

pixel clusters (also called segments or objects) that provide

the base layer for the following analysis steps. Among the

variety of segmentation algorithms, here it was decided to

use the multi-resolution segmentation algorithm (Baatz &

Schape ). It is a bottom-up approach that aims to

merge neighbor pixels having a heterogeneity parameter

less than a specific threshold, fixed by the user. Compared

to the classical pixel-based approach, this process leads to

a number of elements to process lower than that of pixels

that make the original image and, for this reason, easier

and faster to analyze. The optimal values of parameters, in

order to obtain the segments from the original image,

have been defined through a calibration procedure of

segmentation detailed in the section ‘The multi-resolution

segmentation algorithm’.

A final phase of classification, based on different aspects

of objects, such as spectral or textural attributes, allows the

user to classify images and recognize a landform in the land-

scape (e.g., gullies in the present study). A developed rulesets

section allows the user to set up an ensemble of rules aiming

to automate the process and replicate it on different areas. A

section called Image Object Information enables the user to

query and get the values of some specific variables within an

object and use them to set up a process tree of rules and/or

algorithms aimed to detect a given object (e.g., gullies).

The multi-resolution segmentation algorithm

Segmentation creates segments or objects representing fea-

tures that may be spectrally variable at the level of the

single pixel. The most important parameter in order to ident-

ify homogeneous objects is the scale parameter, e, consisting

of the maximum heterogeneity, or degree of fitting, between

two neighbor pixels or objects. As the scale parameter

increases, the number of merged pixels into a single object

or the number of merged objects into a bigger object

increases as well. On the contrary, as the scale parameter

decreases, the original image will be fragmented into a

higher number of small objects.

Actually, the similarity between two adjacent objects is

evaluated as a function of a spatial and a spectral com-

ponent (Happ et al. ). The first one depends on the
om http://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
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spatial heterogeneity, hshape, weighted by wshape, and the

compactness, hcmpct, weighted by wcmpct. For more details,

see the first section of the Supplementary material, ‘The

multi-resolution segmentation algorithm’.

One way to optimize the values of the above parameters

is to calibrate the segmentation procedure (Clinton et al.

; Liu et al. , ). According to Liu et al. (),

the overlay between the reference polygon (e.g., the actual

gullies’ boundaries) and the corresponding segments could

generate under-segmented and over-segmented areas, apart

from the overlapped areas (Figure 3). As is possible to see

in Figure 3, the relationships between the reference poly-

gons (continuous line in Figure 3) and the corresponding

segments (dashed line in Figure 3) can be: one-to-many,

one-to-one, and many-to-one.

According to the schemes depicted in Figure 3, it is poss-

ible to affirm that the goodness of the multi-resolution

segmentation result, as far as concerning the geometric

relationships, can be measured through the following three

metrics:

OS ¼
P jri � skjP jrij (3)

US ¼
P jsk � rijP jskj (4)

ED1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OS2 þUS2

2

s
(5)

In Equations (3) and (4), the term ri stands for the refer-

ence polygon and the term sk represents the segment that

has to be compared with the reference polygon. In general,

Equation (3) provides the over-segmentation factor (OS),

because it sums up the areas included in the reference poly-

gon but not in its corresponding segments. The output given

by Equation (4) is the under-segmentation factor (US), since

it is representative of all those pixels included in the seg-

ments, but that are outside the reference polygon. The

output provided by Equation (5) is the Euclidean distance

1 (ED1) and is the distance from the perfect geometric

segmentation result. By analyzing Equations (3)–(5), it is

easy to affirm that in the ideal case of perfect match between

the reference polygon(s) and the segment(s) all the three

metrics should be equal to zero. The over-segmentation



Figure 3 | Comparison between the reference polygon and the corresponding segments: (a) displays the one-to-many relationship, (b) the one-to-one, and (c) the many-to-one.

Figure from Liu et al. (2012).
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and the under-segmentation are two of the main limitations

of object-based approach of images (Figure 3), which can

affect the subsequent classification process in two ways: (i)

under-segmentation results in image objects that cover

more than one class and thus introduce classification

errors because all pixels in each mixed image object have

to be assigned to the same class; and (ii) features extracted

from images affected by over-segmentation or under-

segmentation do not represent the properties of real objects

on the Earth such as shape and/or area (Liu & Xia ).

In order to take into account the arithmetic relation-

ships as well, Liu et al. () proposed the following new

indices:

PSE ¼
P jsi � rkjP jrkj

(6)

NSR ¼ jm� vj
m

(7)

ED2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSE2 þNSR2

p
(8)

where PSE and NSR stand for potential segmentation error

and number of segment ratio, respectively, while m and v
://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
represent the number of reference polygons and the

number of corresponding segments, respectively. ED2 is

the Euclidean distance 2 and measures the distance from

the perfect arithmetic segmentation.

In order to come up with a single index value that takes

into account both the geometric and arithmetic segmenta-

tion results, the ED1 and ED2 have been combined into

the key performance indicator, KPI (Goepel ), of

Equation (9):

KPI ¼
Xk
i¼1

wi � ICi (9)

where k¼ 2 (i.e., ED1 and ED2), wi is the weight of ICi, here

assumed equal to 0.5 for both ED1 and ED2, and ICi is

calculated by means of Equation (10):

ICi ¼ 100 � PIi � basei
targeti � basei

(10)

where PIi is the value of the ith index (i.e., ED1 and ED2),

basei is the value indicating the worst performance of



226 A. Francipane et al. | Application of GEOBIA to detect gullies Journal of Hydroinformatics | 22.1 | 2020

Downloaded fr
by guest
on 29 March 2
the ith index and targeti is the value indicating the best

performance of the ith index (i.e., zero for both ED1 and

ED2). The KPI ranges between 0 and 100, with 100 indi-

cating a perfect match in terms of geometric and

arithmetic results.

More details about the multi-resolution algorithm can

be found in the first section of the Supplementary material,

‘The multi-resolution segmentation algorithm’.

The object-based classification

Object-based classification involves categorization of

pixels on the basis of the spatial relationship with the

neighboring pixels. Differently from the pixel-based

classification, the object-based classification attempts to

mimic what the human eyes do during visual interpret-

ation based on the spectral properties (i.e., color), size,

shape, and texture of objects obtained with the

segmentation.

The process relies on the construction of one or more

rules that can be used in cascade across a variety of layers

to classify the segments resulting from the multi-resolution

segmentation algorithm; such a procedure allows the user

to produce a repeatable methodology. Depending on the

purpose of the classification, it is possible to set different

kinds of rules. As an example, some rules aim to classify

objects on the basis of a threshold. In this case, the threshold

value can be calibrated on the basis of literature indications

or, in the absence of those, querying the values of some

specific variables within objects falling within an interest

area. Some other rules can be written up on the basis of

adjacency or distance between segments.

The software eCognition developer 9.2 allows the user to

create different rules working with one or more layers, since

they can be linked through logical or and and operators.

Each rule can be independent from the others or linked to

them in a cascade of rules, where each rule operates on

the classified segments from the previous ones.

As it is possible to understand from the above consider-

ations, a good classification requires a good a priori

knowledge of the area and the types of land cover under

investigation, which may not necessarily be available.

Further, there is no definitive algorithm or parameters for

the creation of image objects.
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Method setup and calibration: application to the

SUBAREA-A

Following the approach proposed by Clinton et al. ()

and later applied by Liu et al. () to identify gullies in

the Yaojiawan catchment (Shaanxi Province, China),

the proposed method has been previously calibrated on

the two surveyed gullies of SUBAREA-A shown in Figure 1.

Such an optimization process is very convenient, since it

enables to compute segments fitting the actual boundaries

of the two considered gullies in the most proper way.

The proposed methodology involves making choices of

many different parameters, which may influence the result-

ing outcome in terms of accuracy of the identification of

gullies. Main choices regard the nTPI kernel, α, and the

segmentation parameters (i.e., e, wshape, and wcmpct). With

reference to the nTPI, three different kernel sizes (i.e., 10,

20, and 30 m) were fixed a priori on the basis of a simple

qualitative visual analysis and considering that the two gul-

lies of the SUBAREA-A both have a width of about 20 m.

With reference to the segmentation parameters, instead, a

certain range of variability for the scale parameter (i.e., 3,

5, 10, and 20) and the weights related to the spatial hetero-

geneity and the compactness factor has been explored. In

more detail, wcmpct has been set equal to 0.2, 0.45, and 0.9,

while wshape is equal to 0.2, 0.6, and 0.9.

The KPI (see the section ‘The multi-resolution segmen-

tation algorithm’) has been used to obtain the set of

parameters that provides the best segmentation and the con-

fusion matrix to evaluate the goodness of the final

classification.

Multi-resolution segmentation

Based on morphology and the most common shape of gul-

lies, the expected result of segmentation should have thin

and long segments corresponding to the gully-affected

areas and more compact segments outside them. Consider-

ing what was said in the section ‘The multi-resolution

segmentation algorithm’, once the scale parameter, e, is

fixed, these results should be obtained for low weights of

the spatial heterogeneity and compactness factor.

In order to perform the multi-resolution segmentation

algorithm, the only layer of the nTPI has been used.
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In order to calibrate the process, a number of 108

possible combinations resulting from the considered

ranges of variability of nTPI (3), e (4), wshape (3), and

wcmpct (3) have been considered by setting up an

ensemble of segmentation attempts and evaluating, for

each of them, the goodness of the results in terms of

KPI. The results of calibration, not shown here for the

sake of brevity, demonstrated that the more suitable size

for the kernel of the nTPI was 30 m (hereafter nTPI30).

With reference to the two gullies of SUBAREA-A, a

visual inspection of nTPI30 layer seems to ensure that

pixels belonging to the gully-affected areas, either

bottom or edges, and to the gully not-affected areas are

likely to be included in the same kernel. In terms of
Figure 4 | Segmentation results for e¼ 10, wshape ¼ 0.9, and wcmpct ¼ 0.2 for the (a) left basin

Black lines indicate segmentation.

://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
multi-resolution segmentation, this means that all the

pixels covering the bottom of a gully are likely merged

into objects with strongly negative values of nTPI30;

similarly, the edges of gullies are merged into objects

still having negative values of nTPI30 but closer to zero

than the object representing the bottom. More details

about the 36 possible combinations and their results in

terms of KPI can be found in the second section of the

Supplementary material, ‘Multi-resolution segmentation in

SUBAREA-A’.

Figure 4(a) and 4(b) show the results of segmentation

corresponding to the two surveyed gullies of SUBAREA-A

relatively to e¼ 10, wshape ¼ 0.9, and wcmpct ¼ 0.2, while

Figure 4(c) and 4(d) show the results of segmentation for
and (b) right basin and e¼ 5, wshape ¼wcmpct ¼ 0.2 for the (c) left basin and (d) right basin.
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e¼ 5, wshape ¼ 0.2, and wcmpct ¼ 0.2. The image segments dis-

played in Figure 4 are only those intersecting the actual

gully-affected areas.

It is possible to notice in Figure 4 that, as the scale par-

ameter increases, the size of objects increases as well.

Looking at Figure 4(a) and 4(b) (e¼ 10), segmentations

resulted in a low number of large objects leading to high

values of OS and/or US and, consequently, higher values

of ED1. More importantly, there is a coarse segmentation

inside the actual gullies that could result in a raw classifi-

cation. The opposite considerations can be made by

observing Figure 4(c) and 4(d), where e¼ 5. In this case, a

higher number of long and narrow objects allows for a

better description of geometry but a worse segmentation in

terms of arithmetic results.

Considering the previous arguments, according to Baatz

& Schape (), it has been decided to select the following

values for the segmentation of SUBAREA-A: e¼ 5,

wshape ¼wcmpct ¼ 0.2.
Figure 5 | Spatial distribution of the four indices used to detect gully bottom and edges: (a) T
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Starting from this segmentation it has been possible to

retrieve different information at the segment scale, among

which is the length to width ratio, useful for the next step

of classification.
Classification

Figure 5 shows the two surveyed gullies of SUBAREA-A

overlaid to the spatial distributions of the four indices

above mentioned: nTPI30 (Figure 5(a)), terrain slope

(Figure 5(b)), terrain roughness (Figure 5(c)), and length to

width ratio (Figure 5(d)). Looking at Figure 5(a), as already

discussed in the section ‘Multi-resolution segmentation’, it is

possible to notice that the objects belonging to the bottom of

gullies are characterized by negative values, while edges are

identified by still negative values but closer to zero. By

observing the slope and the terrain roughness, shown in

Figure 5(b) and 5(c), respectively, it is clear that the higher

values of both these variables correspond to gullies’ edges.
PI30, (b) slope, (c) terrain roughness, and (d) length to width ratio.



229 A. Francipane et al. | Application of GEOBIA to detect gullies Journal of Hydroinformatics | 22.1 | 2020

Downloaded from http
by guest
on 29 March 2021
Finally, from Figure 5(d), it is possible to see that if the

element is narrow and long, as gullies usually are, there

are high values of length to width ratio.

Starting from information contained within the segmen-

ted objects that, differently from the classical pixel-based

approach, can concern also the values of min, max, mean,

standard deviation, etc., of a given variable, we tried to

detect landforms connected to gullies. Investigation of pre-

vious layers allowed us to set up an ensemble of rules and

algorithms to detect the bottoms and the edges of the two

surveyed gullies of SUBAREA-A.

First of all, we identified the bottom of gullies by using

the nTPI layer. As already said in the section ‘TPI for gully

bottom’, low values of TPI indicate a cell at or near the

bottom of a valley that is likened to the bottom of a gully.

That being said, by querying the mean value of nTPI30 for

both those segments within and outside the surveyed gullies,

it was possible to identify and calibrate the value of a

threshold, T1, distinguishing between the bottom and other

landforms.

Once the bottom part of gullies within the SUBAREA-A

was identified, for the identification of edges, a similar pro-

cess led to the identification of three thresholds (i.e., T2,

T3, and T4) for the terrain slope, terrain roughness, and

length to width ratio layers, respectively.

This process resulted in the writing of Equation (11),

which is the first rule of the cascade process, for the identi-

fication of the bottom, and Equation (12) for the

identification of edges:

Mean (nTPI30)< T1 (11)

Mean slope> T2

Mean roughness> T3

Length=width> T4

8<
: (12)

Equation (11) affirms that, for each segment, if the aver-

age nTPI30 within the object is less than T1 it is classified as

a gully bottom. Equation (12) puts three different conditions

together through an and spatial operator and, therefore, it

represents an intersection. For this reason, only those

objects where all of the three conditions are contemporarily

satisfied are classified as gully edges. In particular, from pre-

vious analysis, the values of T1, T2, T3, and T4 resulted as

equal to �2, 20�, 1.15, and 1.5, respectively.
://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
All the segments classified as bottom or edges have been

merged into a single class labeled gully, while all the unclas-

sified objects have been assigned to a class labeled non-

gully. The boundaries of the two surveyed gullies, high-

lighted in a continuous black line, overlaid to the

classification results, are shown in Figure 6.

In order to verify the goodness of the achieved classifi-

cation, the Accuracy Assessment tool provided by

eCognition developer 9.2 has been used for the same two rec-

tangular frames surrounding the two gullies of SUBAREA-A

retrieved by Noto et al. () (see Box-SX and Box-DX,

Figure 2a of Noto et al. ()). The tool returns the overall,

the user, and the producer accuracies for the classes gully

and non-gully and the K-index for both the two classes

and takes into account all of the pixels contained in an

object. In particular, the overall accuracy is the percentage

of pixels correctly classified over the total number of them

in the confusion matrix.

Since the overall accuracy is very satisfactory (almost

95% for the left gully and 91% for the right gully), in order

to test the procedure developed for the SUBAREA-A, the

same rules here discussed have been applied to detect gullies

in the SUBAREA-B. More details about the Accuracy

Assessment tool and its application to SUBAREA-A can

be found in the third section of the Supplementary material,

‘Classification in SUBAREA-A’ and Table S1.

Application of the developed procedure to the

SUBAREA-B

As was said in the section ‘Classification’, since the accuracy

assessment related to the SUBAREA-A is satisfied, the same

classification rules have been applied to detect the gullies

within the SUBAREA-B. Because of the greater extension

and the more complex morphology of the SUBAREA-B, as

compared to the SUBAREA-A, in addition to the developed

rules for the SUBAREA-A, other rules have to be used in

order to exclude some morphological features (e.g., some

parts of hydrological network and the bank erosion areas)

which, at the watershed scale, can be erroneously classified

as gullies.

In particular, for the correction of those objects belong-

ing to the hydrological network, all of those objects with a

mean value of flow accumulation lower than a threshold,



Figure 6 | Results of the classification procedure for the SUBAREA-A after applying Equations (11) and (12).
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T5, have been corrected as non-gully. The layer of flow

accumulation for the Holcombe’s Branch watershed was

previously derived from the DEM in QGIS. For the correc-

tion of those objects belonging to the bank erosion areas,

instead, we used a distance threshold, T6, from those

elements corrected as hydrological network at the previous

step. In this case, all of those segments with a distance from

the hydrological network lower than T6 have been corrected

as non-gully. This process resulted in the implementation of

two new rules in eCognition developer 9.2:

Mean (Flow Accumulation)> T5 (13)

Distance to hydrological network< T6 (14)

In particular, investigation of objects belonging to the

river network and to the bank erosion areas led to set

T5equal to 4, 000 pxl and T6equal to 30 pxl.

In this case, since a spatial distribution of the digitalized

actual gullies is not available, in order to assess the appropri-

ateness of the developed procedure, the spatial map of

results for the object-based procedure and the pixel-based

procedure, developed for the same area by Noto et al.

(), has been compared (Figure 7).

From an overview of Figure 7, it is possible to notice that

the number of gullies detected with the object-based

approach is higher than that obtained with the pixel-based

approach. Moreover, while in some cases there is almost a

perfect match between the gullies detected with the two

approaches (see box B in Figure 7), in some other cases

the match is only partial (see box A in Figure 7) and in

some others there is not a match at all (see box C in
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Figure 7). Rarely, the pixel-based approach detects gullies

that the object-based approach is not able to identify. How-

ever, observing the morphology of the Holcombe’s Branch

watershed in Figure 7, it seems plausible that the landforms

identified by the object-based approach are likely gullies and

there is a failure in identifying correctly these landforms

from the pixel-based approach.

Starting from the distribution map of the gullies in

Figure 7 we derived some indices of the gullies such as the

area, the boundary length (i.e., perimeter), and the compact-

ness index, and their empirical distribution function (ecdf,

Figure 8). According to Noto et al. (), the compactness

index was defined as the ratio between the perimeter of

the gully and the root square of its area (multiplied by 4π).

It ranges between 1.28 (most compact gully) and 5.31

(very elongated gully) and characterizes the shape of the

extracted gullies; the more it is close to 1, the more the

shape of the gully is close to a circle.

A total number of 143 gullies were identified with an

area ranging between 20 m2 and about 10,700 m2

(Figure 8(a)), whereas the perimeter ranges from 24 m to

about 1,950 m (Figure 8(b)). The compactness index

(Figure 8(c)) ranges from a minimum of 0.04 (very

elongated gullies) to a maximum of about 0.6 (more com-

pact gullies). In order to compare the results of this study

with the results of the pixel-based approach provided by

Noto et al. (), Figure 8 shows also the ecdf for the

area, perimeter, and compactness index returned by that

study. As it is possible to notice from Figure 8, apart for

the compactness index, which is perfectly overlapped to

that of Noto et al. (), the object-based approach led to



Figure 7 | Comparison between the gullies achieved through a GEOBIA technique and a pixel-based image analysis. Boxes A, B, and C show some focuses on the Holcombe’s Branch

watershed.

231 A. Francipane et al. | Application of GEOBIA to detect gullies Journal of Hydroinformatics | 22.1 | 2020

Downloaded from http
by guest
on 29 March 2021
identifying more extended gullies (e.g., larger area and per-

imeter) than the pixel-based approach. While the difference

in terms of upper limits is due to the two different

approaches and, mainly, to the fact that the object-based

approach works with elements, which are aggregation of

pixels, where the minimum size of the element is not that

of the pixel anymore, the different lower limit is mainly
Figure 8 | Empirical cumulative distribution function (ecdf) of morphometric characteristics of g

(c) compactness index.

://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
due to the fact that, differently from Noto et al. (), we

did not eliminate from classification those gullies with an

area smaller than a given threshold.

Some more statistical characteristics of extracted gullies

can be found in the fourth section of the Supplementary

material, ‘Application of the developed procedure to the

SUBAREA-B’ and Table S2.
ullies identified by the proposed methodology over SUBAREA-B: (a) area, (b) perimeter, and



232 A. Francipane et al. | Application of GEOBIA to detect gullies Journal of Hydroinformatics | 22.1 | 2020

Downloaded fr
by guest
on 29 March 2
DISCUSSION

Spatial distribution of gullies identified by the object-based

approach here developed for the Holcombe’s Branch water-

shed (Figure 7) seems to provide a good definition of the

spatial pattern of gullies. The application of the procedure

to SUBAREA-B provided the identification of gullies on

the basis of segmentation and classification previously devel-

oped, calibrated, and tested for the SUBAREA-A. Differently

than Noto et al. (), which removed the main river chan-

nel and the bank erosion landforms in the SUBAREA-B

manually or by means of a threshold for the gullies’ area,

here we used a couple of rules related to the contributing

area and to the distance from the channels, respectively.

In order to minimize the errors due to the over-segmen-

tation and under-segmentation of images (Figure 3), some

geometric and arithmetic relationships have been used to

calibrate the segmentation on the SUBAREA-A. While the

geometric relationship ensures the best match possible in

terms of area and shape, the arithmetic relationship ensures

the best segmentation in terms of number of objects (i.e., as

few objects as possible). The geometric and arithmetic

relationships have been combined in a unique index repre-

sentative of the goodness of segmentation.

For the classification of objects, a set of rules based on

parameters’ thresholds and/or adjacency or distance from

other objects has been used. Since a gully can be usually

characterized by a bottom and some edges, which are

defined by different characteristics, it has been preferred to

set up a rule for the identification of the bottom and three

rules in cascade for the identification of the edges. For the

first case, we used the nTPI30 parameter, while for the

edges we used the terrain slope, the terrain roughness, and

the length to width ratio.

For the SUBAREA-B, the physical consistency of the

developed procedure has been evaluated by comparing the

gullies’ pattern provided by the proposed method with that

of Noto et al. (). From the observation of the Hol-

combe’s Branch watershed morphology (Figure 7), the

GEOBIA procedure seems able to detect also gullies, or

parts of those, that have not been detected by the pixel-

based approach. For this reason, it is plausible to say that

the developed procedure is a reliable tool to identify gullies

once it has been calibrated and tested. Moreover, the
om http://iwaponline.com/jh/article-pdf/22/1/219/642450/jh0220219.pdf
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comparison of ecdf for some characteristics of the gullies

such as the area, the perimeter, and the compactness

index (Figure 8) showed that the object-based procedure

leads to gullies with bigger ranges of area and perimeter

than those identified by Noto et al. ().

One of the most important advantages of the proposed

method consists of the reproducibility of the developed pro-

cedure also for other areas of the Earth. In contrast, the

main limitation is the fact that parameters need to be recali-

brated in order to adapt to different gully patterns.
CONCLUSIONS

An object-based approach to detect landforms is presented

in this study. The approach, differently from the classical

pixel-based approach, uses the characteristics and features

of groups of pixels, called objects or segments, to differen-

tiate land cover classes with similar spectral information.

As compared to the pixel-based approach, the possibility

to consider this extra information gives GEOBIA the poten-

tial to produce land cover thematic maps with a higher

accuracy.

GEOBIA has been applied to the Calhoun Critical Zone

Observatory (CCZO), an area of South Carolina particularly

interesting since it is characterized by the presence of

numerous gullies because of very intense erosion activity

due to the abandonment of terrains used for intensive crop

production in the past century.

The software used to carry out the study is the eCogni-

tion developer 9.2, developed by Trimble Navigation Ltd,

which provides a collection of tools for OBIA and

GEOBIA, facilitating the classification of images in various

application fields. The software allows the user to develop a

procedure that starts from the segmentation of an image to

create groups of homogeneous pixels (also called objects

or segments) to which is assigned the same class during

the following classification process. The main advantage of

the developed procedure, as compared to a classical pixel-

based approach, is that the number of elements to process

is significantly lower than that of pixels that make the

image and, for this reason, easier and faster to analyze.

Two areas, the SUBAREA-A and the SUBAREA-B,

inside the CCZO have been used to calibrate and test,
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respectively, the developed procedure. The first area is

characterized by the presence of two gullies detected

during a field survey in June 2015. The surveyed gullies

have been used as reference to calibrate the GEOBIA pro-

cedure and thus obtain the optimal segmentation and

classification. The procedure, then, has been applied to the

SUBAREA-B, corresponding to the Holcombe’s Branch

watershed, to test the goodness of the developed procedure.

Results showed that the GEOBIA procedure developed

in eCognition developer 9.2 is able to detect gullies with

good accuracy even though, because of the absence of

surveyed gullies for the SUBAREA-B, the results have

been evaluated using as reference the results from a pixel-

based approach developed for the same area by Noto

et al. ().

Although the approach surely requires further testing in

other gullied systems where good quality topographic data

are available, the demonstrated capability of eCognition

developer 9.2 in developing OBIA or GEOBIA procedures

to identify gullies in a given area of Earth, coupled with

the increasing availability of LIDAR data, allows us to say

that this automated technique has the potential for indivi-

duation of different landforms (e.g., landslides) and

applications across a range of environments.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this paper is available

online at https://dx.doi.org/10.2166/hydro.2019.083.
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